linux/drivers/md/bcache/request.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Main bcache entry point - handle a read or a write request and decide what to
   4 * do with it; the make_request functions are called by the block layer.
   5 *
   6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
   7 * Copyright 2012 Google, Inc.
   8 */
   9
  10#include "bcache.h"
  11#include "btree.h"
  12#include "debug.h"
  13#include "request.h"
  14#include "writeback.h"
  15
  16#include <linux/module.h>
  17#include <linux/hash.h>
  18#include <linux/random.h>
  19#include <linux/backing-dev.h>
  20
  21#include <trace/events/bcache.h>
  22
  23#define CUTOFF_CACHE_ADD        95
  24#define CUTOFF_CACHE_READA      90
  25
  26struct kmem_cache *bch_search_cache;
  27
  28static void bch_data_insert_start(struct closure *);
  29
  30static unsigned cache_mode(struct cached_dev *dc)
  31{
  32        return BDEV_CACHE_MODE(&dc->sb);
  33}
  34
  35static bool verify(struct cached_dev *dc)
  36{
  37        return dc->verify;
  38}
  39
  40static void bio_csum(struct bio *bio, struct bkey *k)
  41{
  42        struct bio_vec bv;
  43        struct bvec_iter iter;
  44        uint64_t csum = 0;
  45
  46        bio_for_each_segment(bv, bio, iter) {
  47                void *d = kmap(bv.bv_page) + bv.bv_offset;
  48                csum = bch_crc64_update(csum, d, bv.bv_len);
  49                kunmap(bv.bv_page);
  50        }
  51
  52        k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
  53}
  54
  55/* Insert data into cache */
  56
  57static void bch_data_insert_keys(struct closure *cl)
  58{
  59        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
  60        atomic_t *journal_ref = NULL;
  61        struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
  62        int ret;
  63
  64        /*
  65         * If we're looping, might already be waiting on
  66         * another journal write - can't wait on more than one journal write at
  67         * a time
  68         *
  69         * XXX: this looks wrong
  70         */
  71#if 0
  72        while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
  73                closure_sync(&s->cl);
  74#endif
  75
  76        if (!op->replace)
  77                journal_ref = bch_journal(op->c, &op->insert_keys,
  78                                          op->flush_journal ? cl : NULL);
  79
  80        ret = bch_btree_insert(op->c, &op->insert_keys,
  81                               journal_ref, replace_key);
  82        if (ret == -ESRCH) {
  83                op->replace_collision = true;
  84        } else if (ret) {
  85                op->status              = BLK_STS_RESOURCE;
  86                op->insert_data_done    = true;
  87        }
  88
  89        if (journal_ref)
  90                atomic_dec_bug(journal_ref);
  91
  92        if (!op->insert_data_done) {
  93                continue_at(cl, bch_data_insert_start, op->wq);
  94                return;
  95        }
  96
  97        bch_keylist_free(&op->insert_keys);
  98        closure_return(cl);
  99}
 100
 101static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
 102                               struct cache_set *c)
 103{
 104        size_t oldsize = bch_keylist_nkeys(l);
 105        size_t newsize = oldsize + u64s;
 106
 107        /*
 108         * The journalling code doesn't handle the case where the keys to insert
 109         * is bigger than an empty write: If we just return -ENOMEM here,
 110         * bio_insert() and bio_invalidate() will insert the keys created so far
 111         * and finish the rest when the keylist is empty.
 112         */
 113        if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
 114                return -ENOMEM;
 115
 116        return __bch_keylist_realloc(l, u64s);
 117}
 118
 119static void bch_data_invalidate(struct closure *cl)
 120{
 121        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 122        struct bio *bio = op->bio;
 123
 124        pr_debug("invalidating %i sectors from %llu",
 125                 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
 126
 127        while (bio_sectors(bio)) {
 128                unsigned sectors = min(bio_sectors(bio),
 129                                       1U << (KEY_SIZE_BITS - 1));
 130
 131                if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
 132                        goto out;
 133
 134                bio->bi_iter.bi_sector  += sectors;
 135                bio->bi_iter.bi_size    -= sectors << 9;
 136
 137                bch_keylist_add(&op->insert_keys,
 138                                &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
 139        }
 140
 141        op->insert_data_done = true;
 142        /* get in bch_data_insert() */
 143        bio_put(bio);
 144out:
 145        continue_at(cl, bch_data_insert_keys, op->wq);
 146}
 147
 148static void bch_data_insert_error(struct closure *cl)
 149{
 150        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 151
 152        /*
 153         * Our data write just errored, which means we've got a bunch of keys to
 154         * insert that point to data that wasn't succesfully written.
 155         *
 156         * We don't have to insert those keys but we still have to invalidate
 157         * that region of the cache - so, if we just strip off all the pointers
 158         * from the keys we'll accomplish just that.
