linux/drivers/net/ethernet/intel/fm10k/fm10k_main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include <linux/types.h>
   5#include <linux/module.h>
   6#include <net/ipv6.h>
   7#include <net/ip.h>
   8#include <net/tcp.h>
   9#include <linux/if_macvlan.h>
  10#include <linux/prefetch.h>
  11
  12#include "fm10k.h"
  13
  14#define DRV_VERSION     "0.23.4-k"
  15#define DRV_SUMMARY     "Intel(R) Ethernet Switch Host Interface Driver"
  16const char fm10k_driver_version[] = DRV_VERSION;
  17char fm10k_driver_name[] = "fm10k";
  18static const char fm10k_driver_string[] = DRV_SUMMARY;
  19static const char fm10k_copyright[] =
  20        "Copyright(c) 2013 - 2018 Intel Corporation.";
  21
  22MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  23MODULE_DESCRIPTION(DRV_SUMMARY);
  24MODULE_LICENSE("GPL");
  25MODULE_VERSION(DRV_VERSION);
  26
  27/* single workqueue for entire fm10k driver */
  28struct workqueue_struct *fm10k_workqueue;
  29
  30/**
  31 * fm10k_init_module - Driver Registration Routine
  32 *
  33 * fm10k_init_module is the first routine called when the driver is
  34 * loaded.  All it does is register with the PCI subsystem.
  35 **/
  36static int __init fm10k_init_module(void)
  37{
  38        pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
  39        pr_info("%s\n", fm10k_copyright);
  40
  41        /* create driver workqueue */
  42        fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
  43                                          fm10k_driver_name);
  44
  45        fm10k_dbg_init();
  46
  47        return fm10k_register_pci_driver();
  48}
  49module_init(fm10k_init_module);
  50
  51/**
  52 * fm10k_exit_module - Driver Exit Cleanup Routine
  53 *
  54 * fm10k_exit_module is called just before the driver is removed
  55 * from memory.
  56 **/
  57static void __exit fm10k_exit_module(void)
  58{
  59        fm10k_unregister_pci_driver();
  60
  61        fm10k_dbg_exit();
  62
  63        /* destroy driver workqueue */
  64        destroy_workqueue(fm10k_workqueue);
  65}
  66module_exit(fm10k_exit_module);
  67
  68static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
  69                                    struct fm10k_rx_buffer *bi)
  70{
  71        struct page *page = bi->page;
  72        dma_addr_t dma;
  73
  74        /* Only page will be NULL if buffer was consumed */
  75        if (likely(page))
  76                return true;
  77
  78        /* alloc new page for storage */
  79        page = dev_alloc_page();
  80        if (unlikely(!page)) {
  81                rx_ring->rx_stats.alloc_failed++;
  82                return false;
  83        }
  84
  85        /* map page for use */
  86        dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
  87
  88        /* if mapping failed free memory back to system since
  89         * there isn't much point in holding memory we can't use
  90         */
  91        if (dma_mapping_error(rx_ring->dev, dma)) {
  92                __free_page(page);
  93
  94                rx_ring->rx_stats.alloc_failed++;
  95                return false;
  96        }
  97
  98        bi->dma = dma;
  99        bi->page = page;
 100        bi->page_offset = 0;
 101
 102        return true;
 103}
 104
 105/**
 106 * fm10k_alloc_rx_buffers - Replace used receive buffers
 107 * @rx_ring: ring to place buffers on
 108 * @cleaned_count: number of buffers to replace
 109 **/
 110void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
 111{
 112        union fm10k_rx_desc *rx_desc;
 113        struct fm10k_rx_buffer *bi;
 114        u16 i = rx_ring->next_to_use;
 115
 116        /* nothing to do */
 117        if (!cleaned_count)
 118                return;
 119
 120        rx_desc = FM10K_RX_DESC(rx_ring, i);
 121        bi = &rx_ring->rx_buffer[i];
 122        i -= rx_ring->count;
 123
 124        do {
 125                if (!fm10k_alloc_mapped_page(rx_ring, bi))
 126                        break;
 127
 128                /* Refresh the desc even if buffer_addrs didn't change
 129                 * because each write-back erases this info.
 130                 */
 131                rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 132
 133                rx_desc++;
 134                bi++;
 135                i++;
 136                if (unlikely(!i)) {
 137                        rx_desc = FM10K_RX_DESC(rx_ring, 0);
 138                        bi = rx_ring->rx_buffer;
 139                        i -= rx_ring->count;
 140                }
 141
 142                /* clear the status bits for the next_to_use descriptor */
 143                rx_desc->d.staterr = 0;
 144
 145                cleaned_count--;
 146        } while (cleaned_count);
 147
 148        i += rx_ring->count;
 149
 150        if (rx_ring->next_to_use != i) {
 151                /* record the next descriptor to use */
 152                rx_ring->next_to_use = i;
 153
 154                /* update next to alloc since we have filled the ring */
 155                rx_ring->next_to_alloc = i;
 156
 157                /* Force memory writes to complete before letting h/w
 158                 * know there are new descriptors to fetch.  (Only
 159                 * applicable for weak-ordered memory model archs,
 160                 * such as IA-64).
 161                 */
 162                wmb();
 163
 164                /* notify hardware of new descriptors */
 165                writel(i, rx_ring->tail);
 166        }
 167}
 168
 169/**
 170 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
 171 * @rx_ring: rx descriptor ring to store buffers on
 172 * @old_buff: donor buffer to have page reused
 173 *
 174 * Synchronizes page for reuse by the interface
 175 **/
 176static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
 177                                struct fm10k_rx_buffer *old_buff)
 178{
 179        struct fm10k_rx_buffer *new_buff;
 180        u16 nta = rx_ring->next_to_alloc;
 181
 182        new_buff = &rx_ring->rx_buffer[nta];
 183
 184        /* update, and store next to alloc */
 185        nta++;
 186        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 187
 188        /* transfer page from old buffer to new buffer */
 189        *new_buff = *old_buff;
 190
 191        /* sync the buffer for use by the device */
 192        dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
 193                                         old_buff->page_offset,
 194                                         FM10K_RX_BUFSZ,
 195                                         DMA_FROM_DEVICE);
 196}
 197
 198static inline bool fm10k_page_is_reserved(struct page *page)
 199{
 200        return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
 201}
 202
 203static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
 204                                    struct page *page,
 205                                    unsigned int __maybe_unused truesize)
 206{
 207        /* avoid re-using remote pages */
 208        if (unlikely(fm10k_page_is_reserved(page)))
 209                return false;
 210
 211#if (PAGE_SIZE < 8192)
 212        /* if we are only owner of page we can reuse it */
 213        if (unlikely(page_count(page) != 1))
 214                return false;
 215
 216        /* flip page offset to other buffer */
 217        rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
 218#else
 219        /* move offset up to the next cache line */
 220        rx_buffer->page_offset += truesize;
 221
 222        if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
 223                return false;
 224#endif
 225
 226        /* Even if we own the page, we are not allowed to use atomic_set()
 227         * This would break get_page_unless_zero() users.
 228         */
 229        page_ref_inc(page);
 230
 231        return true;
 232}
 233
 234/**
 235 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
 236 * @rx_buffer: buffer containing page to add
 237 * @size: packet size from rx_desc
 238 * @rx_desc: descriptor containing length of buffer written by hardware
 239 * @skb: sk_buff to place the data into
 240 *
 241 * This function will add the data contained in rx_buffer->page to the skb.
 242 * This is done either through a direct copy if the data in the buffer is
 243 * less than the skb header size, otherwise it will just attach the page as
 244 * a frag to the skb.
 245 *
 246 * The function will then update the page offset if necessary and return
 247 * true if the buffer can be reused by the interface.
