linux/drivers/mtd/nand/raw/marvell_nand.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Marvell NAND flash controller driver
   4 *
   5 * Copyright (C) 2017 Marvell
   6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
   7 *
   8 */
   9
  10#include <linux/module.h>
  11#include <linux/clk.h>
  12#include <linux/mtd/rawnand.h>
  13#include <linux/of_platform.h>
  14#include <linux/iopoll.h>
  15#include <linux/interrupt.h>
  16#include <linux/slab.h>
  17#include <linux/mfd/syscon.h>
  18#include <linux/regmap.h>
  19#include <asm/unaligned.h>
  20
  21#include <linux/dmaengine.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/dma/pxa-dma.h>
  24#include <linux/platform_data/mtd-nand-pxa3xx.h>
  25
  26/* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
  27#define FIFO_DEPTH              8
  28#define FIFO_REP(x)             (x / sizeof(u32))
  29#define BCH_SEQ_READS           (32 / FIFO_DEPTH)
  30/* NFC does not support transfers of larger chunks at a time */
  31#define MAX_CHUNK_SIZE          2112
  32/* NFCv1 cannot read more that 7 bytes of ID */
  33#define NFCV1_READID_LEN        7
  34/* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
  35#define POLL_PERIOD             0
  36#define POLL_TIMEOUT            100000
  37/* Interrupt maximum wait period in ms */
  38#define IRQ_TIMEOUT             1000
  39/* Latency in clock cycles between SoC pins and NFC logic */
  40#define MIN_RD_DEL_CNT          3
  41/* Maximum number of contiguous address cycles */
  42#define MAX_ADDRESS_CYC_NFCV1   5
  43#define MAX_ADDRESS_CYC_NFCV2   7
  44/* System control registers/bits to enable the NAND controller on some SoCs */
  45#define GENCONF_SOC_DEVICE_MUX  0x208
  46#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
  47#define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
  48#define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
  49#define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
  50#define GENCONF_CLK_GATING_CTRL 0x220
  51#define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
  52#define GENCONF_ND_CLK_CTRL     0x700
  53#define GENCONF_ND_CLK_CTRL_EN  BIT(0)
  54
  55/* NAND controller data flash control register */
  56#define NDCR                    0x00
  57#define NDCR_ALL_INT            GENMASK(11, 0)
  58#define NDCR_CS1_CMDDM          BIT(7)
  59#define NDCR_CS0_CMDDM          BIT(8)
  60#define NDCR_RDYM               BIT(11)
  61#define NDCR_ND_ARB_EN          BIT(12)
  62#define NDCR_RA_START           BIT(15)
  63#define NDCR_RD_ID_CNT(x)       (min_t(unsigned int, x, 0x7) << 16)
  64#define NDCR_PAGE_SZ(x)         (x >= 2048 ? BIT(24) : 0)
  65#define NDCR_DWIDTH_M           BIT(26)
  66#define NDCR_DWIDTH_C           BIT(27)
  67#define NDCR_ND_RUN             BIT(28)
  68#define NDCR_DMA_EN             BIT(29)
  69#define NDCR_ECC_EN             BIT(30)
  70#define NDCR_SPARE_EN           BIT(31)
  71#define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
  72                                    NDCR_DWIDTH_M | NDCR_DWIDTH_C))
  73
  74/* NAND interface timing parameter 0 register */
  75#define NDTR0                   0x04
  76#define NDTR0_TRP(x)            ((min_t(unsigned int, x, 0xF) & 0x7) << 0)
  77#define NDTR0_TRH(x)            (min_t(unsigned int, x, 0x7) << 3)
  78#define NDTR0_ETRP(x)           ((min_t(unsigned int, x, 0xF) & 0x8) << 3)
  79#define NDTR0_SEL_NRE_EDGE      BIT(7)
  80#define NDTR0_TWP(x)            (min_t(unsigned int, x, 0x7) << 8)
  81#define NDTR0_TWH(x)            (min_t(unsigned int, x, 0x7) << 11)
  82#define NDTR0_TCS(x)            (min_t(unsigned int, x, 0x7) << 16)
  83#define NDTR0_TCH(x)            (min_t(unsigned int, x, 0x7) << 19)
  84#define NDTR0_RD_CNT_DEL(x)     (min_t(unsigned int, x, 0xF) << 22)
  85#define NDTR0_SELCNTR           BIT(26)
  86#define NDTR0_TADL(x)           (min_t(unsigned int, x, 0x1F) << 27)
  87
  88/* NAND interface timing parameter 1 register */
  89#define NDTR1                   0x0C
  90#define NDTR1_TAR(x)            (min_t(unsigned int, x, 0xF) << 0)
  91#define NDTR1_TWHR(x)           (min_t(unsigned int, x, 0xF) << 4)
  92#define NDTR1_TRHW(x)           (min_t(unsigned int, x / 16, 0x3) << 8)
  93#define NDTR1_PRESCALE          BIT(14)
  94#define NDTR1_WAIT_MODE         BIT(15)
  95#define NDTR1_TR(x)             (min_t(unsigned int, x, 0xFFFF) << 16)
  96
  97/* NAND controller status register */
  98#define NDSR                    0x14
  99#define NDSR_WRCMDREQ           BIT(0)
 100#define NDSR_RDDREQ             BIT(1)
 101#define NDSR_WRDREQ             BIT(2)
 102#define NDSR_CORERR             BIT(3)
 103#define NDSR_UNCERR             BIT(4)
 104#define NDSR_CMDD(cs)           BIT(8 - cs)
 105#define NDSR_RDY(rb)            BIT(11 + rb)
 106#define NDSR_ERRCNT(x)          ((x >> 16) & 0x1F)
 107
 108/* NAND ECC control register */
 109#define NDECCCTRL               0x28
 110#define NDECCCTRL_BCH_EN        BIT(0)
 111
 112/* NAND controller data buffer register */
 113#define NDDB                    0x40
 114
 115/* NAND controller command buffer 0 register */
 116#define NDCB0                   0x48
 117#define NDCB0_CMD1(x)           ((x & 0xFF) << 0)
 118#define NDCB0_CMD2(x)           ((x & 0xFF) << 8)
 119#define NDCB0_ADDR_CYC(x)       ((x & 0x7) << 16)
 120#define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
 121#define NDCB0_DBC               BIT(19)
 122#define NDCB0_CMD_TYPE(x)       ((x & 0x7) << 21)
 123#define NDCB0_CSEL              BIT(24)
 124#define NDCB0_RDY_BYP           BIT(27)
 125#define NDCB0_LEN_OVRD          BIT(28)
 126#define NDCB0_CMD_XTYPE(x)      ((x & 0x7) << 29)
 127
 128/* NAND controller command buffer 1 register */
 129#define NDCB1                   0x4C
 130#define NDCB1_COLS(x)           ((x & 0xFFFF) << 0)
 131#define NDCB1_ADDRS_PAGE(x)     (x << 16)
 132
 133/* NAND controller command buffer 2 register */
 134#define NDCB2                   0x50
 135#define NDCB2_ADDR5_PAGE(x)     (((x >> 16) & 0xFF) << 0)
 136#define NDCB2_ADDR5_CYC(x)      ((x & 0xFF) << 0)
 137
 138/* NAND controller command buffer 3 register */
 139#define NDCB3                   0x54
 140#define NDCB3_ADDR6_CYC(x)      ((x & 0xFF) << 16)
 141#define NDCB3_ADDR7_CYC(x)      ((x & 0xFF) << 24)
 142
 143/* NAND controller command buffer 0 register 'type' and 'xtype' fields */
 144#define TYPE_READ               0
 145#define TYPE_WRITE              1
 146#define TYPE_ERASE              2
 147#define TYPE_READ_ID            3
 148#define TYPE_STATUS             4
 149#define TYPE_RESET              5
 150#define TYPE_NAKED_CMD          6
 151#define TYPE_NAKED_ADDR         7
 152#define TYPE_MASK               7
 153#define XTYPE_MONOLITHIC_RW     0
 154#define XTYPE_LAST_NAKED_RW     1
 155#define XTYPE_FINAL_COMMAND     3
 156#define XTYPE_READ              4
 157#define XTYPE_WRITE_DISPATCH    4
 158#define XTYPE_NAKED_RW          5
 159#define XTYPE_COMMAND_DISPATCH  6
 160#define XTYPE_MASK              7
 161
 162/**
 163 * Marvell ECC engine works differently than the others, in order to limit the
 164 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
 165 * per subpage, and depending on a the desired strength needed by the NAND chip,
 166 * a particular layout mixing data/spare/ecc is defined, with a possible last
 167 * chunk smaller that the others.
 168 *
 169 * @writesize:          Full page size on which the layout applies
 170 * @chunk:              Desired ECC chunk size on which the layout applies
 171 * @strength:           Desired ECC strength (per chunk size bytes) on which the
 172 *                      layout applies
 173 * @nchunks:            Total number of chunks
 174 * @full_chunk_cnt:     Number of full-sized chunks, which is the number of
 175 *                      repetitions of the pattern:
 176 *                      (data_bytes + spare_bytes + ecc_bytes).
 177 * @data_bytes:         Number of data bytes per chunk
 178 * @spare_bytes:        Number of spare bytes per chunk
 179 * @ecc_bytes:          Number of ecc bytes per chunk
 180 * @last_data_bytes:    Number of data bytes in the last chunk
 181 * @last_spare_bytes:   Number of spare bytes in the last chunk
 182 * @last_ecc_bytes:     Number of ecc bytes in the last chunk
 183 */
 184struct marvell_hw_ecc_layout {
 185        /* Constraints */
 186        int writesize;
 187        int chunk;
 188        int strength;
 189        /* Corresponding layout */
 190        int nchunks;
 191        int full_chunk_cnt;
 192        int data_bytes;
 193        int spare_bytes;
 194        int ecc_bytes;
 195        int last_data_bytes;
 196        int last_spare_bytes;
 197        int last_ecc_bytes;
 198};
 199
 200#define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb)  \
 201        {                                                               \
 202                .writesize = ws,                                        \
 203                .chunk = dc,                                            \
 204                .strength = ds,                                         \
 205                .nchunks = nc,                                          \
 206                .full_chunk_cnt = fcc,                                  \
 207                .data_bytes = db,                                       \
 208                .spare_bytes = sb,                                      \
 209                .ecc_bytes = eb,                                        \
 210                .last_data_bytes = ldb,                                 \
 211                .last_spare_bytes = lsb,                                \
 212                .last_ecc_bytes = leb,                                  \
 213        }
 214
 215/* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
 216static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
 217        MARVELL_LAYOUT(  512,   512,  1,  1,  1,  512,  8,  8,  0,  0,  0),
 218        MARVELL_LAYOUT( 2048,   512,  1,  1,  1, 2048, 40, 24,  0,  0,  0),
 219        MARVELL_LAYOUT( 2048,   512,  4,  1,  1, 2048, 32, 30,  0,  0,  0),
 220        MARVELL_LAYOUT( 4096,   512,  4,  2,  2, 2048, 32, 30,  0,  0,  0),
 221        MARVELL_LAYOUT( 4096,   512,  8,  5,  4, 1024,  0, 30,  0, 64, 30),
 222};
 223
 224/**
 225 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
 226 * is made by a field in NDCB0 register, and in another field in NDCB2 register.
 227 * The datasheet describes the logic with an error: ADDR5 field is once
 228 * declared at the beginning of NDCB2, and another time at its end. Because the
 229 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
 230 * to use the last bit of this field instead of the first ones.
 231 *
 232 * @cs:                 Wanted CE lane.
 233 * @ndcb0_csel:         Value of the NDCB0 register with or without the flag
 234 *                      selecting the wanted CE lane. This is set once when
 235 *                      the Device Tree is probed.