 159         */
 160
 161        struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
 162
 163        while (src != op->insert_keys.top) {
 164                struct bkey *n = bkey_next(src);
 165
 166                SET_KEY_PTRS(src, 0);
 167                memmove(dst, src, bkey_bytes(src));
 168
 169                dst = bkey_next(dst);
 170                src = n;
 171        }
 172
 173        op->insert_keys.top = dst;
 174
 175        bch_data_insert_keys(cl);
 176}
 177
 178static void bch_data_insert_endio(struct bio *bio)
 179{
 180        struct closure *cl = bio->bi_private;
 181        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 182
 183        if (bio->bi_status) {
 184                /* TODO: We could try to recover from this. */
 185                if (op->writeback)
 186                        op->status = bio->bi_status;
 187                else if (!op->replace)
 188                        set_closure_fn(cl, bch_data_insert_error, op->wq);
 189                else
 190                        set_closure_fn(cl, NULL, NULL);
 191        }
 192
 193        bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
 194}
 195
 196static void bch_data_insert_start(struct closure *cl)
 197{
 198        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 199        struct bio *bio = op->bio, *n;
 200
 201        if (op->bypass)
 202                return bch_data_invalidate(cl);
 203
 204        if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
 205                wake_up_gc(op->c);
 206
 207        /*
 208         * Journal writes are marked REQ_PREFLUSH; if the original write was a
 209         * flush, it'll wait on the journal write.
 210         */
 211        bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
 212
 213        do {
 214                unsigned i;
 215                struct bkey *k;
 216                struct bio_set *split = &op->c->bio_split;
 217
 218                /* 1 for the device pointer and 1 for the chksum */
 219                if (bch_keylist_realloc(&op->insert_keys,
 220                                        3 + (op->csum ? 1 : 0),
 221                                        op->c)) {
 222                        continue_at(cl, bch_data_insert_keys, op->wq);
 223                        return;
 224                }
 225
 226                k = op->insert_keys.top;
 227                bkey_init(k);
 228                SET_KEY_INODE(k, op->inode);
 229                SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
 230
 231                if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
 232                                       op->write_point, op->write_prio,
 233                                       op->writeback))
 234                        goto err;
 235
 236                n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
 237
 238                n->bi_end_io    = bch_data_insert_endio;
 239                n->bi_private   = cl;
 240
 241                if (op->writeback) {
 242                        SET_KEY_DIRTY(k, true);
 243
 244                        for (i = 0; i < KEY_PTRS(k); i++)
 245                                SET_GC_MARK(PTR_BUCKET(op->c, k, i),
 246                                            GC_MARK_DIRTY);
 247                }
 248
 249                SET_KEY_CSUM(k, op->csum);
 250                if (KEY_CSUM(k))
 251                        bio_csum(n, k);
 252
 253                trace_bcache_cache_insert(k);
 254                bch_keylist_push(&op->insert_keys);
 255
 256                bio_set_op_attrs(n, REQ_OP_WRITE, 0);
 257                bch_submit_bbio(n, op->c, k, 0);
 258        } while (n != bio);
 259
 260        op->insert_data_done = true;
 261        continue_at(cl, bch_data_insert_keys, op->wq);
 262        return;
 263err:
 264        /* bch_alloc_sectors() blocks if s->writeback = true */
 265        BUG_ON(op->writeback);
 266
 267        /*
 268         * But if it's not a writeback write we'd rather just bail out if
 269         * there aren't any buckets ready to write to - it might take awhile and
 270         * we might be starving btree writes for gc or something.
 271         */
 272
 273        if (!op->replace) {
 274                /*
 275                 * Writethrough write: We can't complete the write until we've
 276                 * updated the index. But we don't want to delay the write while
 277                 * we wait for buckets to be freed up, so just invalidate the
 278                 * rest of the write.
 279                 */
 280                op->bypass = true;
 281                return bch_data_invalidate(cl);
 282        } else {
 283                /*
 284                 * From a cache miss, we can just insert the keys for the data
 285                 * we have written or bail out if we didn't do anything.
 286                 */
 287                op->insert_data_done = true;
 288                bio_put(bio);
 289
 290                if (!bch_keylist_empty(&op->insert_keys))
 291                        continue_at(cl, bch_data_insert_keys, op->wq);
 292                else
 293                        closure_return(cl);
 294        }
 295}
 296
 297/**
 298 * bch_data_insert - stick some data in the cache
 299 * @cl: closure pointer.
 300 *
 301 * This is the starting point for any data to end up in a cache device; it could
 302 * be from a normal write, or a writeback write, or a write to a flash only
 303 * volume - it's also used by the moving garbage collector to compact data in
 304 * mostly empty buckets.
 305 *
 306 * It first writes the data to the cache, creating a list of keys to be inserted
 307 * (if the data had to be fragmented there will be multiple keys); after the
 308 * data is written it calls bch_journal, and after the keys have been added to
 309 * the next journal write they're inserted into the btree.
 310 *
 311 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
 312 * and op->inode is used for the key inode.
 313 *
 314 * If s->bypass is true, instead of inserting the data it invalidates the
 315 * region of the cache represented by s->cache_bio and op->inode.