 248 **/
 249static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
 250                              unsigned int size,
 251                              union fm10k_rx_desc *rx_desc,
 252                              struct sk_buff *skb)
 253{
 254        struct page *page = rx_buffer->page;
 255        unsigned char *va = page_address(page) + rx_buffer->page_offset;
 256#if (PAGE_SIZE < 8192)
 257        unsigned int truesize = FM10K_RX_BUFSZ;
 258#else
 259        unsigned int truesize = ALIGN(size, 512);
 260#endif
 261        unsigned int pull_len;
 262
 263        if (unlikely(skb_is_nonlinear(skb)))
 264                goto add_tail_frag;
 265
 266        if (likely(size <= FM10K_RX_HDR_LEN)) {
 267                memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
 268
 269                /* page is not reserved, we can reuse buffer as-is */
 270                if (likely(!fm10k_page_is_reserved(page)))
 271                        return true;
 272
 273                /* this page cannot be reused so discard it */
 274                __free_page(page);
 275                return false;
 276        }
 277
 278        /* we need the header to contain the greater of either ETH_HLEN or
 279         * 60 bytes if the skb->len is less than 60 for skb_pad.
 280         */
 281        pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
 282
 283        /* align pull length to size of long to optimize memcpy performance */
 284        memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
 285
 286        /* update all of the pointers */
 287        va += pull_len;
 288        size -= pull_len;
 289
 290add_tail_frag:
 291        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
 292                        (unsigned long)va & ~PAGE_MASK, size, truesize);
 293
 294        return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
 295}
 296
 297static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
 298                                             union fm10k_rx_desc *rx_desc,
 299                                             struct sk_buff *skb)
 300{
 301        unsigned int size = le16_to_cpu(rx_desc->w.length);
 302        struct fm10k_rx_buffer *rx_buffer;
 303        struct page *page;
 304
 305        rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
 306        page = rx_buffer->page;
 307        prefetchw(page);
 308
 309        if (likely(!skb)) {
 310                void *page_addr = page_address(page) +
 311                                  rx_buffer->page_offset;
 312
 313                /* prefetch first cache line of first page */
 314                prefetch(page_addr);
 315#if L1_CACHE_BYTES < 128
 316                prefetch(page_addr + L1_CACHE_BYTES);
 317#endif
 318
 319                /* allocate a skb to store the frags */
 320                skb = napi_alloc_skb(&rx_ring->q_vector->napi,
 321                                     FM10K_RX_HDR_LEN);
 322                if (unlikely(!skb)) {
 323                        rx_ring->rx_stats.alloc_failed++;
 324                        return NULL;
 325                }
 326
 327                /* we will be copying header into skb->data in
 328                 * pskb_may_pull so it is in our interest to prefetch
 329                 * it now to avoid a possible cache miss
 330                 */
 331                prefetchw(skb->data);
 332        }
 333
 334        /* we are reusing so sync this buffer for CPU use */
 335        dma_sync_single_range_for_cpu(rx_ring->dev,
 336                                      rx_buffer->dma,
 337                                      rx_buffer->page_offset,
 338                                      size,
 339                                      DMA_FROM_DEVICE);
 340
 341        /* pull page into skb */
 342        if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
 343                /* hand second half of page back to the ring */
 344                fm10k_reuse_rx_page(rx_ring, rx_buffer);
 345        } else {
 346                /* we are not reusing the buffer so unmap it */
 347                dma_unmap_page(rx_ring->dev, rx_buffer->dma,
 348                               PAGE_SIZE, DMA_FROM_DEVICE);
 349        }
 350
 351        /* clear contents of rx_buffer */
 352        rx_buffer->page = NULL;
 353
 354        return skb;
 355}
 356
 357static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
 358                                     union fm10k_rx_desc *rx_desc,
 359                                     struct sk_buff *skb)
 360{
 361        skb_checksum_none_assert(skb);
 362
 363        /* Rx checksum disabled via ethtool */
 364        if (!(ring->netdev->features & NETIF_F_RXCSUM))
 365                return;
 366
 367        /* TCP/UDP checksum error bit is set */
 368        if (fm10k_test_staterr(rx_desc,
 369                               FM10K_RXD_STATUS_L4E |
 370                               FM10K_RXD_STATUS_L4E2 |
 371                               FM10K_RXD_STATUS_IPE |
 372                               FM10K_RXD_STATUS_IPE2)) {
 373                ring->rx_stats.csum_err++;
 374                return;
 375        }
 376
 377        /* It must be a TCP or UDP packet with a valid checksum */
 378        if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
 379                skb->encapsulation = true;
 380        else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
 381                return;
 382
 383        skb->ip_summed = CHECKSUM_UNNECESSARY;
 384
 385        ring->rx_stats.csum_good++;
 386}
 387
 388#define FM10K_RSS_L4_TYPES_MASK \
 389        (BIT(FM10K_RSSTYPE_IPV4_TCP) | \
 390         BIT(FM10K_RSSTYPE_IPV4_UDP) | \
 391         BIT(FM10K_RSSTYPE_IPV6_TCP) | \
 392         BIT(FM10K_RSSTYPE_IPV6_UDP))
 393
 394static inline void fm10k_rx_hash(struct fm10k_ring *ring,
 395                                 union fm10k_rx_desc *rx_desc,
 396                                 struct sk_buff *skb)
 397{
 398        u16 rss_type;
 399
 400        if (!(ring->netdev->features & NETIF_F_RXHASH))
 401                return;
 402
 403        rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
 404        if (!rss_type)
 405                return;
 406
 407        skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
 408                     (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
 409                     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
 410}
 411
 412static void fm10k_type_trans(struct fm10k_ring *rx_ring,
 413                             union fm10k_rx_desc __maybe_unused *rx_desc,
 414                             struct sk_buff *skb)
 415{
 416        struct net_device *dev = rx_ring->netdev;
 417        struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
 418
 419        /* check to see if DGLORT belongs to a MACVLAN */
 420        if (l2_accel) {
 421                u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
 422
 423                idx -= l2_accel->dglort;
 424                if (idx < l2_accel->size && l2_accel->macvlan[idx])
 425                        dev = l2_accel->macvlan[idx];
 426                else
 427                        l2_accel = NULL;
 428        }
 429
 430        /* Record Rx queue, or update macvlan statistics */
 431        if (!l2_accel)
 432                skb_record_rx_queue(skb, rx_ring->queue_index);
 433        else
 434                macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
 435                                 false);
 436
 437        skb->protocol = eth_type_trans(skb, dev);
 438}
 439
 440/**
 441 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
 442 * @rx_ring: rx descriptor ring packet is being transacted on
 443 * @rx_desc: pointer to the EOP Rx descriptor
 444 * @skb: pointer to current skb being populated
 445 *
 446 * This function checks the ring, descriptor, and packet information in
 447 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
 448 * other fields within the skb.
 449 **/
 450static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
 451                                             union fm10k_rx_desc *rx_desc,
 452                                             struct sk_buff *skb)
 453{
 454        unsigned int len = skb->len;
 455
 456        fm10k_rx_hash(rx_ring, rx_desc, skb);
 457
 458        fm10k_rx_checksum(rx_ring, rx_desc, skb);
 459
 460        FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
 461
 462        FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
 463
 464        FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
 465
 466        if (rx_desc->w.vlan) {
 467                u16 vid = le16_to_cpu(rx_desc->w.vlan);
 468
 469                if ((vid & VLAN_VID_MASK) != rx_ring->vid)
 470                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 471                else if (vid & VLAN_PRIO_MASK)
 472                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 473                                               vid & VLAN_PRIO_MASK);
 474        }
 475
 476        fm10k_type_trans(rx_ring, rx_desc, skb);
 477
 478        return len;
 479}
 480
 481/**
 482 * fm10k_is_non_eop - process handling of non-EOP buffers
 483 * @rx_ring: Rx ring being processed
 484 * @rx_desc: Rx descriptor for current buffer
 485 *
 486 * This function updates next to clean.  If the buffer is an EOP buffer
 487 * this function exits returning false, otherwise it will place the
 488 * sk_buff in the next buffer to be chained and return true indicating
 489 * that this is in fact a non-EOP buffer.