 236 * @rb:                 Ready/Busy pin for the flash chip
 237 */
 238struct marvell_nand_chip_sel {
 239        unsigned int cs;
 240        u32 ndcb0_csel;
 241        unsigned int rb;
 242};
 243
 244/**
 245 * NAND chip structure: stores NAND chip device related information
 246 *
 247 * @chip:               Base NAND chip structure
 248 * @node:               Used to store NAND chips into a list
 249 * @layout              NAND layout when using hardware ECC
 250 * @ndcr:               Controller register value for this NAND chip
 251 * @ndtr0:              Timing registers 0 value for this NAND chip
 252 * @ndtr1:              Timing registers 1 value for this NAND chip
 253 * @selected_die:       Current active CS
 254 * @nsels:              Number of CS lines required by the NAND chip
 255 * @sels:               Array of CS lines descriptions
 256 */
 257struct marvell_nand_chip {
 258        struct nand_chip chip;
 259        struct list_head node;
 260        const struct marvell_hw_ecc_layout *layout;
 261        u32 ndcr;
 262        u32 ndtr0;
 263        u32 ndtr1;
 264        int addr_cyc;
 265        int selected_die;
 266        unsigned int nsels;
 267        struct marvell_nand_chip_sel sels[0];
 268};
 269
 270static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
 271{
 272        return container_of(chip, struct marvell_nand_chip, chip);
 273}
 274
 275static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
 276                                                        *nand)
 277{
 278        return &nand->sels[nand->selected_die];
 279}
 280
 281/**
 282 * NAND controller capabilities for distinction between compatible strings
 283 *
 284 * @max_cs_nb:          Number of Chip Select lines available
 285 * @max_rb_nb:          Number of Ready/Busy lines available
 286 * @need_system_controller: Indicates if the SoC needs to have access to the
 287 *                      system controller (ie. to enable the NAND controller)
 288 * @legacy_of_bindings: Indicates if DT parsing must be done using the old
 289 *                      fashion way
 290 * @is_nfcv2:           NFCv2 has numerous enhancements compared to NFCv1, ie.
 291 *                      BCH error detection and correction algorithm,
 292 *                      NDCB3 register has been added
 293 * @use_dma:            Use dma for data transfers
 294 */
 295struct marvell_nfc_caps {
 296        unsigned int max_cs_nb;
 297        unsigned int max_rb_nb;
 298        bool need_system_controller;
 299        bool legacy_of_bindings;
 300        bool is_nfcv2;
 301        bool use_dma;
 302};
 303
 304/**
 305 * NAND controller structure: stores Marvell NAND controller information
 306 *
 307 * @controller:         Base controller structure
 308 * @dev:                Parent device (used to print error messages)
 309 * @regs:               NAND controller registers
 310 * @core_clk:           Core clock
 311 * @reg_clk:            Regiters clock
 312 * @complete:           Completion object to wait for NAND controller events
 313 * @assigned_cs:        Bitmask describing already assigned CS lines
 314 * @chips:              List containing all the NAND chips attached to
 315 *                      this NAND controller
 316 * @caps:               NAND controller capabilities for each compatible string
 317 * @dma_chan:           DMA channel (NFCv1 only)
 318 * @dma_buf:            32-bit aligned buffer for DMA transfers (NFCv1 only)
 319 */
 320struct marvell_nfc {
 321        struct nand_hw_control controller;
 322        struct device *dev;
 323        void __iomem *regs;
 324        struct clk *core_clk;
 325        struct clk *reg_clk;
 326        struct completion complete;
 327        unsigned long assigned_cs;
 328        struct list_head chips;
 329        struct nand_chip *selected_chip;
 330        const struct marvell_nfc_caps *caps;
 331
 332        /* DMA (NFCv1 only) */
 333        bool use_dma;
 334        struct dma_chan *dma_chan;
 335        u8 *dma_buf;
 336};
 337
 338static inline struct marvell_nfc *to_marvell_nfc(struct nand_hw_control *ctrl)
 339{
 340        return container_of(ctrl, struct marvell_nfc, controller);
 341}
 342
 343/**
 344 * NAND controller timings expressed in NAND Controller clock cycles
 345 *
 346 * @tRP:                ND_nRE pulse width
 347 * @tRH:                ND_nRE high duration
 348 * @tWP:                ND_nWE pulse time
 349 * @tWH:                ND_nWE high duration
 350 * @tCS:                Enable signal setup time
 351 * @tCH:                Enable signal hold time
 352 * @tADL:               Address to write data delay
 353 * @tAR:                ND_ALE low to ND_nRE low delay
 354 * @tWHR:               ND_nWE high to ND_nRE low for status read
 355 * @tRHW:               ND_nRE high duration, read to write delay
 356 * @tR:                 ND_nWE high to ND_nRE low for read
 357 */
 358struct marvell_nfc_timings {
 359        /* NDTR0 fields */
 360        unsigned int tRP;
 361        unsigned int tRH;
 362        unsigned int tWP;
 363        unsigned int tWH;
 364        unsigned int tCS;
 365        unsigned int tCH;
 366        unsigned int tADL;
 367        /* NDTR1 fields */
 368        unsigned int tAR;
 369        unsigned int tWHR;
 370        unsigned int tRHW;
 371        unsigned int tR;
 372};
 373
 374/**
 375 * Derives a duration in numbers of clock cycles.
 376 *
 377 * @ps: Duration in pico-seconds
 378 * @period_ns:  Clock period in nano-seconds
 379 *
 380 * Convert the duration in nano-seconds, then divide by the period and
 381 * return the number of clock periods.
 382 */
 383#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
 384#define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
 385                                                     period_ns))
 386
 387/**
 388 * NAND driver structure filled during the parsing of the ->exec_op() subop
 389 * subset of instructions.
 390 *
 391 * @ndcb:               Array of values written to NDCBx registers
 392 * @cle_ale_delay_ns:   Optional delay after the last CMD or ADDR cycle
 393 * @rdy_timeout_ms:     Timeout for waits on Ready/Busy pin
 394 * @rdy_delay_ns:       Optional delay after waiting for the RB pin
 395 * @data_delay_ns:      Optional delay after the data xfer
 396 * @data_instr_idx:     Index of the data instruction in the subop
 397 * @data_instr:         Pointer to the data instruction in the subop
 398 */
 399struct marvell_nfc_op {
 400        u32 ndcb[4];
 401        unsigned int cle_ale_delay_ns;
 402        unsigned int rdy_timeout_ms;
 403        unsigned int rdy_delay_ns;
 404        unsigned int data_delay_ns;
 405        unsigned int data_instr_idx;
 406        const struct nand_op_instr *data_instr;
 407};
 408
 409/*
 410 * Internal helper to conditionnally apply a delay (from the above structure,
 411 * most of the time).
 412 */
 413static void cond_delay(unsigned int ns)
 414{
 415        if (!ns)
 416                return;
 417
 418        if (ns < 10000)
 419                ndelay(ns);
 420        else
 421                udelay(DIV_ROUND_UP(ns, 1000));
 422}
 423
 424/*
 425 * The controller has many flags that could generate interrupts, most of them
 426 * are disabled and polling is used. For the very slow signals, using interrupts
 427 * may relax the CPU charge.
 428 */
 429static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
 430{
 431        u32 reg;
 432
 433        /* Writing 1 disables the interrupt */
 434        reg = readl_relaxed(nfc->regs + NDCR);
 435        writel_relaxed(reg | int_mask, nfc->regs + NDCR);
 436}
 437
 438static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
 439{
 440        u32 reg;
 441
 442        /* Writing 0 enables the interrupt */
 443        reg = readl_relaxed(nfc->regs + NDCR);
 444        writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
 445}
 446
 447static void marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
 448{
 449        writel_relaxed(int_mask, nfc->regs + NDSR);
 450}
 451
 452static void marvell_nfc_force_byte_access(struct nand_chip *chip,
 453                                          bool force_8bit)
 454{
 455        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 456        u32 ndcr;
 457
 458        /*
 459         * Callers of this function do not verify if the NAND is using a 16-bit
 460         * an 8-bit bus for normal operations, so we need to take care of that
 461         * here by leaving the configuration unchanged if the NAND does not have
 462         * the NAND_BUSWIDTH_16 flag set.
 463         */
 464        if (!(chip->options & NAND_BUSWIDTH_16))
 465                return;
 466
 467        ndcr = readl_relaxed(nfc->regs + NDCR);
 468
 469        if (force_8bit)
 470                ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
 471        else
 472                ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
 473
 474        writel_relaxed(ndcr, nfc->regs + NDCR);
 475}
 476
 477static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
 478{
 479        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 480        u32 val;
 481        int ret;
 482
 483        /*
 484         * The command is being processed, wait for the ND_RUN bit to be
 485         * cleared by the NFC. If not, we must clear it by hand.
 486         */
 487        ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
 488                                         (val & NDCR_ND_RUN) == 0,
 489                                         POLL_PERIOD, POLL_TIMEOUT);
 490        if (ret) {
 491                dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
 492                writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
 493                               nfc->regs + NDCR);
 494                return ret;
 495        }
 496
 497        return 0;
 498}
 499
 500/*
 501 * Any time a command has to be sent to the controller, the following sequence
 502 * has to be followed:
 503 * - call marvell_nfc_prepare_cmd()
 504 *      -> activate the ND_RUN bit that will kind of 'start a job'
 505 *      -> wait the signal indicating the NFC is waiting for a command
 506 * - send the command (cmd and address cycles)
 507 * - enventually send or receive the data
 508 * - call marvell_nfc_end_cmd() with the corresponding flag
 509 *      -> wait the flag to be triggered or cancel the job with a timeout
 510 *
 511 * The following helpers are here to factorize the code a bit so that
 512 * specialized functions responsible for executing the actual NAND
 513 * operations do not have to replicate the same code blocks.
 514 */
 515static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
 516{
 517        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 518        u32 ndcr, val;
 519        int ret;
 520
 521        /* Poll ND_RUN and clear NDSR before issuing any command */
 522        ret = marvell_nfc_wait_ndrun(chip);
 523        if (ret) {
 524                dev_err(nfc->dev, "Last operation did not succeed\n");
 525                return ret;
 526        }
 527
 528        ndcr = readl_relaxed(nfc->regs + NDCR);
 529        writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
 530
 531        /* Assert ND_RUN bit and wait the NFC to be ready */
 532        writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
 533        ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
 534                                         val & NDSR_WRCMDREQ,
 535                                         POLL_PERIOD, POLL_TIMEOUT);
 536        if (ret) {
 537                dev_err(nfc->dev, "Timeout on WRCMDRE\n");
 538                return -ETIMEDOUT;
 539        }
 540
 541        /* Command may be written, clear WRCMDREQ status bit */
 542        writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
 543
 544        return 0;
 545}
 546
 547static void marvell_nfc_send_cmd(struct nand_chip *chip,
 548                                 struct marvell_nfc_op *nfc_op)
 549{
 550        struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
 551        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 552
 553        dev_dbg(nfc->dev, "\nNDCR:  0x%08x\n"
 554                "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
 555                (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
 556                nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
 557
 558        writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
 559                       nfc->regs + NDCB0);
 560        writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
 561        writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
 562
 563        /*
 564         * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
 565         * fields are used (only available on NFCv2).
 566         */
 567        if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
 568            NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
 569                if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
 570                        writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
 571        }
 572}
 573
 574static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
 575                               const char *label)
 576{
 577        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 578        u32 val;
 579        int ret;
 580
 581        ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
 582                                         val & flag,
 583                                         POLL_PERIOD, POLL_TIMEOUT);
 584
 585        if (ret) {
 586                dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
 587                        label, val);
 588                if (nfc->dma_chan)
 589                        dmaengine_terminate_all(nfc->dma_chan);
 590                return ret;
 591        }
 592
 593        /*
 594         * DMA function uses this helper to poll on CMDD bits without wanting
 595         * them to be cleared.