 316 */
 317void bch_data_insert(struct closure *cl)
 318{
 319        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 320
 321        trace_bcache_write(op->c, op->inode, op->bio,
 322                           op->writeback, op->bypass);
 323
 324        bch_keylist_init(&op->insert_keys);
 325        bio_get(op->bio);
 326        bch_data_insert_start(cl);
 327}
 328
 329/* Congested? */
 330
 331unsigned bch_get_congested(struct cache_set *c)
 332{
 333        int i;
 334        long rand;
 335
 336        if (!c->congested_read_threshold_us &&
 337            !c->congested_write_threshold_us)
 338                return 0;
 339
 340        i = (local_clock_us() - c->congested_last_us) / 1024;
 341        if (i < 0)
 342                return 0;
 343
 344        i += atomic_read(&c->congested);
 345        if (i >= 0)
 346                return 0;
 347
 348        i += CONGESTED_MAX;
 349
 350        if (i > 0)
 351                i = fract_exp_two(i, 6);
 352
 353        rand = get_random_int();
 354        i -= bitmap_weight(&rand, BITS_PER_LONG);
 355
 356        return i > 0 ? i : 1;
 357}
 358
 359static void add_sequential(struct task_struct *t)
 360{
 361        ewma_add(t->sequential_io_avg,
 362                 t->sequential_io, 8, 0);
 363
 364        t->sequential_io = 0;
 365}
 366
 367static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
 368{
 369        return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
 370}
 371
 372static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
 373{
 374        struct cache_set *c = dc->disk.c;
 375        unsigned mode = cache_mode(dc);
 376        unsigned sectors, congested = bch_get_congested(c);
 377        struct task_struct *task = current;
 378        struct io *i;
 379
 380        if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
 381            c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
 382            (bio_op(bio) == REQ_OP_DISCARD))
 383                goto skip;
 384
 385        if (mode == CACHE_MODE_NONE ||
 386            (mode == CACHE_MODE_WRITEAROUND &&
 387             op_is_write(bio_op(bio))))
 388                goto skip;
 389
 390        /*
 391         * Flag for bypass if the IO is for read-ahead or background,
 392         * unless the read-ahead request is for metadata (eg, for gfs2).
 393         */
 394        if (bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND) &&
 395            !(bio->bi_opf & REQ_META))
 396                goto skip;
 397
 398        if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
 399            bio_sectors(bio) & (c->sb.block_size - 1)) {
 400                pr_debug("skipping unaligned io");
 401                goto skip;
 402        }
 403
 404        if (bypass_torture_test(dc)) {
 405                if ((get_random_int() & 3) == 3)
 406                        goto skip;
 407                else
 408                        goto rescale;
 409        }
 410
 411        if (!congested && !dc->sequential_cutoff)
 412                goto rescale;
 413
 414        spin_lock(&dc->io_lock);
 415
 416        hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
 417                if (i->last == bio->bi_iter.bi_sector &&
 418                    time_before(jiffies, i->jiffies))
 419                        goto found;
 420
 421        i = list_first_entry(&dc->io_lru, struct io, lru);
 422
 423        add_sequential(task);
 424        i->sequential = 0;
 425found:
 426        if (i->sequential + bio->bi_iter.bi_size > i->sequential)
 427                i->sequential   += bio->bi_iter.bi_size;
 428
 429        i->last                  = bio_end_sector(bio);
 430        i->jiffies               = jiffies + msecs_to_jiffies(5000);
 431        task->sequential_io      = i->sequential;
 432
 433        hlist_del(&i->hash);
 434        hlist_add_head(&i->hash, iohash(dc, i->last));
 435        list_move_tail(&i->lru, &dc->io_lru);
 436
 437        spin_unlock(&dc->io_lock);
 438
 439        sectors = max(task->sequential_io,
 440                      task->sequential_io_avg) >> 9;
 441
 442        if (dc->sequential_cutoff &&
 443            sectors >= dc->sequential_cutoff >> 9) {
 444                trace_bcache_bypass_sequential(bio);
 445                goto skip;
 446        }
 447
 448        if (congested && sectors >= congested) {
 449                trace_bcache_bypass_congested(bio);
 450                goto skip;
 451        }
 452
 453rescale:
 454        bch_rescale_priorities(c, bio_sectors(bio));
 455        return false;
 456skip:
 457        bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
 458        return true;
 459}
 460
 461/* Cache lookup */
 462
 463struct search {
 464        /* Stack frame for bio_complete */
 465        struct closure          cl;
 466
 467        struct bbio             bio;
 468        struct bio              *orig_bio;
 469        struct bio              *cache_miss;
 470        struct bcache_device    *d;
 471
 472        unsigned                insert_bio_sectors;
 473        unsigned                recoverable:1;
 474        unsigned                write:1;
 475        unsigned                read_dirty_data:1;
 476        unsigned                cache_missed:1;
 477
 478        unsigned long           start_time;
 479
 480        struct btree_op         op;
 481        struct data_insert_op   iop;
 482};
 483
 484static void bch_cache_read_endio(struct bio *bio)
 485{
 486        struct bbio *b = container_of(bio, struct bbio, bio);
 487        struct closure *cl = bio->bi_private;
 488        struct search *s = container_of(cl, struct search, cl);
 489
 490        /*
 491         * If the bucket was reused while our bio was in flight, we might have
 492         * read the wrong data. Set s->error but not error so it doesn't get
 493         * counted against the cache device, but we'll still reread the data
 494         * from the backing device.