 490 **/
 491static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
 492                             union fm10k_rx_desc *rx_desc)
 493{
 494        u32 ntc = rx_ring->next_to_clean + 1;
 495
 496        /* fetch, update, and store next to clean */
 497        ntc = (ntc < rx_ring->count) ? ntc : 0;
 498        rx_ring->next_to_clean = ntc;
 499
 500        prefetch(FM10K_RX_DESC(rx_ring, ntc));
 501
 502        if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
 503                return false;
 504
 505        return true;
 506}
 507
 508/**
 509 * fm10k_cleanup_headers - Correct corrupted or empty headers
 510 * @rx_ring: rx descriptor ring packet is being transacted on
 511 * @rx_desc: pointer to the EOP Rx descriptor
 512 * @skb: pointer to current skb being fixed
 513 *
 514 * Address the case where we are pulling data in on pages only
 515 * and as such no data is present in the skb header.
 516 *
 517 * In addition if skb is not at least 60 bytes we need to pad it so that
 518 * it is large enough to qualify as a valid Ethernet frame.
 519 *
 520 * Returns true if an error was encountered and skb was freed.
 521 **/
 522static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
 523                                  union fm10k_rx_desc *rx_desc,
 524                                  struct sk_buff *skb)
 525{
 526        if (unlikely((fm10k_test_staterr(rx_desc,
 527                                         FM10K_RXD_STATUS_RXE)))) {
 528#define FM10K_TEST_RXD_BIT(rxd, bit) \
 529        ((rxd)->w.csum_err & cpu_to_le16(bit))
 530                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
 531                        rx_ring->rx_stats.switch_errors++;
 532                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
 533                        rx_ring->rx_stats.drops++;
 534                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
 535                        rx_ring->rx_stats.pp_errors++;
 536                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
 537                        rx_ring->rx_stats.link_errors++;
 538                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
 539                        rx_ring->rx_stats.length_errors++;
 540                dev_kfree_skb_any(skb);
 541                rx_ring->rx_stats.errors++;
 542                return true;
 543        }
 544
 545        /* if eth_skb_pad returns an error the skb was freed */
 546        if (eth_skb_pad(skb))
 547                return true;
 548
 549        return false;
 550}
 551
 552/**
 553 * fm10k_receive_skb - helper function to handle rx indications
 554 * @q_vector: structure containing interrupt and ring information
 555 * @skb: packet to send up
 556 **/
 557static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
 558                              struct sk_buff *skb)
 559{
 560        napi_gro_receive(&q_vector->napi, skb);
 561}
 562
 563static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
 564                              struct fm10k_ring *rx_ring,
 565                              int budget)
 566{
 567        struct sk_buff *skb = rx_ring->skb;
 568        unsigned int total_bytes = 0, total_packets = 0;
 569        u16 cleaned_count = fm10k_desc_unused(rx_ring);
 570
 571        while (likely(total_packets < budget)) {
 572                union fm10k_rx_desc *rx_desc;
 573
 574                /* return some buffers to hardware, one at a time is too slow */
 575                if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
 576                        fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
 577                        cleaned_count = 0;
 578                }
 579
 580                rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
 581
 582                if (!rx_desc->d.staterr)
 583                        break;
 584
 585                /* This memory barrier is needed to keep us from reading
 586                 * any other fields out of the rx_desc until we know the
 587                 * descriptor has been written back
 588                 */
 589                dma_rmb();
 590
 591                /* retrieve a buffer from the ring */
 592                skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
 593
 594                /* exit if we failed to retrieve a buffer */
 595                if (!skb)
 596                        break;
 597
 598                cleaned_count++;
 599
 600                /* fetch next buffer in frame if non-eop */
 601                if (fm10k_is_non_eop(rx_ring, rx_desc))
 602                        continue;
 603
 604                /* verify the packet layout is correct */
 605                if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
 606                        skb = NULL;
 607                        continue;
 608                }
 609
 610                /* populate checksum, timestamp, VLAN, and protocol */
 611                total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
 612
 613                fm10k_receive_skb(q_vector, skb);
 614
 615                /* reset skb pointer */
 616                skb = NULL;
 617
 618                /* update budget accounting */
 619                total_packets++;
 620        }
 621
 622        /* place incomplete frames back on ring for completion */
 623        rx_ring->skb = skb;
 624
 625        u64_stats_update_begin(&rx_ring->syncp);
 626        rx_ring->stats.packets += total_packets;
 627        rx_ring->stats.bytes += total_bytes;
 628        u64_stats_update_end(&rx_ring->syncp);
 629        q_vector->rx.total_packets += total_packets;
 630        q_vector->rx.total_bytes += total_bytes;
 631
 632        return total_packets;
 633}
 634
 635#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
 636static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
 637{
 638        struct fm10k_intfc *interface = netdev_priv(skb->dev);
 639        struct fm10k_udp_port *vxlan_port;
 640
 641        /* we can only offload a vxlan if we recognize it as such */
 642        vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
 643                                              struct fm10k_udp_port, list);
 644
 645        if (!vxlan_port)
 646                return NULL;
 647        if (vxlan_port->port != udp_hdr(skb)->dest)
 648                return NULL;
 649
 650        /* return offset of udp_hdr plus 8 bytes for VXLAN header */
 651        return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
 652}
 653
 654#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
 655#define NVGRE_TNI htons(0x2000)
 656struct fm10k_nvgre_hdr {
 657        __be16 flags;
 658        __be16 proto;
 659        __be32 tni;
 660};
 661
 662static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
 663{
 664        struct fm10k_nvgre_hdr *nvgre_hdr;
 665        int hlen = ip_hdrlen(skb);
 666
 667        /* currently only IPv4 is supported due to hlen above */
 668        if (vlan_get_protocol(skb) != htons(ETH_P_IP))
 669                return NULL;
 670
 671        /* our transport header should be NVGRE */
 672        nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
 673
 674        /* verify all reserved flags are 0 */
 675        if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
 676                return NULL;
 677
 678        /* report start of ethernet header */
 679        if (nvgre_hdr->flags & NVGRE_TNI)
 680                return (struct ethhdr *)(nvgre_hdr + 1);
 681
 682        return (struct ethhdr *)(&nvgre_hdr->tni);
 683}
 684
 685__be16 fm10k_tx_encap_offload(struct sk_buff *skb)
 686{
 687        u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
 688        struct ethhdr *eth_hdr;
 689
 690        if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
 691            skb->inner_protocol != htons(ETH_P_TEB))
 692                return 0;
 693
 694        switch (vlan_get_protocol(skb)) {
 695        case htons(ETH_P_IP):
 696                l4_hdr = ip_hdr(skb)->protocol;
 697                break;
 698        case htons(ETH_P_IPV6):
 699                l4_hdr = ipv6_hdr(skb)->nexthdr;
 700                break;
 701        default:
 702                return 0;
 703        }
 704
 705        switch (l4_hdr) {
 706        case IPPROTO_UDP:
 707                eth_hdr = fm10k_port_is_vxlan(skb);
 708                break;
 709        case IPPROTO_GRE:
 710                eth_hdr = fm10k_gre_is_nvgre(skb);
 711                break;
 712        default:
 713                return 0;
 714        }
 715
 716        if (!eth_hdr)
 717                return 0;
 718
 719        switch (eth_hdr->h_proto) {
 720        case htons(ETH_P_IP):
 721                inner_l4_hdr = inner_ip_hdr(skb)->protocol;
 722                break;
 723        case htons(ETH_P_IPV6):
 724                inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
 725                break;
 726        default:
 727                return 0;
 728        }
 729
 730        switch (inner_l4_hdr) {
 731        case IPPROTO_TCP:
 732                inner_l4_hlen = inner_tcp_hdrlen(skb);
 733                break;
 734        case IPPROTO_UDP:
 735                inner_l4_hlen = 8;
 736                break;
 737        default:
 738                return 0;
 739        }
 740
 741        /* The hardware allows tunnel offloads only if the combined inner and
 742         * outer header is 184 bytes or less
 743         */
 744        if (skb_inner_transport_header(skb) + inner_l4_hlen -
 745            skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
 746                return 0;
 747
 748        return eth_hdr->h_proto;
 749}
 750
 751static int fm10k_tso(struct fm10k_ring *tx_ring,
 752                     struct fm10k_tx_buffer *first)
 753{
 754        struct sk_buff *skb = first->skb;
 755        struct fm10k_tx_desc *tx_desc;
 756        unsigned char *th;
 757        u8 hdrlen;
 758
 759        if (skb->ip_summed != CHECKSUM_PARTIAL)
 760                return 0;
 761
 762        if (!skb_is_gso(skb))
 763                return 0;