 596         */
 597        if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
 598                return 0;
 599
 600        writel_relaxed(flag, nfc->regs + NDSR);
 601
 602        return 0;
 603}
 604
 605static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
 606{
 607        struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
 608        int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
 609
 610        return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
 611}
 612
 613static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
 614{
 615        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 616        int ret;
 617
 618        /* Timeout is expressed in ms */
 619        if (!timeout_ms)
 620                timeout_ms = IRQ_TIMEOUT;
 621
 622        init_completion(&nfc->complete);
 623
 624        marvell_nfc_enable_int(nfc, NDCR_RDYM);
 625        ret = wait_for_completion_timeout(&nfc->complete,
 626                                          msecs_to_jiffies(timeout_ms));
 627        marvell_nfc_disable_int(nfc, NDCR_RDYM);
 628        marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
 629        if (!ret) {
 630                dev_err(nfc->dev, "Timeout waiting for RB signal\n");
 631                return -ETIMEDOUT;
 632        }
 633
 634        return 0;
 635}
 636
 637static void marvell_nfc_select_chip(struct mtd_info *mtd, int die_nr)
 638{
 639        struct nand_chip *chip = mtd_to_nand(mtd);
 640        struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
 641        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 642        u32 ndcr_generic;
 643
 644        if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
 645                return;
 646
 647        if (die_nr < 0 || die_nr >= marvell_nand->nsels) {
 648                nfc->selected_chip = NULL;
 649                marvell_nand->selected_die = -1;
 650                return;
 651        }
 652
 653        /*
 654         * Do not change the timing registers when using the DT property
 655         * marvell,nand-keep-config; in that case ->ndtr0 and ->ndtr1 from the
 656         * marvell_nand structure are supposedly empty.
 657         */
 658        writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
 659        writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
 660
 661        /*
 662         * Reset the NDCR register to a clean state for this particular chip,
 663         * also clear ND_RUN bit.
 664         */
 665        ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
 666                       NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
 667        writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
 668
 669        /* Also reset the interrupt status register */
 670        marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
 671
 672        nfc->selected_chip = chip;
 673        marvell_nand->selected_die = die_nr;
 674}
 675
 676static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
 677{
 678        struct marvell_nfc *nfc = dev_id;
 679        u32 st = readl_relaxed(nfc->regs + NDSR);
 680        u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
 681
 682        /*
 683         * RDY interrupt mask is one bit in NDCR while there are two status
 684         * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
 685         */
 686        if (st & NDSR_RDY(1))
 687                st |= NDSR_RDY(0);
 688
 689        if (!(st & ien))
 690                return IRQ_NONE;
 691
 692        marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
 693
 694        if (!(st & (NDSR_RDDREQ | NDSR_WRDREQ | NDSR_WRCMDREQ)))
 695                complete(&nfc->complete);
 696
 697        return IRQ_HANDLED;
 698}
 699
 700/* HW ECC related functions */
 701static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
 702{
 703        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 704        u32 ndcr = readl_relaxed(nfc->regs + NDCR);
 705
 706        if (!(ndcr & NDCR_ECC_EN)) {
 707                writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
 708
 709                /*
 710                 * When enabling BCH, set threshold to 0 to always know the
 711                 * number of corrected bitflips.
 712                 */
 713                if (chip->ecc.algo == NAND_ECC_BCH)
 714                        writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
 715        }
 716}
 717
 718static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
 719{
 720        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 721        u32 ndcr = readl_relaxed(nfc->regs + NDCR);
 722
 723        if (ndcr & NDCR_ECC_EN) {
 724                writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
 725                if (chip->ecc.algo == NAND_ECC_BCH)
 726                        writel_relaxed(0, nfc->regs + NDECCCTRL);
 727        }
 728}
 729
 730/* DMA related helpers */
 731static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
 732{
 733        u32 reg;
 734
 735        reg = readl_relaxed(nfc->regs + NDCR);
 736        writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
 737}
 738
 739static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
 740{
 741        u32 reg;
 742
 743        reg = readl_relaxed(nfc->regs + NDCR);
 744        writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
 745}
 746
 747/* Read/write PIO/DMA accessors */
 748static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
 749                                     enum dma_data_direction direction,
 750                                     unsigned int len)
 751{
 752        unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
 753        struct dma_async_tx_descriptor *tx;
 754        struct scatterlist sg;
 755        dma_cookie_t cookie;
 756        int ret;
 757
 758        marvell_nfc_enable_dma(nfc);
 759        /* Prepare the DMA transfer */
 760        sg_init_one(&sg, nfc->dma_buf, dma_len);
 761        dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
 762        tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
 763                                     direction == DMA_FROM_DEVICE ?
 764                                     DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
 765                                     DMA_PREP_INTERRUPT);
 766        if (!tx) {
 767                dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
 768                return -ENXIO;
 769        }
 770
 771        /* Do the task and wait for it to finish */
 772        cookie = dmaengine_submit(tx);
 773        ret = dma_submit_error(cookie);
 774        if (ret)
 775                return -EIO;
 776
 777        dma_async_issue_pending(nfc->dma_chan);
 778        ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
 779        dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
 780        marvell_nfc_disable_dma(nfc);
 781        if (ret) {
 782                dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
 783                        dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
 784                dmaengine_terminate_all(nfc->dma_chan);
 785                return -ETIMEDOUT;
 786        }
 787
 788        return 0;
 789}
 790
 791static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
 792                                        unsigned int len)
 793{
 794        unsigned int last_len = len % FIFO_DEPTH;
 795        unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
 796        int i;
 797
 798        for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
 799                ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
 800
 801        if (last_len) {
 802                u8 tmp_buf[FIFO_DEPTH];
 803
 804                ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
 805                memcpy(in + last_full_offset, tmp_buf, last_len);
 806        }
 807
 808        return 0;
 809}
 810
 811static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
 812                                         unsigned int len)
 813{
 814        unsigned int last_len = len % FIFO_DEPTH;
 815        unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
 816        int i;
 817
 818        for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
 819                iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
 820
 821        if (last_len) {
 822                u8 tmp_buf[FIFO_DEPTH];
 823
 824                memcpy(tmp_buf, out + last_full_offset, last_len);
 825                iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
 826        }
 827
 828        return 0;
 829}
 830
 831static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
 832                                          u8 *data, int data_len,
 833                                          u8 *spare, int spare_len,
 834                                          u8 *ecc, int ecc_len,
 835                                          unsigned int *max_bitflips)
 836{
 837        struct mtd_info *mtd = nand_to_mtd(chip);
 838        int bf;
 839
 840        /*
 841         * Blank pages (all 0xFF) that have not been written may be recognized
 842         * as bad if bitflips occur, so whenever an uncorrectable error occurs,
 843         * check if the entire page (with ECC bytes) is actually blank or not.
 844         */
 845        if (!data)
 846                data_len = 0;
 847        if (!spare)
 848                spare_len = 0;
 849        if (!ecc)
 850                ecc_len = 0;
 851
 852        bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
 853                                         spare, spare_len, chip->ecc.strength);
 854        if (bf < 0) {
 855                mtd->ecc_stats.failed++;
 856                return;
 857        }
 858
 859        /* Update the stats and max_bitflips */
 860        mtd->ecc_stats.corrected += bf;
 861        *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
 862}
 863
 864/*
 865 * Check a chunk is correct or not according to hardware ECC engine.
 866 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
 867 * mtd->ecc_stats.failure is not, the function will instead return a non-zero
 868 * value indicating that a check on the emptyness of the subpage must be
 869 * performed before declaring the subpage corrupted.
 870 */
 871static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip,
 872                                      unsigned int *max_bitflips)
 873{
 874        struct mtd_info *mtd = nand_to_mtd(chip);
 875        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 876        int bf = 0;
 877        u32 ndsr;
 878
 879        ndsr = readl_relaxed(nfc->regs + NDSR);
 880
 881        /* Check uncorrectable error flag */
 882        if (ndsr & NDSR_UNCERR) {
 883                writel_relaxed(ndsr, nfc->regs + NDSR);
 884
 885                /*
 886                 * Do not increment ->ecc_stats.failed now, instead, return a
 887                 * non-zero value to indicate that this chunk was apparently
 888                 * bad, and it should be check to see if it empty or not. If
 889                 * the chunk (with ECC bytes) is not declared empty, the calling
 890                 * function must increment the failure count.
 891                 */
 892                return -EBADMSG;
 893        }
 894
 895        /* Check correctable error flag */
 896        if (ndsr & NDSR_CORERR) {
 897                writel_relaxed(ndsr, nfc->regs + NDSR);
 898
 899                if (chip->ecc.algo == NAND_ECC_BCH)
 900                        bf = NDSR_ERRCNT(ndsr);
 901                else
 902                        bf = 1;
 903        }
 904
 905        /* Update the stats and max_bitflips */
 906        mtd->ecc_stats.corrected += bf;
 907        *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
 908
 909        return 0;
 910}
 911
 912/* Hamming read helpers */
 913static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
 914                                               u8 *data_buf, u8 *oob_buf,
 915                                               bool raw, int page)
 916{
 917        struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
 918        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 919        const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
 920        struct marvell_nfc_op nfc_op = {
 921                .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
 922                           NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
 923                           NDCB0_DBC |
 924                           NDCB0_CMD1(NAND_CMD_READ0) |
 925                           NDCB0_CMD2(NAND_CMD_READSTART),
 926                .ndcb[1] = NDCB1_ADDRS_PAGE(page),
 927                .ndcb[2] = NDCB2_ADDR5_PAGE(page),
 928        };
 929        unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
 930        int ret;
 931
 932        /* NFCv2 needs more information about the operation being executed */
 933        if (nfc->caps->is_nfcv2)
 934                nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
 935
 936        ret = marvell_nfc_prepare_cmd(chip);
 937        if (ret)
 938                return ret;
 939
 940        marvell_nfc_send_cmd(chip, &nfc_op);
 941        ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
 942                                  "RDDREQ while draining FIFO (data/oob)");
 943        if (ret)
 944                return ret;
 945
 946        /*
 947         * Read the page then the OOB area. Unlike what is shown in current
 948         * documentation, spare bytes are protected by the ECC engine, and must
 949         * be at the beginning of the OOB area or running this driver on legacy
 950         * systems will prevent the discovery of the BBM/BBT.
 951         */
 952        if (nfc->use_dma) {
 953                marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
 954                                          lt->data_bytes + oob_bytes);
 955                memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
 956                memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
 957        } else {
 958                marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
 959                marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
 960        }
 961
 962        ret = marvell_nfc_wait_cmdd(chip);
 963
 964        return ret;
 965}
 966
 967static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct mtd_info *mtd,
 968                                                struct nand_chip *chip, u8 *buf,
 969                                                int oob_required, int page)
 970{
 971        return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
 972                                                   true, page);
 973}
 974
 975static int marvell_nfc_hw_ecc_hmg_read_page(struct mtd_info *mtd,
 976                                            struct nand_chip *chip,
 977                                            u8 *buf, int oob_required,
 978                                            int page)
 979{
 980        const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
 981        unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
 982        int max_bitflips = 0, ret;
 983        u8 *raw_buf;
 984
 985        marvell_nfc_enable_hw_ecc(chip);
 986        marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
 987                                            page);
 988        ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
 989        marvell_nfc_disable_hw_ecc(chip);
 990
 991        if (!ret)
 992                return max_bitflips;
 993
 994        /*
 995         * When ECC failures are detected, check if the full page has been
 996         * written or not. Ignore the failure if it is actually empty.
 997         */
 998        raw_buf = kmalloc(full_sz, GFP_KERNEL);
 999        if (!raw_buf)
1000                return -ENOMEM;
1001
1002        marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
1003                                            lt->data_bytes, true, page);
1004        marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1005                                      &max_bitflips);
1006        kfree(raw_buf);
1007
1008        return max_bitflips;
1009}
1010
1011/*
1012 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1013 * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1014 * also stands for ->read_oob().