 495         */
 496
 497        if (bio->bi_status)
 498                s->iop.status = bio->bi_status;
 499        else if (!KEY_DIRTY(&b->key) &&
 500                 ptr_stale(s->iop.c, &b->key, 0)) {
 501                atomic_long_inc(&s->iop.c->cache_read_races);
 502                s->iop.status = BLK_STS_IOERR;
 503        }
 504
 505        bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
 506}
 507
 508/*
 509 * Read from a single key, handling the initial cache miss if the key starts in
 510 * the middle of the bio
 511 */
 512static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
 513{
 514        struct search *s = container_of(op, struct search, op);
 515        struct bio *n, *bio = &s->bio.bio;
 516        struct bkey *bio_key;
 517        unsigned ptr;
 518
 519        if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
 520                return MAP_CONTINUE;
 521
 522        if (KEY_INODE(k) != s->iop.inode ||
 523            KEY_START(k) > bio->bi_iter.bi_sector) {
 524                unsigned bio_sectors = bio_sectors(bio);
 525                unsigned sectors = KEY_INODE(k) == s->iop.inode
 526                        ? min_t(uint64_t, INT_MAX,
 527                                KEY_START(k) - bio->bi_iter.bi_sector)
 528                        : INT_MAX;
 529
 530                int ret = s->d->cache_miss(b, s, bio, sectors);
 531                if (ret != MAP_CONTINUE)
 532                        return ret;
 533
 534                /* if this was a complete miss we shouldn't get here */
 535                BUG_ON(bio_sectors <= sectors);
 536        }
 537
 538        if (!KEY_SIZE(k))
 539                return MAP_CONTINUE;
 540
 541        /* XXX: figure out best pointer - for multiple cache devices */
 542        ptr = 0;
 543
 544        PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
 545
 546        if (KEY_DIRTY(k))
 547                s->read_dirty_data = true;
 548
 549        n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
 550                                      KEY_OFFSET(k) - bio->bi_iter.bi_sector),
 551                           GFP_NOIO, &s->d->bio_split);
 552
 553        bio_key = &container_of(n, struct bbio, bio)->key;
 554        bch_bkey_copy_single_ptr(bio_key, k, ptr);
 555
 556        bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
 557        bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
 558
 559        n->bi_end_io    = bch_cache_read_endio;
 560        n->bi_private   = &s->cl;
 561
 562        /*
 563         * The bucket we're reading from might be reused while our bio
 564         * is in flight, and we could then end up reading the wrong
 565         * data.
 566         *
 567         * We guard against this by checking (in cache_read_endio()) if
 568         * the pointer is stale again; if so, we treat it as an error
 569         * and reread from the backing device (but we don't pass that
 570         * error up anywhere).
 571         */
 572
 573        __bch_submit_bbio(n, b->c);
 574        return n == bio ? MAP_DONE : MAP_CONTINUE;
 575}
 576
 577static void cache_lookup(struct closure *cl)
 578{
 579        struct search *s = container_of(cl, struct search, iop.cl);
 580        struct bio *bio = &s->bio.bio;
 581        struct cached_dev *dc;
 582        int ret;
 583
 584        bch_btree_op_init(&s->op, -1);
 585
 586        ret = bch_btree_map_keys(&s->op, s->iop.c,
 587                                 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
 588                                 cache_lookup_fn, MAP_END_KEY);
 589        if (ret == -EAGAIN) {
 590                continue_at(cl, cache_lookup, bcache_wq);
 591                return;
 592        }
 593
 594        /*
 595         * We might meet err when searching the btree, If that happens, we will
 596         * get negative ret, in this scenario we should not recover data from
 597         * backing device (when cache device is dirty) because we don't know
 598         * whether bkeys the read request covered are all clean.
 599         *
 600         * And after that happened, s->iop.status is still its initial value
 601         * before we submit s->bio.bio
 602         */
 603        if (ret < 0) {
 604                BUG_ON(ret == -EINTR);
 605                if (s->d && s->d->c &&
 606                                !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
 607                        dc = container_of(s->d, struct cached_dev, disk);
 608                        if (dc && atomic_read(&dc->has_dirty))
 609                                s->recoverable = false;
 610                }
 611                if (!s->iop.status)
 612                        s->iop.status = BLK_STS_IOERR;
 613        }
 614
 615        closure_return(cl);
 616}
 617
 618/* Common code for the make_request functions */
 619
 620static void request_endio(struct bio *bio)
 621{
 622        struct closure *cl = bio->bi_private;
 623
 624        if (bio->bi_status) {
 625                struct search *s = container_of(cl, struct search, cl);
 626                s->iop.status = bio->bi_status;
 627                /* Only cache read errors are recoverable */
 628                s->recoverable = false;
 629        }
 630
 631        bio_put(bio);
 632        closure_put(cl);
 633}
 634
 635static void backing_request_endio(struct bio *bio)
 636{
 637        struct closure *cl = bio->bi_private;
 638
 639        if (bio->bi_status) {
 640                struct search *s = container_of(cl, struct search, cl);
 641                struct cached_dev *dc = container_of(s->d,
 642                                                     struct cached_dev, disk);
 643                /*
 644                 * If a bio has REQ_PREFLUSH for writeback mode, it is
 645                 * speically assembled in cached_dev_write() for a non-zero
 646                 * write request which has REQ_PREFLUSH. we don't set
 647                 * s->iop.status by this failure, the status will be decided
 648                 * by result of bch_data_insert() operation.