 764
 765        /* compute header lengths */
 766        if (skb->encapsulation) {
 767                if (!fm10k_tx_encap_offload(skb))
 768                        goto err_vxlan;
 769                th = skb_inner_transport_header(skb);
 770        } else {
 771                th = skb_transport_header(skb);
 772        }
 773
 774        /* compute offset from SOF to transport header and add header len */
 775        hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
 776
 777        first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 778
 779        /* update gso size and bytecount with header size */
 780        first->gso_segs = skb_shinfo(skb)->gso_segs;
 781        first->bytecount += (first->gso_segs - 1) * hdrlen;
 782
 783        /* populate Tx descriptor header size and mss */
 784        tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 785        tx_desc->hdrlen = hdrlen;
 786        tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
 787
 788        return 1;
 789
 790err_vxlan:
 791        tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
 792        if (net_ratelimit())
 793                netdev_err(tx_ring->netdev,
 794                           "TSO requested for unsupported tunnel, disabling offload\n");
 795        return -1;
 796}
 797
 798static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
 799                          struct fm10k_tx_buffer *first)
 800{
 801        struct sk_buff *skb = first->skb;
 802        struct fm10k_tx_desc *tx_desc;
 803        union {
 804                struct iphdr *ipv4;
 805                struct ipv6hdr *ipv6;
 806                u8 *raw;
 807        } network_hdr;
 808        u8 *transport_hdr;
 809        __be16 frag_off;
 810        __be16 protocol;
 811        u8 l4_hdr = 0;
 812
 813        if (skb->ip_summed != CHECKSUM_PARTIAL)
 814                goto no_csum;
 815
 816        if (skb->encapsulation) {
 817                protocol = fm10k_tx_encap_offload(skb);
 818                if (!protocol) {
 819                        if (skb_checksum_help(skb)) {
 820                                dev_warn(tx_ring->dev,
 821                                         "failed to offload encap csum!\n");
 822                                tx_ring->tx_stats.csum_err++;
 823                        }
 824                        goto no_csum;
 825                }
 826                network_hdr.raw = skb_inner_network_header(skb);
 827                transport_hdr = skb_inner_transport_header(skb);
 828        } else {
 829                protocol = vlan_get_protocol(skb);
 830                network_hdr.raw = skb_network_header(skb);
 831                transport_hdr = skb_transport_header(skb);
 832        }
 833
 834        switch (protocol) {
 835        case htons(ETH_P_IP):
 836                l4_hdr = network_hdr.ipv4->protocol;
 837                break;
 838        case htons(ETH_P_IPV6):
 839                l4_hdr = network_hdr.ipv6->nexthdr;
 840                if (likely((transport_hdr - network_hdr.raw) ==
 841                           sizeof(struct ipv6hdr)))
 842                        break;
 843                ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
 844                                      sizeof(struct ipv6hdr),
 845                                 &l4_hdr, &frag_off);
 846                if (unlikely(frag_off))
 847                        l4_hdr = NEXTHDR_FRAGMENT;
 848                break;
 849        default:
 850                break;
 851        }
 852
 853        switch (l4_hdr) {
 854        case IPPROTO_TCP:
 855        case IPPROTO_UDP:
 856                break;
 857        case IPPROTO_GRE:
 858                if (skb->encapsulation)
 859                        break;
 860                /* fall through */
 861        default:
 862                if (unlikely(net_ratelimit())) {
 863                        dev_warn(tx_ring->dev,
 864                                 "partial checksum, version=%d l4 proto=%x\n",
 865                                 protocol, l4_hdr);
 866                }
 867                skb_checksum_help(skb);
 868                tx_ring->tx_stats.csum_err++;
 869                goto no_csum;
 870        }
 871
 872        /* update TX checksum flag */
 873        first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 874        tx_ring->tx_stats.csum_good++;
 875
 876no_csum:
 877        /* populate Tx descriptor header size and mss */
 878        tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 879        tx_desc->hdrlen = 0;
 880        tx_desc->mss = 0;
 881}
 882
 883#define FM10K_SET_FLAG(_input, _flag, _result) \
 884        ((_flag <= _result) ? \
 885         ((u32)(_input & _flag) * (_result / _flag)) : \
 886         ((u32)(_input & _flag) / (_flag / _result)))
 887
 888static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
 889{
 890        /* set type for advanced descriptor with frame checksum insertion */
 891        u32 desc_flags = 0;
 892
 893        /* set checksum offload bits */
 894        desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
 895                                     FM10K_TXD_FLAG_CSUM);
 896
 897        return desc_flags;
 898}
 899
 900static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
 901                               struct fm10k_tx_desc *tx_desc, u16 i,
 902                               dma_addr_t dma, unsigned int size, u8 desc_flags)
 903{
 904        /* set RS and INT for last frame in a cache line */
 905        if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
 906                desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
 907
 908        /* record values to descriptor */
 909        tx_desc->buffer_addr = cpu_to_le64(dma);
 910        tx_desc->flags = desc_flags;
 911        tx_desc->buflen = cpu_to_le16(size);
 912
 913        /* return true if we just wrapped the ring */
 914        return i == tx_ring->count;
 915}
 916
 917static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 918{
 919        netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
 920
 921        /* Memory barrier before checking head and tail */
 922        smp_mb();
 923
 924        /* Check again in a case another CPU has just made room available */
 925        if (likely(fm10k_desc_unused(tx_ring) < size))
 926                return -EBUSY;
 927
 928        /* A reprieve! - use start_queue because it doesn't call schedule */
 929        netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
 930        ++tx_ring->tx_stats.restart_queue;
 931        return 0;
 932}
 933
 934static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 935{
 936        if (likely(fm10k_desc_unused(tx_ring) >= size))
 937                return 0;
 938        return __fm10k_maybe_stop_tx(tx_ring, size);
 939}
 940
 941static void fm10k_tx_map(struct fm10k_ring *tx_ring,
 942                         struct fm10k_tx_buffer *first)
 943{
 944        struct sk_buff *skb = first->skb;
 945        struct fm10k_tx_buffer *tx_buffer;
 946        struct fm10k_tx_desc *tx_desc;
 947        struct skb_frag_struct *frag;
 948        unsigned char *data;
 949        dma_addr_t dma;
 950        unsigned int data_len, size;
 951        u32 tx_flags = first->tx_flags;
 952        u16 i = tx_ring->next_to_use;
 953        u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
 954
 955        tx_desc = FM10K_TX_DESC(tx_ring, i);
 956
 957        /* add HW VLAN tag */
 958        if (skb_vlan_tag_present(skb))
 959                tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
 960        else
 961                tx_desc->vlan = 0;
 962
 963        size = skb_headlen(skb);
 964        data = skb->data;
 965
 966        dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
 967
 968        data_len = skb->data_len;
 969        tx_buffer = first;
 970
 971        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 972                if (dma_mapping_error(tx_ring->dev, dma))
 973                        goto dma_error;
 974
 975                /* record length, and DMA address */
 976                dma_unmap_len_set(tx_buffer, len, size);
 977                dma_unmap_addr_set(tx_buffer, dma, dma);
 978
 979                while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
 980                        if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
 981                                               FM10K_MAX_DATA_PER_TXD, flags)) {
 982                                tx_desc = FM10K_TX_DESC(tx_ring, 0);
 983                                i = 0;
 984                        }
 985
 986                        dma += FM10K_MAX_DATA_PER_TXD;
 987                        size -= FM10K_MAX_DATA_PER_TXD;
 988                }
 989
 990                if (likely(!data_len))
 991                        break;
 992
 993                if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
 994                                       dma, size, flags)) {
 995                        tx_desc = FM10K_TX_DESC(tx_ring, 0);
 996                        i = 0;
 997                }
 998
 999                size = skb_frag_size(frag);
1000                data_len -= size;
1001
1002                dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1003                                       DMA_TO_DEVICE);
1004
1005                tx_buffer = &tx_ring->tx_buffer[i];
1006        }
1007
1008        /* write last descriptor with LAST bit set */
1009        flags |= FM10K_TXD_FLAG_LAST;
1010
1011        if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1012                i = 0;
1013
1014        /* record bytecount for BQL */
1015        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1016
1017        /* record SW timestamp if HW timestamp is not available */
1018        skb_tx_timestamp(first->skb);
1019
1020        /* Force memory writes to complete before letting h/w know there
1021         * are new descriptors to fetch.  (Only applicable for weak-ordered
1022         * memory model archs, such as IA-64).