1015 */
1016static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct mtd_info *mtd,
1017                                               struct nand_chip *chip, int page)
1018{
1019        /* Invalidate page cache */
1020        chip->pagebuf = -1;
1021
1022        return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf,
1023                                                   chip->oob_poi, true, page);
1024}
1025
1026/* Hamming write helpers */
1027static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1028                                                const u8 *data_buf,
1029                                                const u8 *oob_buf, bool raw,
1030                                                int page)
1031{
1032        struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1033        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1034        const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1035        struct marvell_nfc_op nfc_op = {
1036                .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1037                           NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1038                           NDCB0_CMD1(NAND_CMD_SEQIN) |
1039                           NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1040                           NDCB0_DBC,
1041                .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1042                .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1043        };
1044        unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1045        int ret;
1046
1047        /* NFCv2 needs more information about the operation being executed */
1048        if (nfc->caps->is_nfcv2)
1049                nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1050
1051        ret = marvell_nfc_prepare_cmd(chip);
1052        if (ret)
1053                return ret;
1054
1055        marvell_nfc_send_cmd(chip, &nfc_op);
1056        ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1057                                  "WRDREQ while loading FIFO (data)");
1058        if (ret)
1059                return ret;
1060
1061        /* Write the page then the OOB area */
1062        if (nfc->use_dma) {
1063                memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1064                memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1065                marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1066                                          lt->ecc_bytes + lt->spare_bytes);
1067        } else {
1068                marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1069                marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1070        }
1071
1072        ret = marvell_nfc_wait_cmdd(chip);
1073        if (ret)
1074                return ret;
1075
1076        ret = marvell_nfc_wait_op(chip,
1077                                  PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
1078        return ret;
1079}
1080
1081static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct mtd_info *mtd,
1082                                                 struct nand_chip *chip,
1083                                                 const u8 *buf,
1084                                                 int oob_required, int page)
1085{
1086        return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1087                                                    true, page);
1088}
1089
1090static int marvell_nfc_hw_ecc_hmg_write_page(struct mtd_info *mtd,
1091                                             struct nand_chip *chip,
1092                                             const u8 *buf,
1093                                             int oob_required, int page)
1094{
1095        int ret;
1096
1097        marvell_nfc_enable_hw_ecc(chip);
1098        ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1099                                                   false, page);
1100        marvell_nfc_disable_hw_ecc(chip);
1101
1102        return ret;
1103}
1104
1105/*
1106 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1107 * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1108 * also stands for ->write_oob().
1109 */
1110static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct mtd_info *mtd,
1111                                                struct nand_chip *chip,
1112                                                int page)
1113{
1114        /* Invalidate page cache */
1115        chip->pagebuf = -1;
1116
1117        memset(chip->data_buf, 0xFF, mtd->writesize);
1118
1119        return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf,
1120                                                    chip->oob_poi, true, page);
1121}
1122
1123/* BCH read helpers */
1124static int marvell_nfc_hw_ecc_bch_read_page_raw(struct mtd_info *mtd,
1125                                                struct nand_chip *chip, u8 *buf,
1126                                                int oob_required, int page)
1127{
1128        const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1129        u8 *oob = chip->oob_poi;
1130        int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1131        int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1132                lt->last_spare_bytes;
1133        int data_len = lt->data_bytes;
1134        int spare_len = lt->spare_bytes;
1135        int ecc_len = lt->ecc_bytes;
1136        int chunk;
1137
1138        if (oob_required)
1139                memset(chip->oob_poi, 0xFF, mtd->oobsize);
1140
1141        nand_read_page_op(chip, page, 0, NULL, 0);
1142
1143        for (chunk = 0; chunk < lt->nchunks; chunk++) {
1144                /* Update last chunk length */
1145                if (chunk >= lt->full_chunk_cnt) {
1146                        data_len = lt->last_data_bytes;
1147                        spare_len = lt->last_spare_bytes;
1148                        ecc_len = lt->last_ecc_bytes;
1149                }
1150
1151                /* Read data bytes*/
1152                nand_change_read_column_op(chip, chunk * chunk_size,
1153                                           buf + (lt->data_bytes * chunk),
1154                                           data_len, false);
1155
1156                /* Read spare bytes */
1157                nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1158                                  spare_len, false);
1159
1160                /* Read ECC bytes */
1161                nand_read_data_op(chip, oob + ecc_offset +
1162                                  (ALIGN(lt->ecc_bytes, 32) * chunk),
1163                                  ecc_len, false);
1164        }
1165
1166        return 0;
1167}
1168
1169static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1170                                              u8 *data, unsigned int data_len,
1171                                              u8 *spare, unsigned int spare_len,
1172                                              int page)
1173{
1174        struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1175        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1176        const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1177        int i, ret;
1178        struct marvell_nfc_op nfc_op = {
1179                .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1180                           NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1181                           NDCB0_LEN_OVRD,
1182                .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1183                .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1184                .ndcb[3] = data_len + spare_len,
1185        };
1186
1187        ret = marvell_nfc_prepare_cmd(chip);
1188        if (ret)
1189                return;
1190
1191        if (chunk == 0)
1192                nfc_op.ndcb[0] |= NDCB0_DBC |
1193                                  NDCB0_CMD1(NAND_CMD_READ0) |
1194                                  NDCB0_CMD2(NAND_CMD_READSTART);
1195
1196        /*
1197         * Trigger the monolithic read on the first chunk, then naked read on
1198         * intermediate chunks and finally a last naked read on the last chunk.
1199         */
1200        if (chunk == 0)
1201                nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1202        else if (chunk < lt->nchunks - 1)
1203                nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1204        else
1205                nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1206
1207        marvell_nfc_send_cmd(chip, &nfc_op);
1208
1209        /*
1210         * According to the datasheet, when reading from NDDB
1211         * with BCH enabled, after each 32 bytes reads, we
1212         * have to make sure that the NDSR.RDDREQ bit is set.
1213         *
1214         * Drain the FIFO, 8 32-bit reads at a time, and skip
1215         * the polling on the last read.
1216         *
1217         * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1218         */
1219        for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1220                marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1221                                    "RDDREQ while draining FIFO (data)");
1222                marvell_nfc_xfer_data_in_pio(nfc, data,
1223                                             FIFO_DEPTH * BCH_SEQ_READS);
1224                data += FIFO_DEPTH * BCH_SEQ_READS;
1225        }
1226
1227        for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1228                marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1229                                    "RDDREQ while draining FIFO (OOB)");
1230                marvell_nfc_xfer_data_in_pio(nfc, spare,
1231                                             FIFO_DEPTH * BCH_SEQ_READS);
1232                spare += FIFO_DEPTH * BCH_SEQ_READS;
1233        }
1234}
1235
1236static int marvell_nfc_hw_ecc_bch_read_page(struct mtd_info *mtd,
1237                                            struct nand_chip *chip,
1238                                            u8 *buf, int oob_required,
1239                                            int page)
1240{
1241        const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1242        int data_len = lt->data_bytes, spare_len = lt->spare_bytes, ecc_len;
1243        u8 *data = buf, *spare = chip->oob_poi, *ecc;
1244        int max_bitflips = 0;
1245        u32 failure_mask = 0;
1246        int chunk, ecc_offset_in_page, ret;
1247
1248        /*
1249         * With BCH, OOB is not fully used (and thus not read entirely), not
1250         * expected bytes could show up at the end of the OOB buffer if not
1251         * explicitly erased.
1252         */
1253        if (oob_required)
1254                memset(chip->oob_poi, 0xFF, mtd->oobsize);
1255
1256        marvell_nfc_enable_hw_ecc(chip);
1257
1258        for (chunk = 0; chunk < lt->nchunks; chunk++) {
1259                /* Update length for the last chunk */
1260                if (chunk >= lt->full_chunk_cnt) {
1261                        data_len = lt->last_data_bytes;
1262                        spare_len = lt->last_spare_bytes;
1263                }
1264
1265                /* Read the chunk and detect number of bitflips */
1266                marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1267                                                  spare, spare_len, page);
1268                ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
1269                if (ret)
1270                        failure_mask |= BIT(chunk);
1271
1272                data += data_len;
1273                spare += spare_len;
1274        }
1275
1276        marvell_nfc_disable_hw_ecc(chip);
1277
1278        if (!failure_mask)
1279                return max_bitflips;
1280
1281        /*
1282         * Please note that dumping the ECC bytes during a normal read with OOB
1283         * area would add a significant overhead as ECC bytes are "consumed" by
1284         * the controller in normal mode and must be re-read in raw mode. To
1285         * avoid dropping the performances, we prefer not to include them. The
1286         * user should re-read the page in raw mode if ECC bytes are required.
1287         *
1288         * However, for any subpage read error reported by ->correct(), the ECC
1289         * bytes must be read in raw mode and the full subpage must be checked
1290         * to see if it is entirely empty of if there was an actual error.
1291         */
1292        for (chunk = 0; chunk < lt->nchunks; chunk++) {
1293                /* No failure reported for this chunk, move to the next one */
1294                if (!(failure_mask & BIT(chunk)))
1295                        continue;
1296
1297                /* Derive ECC bytes positions (in page/buffer) and length */
1298                ecc = chip->oob_poi +
1299                        (lt->full_chunk_cnt * lt->spare_bytes) +
1300                        lt->last_spare_bytes +
1301                        (chunk * ALIGN(lt->ecc_bytes, 32));
1302                ecc_offset_in_page =
1303                        (chunk * (lt->data_bytes + lt->spare_bytes +
1304                                  lt->ecc_bytes)) +
1305                        (chunk < lt->full_chunk_cnt ?
1306                         lt->data_bytes + lt->spare_bytes :
1307                         lt->last_data_bytes + lt->last_spare_bytes);
1308                ecc_len = chunk < lt->full_chunk_cnt ?
1309                        lt->ecc_bytes : lt->last_ecc_bytes;
1310
1311                /* Do the actual raw read of the ECC bytes */
1312                nand_change_read_column_op(chip, ecc_offset_in_page,
1313                                           ecc, ecc_len, false);
1314
1315                /* Derive data/spare bytes positions (in buffer) and length */
1316                data = buf + (chunk * lt->data_bytes);
1317                data_len = chunk < lt->full_chunk_cnt ?
1318                        lt->data_bytes : lt->last_data_bytes;
1319                spare = chip->oob_poi + (chunk * (lt->spare_bytes +
1320                                                  lt->ecc_bytes));
1321                spare_len = chunk < lt->full_chunk_cnt ?
1322                        lt->spare_bytes : lt->last_spare_bytes;
1323
1324                /* Check the entire chunk (data + spare + ecc) for emptyness */
1325                marvell_nfc_check_empty_chunk(chip, data, data_len, spare,
1326                                              spare_len, ecc, ecc_len,
1327                                              &max_bitflips);
1328        }
1329
1330        return max_bitflips;
1331}
1332
1333static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct mtd_info *mtd,
1334                                               struct nand_chip *chip, int page)
1335{
1336        /* Invalidate page cache */
1337        chip->pagebuf = -1;
1338
1339        return chip->ecc.read_page_raw(mtd, chip, chip->data_buf, true, page);
1340}
1341
1342static int marvell_nfc_hw_ecc_bch_read_oob(struct mtd_info *mtd,
1343                                           struct nand_chip *chip, int page)
1344{
1345        /* Invalidate page cache */
1346        chip->pagebuf = -1;
1347
1348        return chip->ecc.read_page(mtd, chip, chip->data_buf, true, page);
1349}
1350
1351/* BCH write helpers */
1352static int marvell_nfc_hw_ecc_bch_write_page_raw(struct mtd_info *mtd,
1353                                                 struct nand_chip *chip,
1354                                                 const u8 *buf,
1355                                                 int oob_required, int page)
1356{
1357        const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1358        int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1359        int data_len = lt->data_bytes;
1360        int spare_len = lt->spare_bytes;
1361        int ecc_len = lt->ecc_bytes;
1362        int spare_offset = 0;
1363        int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1364                lt->last_spare_bytes;
1365        int chunk;
1366
1367        nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1368
1369        for (chunk = 0; chunk < lt->nchunks; chunk++) {
1370                if (chunk >= lt->full_chunk_cnt) {
1371                        data_len = lt->last_data_bytes;
1372                        spare_len = lt->last_spare_bytes;
1373                        ecc_len = lt->last_ecc_bytes;
1374                }
1375
1376                /* Point to the column of the next chunk */
1377                nand_change_write_column_op(chip, chunk * full_chunk_size,
1378                                            NULL, 0, false);
1379
1380                /* Write the data */
1381                nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1382                                   data_len, false);
1383
1384                if (!oob_required)
1385                        continue;
1386
1387                /* Write the spare bytes */
1388                if (spare_len)
1389                        nand_write_data_op(chip, chip->oob_poi + spare_offset,
1390                                           spare_len, false);
1391
1392                /* Write the ECC bytes */
1393                if (ecc_len)
1394                        nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1395                                           ecc_len, false);
1396
1397                spare_offset += spare_len;
1398                ecc_offset += ALIGN(ecc_len, 32);
1399        }
1400
1401        return nand_prog_page_end_op(chip);
1402}
1403
1404static int
1405marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1406                                   const u8 *data, unsigned int data_len,
1407                                   const u8 *spare, unsigned int spare_len,
1408                                   int page)
1409{
1410        struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1411        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1412        const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1413        u32 xtype;
1414        int ret;
1415        struct marvell_nfc_op nfc_op = {
1416                .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1417                .ndcb[3] = data_len + spare_len,
1418        };
1419
1420        /*
1421         * First operation dispatches the CMD_SEQIN command, issue the address
1422         * cycles and asks for the first chunk of data.