 649                 */
 650                if (unlikely(s->iop.writeback &&
 651                             bio->bi_opf & REQ_PREFLUSH)) {
 652                        pr_err("Can't flush %s: returned bi_status %i",
 653                                dc->backing_dev_name, bio->bi_status);
 654                } else {
 655                        /* set to orig_bio->bi_status in bio_complete() */
 656                        s->iop.status = bio->bi_status;
 657                }
 658                s->recoverable = false;
 659                /* should count I/O error for backing device here */
 660                bch_count_backing_io_errors(dc, bio);
 661        }
 662
 663        bio_put(bio);
 664        closure_put(cl);
 665}
 666
 667static void bio_complete(struct search *s)
 668{
 669        if (s->orig_bio) {
 670                generic_end_io_acct(s->d->disk->queue,
 671                                    bio_data_dir(s->orig_bio),
 672                                    &s->d->disk->part0, s->start_time);
 673
 674                trace_bcache_request_end(s->d, s->orig_bio);
 675                s->orig_bio->bi_status = s->iop.status;
 676                bio_endio(s->orig_bio);
 677                s->orig_bio = NULL;
 678        }
 679}
 680
 681static void do_bio_hook(struct search *s,
 682                        struct bio *orig_bio,
 683                        bio_end_io_t *end_io_fn)
 684{
 685        struct bio *bio = &s->bio.bio;
 686
 687        bio_init(bio, NULL, 0);
 688        __bio_clone_fast(bio, orig_bio);
 689        /*
 690         * bi_end_io can be set separately somewhere else, e.g. the
 691         * variants in,
 692         * - cache_bio->bi_end_io from cached_dev_cache_miss()
 693         * - n->bi_end_io from cache_lookup_fn()
 694         */
 695        bio->bi_end_io          = end_io_fn;
 696        bio->bi_private         = &s->cl;
 697
 698        bio_cnt_set(bio, 3);
 699}
 700
 701static void search_free(struct closure *cl)
 702{
 703        struct search *s = container_of(cl, struct search, cl);
 704
 705        if (s->iop.bio)
 706                bio_put(s->iop.bio);
 707
 708        bio_complete(s);
 709        closure_debug_destroy(cl);
 710        mempool_free(s, &s->d->c->search);
 711}
 712
 713static inline struct search *search_alloc(struct bio *bio,
 714                                          struct bcache_device *d)
 715{
 716        struct search *s;
 717
 718        s = mempool_alloc(&d->c->search, GFP_NOIO);
 719
 720        closure_init(&s->cl, NULL);
 721        do_bio_hook(s, bio, request_endio);
 722
 723        s->orig_bio             = bio;
 724        s->cache_miss           = NULL;
 725        s->cache_missed         = 0;
 726        s->d                    = d;
 727        s->recoverable          = 1;
 728        s->write                = op_is_write(bio_op(bio));
 729        s->read_dirty_data      = 0;
 730        s->start_time           = jiffies;
 731
 732        s->iop.c                = d->c;
 733        s->iop.bio              = NULL;
 734        s->iop.inode            = d->id;
 735        s->iop.write_point      = hash_long((unsigned long) current, 16);
 736        s->iop.write_prio       = 0;
 737        s->iop.status           = 0;
 738        s->iop.flags            = 0;
 739        s->iop.flush_journal    = op_is_flush(bio->bi_opf);
 740        s->iop.wq               = bcache_wq;
 741
 742        return s;
 743}
 744
 745/* Cached devices */
 746
 747static void cached_dev_bio_complete(struct closure *cl)
 748{
 749        struct search *s = container_of(cl, struct search, cl);
 750        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 751
 752        search_free(cl);
 753        cached_dev_put(dc);
 754}
 755
 756/* Process reads */
 757
 758static void cached_dev_cache_miss_done(struct closure *cl)
 759{
 760        struct search *s = container_of(cl, struct search, cl);
 761
 762        if (s->iop.replace_collision)
 763                bch_mark_cache_miss_collision(s->iop.c, s->d);
 764
 765        if (s->iop.bio)
 766                bio_free_pages(s->iop.bio);
 767
 768        cached_dev_bio_complete(cl);
 769}
 770
 771static void cached_dev_read_error(struct closure *cl)
 772{
 773        struct search *s = container_of(cl, struct search, cl);
 774        struct bio *bio = &s->bio.bio;
 775
 776        /*
 777         * If read request hit dirty data (s->read_dirty_data is true),
 778         * then recovery a failed read request from cached device may
 779         * get a stale data back. So read failure recovery is only
 780         * permitted when read request hit clean data in cache device,
 781         * or when cache read race happened.
 782         */
 783        if (s->recoverable && !s->read_dirty_data) {
 784                /* Retry from the backing device: */
 785                trace_bcache_read_retry(s->orig_bio);
 786
 787                s->iop.status = 0;
 788                do_bio_hook(s, s->orig_bio, backing_request_endio);
 789
 790                /* XXX: invalidate cache */
 791
 792                /* I/O request sent to backing device */
 793                closure_bio_submit(s->iop.c, bio, cl);
 794        }
 795
 796        continue_at(cl, cached_dev_cache_miss_done, NULL);
 797}
 798
 799static void cached_dev_read_done(struct closure *cl)
 800{
 801        struct search *s = container_of(cl, struct search, cl);
 802        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 803
 804        /*
 805         * We had a cache miss; cache_bio now contains data ready to be inserted
 806         * into the cache.