1023         *
1024         * We also need this memory barrier to make certain all of the
1025         * status bits have been updated before next_to_watch is written.
1026         */
1027        wmb();
1028
1029        /* set next_to_watch value indicating a packet is present */
1030        first->next_to_watch = tx_desc;
1031
1032        tx_ring->next_to_use = i;
1033
1034        /* Make sure there is space in the ring for the next send. */
1035        fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1036
1037        /* notify HW of packet */
1038        if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1039                writel(i, tx_ring->tail);
1040
1041                /* we need this if more than one processor can write to our tail
1042                 * at a time, it synchronizes IO on IA64/Altix systems
1043                 */
1044                mmiowb();
1045        }
1046
1047        return;
1048dma_error:
1049        dev_err(tx_ring->dev, "TX DMA map failed\n");
1050
1051        /* clear dma mappings for failed tx_buffer map */
1052        for (;;) {
1053                tx_buffer = &tx_ring->tx_buffer[i];
1054                fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1055                if (tx_buffer == first)
1056                        break;
1057                if (i == 0)
1058                        i = tx_ring->count;
1059                i--;
1060        }
1061
1062        tx_ring->next_to_use = i;
1063}
1064
1065netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1066                                  struct fm10k_ring *tx_ring)
1067{
1068        u16 count = TXD_USE_COUNT(skb_headlen(skb));
1069        struct fm10k_tx_buffer *first;
1070        unsigned short f;
1071        u32 tx_flags = 0;
1072        int tso;
1073
1074        /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1075         *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1076         *       + 2 desc gap to keep tail from touching head
1077         * otherwise try next time
1078         */
1079        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1080                count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1081
1082        if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1083                tx_ring->tx_stats.tx_busy++;
1084                return NETDEV_TX_BUSY;
1085        }
1086
1087        /* record the location of the first descriptor for this packet */
1088        first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1089        first->skb = skb;
1090        first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1091        first->gso_segs = 1;
1092
1093        /* record initial flags and protocol */
1094        first->tx_flags = tx_flags;
1095
1096        tso = fm10k_tso(tx_ring, first);
1097        if (tso < 0)
1098                goto out_drop;
1099        else if (!tso)
1100                fm10k_tx_csum(tx_ring, first);
1101
1102        fm10k_tx_map(tx_ring, first);
1103
1104        return NETDEV_TX_OK;
1105
1106out_drop:
1107        dev_kfree_skb_any(first->skb);
1108        first->skb = NULL;
1109
1110        return NETDEV_TX_OK;
1111}
1112
1113static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1114{
1115        return ring->stats.packets;
1116}
1117
1118/**
1119 * fm10k_get_tx_pending - how many Tx descriptors not processed
1120 * @ring: the ring structure
1121 * @in_sw: is tx_pending being checked in SW or in HW?
1122 */
1123u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1124{
1125        struct fm10k_intfc *interface = ring->q_vector->interface;
1126        struct fm10k_hw *hw = &interface->hw;
1127        u32 head, tail;
1128
1129        if (likely(in_sw)) {
1130                head = ring->next_to_clean;
1131                tail = ring->next_to_use;
1132        } else {
1133                head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1134                tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1135        }
1136
1137        return ((head <= tail) ? tail : tail + ring->count) - head;
1138}
1139
1140bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1141{
1142        u32 tx_done = fm10k_get_tx_completed(tx_ring);
1143        u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1144        u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1145
1146        clear_check_for_tx_hang(tx_ring);
1147
1148        /* Check for a hung queue, but be thorough. This verifies
1149         * that a transmit has been completed since the previous
1150         * check AND there is at least one packet pending. By
1151         * requiring this to fail twice we avoid races with
1152         * clearing the ARMED bit and conditions where we
1153         * run the check_tx_hang logic with a transmit completion
1154         * pending but without time to complete it yet.