1423         * All operations in the middle (if any) will issue a naked write and
1424         * also ask for data.
1425         * Last operation (if any) asks for the last chunk of data through a
1426         * last naked write.
1427         */
1428        if (chunk == 0) {
1429                if (lt->nchunks == 1)
1430                        xtype = XTYPE_MONOLITHIC_RW;
1431                else
1432                        xtype = XTYPE_WRITE_DISPATCH;
1433
1434                nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
1435                                  NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1436                                  NDCB0_CMD1(NAND_CMD_SEQIN);
1437                nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1438                nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1439        } else if (chunk < lt->nchunks - 1) {
1440                nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1441        } else {
1442                nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1443        }
1444
1445        /* Always dispatch the PAGEPROG command on the last chunk */
1446        if (chunk == lt->nchunks - 1)
1447                nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1448
1449        ret = marvell_nfc_prepare_cmd(chip);
1450        if (ret)
1451                return ret;
1452
1453        marvell_nfc_send_cmd(chip, &nfc_op);
1454        ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1455                                  "WRDREQ while loading FIFO (data)");
1456        if (ret)
1457                return ret;
1458
1459        /* Transfer the contents */
1460        iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1461        iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1462
1463        return 0;
1464}
1465
1466static int marvell_nfc_hw_ecc_bch_write_page(struct mtd_info *mtd,
1467                                             struct nand_chip *chip,
1468                                             const u8 *buf,
1469                                             int oob_required, int page)
1470{
1471        const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1472        const u8 *data = buf;
1473        const u8 *spare = chip->oob_poi;
1474        int data_len = lt->data_bytes;
1475        int spare_len = lt->spare_bytes;
1476        int chunk, ret;
1477
1478        /* Spare data will be written anyway, so clear it to avoid garbage */
1479        if (!oob_required)
1480                memset(chip->oob_poi, 0xFF, mtd->oobsize);
1481
1482        marvell_nfc_enable_hw_ecc(chip);
1483
1484        for (chunk = 0; chunk < lt->nchunks; chunk++) {
1485                if (chunk >= lt->full_chunk_cnt) {
1486                        data_len = lt->last_data_bytes;
1487                        spare_len = lt->last_spare_bytes;
1488                }
1489
1490                marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1491                                                   spare, spare_len, page);
1492                data += data_len;
1493                spare += spare_len;
1494
1495                /*
1496                 * Waiting only for CMDD or PAGED is not enough, ECC are
1497                 * partially written. No flag is set once the operation is
1498                 * really finished but the ND_RUN bit is cleared, so wait for it
1499                 * before stepping into the next command.
1500                 */
1501                marvell_nfc_wait_ndrun(chip);
1502        }
1503
1504        ret = marvell_nfc_wait_op(chip,
1505                                  PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
1506
1507        marvell_nfc_disable_hw_ecc(chip);
1508
1509        if (ret)
1510                return ret;
1511
1512        return 0;
1513}
1514
1515static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct mtd_info *mtd,
1516                                                struct nand_chip *chip,
1517                                                int page)
1518{
1519        /* Invalidate page cache */
1520        chip->pagebuf = -1;
1521
1522        memset(chip->data_buf, 0xFF, mtd->writesize);
1523
1524        return chip->ecc.write_page_raw(mtd, chip, chip->data_buf, true, page);
1525}
1526
1527static int marvell_nfc_hw_ecc_bch_write_oob(struct mtd_info *mtd,
1528                                            struct nand_chip *chip, int page)
1529{
1530        /* Invalidate page cache */
1531        chip->pagebuf = -1;
1532
1533        memset(chip->data_buf, 0xFF, mtd->writesize);
1534
1535        return chip->ecc.write_page(mtd, chip, chip->data_buf, true, page);
1536}
1537
1538/* NAND framework ->exec_op() hooks and related helpers */
1539static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1540                                           const struct nand_subop *subop,
1541                                           struct marvell_nfc_op *nfc_op)
1542{
1543        const struct nand_op_instr *instr = NULL;
1544        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1545        bool first_cmd = true;
1546        unsigned int op_id;
1547        int i;
1548
1549        /* Reset the input structure as most of its fields will be OR'ed */
1550        memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1551
1552        for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1553                unsigned int offset, naddrs;
1554                const u8 *addrs;
1555                int len = nand_subop_get_data_len(subop, op_id);
1556
1557                instr = &subop->instrs[op_id];
1558
1559                switch (instr->type) {
1560                case NAND_OP_CMD_INSTR:
1561                        if (first_cmd)
1562                                nfc_op->ndcb[0] |=
1563                                        NDCB0_CMD1(instr->ctx.cmd.opcode);
1564                        else
1565                                nfc_op->ndcb[0] |=
1566                                        NDCB0_CMD2(instr->ctx.cmd.opcode) |
1567                                        NDCB0_DBC;
1568
1569                        nfc_op->cle_ale_delay_ns = instr->delay_ns;
1570                        first_cmd = false;
1571                        break;
1572
1573                case NAND_OP_ADDR_INSTR:
1574                        offset = nand_subop_get_addr_start_off(subop, op_id);
1575                        naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1576                        addrs = &instr->ctx.addr.addrs[offset];
1577
1578                        nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1579
1580                        for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1581                                nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1582
1583                        if (naddrs >= 5)
1584                                nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1585                        if (naddrs >= 6)
1586                                nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1587                        if (naddrs == 7)
1588                                nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1589
1590                        nfc_op->cle_ale_delay_ns = instr->delay_ns;
1591                        break;
1592
1593                case NAND_OP_DATA_IN_INSTR:
1594                        nfc_op->data_instr = instr;
1595                        nfc_op->data_instr_idx = op_id;
1596                        nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1597                        if (nfc->caps->is_nfcv2) {
1598                                nfc_op->ndcb[0] |=
1599                                        NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1600                                        NDCB0_LEN_OVRD;
1601                                nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1602                        }
1603                        nfc_op->data_delay_ns = instr->delay_ns;
1604                        break;
1605
1606                case NAND_OP_DATA_OUT_INSTR:
1607                        nfc_op->data_instr = instr;
1608                        nfc_op->data_instr_idx = op_id;
1609                        nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1610                        if (nfc->caps->is_nfcv2) {
1611                                nfc_op->ndcb[0] |=
1612                                        NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1613                                        NDCB0_LEN_OVRD;
1614                                nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1615                        }
1616                        nfc_op->data_delay_ns = instr->delay_ns;
1617                        break;
1618
1619                case NAND_OP_WAITRDY_INSTR:
1620                        nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1621                        nfc_op->rdy_delay_ns = instr->delay_ns;
1622                        break;
1623                }
1624        }
1625}
1626
1627static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1628                                     const struct nand_subop *subop,
1629                                     struct marvell_nfc_op *nfc_op)
1630{
1631        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1632        const struct nand_op_instr *instr = nfc_op->data_instr;
1633        unsigned int op_id = nfc_op->data_instr_idx;
1634        unsigned int len = nand_subop_get_data_len(subop, op_id);
1635        unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1636        bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1637        int ret;
1638
1639        if (instr->ctx.data.force_8bit)
1640                marvell_nfc_force_byte_access(chip, true);
1641
1642        if (reading) {
1643                u8 *in = instr->ctx.data.buf.in + offset;
1644
1645                ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1646        } else {
1647                const u8 *out = instr->ctx.data.buf.out + offset;
1648
1649                ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1650        }
1651
1652        if (instr->ctx.data.force_8bit)
1653                marvell_nfc_force_byte_access(chip, false);
1654
1655        return ret;
1656}
1657
1658static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1659                                              const struct nand_subop *subop)
1660{
1661        struct marvell_nfc_op nfc_op;
1662        bool reading;
1663        int ret;
1664
1665        marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1666        reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1667
1668        ret = marvell_nfc_prepare_cmd(chip);
1669        if (ret)
1670                return ret;
1671
1672        marvell_nfc_send_cmd(chip, &nfc_op);
1673        ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1674                                  "RDDREQ/WRDREQ while draining raw data");
1675        if (ret)
1676                return ret;
1677
1678        cond_delay(nfc_op.cle_ale_delay_ns);
1679
1680        if (reading) {
1681                if (nfc_op.rdy_timeout_ms) {
1682                        ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1683                        if (ret)
1684                                return ret;
1685                }
1686
1687                cond_delay(nfc_op.rdy_delay_ns);
1688        }
1689
1690        marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1691        ret = marvell_nfc_wait_cmdd(chip);
1692        if (ret)
1693                return ret;
1694
1695        cond_delay(nfc_op.data_delay_ns);
1696
1697        if (!reading) {
1698                if (nfc_op.rdy_timeout_ms) {
1699                        ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1700                        if (ret)
1701                                return ret;
1702                }
1703
1704                cond_delay(nfc_op.rdy_delay_ns);
1705        }
1706
1707        /*
1708         * NDCR ND_RUN bit should be cleared automatically at the end of each
1709         * operation but experience shows that the behavior is buggy when it
1710         * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1711         */
1712        if (!reading) {
1713                struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1714
1715                writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1716                               nfc->regs + NDCR);
1717        }
1718
1719        return 0;
1720}
1721
1722static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1723                                         const struct nand_subop *subop)
1724{
1725        struct marvell_nfc_op nfc_op;
1726        int ret;
1727
1728        marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1729
1730        /*
1731         * Naked access are different in that they need to be flagged as naked
1732         * by the controller. Reset the controller registers fields that inform
1733         * on the type and refill them according to the ongoing operation.