 807         *
 808         * First, we copy the data we just read from cache_bio's bounce buffers
 809         * to the buffers the original bio pointed to:
 810         */
 811
 812        if (s->iop.bio) {
 813                bio_reset(s->iop.bio);
 814                s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
 815                bio_copy_dev(s->iop.bio, s->cache_miss);
 816                s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
 817                bch_bio_map(s->iop.bio, NULL);
 818
 819                bio_copy_data(s->cache_miss, s->iop.bio);
 820
 821                bio_put(s->cache_miss);
 822                s->cache_miss = NULL;
 823        }
 824
 825        if (verify(dc) && s->recoverable && !s->read_dirty_data)
 826                bch_data_verify(dc, s->orig_bio);
 827
 828        bio_complete(s);
 829
 830        if (s->iop.bio &&
 831            !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
 832                BUG_ON(!s->iop.replace);
 833                closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
 834        }
 835
 836        continue_at(cl, cached_dev_cache_miss_done, NULL);
 837}
 838
 839static void cached_dev_read_done_bh(struct closure *cl)
 840{
 841        struct search *s = container_of(cl, struct search, cl);
 842        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 843
 844        bch_mark_cache_accounting(s->iop.c, s->d,
 845                                  !s->cache_missed, s->iop.bypass);
 846        trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
 847
 848        if (s->iop.status)
 849                continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
 850        else if (s->iop.bio || verify(dc))
 851                continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
 852        else
 853                continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
 854}
 855
 856static int cached_dev_cache_miss(struct btree *b, struct search *s,
 857                                 struct bio *bio, unsigned sectors)
 858{
 859        int ret = MAP_CONTINUE;
 860        unsigned reada = 0;
 861        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 862        struct bio *miss, *cache_bio;
 863
 864        s->cache_missed = 1;
 865
 866        if (s->cache_miss || s->iop.bypass) {
 867                miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
 868                ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
 869                goto out_submit;
 870        }
 871
 872        if (!(bio->bi_opf & REQ_RAHEAD) &&
 873            !(bio->bi_opf & REQ_META) &&
 874            s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
 875                reada = min_t(sector_t, dc->readahead >> 9,
 876                              get_capacity(bio->bi_disk) - bio_end_sector(bio));
 877
 878        s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
 879
 880        s->iop.replace_key = KEY(s->iop.inode,
 881                                 bio->bi_iter.bi_sector + s->insert_bio_sectors,
 882                                 s->insert_bio_sectors);
 883
 884        ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
 885        if (ret)
 886                return ret;
 887
 888        s->iop.replace = true;
 889
 890        miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
 891
 892        /* btree_search_recurse()'s btree iterator is no good anymore */
 893        ret = miss == bio ? MAP_DONE : -EINTR;
 894
 895        cache_bio = bio_alloc_bioset(GFP_NOWAIT,
 896                        DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
 897                        &dc->disk.bio_split);
 898        if (!cache_bio)
 899                goto out_submit;
 900
 901        cache_bio->bi_iter.bi_sector    = miss->bi_iter.bi_sector;
 902        bio_copy_dev(cache_bio, miss);
 903        cache_bio->bi_iter.bi_size      = s->insert_bio_sectors << 9;
 904
 905        cache_bio->bi_end_io    = backing_request_endio;
 906        cache_bio->bi_private   = &s->cl;
 907
 908        bch_bio_map(cache_bio, NULL);
 909        if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
 910                goto out_put;
 911
 912        if (reada)
 913                bch_mark_cache_readahead(s->iop.c, s->d);
 914
 915        s->cache_miss   = miss;
 916        s->iop.bio      = cache_bio;
 917        bio_get(cache_bio);
 918        /* I/O request sent to backing device */
 919        closure_bio_submit(s->iop.c, cache_bio, &s->cl);
 920
 921        return ret;
 922out_put:
 923        bio_put(cache_bio);
 924out_submit:
 925        miss->bi_end_io         = backing_request_endio;
 926        miss->bi_private        = &s->cl;
 927        /* I/O request sent to backing device */
 928        closure_bio_submit(s->iop.c, miss, &s->cl);
 929        return ret;
 930}
 931
 932static void cached_dev_read(struct cached_dev *dc, struct search *s)
 933{
 934        struct closure *cl = &s->cl;
 935
 936        closure_call(&s->iop.cl, cache_lookup, NULL, cl);
 937        continue_at(cl, cached_dev_read_done_bh, NULL);
 938}
 939
 940/* Process writes */
 941
 942static void cached_dev_write_complete(struct closure *cl)
 943{
 944        struct search *s = container_of(cl, struct search, cl);
 945        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 946
 947        up_read_non_owner(&dc->writeback_lock);
 948        cached_dev_bio_complete(cl);
 949}
 950
 951static void cached_dev_write(struct cached_dev *dc, struct search *s)
 952{
 953        struct closure *cl = &s->cl;
 954        struct bio *bio = &s->bio.bio;
 955        struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
 956        struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
 957
 958        bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
 959
 960        down_read_non_owner(&dc->writeback_lock);
 961        if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
 962                /*
 963                 * We overlap with some dirty data undergoing background
 964                 * writeback, force this write to writeback
 965                 */
 966                s->iop.bypass = false;
 967                s->iop.writeback = true;
 968        }
 969
 970        /*
 971         * Discards aren't _required_ to do anything, so skipping if
 972         * check_overlapping returned true is ok
 973         *
 974         * But check_overlapping drops dirty keys for which io hasn't started,
 975         * so we still want to call it.
 976         */
 977        if (bio_op(bio) == REQ_OP_DISCARD)
 978                s->iop.bypass = true;
 979
 980        if (should_writeback(dc, s->orig_bio,
 981                             cache_mode(dc),
 982                             s->iop.bypass)) {
 983                s->iop.bypass = false;
 984                s->iop.writeback = true;
 985        }
 986
 987        if (s->iop.bypass) {
 988                s->iop.bio = s->orig_bio;
 989                bio_get(s->iop.bio);
 990
 991                if (bio_op(bio) == REQ_OP_DISCARD &&
 992                    !blk_queue_discard(bdev_get_queue(dc->bdev)))
 993                        goto insert_data;
 994
 995                /* I/O request sent to backing device */
 996                bio->bi_end_io = backing_request_endio;
 997                closure_bio_submit(s->iop.c, bio, cl);
 998
 999        } else if (s->iop.writeback) {
1000                bch_writeback_add(dc);
1001                s->iop.bio = bio;
1002
1003                if (bio->bi_opf & REQ_PREFLUSH) {
1004                        /*
1005                         * Also need to send a flush to the backing
1006                         * device.