1155         */
1156        if (!tx_pending || (tx_done_old != tx_done)) {
1157                /* update completed stats and continue */
1158                tx_ring->tx_stats.tx_done_old = tx_done;
1159                /* reset the countdown */
1160                clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1161
1162                return false;
1163        }
1164
1165        /* make sure it is true for two checks in a row */
1166        return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1167}
1168
1169/**
1170 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1171 * @interface: driver private struct
1172 **/
1173void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1174{
1175        /* Do the reset outside of interrupt context */
1176        if (!test_bit(__FM10K_DOWN, interface->state)) {
1177                interface->tx_timeout_count++;
1178                set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1179                fm10k_service_event_schedule(interface);
1180        }
1181}
1182
1183/**
1184 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1185 * @q_vector: structure containing interrupt and ring information
1186 * @tx_ring: tx ring to clean
1187 * @napi_budget: Used to determine if we are in netpoll
1188 **/
1189static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1190                               struct fm10k_ring *tx_ring, int napi_budget)
1191{
1192        struct fm10k_intfc *interface = q_vector->interface;
1193        struct fm10k_tx_buffer *tx_buffer;
1194        struct fm10k_tx_desc *tx_desc;
1195        unsigned int total_bytes = 0, total_packets = 0;
1196        unsigned int budget = q_vector->tx.work_limit;
1197        unsigned int i = tx_ring->next_to_clean;
1198
1199        if (test_bit(__FM10K_DOWN, interface->state))
1200                return true;
1201
1202        tx_buffer = &tx_ring->tx_buffer[i];
1203        tx_desc = FM10K_TX_DESC(tx_ring, i);
1204        i -= tx_ring->count;
1205
1206        do {
1207                struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1208
1209                /* if next_to_watch is not set then there is no work pending */
1210                if (!eop_desc)
1211                        break;
1212
1213                /* prevent any other reads prior to eop_desc */
1214                smp_rmb();
1215
1216                /* if DD is not set pending work has not been completed */
1217                if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1218                        break;
1219
1220                /* clear next_to_watch to prevent false hangs */
1221                tx_buffer->next_to_watch = NULL;
1222
1223                /* update the statistics for this packet */
1224                total_bytes += tx_buffer->bytecount;
1225                total_packets += tx_buffer->gso_segs;
1226
1227                /* free the skb */
1228                napi_consume_skb(tx_buffer->skb, napi_budget);
1229
1230                /* unmap skb header data */
1231                dma_unmap_single(tx_ring->dev,
1232                                 dma_unmap_addr(tx_buffer, dma),
1233                                 dma_unmap_len(tx_buffer, len),
1234                                 DMA_TO_DEVICE);
1235
1236                /* clear tx_buffer data */
1237                tx_buffer->skb = NULL;
1238                dma_unmap_len_set(tx_buffer, len, 0);
1239
1240                /* unmap remaining buffers */
1241                while (tx_desc != eop_desc) {
1242                        tx_buffer++;
1243                        tx_desc++;
1244                        i++;
1245                        if (unlikely(!i)) {
1246                                i -= tx_ring->count;
1247                                tx_buffer = tx_ring->tx_buffer;
1248                                tx_desc = FM10K_TX_DESC(tx_ring, 0);
1249                        }
1250
1251                        /* unmap any remaining paged data */
1252                        if (dma_unmap_len(tx_buffer, len)) {
1253                                dma_unmap_page(tx_ring->dev,
1254                                               dma_unmap_addr(tx_buffer, dma),
1255                                               dma_unmap_len(tx_buffer, len),
1256                                               DMA_TO_DEVICE);
1257                                dma_unmap_len_set(tx_buffer, len, 0);
1258                        }
1259                }
1260
1261                /* move us one more past the eop_desc for start of next pkt */
1262                tx_buffer++;
1263                tx_desc++;
1264                i++;
1265                if (unlikely(!i)) {
1266                        i -= tx_ring->count;
1267                        tx_buffer = tx_ring->tx_buffer;
1268                        tx_desc = FM10K_TX_DESC(tx_ring, 0);
1269                }
1270
1271                /* issue prefetch for next Tx descriptor */
1272                prefetch(tx_desc);
1273
1274                /* update budget accounting */
1275                budget--;
1276        } while (likely(budget));
1277
1278        i += tx_ring->count;
1279        tx_ring->next_to_clean = i;
1280        u64_stats_update_begin(&tx_ring->syncp);
1281        tx_ring->stats.bytes += total_bytes;
1282        tx_ring->stats.packets += total_packets;
1283        u64_stats_update_end(&tx_ring->syncp);
1284        q_vector->tx.total_bytes += total_bytes;
1285        q_vector->tx.total_packets += total_packets;
1286
1287        if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1288                /* schedule immediate reset if we believe we hung */
1289                struct fm10k_hw *hw = &interface->hw;
1290
1291                netif_err(interface, drv, tx_ring->netdev,
1292                          "Detected Tx Unit Hang\n"
1293                          "  Tx Queue             <%d>\n"
1294                          "  TDH, TDT             <%x>, <%x>\n"
1295                          "  next_to_use          <%x>\n"
1296                          "  next_to_clean        <%x>\n",
1297                          tx_ring->queue_index,
1298                          fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1299                          fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1300                          tx_ring->next_to_use, i);
1301
1302                netif_stop_subqueue(tx_ring->netdev,
1303                                    tx_ring->queue_index);
1304
1305                netif_info(interface, probe, tx_ring->netdev,
1306                           "tx hang %d detected on queue %d, resetting interface\n",
1307                           interface->tx_timeout_count + 1,
1308                           tx_ring->queue_index);
1309
1310                fm10k_tx_timeout_reset(interface);
1311
1312                /* the netdev is about to reset, no point in enabling stuff */
1313                return true;
1314        }
1315
1316        /* notify netdev of completed buffers */
1317        netdev_tx_completed_queue(txring_txq(tx_ring),
1318                                  total_packets, total_bytes);
1319
1320#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1321        if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1322                     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1323                /* Make sure that anybody stopping the queue after this
1324                 * sees the new next_to_clean.
1325                 */
1326                smp_mb();
1327                if (__netif_subqueue_stopped(tx_ring->netdev,
1328                                             tx_ring->queue_index) &&
1329                    !test_bit(__FM10K_DOWN, interface->state)) {
1330                        netif_wake_subqueue(tx_ring->netdev,
1331                                            tx_ring->queue_index);
1332                        ++tx_ring->tx_stats.restart_queue;
1333                }
1334        }
1335
1336        return !!budget;
1337}
1338
1339/**
1340 * fm10k_update_itr - update the dynamic ITR value based on packet size
1341 *
1342 *      Stores a new ITR value based on strictly on packet size.  The
1343 *      divisors and thresholds used by this function were determined based
1344 *      on theoretical maximum wire speed and testing data, in order to
1345 *      minimize response time while increasing bulk throughput.
1346 *
1347 * @ring_container: Container for rings to have ITR updated
1348 **/
1349static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1350{
1351        unsigned int avg_wire_size, packets, itr_round;
1352
1353        /* Only update ITR if we are using adaptive setting */
1354        if (!ITR_IS_ADAPTIVE(ring_container->itr))
1355                goto clear_counts;
1356
1357        packets = ring_container->total_packets;
1358        if (!packets)
1359                goto clear_counts;
1360
1361        avg_wire_size = ring_container->total_bytes / packets;
1362
1363        /* The following is a crude approximation of:
1364         *  wmem_default / (size + overhead) = desired_pkts_per_int
1365         *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1366         *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1367         *
1368         * Assuming wmem_default is 212992 and overhead is 640 bytes per
1369         * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1370         * formula down to
1371         *
1372         *  (34 * (size + 24)) / (size + 640) = ITR
1373         *
1374         * We first do some math on the packet size and then finally bitshift
1375         * by 8 after rounding up. We also have to account for PCIe link speed
1376         * difference as ITR scales based on this.
1377         */
1378        if (avg_wire_size <= 360) {
1379                /* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1380                avg_wire_size *= 8;
1381                avg_wire_size += 376;
1382        } else if (avg_wire_size <= 1152) {
1383                /* 77K ints/sec to 45K ints/sec */
1384                avg_wire_size *= 3;
1385                avg_wire_size += 2176;
1386        } else if (avg_wire_size <= 1920) {
1387                /* 45K ints/sec to 38K ints/sec */
1388                avg_wire_size += 4480;
1389        } else {
1390                /* plateau at a limit of 38K ints/sec */
1391                avg_wire_size = 6656;
1392        }
1393
1394        /* Perform final bitshift for division after rounding up to ensure
1395         * that the calculation will never get below a 1. The bit shift
1396         * accounts for changes in the ITR due to PCIe link speed.