1734         */
1735        nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1736                            NDCB0_CMD_XTYPE(XTYPE_MASK));
1737        switch (subop->instrs[0].type) {
1738        case NAND_OP_CMD_INSTR:
1739                nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1740                break;
1741        case NAND_OP_ADDR_INSTR:
1742                nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1743                break;
1744        case NAND_OP_DATA_IN_INSTR:
1745                nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1746                                  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1747                break;
1748        case NAND_OP_DATA_OUT_INSTR:
1749                nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1750                                  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1751                break;
1752        default:
1753                /* This should never happen */
1754                break;
1755        }
1756
1757        ret = marvell_nfc_prepare_cmd(chip);
1758        if (ret)
1759                return ret;
1760
1761        marvell_nfc_send_cmd(chip, &nfc_op);
1762
1763        if (!nfc_op.data_instr) {
1764                ret = marvell_nfc_wait_cmdd(chip);
1765                cond_delay(nfc_op.cle_ale_delay_ns);
1766                return ret;
1767        }
1768
1769        ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1770                                  "RDDREQ/WRDREQ while draining raw data");
1771        if (ret)
1772                return ret;
1773
1774        marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1775        ret = marvell_nfc_wait_cmdd(chip);
1776        if (ret)
1777                return ret;
1778
1779        /*
1780         * NDCR ND_RUN bit should be cleared automatically at the end of each
1781         * operation but experience shows that the behavior is buggy when it
1782         * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1783         */
1784        if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1785                struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1786
1787                writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1788                               nfc->regs + NDCR);
1789        }
1790
1791        return 0;
1792}
1793
1794static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1795                                          const struct nand_subop *subop)
1796{
1797        struct marvell_nfc_op nfc_op;
1798        int ret;
1799
1800        marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1801
1802        ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1803        cond_delay(nfc_op.rdy_delay_ns);
1804
1805        return ret;
1806}
1807
1808static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1809                                         const struct nand_subop *subop)
1810{
1811        struct marvell_nfc_op nfc_op;
1812        int ret;
1813
1814        marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1815        nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1816        nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1817
1818        ret = marvell_nfc_prepare_cmd(chip);
1819        if (ret)
1820                return ret;
1821
1822        marvell_nfc_send_cmd(chip, &nfc_op);
1823        ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1824                                  "RDDREQ while reading ID");
1825        if (ret)
1826                return ret;
1827
1828        cond_delay(nfc_op.cle_ale_delay_ns);
1829
1830        if (nfc_op.rdy_timeout_ms) {
1831                ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1832                if (ret)
1833                        return ret;
1834        }
1835
1836        cond_delay(nfc_op.rdy_delay_ns);
1837
1838        marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1839        ret = marvell_nfc_wait_cmdd(chip);
1840        if (ret)
1841                return ret;
1842
1843        cond_delay(nfc_op.data_delay_ns);
1844
1845        return 0;
1846}
1847
1848static int marvell_nfc_read_status_exec(struct nand_chip *chip,
1849                                        const struct nand_subop *subop)
1850{
1851        struct marvell_nfc_op nfc_op;
1852        int ret;
1853
1854        marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1855        nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1856        nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
1857
1858        ret = marvell_nfc_prepare_cmd(chip);
1859        if (ret)
1860                return ret;
1861
1862        marvell_nfc_send_cmd(chip, &nfc_op);
1863        ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1864                                  "RDDREQ while reading status");
1865        if (ret)
1866                return ret;
1867
1868        cond_delay(nfc_op.cle_ale_delay_ns);
1869
1870        if (nfc_op.rdy_timeout_ms) {
1871                ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1872                if (ret)
1873                        return ret;
1874        }
1875
1876        cond_delay(nfc_op.rdy_delay_ns);
1877
1878        marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1879        ret = marvell_nfc_wait_cmdd(chip);
1880        if (ret)
1881                return ret;
1882
1883        cond_delay(nfc_op.data_delay_ns);
1884
1885        return 0;
1886}
1887
1888static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
1889                                           const struct nand_subop *subop)
1890{
1891        struct marvell_nfc_op nfc_op;
1892        int ret;
1893
1894        marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1895        nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
1896
1897        ret = marvell_nfc_prepare_cmd(chip);
1898        if (ret)
1899                return ret;
1900
1901        marvell_nfc_send_cmd(chip, &nfc_op);
1902        ret = marvell_nfc_wait_cmdd(chip);
1903        if (ret)
1904                return ret;
1905
1906        cond_delay(nfc_op.cle_ale_delay_ns);
1907
1908        ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1909        if (ret)
1910                return ret;
1911
1912        cond_delay(nfc_op.rdy_delay_ns);
1913
1914        return 0;
1915}
1916
1917static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
1918                                           const struct nand_subop *subop)
1919{
1920        struct marvell_nfc_op nfc_op;
1921        int ret;
1922
1923        marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1924        nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
1925
1926        ret = marvell_nfc_prepare_cmd(chip);
1927        if (ret)
1928                return ret;
1929
1930        marvell_nfc_send_cmd(chip, &nfc_op);
1931        ret = marvell_nfc_wait_cmdd(chip);
1932        if (ret)
1933                return ret;
1934
1935        cond_delay(nfc_op.cle_ale_delay_ns);
1936
1937        ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1938        if (ret)
1939                return ret;
1940
1941        cond_delay(nfc_op.rdy_delay_ns);
1942
1943        return 0;
1944}
1945
1946static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
1947        /* Monolithic reads/writes */
1948        NAND_OP_PARSER_PATTERN(
1949                marvell_nfc_monolithic_access_exec,
1950                NAND_OP_PARSER_PAT_CMD_ELEM(false),
1951                NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
1952                NAND_OP_PARSER_PAT_CMD_ELEM(true),
1953                NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
1954                NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
1955        NAND_OP_PARSER_PATTERN(
1956                marvell_nfc_monolithic_access_exec,
1957                NAND_OP_PARSER_PAT_CMD_ELEM(false),
1958                NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
1959                NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
1960                NAND_OP_PARSER_PAT_CMD_ELEM(true),
1961                NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
1962        /* Naked commands */
1963        NAND_OP_PARSER_PATTERN(
1964                marvell_nfc_naked_access_exec,
1965                NAND_OP_PARSER_PAT_CMD_ELEM(false)),
1966        NAND_OP_PARSER_PATTERN(
1967                marvell_nfc_naked_access_exec,
1968                NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
1969        NAND_OP_PARSER_PATTERN(
1970                marvell_nfc_naked_access_exec,
1971                NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
1972        NAND_OP_PARSER_PATTERN(
1973                marvell_nfc_naked_access_exec,
1974                NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
1975        NAND_OP_PARSER_PATTERN(
1976                marvell_nfc_naked_waitrdy_exec,
1977                NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1978        );
1979
1980static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
1981        /* Naked commands not supported, use a function for each pattern */
1982        NAND_OP_PARSER_PATTERN(
1983                marvell_nfc_read_id_type_exec,
1984                NAND_OP_PARSER_PAT_CMD_ELEM(false),
1985                NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
1986                NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
1987        NAND_OP_PARSER_PATTERN(
1988                marvell_nfc_erase_cmd_type_exec,
1989                NAND_OP_PARSER_PAT_CMD_ELEM(false),
1990                NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
1991                NAND_OP_PARSER_PAT_CMD_ELEM(false),
1992                NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1993        NAND_OP_PARSER_PATTERN(
1994                marvell_nfc_read_status_exec,
1995                NAND_OP_PARSER_PAT_CMD_ELEM(false),
1996                NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
1997        NAND_OP_PARSER_PATTERN(
1998                marvell_nfc_reset_cmd_type_exec,
1999                NAND_OP_PARSER_PAT_CMD_ELEM(false),
2000                NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2001        NAND_OP_PARSER_PATTERN(
2002                marvell_nfc_naked_waitrdy_exec,
2003                NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2004        );
2005
2006static int marvell_nfc_exec_op(struct nand_chip *chip,
2007                               const struct nand_operation *op,
2008                               bool check_only)
2009{
2010        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2011
2012        if (nfc->caps->is_nfcv2)
2013                return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2014                                              op, check_only);
2015        else
2016                return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2017                                              op, check_only);
2018}
2019
2020/*
2021 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2022 * usable.
2023 */
2024static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2025                                      struct mtd_oob_region *oobregion)
2026{
2027        struct nand_chip *chip = mtd_to_nand(mtd);
2028        const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2029
2030        if (section)
2031                return -ERANGE;
2032
2033        oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2034                            lt->last_ecc_bytes;
2035        oobregion->offset = mtd->oobsize - oobregion->length;
2036
2037        return 0;
2038}
2039
2040static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2041                                       struct mtd_oob_region *oobregion)
2042{
2043        struct nand_chip *chip = mtd_to_nand(mtd);
2044        const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2045
2046        if (section)
2047                return -ERANGE;
2048
2049        /*
2050         * Bootrom looks in bytes 0 & 5 for bad blocks for the
2051         * 4KB page / 4bit BCH combination.
2052         */
2053        if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2054                oobregion->offset = 6;
2055        else
2056                oobregion->offset = 2;
2057
2058        oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2059                            lt->last_spare_bytes - oobregion->offset;
2060
2061        return 0;
2062}
2063
2064static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2065        .ecc = marvell_nand_ooblayout_ecc,
2066        .free = marvell_nand_ooblayout_free,
2067};
2068
2069static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
2070                                         struct nand_ecc_ctrl *ecc)
2071{
2072        struct nand_chip *chip = mtd_to_nand(mtd);
2073        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2074        const struct marvell_hw_ecc_layout *l;
2075        int i;
2076
2077        if (!nfc->caps->is_nfcv2 &&
2078            (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2079                dev_err(nfc->dev,
2080                        "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2081                        mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2082                return -ENOTSUPP;
2083        }
2084
2085        to_marvell_nand(chip)->layout = NULL;
2086        for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2087                l = &marvell_nfc_layouts[i];
2088                if (mtd->writesize == l->writesize &&
2089                    ecc->size == l->chunk && ecc->strength == l->strength) {
2090                        to_marvell_nand(chip)->layout = l;
2091                        break;
2092                }
2093        }
2094
2095        if (!to_marvell_nand(chip)->layout ||
2096            (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2097                dev_err(nfc->dev,
2098                        "ECC strength %d at page size %d is not supported\n",
2099                        ecc->strength, mtd->writesize);
2100                return -ENOTSUPP;
2101        }
2102
2103        mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2104        ecc->steps = l->nchunks;
2105        ecc->size = l->data_bytes;
2106
2107        if (ecc->strength == 1) {
2108                chip->ecc.algo = NAND_ECC_HAMMING;
2109                ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2110                ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2111                ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2112                ecc->read_oob = ecc->read_oob_raw;
2113                ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2114                ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2115                ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2116                ecc->write_oob = ecc->write_oob_raw;
2117        } else {
2118                chip->ecc.algo = NAND_ECC_BCH;
2119                ecc->strength = 16;
2120                ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2121                ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2122                ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2123                ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2124                ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2125                ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2126                ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2127                ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2128        }
2129
2130        return 0;
2131}
2132
2133static int marvell_nand_ecc_init(struct mtd_info *mtd,
2134                                 struct nand_ecc_ctrl *ecc)
2135{
2136        struct nand_chip *chip = mtd_to_nand(mtd);
2137        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2138        int ret;
2139
2140        if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) {
2141                if (chip->ecc_step_ds && chip->ecc_strength_ds) {
2142                        ecc->size = chip->ecc_step_ds;
2143                        ecc->strength = chip->ecc_strength_ds;
2144                } else {
2145                        dev_info(nfc->dev,
2146                                 "No minimum ECC strength, using 1b/512B\n");
2147                        ecc->size = 512;
2148                        ecc->strength = 1;
2149                }
2150        }
2151
2152        switch (ecc->mode) {
2153        case NAND_ECC_HW:
2154                ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc);
2155                if (ret)
2156                        return ret;
2157                break;
2158        case NAND_ECC_NONE:
2159        case NAND_ECC_SOFT:
2160                if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2161                    mtd->writesize != SZ_2K) {
2162                        dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2163                                mtd->writesize);
2164                        return -EINVAL;
2165                }
2166                break;
2167        default:
2168                return -EINVAL;
2169        }
2170
2171        return 0;
2172}
2173
2174static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2175static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2176
2177static struct nand_bbt_descr bbt_main_descr = {
2178        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2179                   NAND_BBT_2BIT | NAND_BBT_VERSION,
2180        .offs = 8,
2181        .len = 6,
2182        .veroffs = 14,
2183        .maxblocks = 8, /* Last 8 blocks in each chip */
2184        .pattern = bbt_pattern
2185};
2186
2187static struct nand_bbt_descr bbt_mirror_descr = {
2188        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2189                   NAND_BBT_2BIT | NAND_BBT_VERSION,
2190        .offs = 8,
2191        .len = 6,
2192        .veroffs = 14,
2193        .maxblocks = 8, /* Last 8 blocks in each chip */
2194        .pattern = bbt_mirror_pattern
2195};
2196
2197static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
2198                                            const struct nand_data_interface
2199                                            *conf)
2200{
2201        struct nand_chip *chip = mtd_to_nand(mtd);
2202        struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2203        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2204        unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
2205        const struct nand_sdr_timings *sdr;
2206        struct marvell_nfc_timings nfc_tmg;
2207        int read_delay;
2208
2209        sdr = nand_get_sdr_timings(conf);
2210        if (IS_ERR(sdr))
2211                return PTR_ERR(sdr);
2212
2213        /*
2214         * SDR timings are given in pico-seconds while NFC timings must be
2215         * expressed in NAND controller clock cycles, which is half of the
2216         * frequency of the accessible ECC clock retrieved by clk_get_rate().