1007                         */
1008                        struct bio *flush;
1009
1010                        flush = bio_alloc_bioset(GFP_NOIO, 0,
1011                                                 &dc->disk.bio_split);
1012                        if (!flush) {
1013                                s->iop.status = BLK_STS_RESOURCE;
1014                                goto insert_data;
1015                        }
1016                        bio_copy_dev(flush, bio);
1017                        flush->bi_end_io = backing_request_endio;
1018                        flush->bi_private = cl;
1019                        flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1020                        /* I/O request sent to backing device */
1021                        closure_bio_submit(s->iop.c, flush, cl);
1022                }
1023        } else {
1024                s->iop.bio = bio_clone_fast(bio, GFP_NOIO, &dc->disk.bio_split);
1025                /* I/O request sent to backing device */
1026                bio->bi_end_io = backing_request_endio;
1027                closure_bio_submit(s->iop.c, bio, cl);
1028        }
1029
1030insert_data:
1031        closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1032        continue_at(cl, cached_dev_write_complete, NULL);
1033}
1034
1035static void cached_dev_nodata(struct closure *cl)
1036{
1037        struct search *s = container_of(cl, struct search, cl);
1038        struct bio *bio = &s->bio.bio;
1039
1040        if (s->iop.flush_journal)
1041                bch_journal_meta(s->iop.c, cl);
1042
1043        /* If it's a flush, we send the flush to the backing device too */
1044        bio->bi_end_io = backing_request_endio;
1045        closure_bio_submit(s->iop.c, bio, cl);
1046
1047        continue_at(cl, cached_dev_bio_complete, NULL);
1048}
1049
1050struct detached_dev_io_private {
1051        struct bcache_device    *d;
1052        unsigned long           start_time;
1053        bio_end_io_t            *bi_end_io;
1054        void                    *bi_private;
1055};
1056
1057static void detached_dev_end_io(struct bio *bio)
1058{
1059        struct detached_dev_io_private *ddip;
1060
1061        ddip = bio->bi_private;
1062        bio->bi_end_io = ddip->bi_end_io;
1063        bio->bi_private = ddip->bi_private;
1064
1065        generic_end_io_acct(ddip->d->disk->queue,
1066                            bio_data_dir(bio),
1067                            &ddip->d->disk->part0, ddip->start_time);
1068
1069        if (bio->bi_status) {
1070                struct cached_dev *dc = container_of(ddip->d,
1071                                                     struct cached_dev, disk);
1072                /* should count I/O error for backing device here */
1073                bch_count_backing_io_errors(dc, bio);
1074        }
1075
1076        kfree(ddip);
1077        bio->bi_end_io(bio);
1078}
1079
1080static void detached_dev_do_request(struct bcache_device *d, struct bio *bio)
1081{
1082        struct detached_dev_io_private *ddip;
1083        struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1084
1085        /*
1086         * no need to call closure_get(&dc->disk.cl),
1087         * because upper layer had already opened bcache device,
1088         * which would call closure_get(&dc->disk.cl)
1089         */
1090        ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1091        ddip->d = d;
1092        ddip->start_time = jiffies;
1093        ddip->bi_end_io = bio->bi_end_io;
1094        ddip->bi_private = bio->bi_private;
1095        bio->bi_end_io = detached_dev_end_io;
1096        bio->bi_private = ddip;
1097
1098        if ((bio_op(bio) == REQ_OP_DISCARD) &&
1099            !blk_queue_discard(bdev_get_queue(dc->bdev)))
1100                bio->bi_end_io(bio);
1101        else
1102                generic_make_request(bio);
1103}
1104
1105/* Cached devices - read & write stuff */
1106
1107static blk_qc_t cached_dev_make_request(struct request_queue *q,
1108                                        struct bio *bio)
1109{
1110        struct search *s;
1111        struct bcache_device *d = bio->bi_disk->private_data;
1112        struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1113        int rw = bio_data_dir(bio);
1114
1115        if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1116                     dc->io_disable)) {
1117                bio->bi_status = BLK_STS_IOERR;
1118                bio_endio(bio);
1119                return BLK_QC_T_NONE;
1120        }
1121
1122        atomic_set(&dc->backing_idle, 0);
1123        generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
1124
1125        bio_set_dev(bio, dc->bdev);
1126        bio->bi_iter.bi_sector += dc->sb.data_offset;
1127
1128        if (cached_dev_get(dc)) {
1129                s = search_alloc(bio, d);
1130                trace_bcache_request_start(s->d, bio);
1131
1132                if (!bio->bi_iter.bi_size) {
1133                        /*
1134                         * can't call bch_journal_meta from under
1135                         * generic_make_request
1136                         */
1137                        continue_at_nobarrier(&s->cl,
1138                                              cached_dev_nodata,
1139                                              bcache_wq);
1140                } else {
1141                        s->iop.bypass = check_should_bypass(dc, bio);
1142
1143                        if (rw)
1144                                cached_dev_write(dc, s);
1145                        else
1146                                cached_dev_read(dc, s);
1147                }
1148        } else
1149                /* I/O request sent to backing device */