1397         */
1398        itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1399        avg_wire_size += BIT(itr_round) - 1;
1400        avg_wire_size >>= itr_round;
1401
1402        /* write back value and retain adaptive flag */
1403        ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1404
1405clear_counts:
1406        ring_container->total_bytes = 0;
1407        ring_container->total_packets = 0;
1408}
1409
1410static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1411{
1412        /* Enable auto-mask and clear the current mask */
1413        u32 itr = FM10K_ITR_ENABLE;
1414
1415        /* Update Tx ITR */
1416        fm10k_update_itr(&q_vector->tx);
1417
1418        /* Update Rx ITR */
1419        fm10k_update_itr(&q_vector->rx);
1420
1421        /* Store Tx itr in timer slot 0 */
1422        itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1423
1424        /* Shift Rx itr to timer slot 1 */
1425        itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1426
1427        /* Write the final value to the ITR register */
1428        writel(itr, q_vector->itr);
1429}
1430
1431static int fm10k_poll(struct napi_struct *napi, int budget)
1432{
1433        struct fm10k_q_vector *q_vector =
1434                               container_of(napi, struct fm10k_q_vector, napi);
1435        struct fm10k_ring *ring;
1436        int per_ring_budget, work_done = 0;
1437        bool clean_complete = true;
1438
1439        fm10k_for_each_ring(ring, q_vector->tx) {
1440                if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1441                        clean_complete = false;
1442        }
1443
1444        /* Handle case where we are called by netpoll with a budget of 0 */
1445        if (budget <= 0)
1446                return budget;
1447
1448        /* attempt to distribute budget to each queue fairly, but don't
1449         * allow the budget to go below 1 because we'll exit polling
1450         */
1451        if (q_vector->rx.count > 1)
1452                per_ring_budget = max(budget / q_vector->rx.count, 1);
1453        else
1454                per_ring_budget = budget;
1455
1456        fm10k_for_each_ring(ring, q_vector->rx) {
1457                int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1458
1459                work_done += work;
1460                if (work >= per_ring_budget)
1461                        clean_complete = false;
1462        }
1463
1464        /* If all work not completed, return budget and keep polling */
1465        if (!clean_complete)
1466                return budget;
1467
1468        /* all work done, exit the polling mode */
1469        napi_complete_done(napi, work_done);
1470
1471        /* re-enable the q_vector */
1472        fm10k_qv_enable(q_vector);
1473
1474        return min(work_done, budget - 1);
1475}
1476
1477/**
1478 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1479 * @interface: board private structure to initialize
1480 *
1481 * When QoS (Quality of Service) is enabled, allocate queues for
1482 * each traffic class.  If multiqueue isn't available,then abort QoS
1483 * initialization.
1484 *
1485 * This function handles all combinations of Qos and RSS.
1486 *
1487 **/
1488static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1489{
1490        struct net_device *dev = interface->netdev;
1491        struct fm10k_ring_feature *f;
1492        int rss_i, i;
1493        int pcs;
1494
1495        /* Map queue offset and counts onto allocated tx queues */
1496        pcs = netdev_get_num_tc(dev);
1497
1498        if (pcs <= 1)
1499                return false;
1500
1501        /* set QoS mask and indices */
1502        f = &interface->ring_feature[RING_F_QOS];
1503        f->indices = pcs;
1504        f->mask = BIT(fls(pcs - 1)) - 1;
1505
1506        /* determine the upper limit for our current DCB mode */
1507        rss_i = interface->hw.mac.max_queues / pcs;
1508        rss_i = BIT(fls(rss_i) - 1);
1509
1510        /* set RSS mask and indices */
1511        f = &interface->ring_feature[RING_F_RSS];
1512        rss_i = min_t(u16, rss_i, f->limit);
1513        f->indices = rss_i;
1514        f->mask = BIT(fls(rss_i - 1)) - 1;
1515
1516        /* configure pause class to queue mapping */
1517        for (i = 0; i < pcs; i++)
1518                netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1519
1520        interface->num_rx_queues = rss_i * pcs;
1521        interface->num_tx_queues = rss_i * pcs;
1522
1523        return true;
1524}
1525
1526/**
1527 * fm10k_set_rss_queues: Allocate queues for RSS
1528 * @interface: board private structure to initialize
1529 *
1530 * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1531 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1532 *
1533 **/
1534static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1535{
1536        struct fm10k_ring_feature *f;
1537        u16 rss_i;
1538
1539        f = &interface->ring_feature[RING_F_RSS];
1540        rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1541
1542        /* record indices and power of 2 mask for RSS */
1543        f->indices = rss_i;
1544        f->mask = BIT(fls(rss_i - 1)) - 1;
1545
1546        interface->num_rx_queues = rss_i;
1547        interface->num_tx_queues = rss_i;
1548
1549        return true;
1550}
1551
1552/**
1553 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1554 * @interface: board private structure to initialize
1555 *
1556 * This is the top level queue allocation routine.  The order here is very
1557 * important, starting with the "most" number of features turned on at once,
1558 * and ending with the smallest set of features.  This way large combinations
1559 * can be allocated if they're turned on, and smaller combinations are the
1560 * fallthrough conditions.
1561 *
1562 **/
1563static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1564{
1565        /* Attempt to setup QoS and RSS first */
1566        if (fm10k_set_qos_queues(interface))
1567                return;
1568
1569        /* If we don't have QoS, just fallback to only RSS. */
1570        fm10k_set_rss_queues(interface);
1571}
1572
1573/**
1574 * fm10k_reset_num_queues - Reset the number of queues to zero
1575 * @interface: board private structure
1576 *
1577 * This function should be called whenever we need to reset the number of
1578 * queues after an error condition.
1579 */
1580static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1581{
1582        interface->num_tx_queues = 0;
1583        interface->num_rx_queues = 0;
1584        interface->num_q_vectors = 0;
1585}
1586
1587/**
1588 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1589 * @interface: board private structure to initialize
1590 * @v_count: q_vectors allocated on interface, used for ring interleaving
1591 * @v_idx: index of vector in interface struct
1592 * @txr_count: total number of Tx rings to allocate
1593 * @txr_idx: index of first Tx ring to allocate
1594 * @rxr_count: total number of Rx rings to allocate
1595 * @rxr_idx: index of first Rx ring to allocate
1596 *
1597 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1598 **/
1599static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1600                                unsigned int v_count, unsigned int v_idx,
1601                                unsigned int txr_count, unsigned int txr_idx,
1602                                unsigned int rxr_count, unsigned int rxr_idx)
1603{
1604        struct fm10k_q_vector *q_vector;
1605        struct fm10k_ring *ring;
1606        int ring_count, size;
1607
1608        ring_count = txr_count + rxr_count;
1609        size = sizeof(struct fm10k_q_vector) +
1610               (sizeof(struct fm10k_ring) * ring_count);
1611
1612        /* allocate q_vector and rings */
1613        q_vector = kzalloc(size, GFP_KERNEL);
1614        if (!q_vector)
1615                return -ENOMEM;
1616
1617        /* initialize NAPI */
1618        netif_napi_add(interface->netdev, &q_vector->napi,
1619                       fm10k_poll, NAPI_POLL_WEIGHT);
1620
1621        /* tie q_vector and interface together */
1622        interface->q_vector[v_idx] = q_vector;
1623        q_vector->interface = interface;
1624        q_vector->v_idx = v_idx;
1625
1626        /* initialize pointer to rings */
1627        ring = q_vector->ring;
1628
1629        /* save Tx ring container info */
1630        q_vector->tx.ring = ring;
1631        q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1632        q_vector->tx.itr = interface->tx_itr;
1633        q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1634        q_vector->tx.count = txr_count;
1635
1636        while (txr_count) {
1637                /* assign generic ring traits */
1638                ring->dev = &interface->pdev->dev;
1639                ring->netdev = interface->netdev;
1640
1641                /* configure backlink on ring */
1642                ring->q_vector = q_vector;
1643
1644                /* apply Tx specific ring traits */
1645                ring->count = interface->tx_ring_count;
1646                ring->queue_index = txr_idx;
1647
1648                /* assign ring to interface */
1649                interface->tx_ring[txr_idx] = ring;
1650
1651                /* update count and index */
1652                txr_count--;
1653                txr_idx += v_count;
1654
1655                /* push pointer to next ring */
1656                ring++;
1657        }
1658
1659        /* save Rx ring container info */
1660        q_vector->rx.ring = ring;
1661        q_vector->rx.itr = interface->rx_itr;
1662        q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1663        q_vector->rx.count = rxr_count;
1664
1665        while (rxr_count) {
1666                /* assign generic ring traits */
1667                ring->dev = &interface->pdev->dev;
1668                ring->netdev = interface->netdev;
1669                rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1670
1671                /* configure backlink on ring */
1672                ring->q_vector = q_vector;
1673
1674                /* apply Rx specific ring traits */
1675                ring->count = interface->rx_ring_count;
1676                ring->queue_index = rxr_idx;
1677
1678                /* assign ring to interface */
1679                interface->rx_ring[rxr_idx] = ring;
1680
1681                /* update count and index */
1682                rxr_count--;
1683                rxr_idx += v_count;
1684
1685                /* push pointer to next ring */
1686                ring++;
1687        }
1688
1689        fm10k_dbg_q_vector_init(q_vector);
1690
1691        return 0;
1692}
1693
1694/**
1695 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1696 * @interface: board private structure to initialize
1697 * @v_idx: Index of vector to be freed
1698 *
1699 * This function frees the memory allocated to the q_vector.  In addition if
1700 * NAPI is enabled it will delete any references to the NAPI struct prior
1701 * to freeing the q_vector.