2217         * This is not written anywhere in the datasheet but was observed
2218         * with an oscilloscope.
2219         *
2220         * NFC datasheet gives equations from which thoses calculations
2221         * are derived, they tend to be slightly more restrictives than the
2222         * given core timings and may improve the overall speed.
2223         */
2224        nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2225        nfc_tmg.tRH = nfc_tmg.tRP;
2226        nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2227        nfc_tmg.tWH = nfc_tmg.tWP;
2228        nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2229        nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2230        nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2231        /*
2232         * Read delay is the time of propagation from SoC pins to NFC internal
2233         * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2234         * EDO mode, an additional delay of tRH must be taken into account so
2235         * the data is sampled on the falling edge instead of the rising edge.
2236         */
2237        read_delay = sdr->tRC_min >= 30000 ?
2238                MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2239
2240        nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2241        /*
2242         * tWHR and tRHW are supposed to be read to write delays (and vice
2243         * versa) but in some cases, ie. when doing a change column, they must
2244         * be greater than that to be sure tCCS delay is respected.
2245         */
2246        nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2247                                 period_ns) - 2,
2248        nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2249                                 period_ns);
2250
2251        /*
2252         * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2253         * NFCv1: No WAIT_MODE, tR must be maximal.
2254         */
2255        if (nfc->caps->is_nfcv2) {
2256                nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2257        } else {
2258                nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
2259                                         period_ns);
2260                if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
2261                        nfc_tmg.tR = nfc_tmg.tCH - 3;
2262                else
2263                        nfc_tmg.tR = 0;
2264        }
2265
2266        if (chipnr < 0)
2267                return 0;
2268
2269        marvell_nand->ndtr0 =
2270                NDTR0_TRP(nfc_tmg.tRP) |
2271                NDTR0_TRH(nfc_tmg.tRH) |
2272                NDTR0_ETRP(nfc_tmg.tRP) |
2273                NDTR0_TWP(nfc_tmg.tWP) |
2274                NDTR0_TWH(nfc_tmg.tWH) |
2275                NDTR0_TCS(nfc_tmg.tCS) |
2276                NDTR0_TCH(nfc_tmg.tCH);
2277
2278        marvell_nand->ndtr1 =
2279                NDTR1_TAR(nfc_tmg.tAR) |
2280                NDTR1_TWHR(nfc_tmg.tWHR) |
2281                NDTR1_TR(nfc_tmg.tR);
2282
2283        if (nfc->caps->is_nfcv2) {
2284                marvell_nand->ndtr0 |=
2285                        NDTR0_RD_CNT_DEL(read_delay) |
2286                        NDTR0_SELCNTR |
2287                        NDTR0_TADL(nfc_tmg.tADL);
2288
2289                marvell_nand->ndtr1 |=
2290                        NDTR1_TRHW(nfc_tmg.tRHW) |
2291                        NDTR1_WAIT_MODE;
2292        }
2293
2294        return 0;
2295}
2296
2297static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2298                                  struct device_node *np)
2299{
2300        struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2301        struct marvell_nand_chip *marvell_nand;
2302        struct mtd_info *mtd;
2303        struct nand_chip *chip;
2304        int nsels, ret, i;
2305        u32 cs, rb;
2306
2307        /*
2308         * The legacy "num-cs" property indicates the number of CS on the only
2309         * chip connected to the controller (legacy bindings does not support
2310         * more than one chip). The CS and RB pins are always the #0.
2311         *
2312         * When not using legacy bindings, a couple of "reg" and "nand-rb"
2313         * properties must be filled. For each chip, expressed as a subnode,
2314         * "reg" points to the CS lines and "nand-rb" to the RB line.
2315         */
2316        if (pdata || nfc->caps->legacy_of_bindings) {
2317                nsels = 1;
2318        } else {
2319                nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2320                if (nsels <= 0) {
2321                        dev_err(dev, "missing/invalid reg property\n");
2322                        return -EINVAL;
2323                }
2324        }
2325
2326        /* Alloc the nand chip structure */
2327        marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) +
2328                                    (nsels *
2329                                     sizeof(struct marvell_nand_chip_sel)),
2330                                    GFP_KERNEL);
2331        if (!marvell_nand) {
2332                dev_err(dev, "could not allocate chip structure\n");
2333                return -ENOMEM;
2334        }
2335
2336        marvell_nand->nsels = nsels;
2337        marvell_nand->selected_die = -1;
2338
2339        for (i = 0; i < nsels; i++) {
2340                if (pdata || nfc->caps->legacy_of_bindings) {
2341                        /*
2342                         * Legacy bindings use the CS lines in natural
2343                         * order (0, 1, ...)
2344                         */
2345                        cs = i;
2346                } else {
2347                        /* Retrieve CS id */
2348                        ret = of_property_read_u32_index(np, "reg", i, &cs);
2349                        if (ret) {
2350                                dev_err(dev, "could not retrieve reg property: %d\n",
2351                                        ret);
2352                                return ret;
2353                        }
2354                }
2355
2356                if (cs >= nfc->caps->max_cs_nb) {
2357                        dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2358                                cs, nfc->caps->max_cs_nb);
2359                        return -EINVAL;
2360                }
2361
2362                if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2363                        dev_err(dev, "CS %d already assigned\n", cs);
2364                        return -EINVAL;
2365                }
2366
2367                /*
2368                 * The cs variable represents the chip select id, which must be
2369                 * converted in bit fields for NDCB0 and NDCB2 to select the
2370                 * right chip. Unfortunately, due to a lack of information on
2371                 * the subject and incoherent documentation, the user should not
2372                 * use CS1 and CS3 at all as asserting them is not supported in
2373                 * a reliable way (due to multiplexing inside ADDR5 field).
2374                 */
2375                marvell_nand->sels[i].cs = cs;
2376                switch (cs) {
2377                case 0:
2378                case 2:
2379                        marvell_nand->sels[i].ndcb0_csel = 0;
2380                        break;
2381                case 1:
2382                case 3:
2383                        marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2384                        break;
2385                default:
2386                        return -EINVAL;
2387                }
2388
2389                /* Retrieve RB id */
2390                if (pdata || nfc->caps->legacy_of_bindings) {
2391                        /* Legacy bindings always use RB #0 */
2392                        rb = 0;
2393                } else {
2394                        ret = of_property_read_u32_index(np, "nand-rb", i,
2395                                                         &rb);
2396                        if (ret) {
2397                                dev_err(dev,
2398                                        "could not retrieve RB property: %d\n",
2399                                        ret);
2400                                return ret;
2401                        }
2402                }
2403
2404                if (rb >= nfc->caps->max_rb_nb) {
2405                        dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2406                                rb, nfc->caps->max_rb_nb);
2407                        return -EINVAL;
2408                }
2409
2410                marvell_nand->sels[i].rb = rb;
2411        }
2412
2413        chip = &marvell_nand->chip;
2414        chip->controller = &nfc->controller;
2415        nand_set_flash_node(chip, np);
2416
2417        chip->exec_op = marvell_nfc_exec_op;
2418        chip->select_chip = marvell_nfc_select_chip;
2419        if (!of_property_read_bool(np, "marvell,nand-keep-config"))
2420                chip->setup_data_interface = marvell_nfc_setup_data_interface;
2421
2422        mtd = nand_to_mtd(chip);
2423        mtd->dev.parent = dev;
2424
2425        /*
2426         * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2427         * in the DT node, this entry will be overwritten in nand_scan_ident().
2428         */
2429        chip->ecc.mode = NAND_ECC_HW;
2430
2431        /*
2432         * Save a reference value for timing registers before
2433         * ->setup_data_interface() is called.
2434         */
2435        marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2436        marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2437
2438        chip->options |= NAND_BUSWIDTH_AUTO;
2439        ret = nand_scan_ident(mtd, marvell_nand->nsels, NULL);
2440        if (ret) {
2441                dev_err(dev, "could not identify the nand chip\n");
2442                return ret;
2443        }
2444
2445        if (pdata && pdata->flash_bbt)
2446                chip->bbt_options |= NAND_BBT_USE_FLASH;
2447
2448        if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2449                /*
2450                 * We'll use a bad block table stored in-flash and don't
2451                 * allow writing the bad block marker to the flash.
2452                 */
2453                chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2454                chip->bbt_td = &bbt_main_descr;
2455                chip->bbt_md = &bbt_mirror_descr;
2456        }
2457
2458        /* Save the chip-specific fields of NDCR */
2459        marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2460        if (chip->options & NAND_BUSWIDTH_16)
2461                marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2462
2463        /*
2464         * On small page NANDs, only one cycle is needed to pass the
2465         * column address.
2466         */
2467        if (mtd->writesize <= 512) {
2468                marvell_nand->addr_cyc = 1;
2469        } else {
2470                marvell_nand->addr_cyc = 2;
2471                marvell_nand->ndcr |= NDCR_RA_START;
2472        }
2473
2474        /*
2475         * Now add the number of cycles needed to pass the row
2476         * address.
2477         *
2478         * Addressing a chip using CS 2 or 3 should also need the third row
2479         * cycle but due to inconsistance in the documentation and lack of
2480         * hardware to test this situation, this case is not supported.
2481         */
2482        if (chip->options & NAND_ROW_ADDR_3)
2483                marvell_nand->addr_cyc += 3;
2484        else
2485                marvell_nand->addr_cyc += 2;
2486
2487        if (pdata) {
2488                chip->ecc.size = pdata->ecc_step_size;
2489                chip->ecc.strength = pdata->ecc_strength;
2490        }
2491
2492        ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2493        if (ret) {
2494                dev_err(dev, "ECC init failed: %d\n", ret);
2495                return ret;
2496        }
2497
2498        if (chip->ecc.mode == NAND_ECC_HW) {
2499                /*
2500                 * Subpage write not available with hardware ECC, prohibit also
2501                 * subpage read as in userspace subpage access would still be
2502                 * allowed and subpage write, if used, would lead to numerous
2503                 * uncorrectable ECC errors.
2504                 */
2505                chip->options |= NAND_NO_SUBPAGE_WRITE;
2506        }
2507
2508        if (pdata || nfc->caps->legacy_of_bindings) {
2509                /*
2510                 * We keep the MTD name unchanged to avoid breaking platforms
2511                 * where the MTD cmdline parser is used and the bootloader
2512                 * has not been updated to use the new naming scheme.
2513                 */
2514                mtd->name = "pxa3xx_nand-0";
2515        } else if (!mtd->name) {
2516                /*
2517                 * If the new bindings are used and the bootloader has not been
2518                 * updated to pass a new mtdparts parameter on the cmdline, you
2519                 * should define the following property in your NAND node, ie:
2520                 *
2521                 *      label = "main-storage";
2522                 *
2523                 * This way, mtd->name will be set by the core when
2524                 * nand_set_flash_node() is called.
2525                 */
2526                mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2527                                           "%s:nand.%d", dev_name(nfc->dev),
2528                                           marvell_nand->sels[0].cs);
2529                if (!mtd->name) {
2530                        dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2531                        return -ENOMEM;
2532                }
2533        }
2534
2535        ret = nand_scan_tail(mtd);
2536        if (ret) {
2537                dev_err(dev, "nand_scan_tail failed: %d\n", ret);
2538                return ret;
2539        }
2540
2541        if (pdata)
2542                /* Legacy bindings support only one chip */
2543                ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2544        else
2545                ret = mtd_device_register(mtd, NULL, 0);
2546        if (ret) {
2547                dev_err(dev, "failed to register mtd device: %d\n", ret);
2548                nand_release(mtd);
2549                return ret;
2550        }
2551
2552        list_add_tail(&marvell_nand->node, &nfc->chips);
2553
2554        return 0;
2555}
2556
2557static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2558{
2559        struct device_node *np = dev->of_node;
2560        struct device_node *nand_np;
2561        int max_cs = nfc->caps->max_cs_nb;
2562        int nchips;
2563        int ret;
2564
2565        if (!np)
2566                nchips = 1;
2567        else
2568                nchips = of_get_child_count(np);
2569
2570        if (nchips > max_cs) {
2571                dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2572                        max_cs);
2573                return -EINVAL;
2574        }
2575
2576        /*
2577         * Legacy bindings do not use child nodes to exhibit NAND chip
2578         * properties and layout. Instead, NAND properties are mixed with the
2579         * controller ones, and partitions are defined as direct subnodes of the
2580         * NAND controller node.