1150                detached_dev_do_request(d, bio);
1151
1152        return BLK_QC_T_NONE;
1153}
1154
1155static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1156                            unsigned int cmd, unsigned long arg)
1157{
1158        struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1159        return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1160}
1161
1162static int cached_dev_congested(void *data, int bits)
1163{
1164        struct bcache_device *d = data;
1165        struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1166        struct request_queue *q = bdev_get_queue(dc->bdev);
1167        int ret = 0;
1168
1169        if (bdi_congested(q->backing_dev_info, bits))
1170                return 1;
1171
1172        if (cached_dev_get(dc)) {
1173                unsigned i;
1174                struct cache *ca;
1175
1176                for_each_cache(ca, d->c, i) {
1177                        q = bdev_get_queue(ca->bdev);
1178                        ret |= bdi_congested(q->backing_dev_info, bits);
1179                }
1180
1181                cached_dev_put(dc);
1182        }
1183
1184        return ret;
1185}
1186
1187void bch_cached_dev_request_init(struct cached_dev *dc)
1188{
1189        struct gendisk *g = dc->disk.disk;
1190
1191        g->queue->make_request_fn               = cached_dev_make_request;
1192        g->queue->backing_dev_info->congested_fn = cached_dev_congested;
1193        dc->disk.cache_miss                     = cached_dev_cache_miss;
1194        dc->disk.ioctl                          = cached_dev_ioctl;
1195}
1196
1197/* Flash backed devices */
1198
1199static int flash_dev_cache_miss(struct btree *b, struct search *s,
1200                                struct bio *bio, unsigned sectors)
1201{
1202        unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1203
1204        swap(bio->bi_iter.bi_size, bytes);
1205        zero_fill_bio(bio);
1206        swap(bio->bi_iter.bi_size, bytes);
1207
1208        bio_advance(bio, bytes);
1209
1210        if (!bio->bi_iter.bi_size)
1211                return MAP_DONE;
1212
1213        return MAP_CONTINUE;
1214}
1215
1216static void flash_dev_nodata(struct closure *cl)
1217{
1218        struct search *s = container_of(cl, struct search, cl);
1219
1220        if (s->iop.flush_journal)
1221                bch_journal_meta(s->iop.c, cl);
1222
1223        continue_at(cl, search_free, NULL);
1224}
1225
1226static blk_qc_t flash_dev_make_request(struct request_queue *q,
1227                                             struct bio *bio)
1228{
1229        struct search *s;
1230        struct closure *cl;
1231        struct bcache_device *d = bio->bi_disk->private_data;
1232        int rw = bio_data_dir(bio);
1233
1234        if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1235                bio->bi_status = BLK_STS_IOERR;
1236                bio_endio(bio);
1237                return BLK_QC_T_NONE;
1238        }
1239
1240        generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
1241
1242        s = search_alloc(bio, d);
1243        cl = &s->cl;
1244        bio = &s->bio.bio;
1245
1246        trace_bcache_request_start(s->d, bio);
1247
1248        if (!bio->bi_iter.bi_size) {
1249                /*
1250                 * can't call bch_journal_meta from under
1251                 * generic_make_request
1252                 */
1253                continue_at_nobarrier(&s->cl,
1254                                      flash_dev_nodata,
1255                                      bcache_wq);
1256                return BLK_QC_T_NONE;
1257        } else if (rw) {
1258                bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1259                                        &KEY(d->id, bio->bi_iter.bi_sector, 0),
1260                                        &KEY(d->id, bio_end_sector(bio), 0));
1261
1262                s->iop.bypass           = (bio_op(bio) == REQ_OP_DISCARD) != 0;
1263                s->iop.writeback        = true;
1264                s->iop.bio              = bio;
1265
1266                closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1267        } else {
1268                closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1269        }
1270
1271        continue_at(cl, search_free, NULL);
1272        return BLK_QC_T_NONE;
1273}
1274
1275static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1276                           unsigned int cmd, unsigned long arg)
1277{
1278        return -ENOTTY;
1279}
1280
1281static int flash_dev_congested(void *data, int bits)
1282{
1283        struct bcache_device *d = data;
1284        struct request_queue *q;
1285        struct cache *ca;
1286        unsigned i;
1287        int ret = 0;
1288
1289        for_each_cache(ca, d->c, i) {
1290                q = bdev_get_queue(ca->bdev);
1291                ret |= bdi_congested(q->backing_dev_info, bits);
1292        }
1293
1294        return ret;
1295}
1296
1297void bch_flash_dev_request_init(struct bcache_device *d)
1298{
1299        struct gendisk *g = d->disk;
1300
1301        g->queue->make_request_fn               = flash_dev_make_request;
1302        g->queue->backing_dev_info->congested_fn = flash_dev_congested;
1303        d->cache_miss                           = flash_dev_cache_miss;
1304        d->ioctl                                = flash_dev_ioctl;
1305}
1306
1307void bch_request_exit(void)
1308{
1309        if (bch_search_cache)
1310                kmem_cache_destroy(bch_search_cache);
1311}
1312
1313int __init bch_request_init(void)
1314{
1315        bch_search_cache = KMEM_CACHE(search, 0);
1316        if (!bch_search_cache)
1317                return -ENOMEM;
1318
1319        return 0;
1320}
1321