2581         */
2582        if (nfc->caps->legacy_of_bindings) {
2583                ret = marvell_nand_chip_init(dev, nfc, np);
2584                return ret;
2585        }
2586
2587        for_each_child_of_node(np, nand_np) {
2588                ret = marvell_nand_chip_init(dev, nfc, nand_np);
2589                if (ret) {
2590                        of_node_put(nand_np);
2591                        return ret;
2592                }
2593        }
2594
2595        return 0;
2596}
2597
2598static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2599{
2600        struct marvell_nand_chip *entry, *temp;
2601
2602        list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2603                nand_release(nand_to_mtd(&entry->chip));
2604                list_del(&entry->node);
2605        }
2606}
2607
2608static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2609{
2610        struct platform_device *pdev = container_of(nfc->dev,
2611                                                    struct platform_device,
2612                                                    dev);
2613        struct dma_slave_config config = {};
2614        struct resource *r;
2615        dma_cap_mask_t mask;
2616        struct pxad_param param;
2617        int ret;
2618
2619        if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2620                dev_warn(nfc->dev,
2621                         "DMA not enabled in configuration\n");
2622                return -ENOTSUPP;
2623        }
2624
2625        ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2626        if (ret)
2627                return ret;
2628
2629        r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
2630        if (!r) {
2631                dev_err(nfc->dev, "No resource defined for data DMA\n");
2632                return -ENXIO;
2633        }
2634
2635        param.drcmr = r->start;
2636        param.prio = PXAD_PRIO_LOWEST;
2637        dma_cap_zero(mask);
2638        dma_cap_set(DMA_SLAVE, mask);
2639        nfc->dma_chan =
2640                dma_request_slave_channel_compat(mask, pxad_filter_fn,
2641                                                 &param, nfc->dev,
2642                                                 "data");
2643        if (!nfc->dma_chan) {
2644                dev_err(nfc->dev,
2645                        "Unable to request data DMA channel\n");
2646                return -ENODEV;
2647        }
2648
2649        r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2650        if (!r)
2651                return -ENXIO;
2652
2653        config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2654        config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2655        config.src_addr = r->start + NDDB;
2656        config.dst_addr = r->start + NDDB;
2657        config.src_maxburst = 32;
2658        config.dst_maxburst = 32;
2659        ret = dmaengine_slave_config(nfc->dma_chan, &config);
2660        if (ret < 0) {
2661                dev_err(nfc->dev, "Failed to configure DMA channel\n");
2662                return ret;
2663        }
2664
2665        /*
2666         * DMA must act on length multiple of 32 and this length may be
2667         * bigger than the destination buffer. Use this buffer instead
2668         * for DMA transfers and then copy the desired amount of data to
2669         * the provided buffer.
2670         */
2671        nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
2672        if (!nfc->dma_buf)
2673                return -ENOMEM;
2674
2675        nfc->use_dma = true;
2676
2677        return 0;
2678}
2679
2680static int marvell_nfc_init(struct marvell_nfc *nfc)
2681{
2682        struct device_node *np = nfc->dev->of_node;
2683
2684        /*
2685         * Some SoCs like A7k/A8k need to enable manually the NAND
2686         * controller, gated clocks and reset bits to avoid being bootloader
2687         * dependent. This is done through the use of the System Functions
2688         * registers.
2689         */
2690        if (nfc->caps->need_system_controller) {
2691                struct regmap *sysctrl_base =
2692                        syscon_regmap_lookup_by_phandle(np,
2693                                                        "marvell,system-controller");
2694                u32 reg;
2695
2696                if (IS_ERR(sysctrl_base))
2697                        return PTR_ERR(sysctrl_base);
2698
2699                reg = GENCONF_SOC_DEVICE_MUX_NFC_EN |
2700                      GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2701                      GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2702                      GENCONF_SOC_DEVICE_MUX_NFC_INT_EN;
2703                regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg);
2704
2705                regmap_read(sysctrl_base, GENCONF_CLK_GATING_CTRL, &reg);
2706                reg |= GENCONF_CLK_GATING_CTRL_ND_GATE;
2707                regmap_write(sysctrl_base, GENCONF_CLK_GATING_CTRL, reg);
2708
2709                regmap_read(sysctrl_base, GENCONF_ND_CLK_CTRL, &reg);
2710                reg |= GENCONF_ND_CLK_CTRL_EN;
2711                regmap_write(sysctrl_base, GENCONF_ND_CLK_CTRL, reg);
2712        }
2713
2714        /* Configure the DMA if appropriate */
2715        if (!nfc->caps->is_nfcv2)
2716                marvell_nfc_init_dma(nfc);
2717
2718        /*
2719         * ECC operations and interruptions are only enabled when specifically
2720         * needed. ECC shall not be activated in the early stages (fails probe).
2721         * Arbiter flag, even if marked as "reserved", must be set (empirical).
2722         * SPARE_EN bit must always be set or ECC bytes will not be at the same
2723         * offset in the read page and this will fail the protection.
2724         */
2725        writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2726                       NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2727        writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2728        writel_relaxed(0, nfc->regs + NDECCCTRL);
2729
2730        return 0;
2731}
2732
2733static int marvell_nfc_probe(struct platform_device *pdev)
2734{
2735        struct device *dev = &pdev->dev;
2736        struct resource *r;
2737        struct marvell_nfc *nfc;
2738        int ret;
2739        int irq;
2740
2741        nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2742                           GFP_KERNEL);
2743        if (!nfc)
2744                return -ENOMEM;
2745
2746        nfc->dev = dev;
2747        nand_hw_control_init(&nfc->controller);
2748        INIT_LIST_HEAD(&nfc->chips);
2749
2750        r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2751        nfc->regs = devm_ioremap_resource(dev, r);
2752        if (IS_ERR(nfc->regs))
2753                return PTR_ERR(nfc->regs);
2754
2755        irq = platform_get_irq(pdev, 0);
2756        if (irq < 0) {
2757                dev_err(dev, "failed to retrieve irq\n");
2758                return irq;
2759        }
2760
2761        nfc->core_clk = devm_clk_get(&pdev->dev, "core");
2762
2763        /* Managed the legacy case (when the first clock was not named) */
2764        if (nfc->core_clk == ERR_PTR(-ENOENT))
2765                nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
2766
2767        if (IS_ERR(nfc->core_clk))
2768                return PTR_ERR(nfc->core_clk);
2769
2770        ret = clk_prepare_enable(nfc->core_clk);
2771        if (ret)
2772                return ret;
2773
2774        nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
2775        if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
2776                if (!IS_ERR(nfc->reg_clk)) {
2777                        ret = clk_prepare_enable(nfc->reg_clk);
2778                        if (ret)
2779                                goto unprepare_core_clk;
2780                } else {
2781                        ret = PTR_ERR(nfc->reg_clk);
2782                        goto unprepare_core_clk;
2783                }
2784        }
2785
2786        marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2787        marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2788        ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2789                               0, "marvell-nfc", nfc);
2790        if (ret)
2791                goto unprepare_reg_clk;
2792
2793        /* Get NAND controller capabilities */
2794        if (pdev->id_entry)
2795                nfc->caps = (void *)pdev->id_entry->driver_data;
2796        else
2797                nfc->caps = of_device_get_match_data(&pdev->dev);
2798
2799        if (!nfc->caps) {
2800                dev_err(dev, "Could not retrieve NFC caps\n");
2801                ret = -EINVAL;
2802                goto unprepare_reg_clk;
2803        }
2804
2805        /* Init the controller and then probe the chips */
2806        ret = marvell_nfc_init(nfc);
2807        if (ret)
2808                goto unprepare_reg_clk;
2809
2810        platform_set_drvdata(pdev, nfc);
2811
2812        ret = marvell_nand_chips_init(dev, nfc);
2813        if (ret)
2814                goto unprepare_reg_clk;
2815
2816        return 0;
2817
2818unprepare_reg_clk:
2819        clk_disable_unprepare(nfc->reg_clk);
2820unprepare_core_clk:
2821        clk_disable_unprepare(nfc->core_clk);
2822
2823        return ret;
2824}
2825
2826static int marvell_nfc_remove(struct platform_device *pdev)
2827{
2828        struct marvell_nfc *nfc = platform_get_drvdata(pdev);
2829
2830        marvell_nand_chips_cleanup(nfc);
2831
2832        if (nfc->use_dma) {
2833                dmaengine_terminate_all(nfc->dma_chan);
2834                dma_release_channel(nfc->dma_chan);
2835        }
2836
2837        clk_disable_unprepare(nfc->reg_clk);
2838        clk_disable_unprepare(nfc->core_clk);
2839
2840        return 0;
2841}
2842
2843static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
2844        .max_cs_nb = 4,
2845        .max_rb_nb = 2,
2846        .need_system_controller = true,
2847        .is_nfcv2 = true,
2848};
2849
2850static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
2851        .max_cs_nb = 4,
2852        .max_rb_nb = 2,
2853        .is_nfcv2 = true,
2854};
2855
2856static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
2857        .max_cs_nb = 2,
2858        .max_rb_nb = 1,
2859        .use_dma = true,
2860};
2861
2862static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
2863        .max_cs_nb = 4,
2864        .max_rb_nb = 2,
2865        .need_system_controller = true,
2866        .legacy_of_bindings = true,
2867        .is_nfcv2 = true,
2868};
2869
2870static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
2871        .max_cs_nb = 4,
2872        .max_rb_nb = 2,
2873        .legacy_of_bindings = true,
2874        .is_nfcv2 = true,
2875};
2876
2877static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
2878        .max_cs_nb = 2,
2879        .max_rb_nb = 1,
2880        .legacy_of_bindings = true,
2881        .use_dma = true,
2882};
2883
2884static const struct platform_device_id marvell_nfc_platform_ids[] = {
2885        {
2886                .name = "pxa3xx-nand",
2887                .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
2888        },
2889        { /* sentinel */ },
2890};
2891MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
2892
2893static const struct of_device_id marvell_nfc_of_ids[] = {
2894        {
2895                .compatible = "marvell,armada-8k-nand-controller",
2896                .data = &marvell_armada_8k_nfc_caps,
2897        },
2898        {
2899                .compatible = "marvell,armada370-nand-controller",
2900                .data = &marvell_armada370_nfc_caps,
2901        },
2902        {
2903                .compatible = "marvell,pxa3xx-nand-controller",
2904                .data = &marvell_pxa3xx_nfc_caps,
2905        },
2906        /* Support for old/deprecated bindings: */
2907        {
2908                .compatible = "marvell,armada-8k-nand",
2909                .data = &marvell_armada_8k_nfc_legacy_caps,
2910        },
2911        {
2912                .compatible = "marvell,armada370-nand",
2913                .data = &marvell_armada370_nfc_legacy_caps,
2914        },
2915        {
2916                .compatible = "marvell,pxa3xx-nand",
2917                .data = &marvell_pxa3xx_nfc_legacy_caps,
2918        },
2919        { /* sentinel */ },
2920};
2921MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
2922
2923static struct platform_driver marvell_nfc_driver = {
2924        .driver = {
2925                .name           = "marvell-nfc",
2926                .of_match_table = marvell_nfc_of_ids,
2927        },
2928        .id_table = marvell_nfc_platform_ids,
2929        .probe = marvell_nfc_probe,
2930        .remove = marvell_nfc_remove,
2931};
2932module_platform_driver(marvell_nfc_driver);
2933
2934MODULE_LICENSE("GPL");
2935MODULE_DESCRIPTION("Marvell NAND controller driver");
2936