1702 **/
1703static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1704{
1705        struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1706        struct fm10k_ring *ring;
1707
1708        fm10k_dbg_q_vector_exit(q_vector);
1709
1710        fm10k_for_each_ring(ring, q_vector->tx)
1711                interface->tx_ring[ring->queue_index] = NULL;
1712
1713        fm10k_for_each_ring(ring, q_vector->rx)
1714                interface->rx_ring[ring->queue_index] = NULL;
1715
1716        interface->q_vector[v_idx] = NULL;
1717        netif_napi_del(&q_vector->napi);
1718        kfree_rcu(q_vector, rcu);
1719}
1720
1721/**
1722 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1723 * @interface: board private structure to initialize
1724 *
1725 * We allocate one q_vector per queue interrupt.  If allocation fails we
1726 * return -ENOMEM.
1727 **/
1728static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1729{
1730        unsigned int q_vectors = interface->num_q_vectors;
1731        unsigned int rxr_remaining = interface->num_rx_queues;
1732        unsigned int txr_remaining = interface->num_tx_queues;
1733        unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1734        int err;
1735
1736        if (q_vectors >= (rxr_remaining + txr_remaining)) {
1737                for (; rxr_remaining; v_idx++) {
1738                        err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1739                                                   0, 0, 1, rxr_idx);
1740                        if (err)
1741                                goto err_out;
1742
1743                        /* update counts and index */
1744                        rxr_remaining--;
1745                        rxr_idx++;
1746                }
1747        }
1748
1749        for (; v_idx < q_vectors; v_idx++) {
1750                int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1751                int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1752
1753                err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1754                                           tqpv, txr_idx,
1755                                           rqpv, rxr_idx);
1756
1757                if (err)
1758                        goto err_out;
1759
1760                /* update counts and index */
1761                rxr_remaining -= rqpv;
1762                txr_remaining -= tqpv;
1763                rxr_idx++;
1764                txr_idx++;
1765        }
1766
1767        return 0;
1768
1769err_out:
1770        fm10k_reset_num_queues(interface);
1771
1772        while (v_idx--)
1773                fm10k_free_q_vector(interface, v_idx);
1774
1775        return -ENOMEM;
1776}
1777
1778/**
1779 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1780 * @interface: board private structure to initialize
1781 *
1782 * This function frees the memory allocated to the q_vectors.  In addition if
1783 * NAPI is enabled it will delete any references to the NAPI struct prior
1784 * to freeing the q_vector.
1785 **/
1786static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1787{
1788        int v_idx = interface->num_q_vectors;
1789
1790        fm10k_reset_num_queues(interface);
1791
1792        while (v_idx--)
1793                fm10k_free_q_vector(interface, v_idx);
1794}
1795
1796/**
1797 * f10k_reset_msix_capability - reset MSI-X capability
1798 * @interface: board private structure to initialize
1799 *
1800 * Reset the MSI-X capability back to its starting state
1801 **/
1802static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1803{
1804        pci_disable_msix(interface->pdev);
1805        kfree(interface->msix_entries);
1806        interface->msix_entries = NULL;
1807}
1808
1809/**
1810 * f10k_init_msix_capability - configure MSI-X capability
1811 * @interface: board private structure to initialize
1812 *
1813 * Attempt to configure the interrupts using the best available
1814 * capabilities of the hardware and the kernel.
1815 **/
1816static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1817{
1818        struct fm10k_hw *hw = &interface->hw;
1819        int v_budget, vector;
1820
1821        /* It's easy to be greedy for MSI-X vectors, but it really
1822         * doesn't do us much good if we have a lot more vectors
1823         * than CPU's.  So let's be conservative and only ask for
1824         * (roughly) the same number of vectors as there are CPU's.
1825         * the default is to use pairs of vectors
1826         */
1827        v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1828        v_budget = min_t(u16, v_budget, num_online_cpus());
1829
1830        /* account for vectors not related to queues */
1831        v_budget += NON_Q_VECTORS(hw);
1832
1833        /* At the same time, hardware can only support a maximum of
1834         * hw.mac->max_msix_vectors vectors.  With features
1835         * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1836         * descriptor queues supported by our device.  Thus, we cap it off in
1837         * those rare cases where the cpu count also exceeds our vector limit.
1838         */
1839        v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1840
1841        /* A failure in MSI-X entry allocation is fatal. */
1842        interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1843                                          GFP_KERNEL);
1844        if (!interface->msix_entries)
1845                return -ENOMEM;
1846
1847        /* populate entry values */
1848        for (vector = 0; vector < v_budget; vector++)
1849                interface->msix_entries[vector].entry = vector;
1850
1851        /* Attempt to enable MSI-X with requested value */
1852        v_budget = pci_enable_msix_range(interface->pdev,
1853                                         interface->msix_entries,
1854                                         MIN_MSIX_COUNT(hw),
1855                                         v_budget);
1856        if (v_budget < 0) {
1857                kfree(interface->msix_entries);
1858                interface->msix_entries = NULL;
1859                return v_budget;
1860        }
1861
1862        /* record the number of queues available for q_vectors */
1863        interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1864
1865        return 0;
1866}
1867
1868/**
1869 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1870 * @interface: Interface structure continaining rings and devices
1871 *
1872 * Cache the descriptor ring offsets for Qos
1873 **/
1874static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1875{
1876        struct net_device *dev = interface->netdev;
1877        int pc, offset, rss_i, i, q_idx;
1878        u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1879        u8 num_pcs = netdev_get_num_tc(dev);
1880
1881        if (num_pcs <= 1)
1882                return false;
1883
1884        rss_i = interface->ring_feature[RING_F_RSS].indices;
1885
1886        for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1887                q_idx = pc;
1888                for (i = 0; i < rss_i; i++) {
1889                        interface->tx_ring[offset + i]->reg_idx = q_idx;
1890                        interface->tx_ring[offset + i]->qos_pc = pc;
1891                        interface->rx_ring[offset + i]->reg_idx = q_idx;
1892                        interface->rx_ring[offset + i]->qos_pc = pc;
1893                        q_idx += pc_stride;
1894                }
1895        }
1896
1897        return true;
1898}
1899
1900/**
1901 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1902 * @interface: Interface structure continaining rings and devices
1903 *
1904 * Cache the descriptor ring offsets for RSS
1905 **/
1906static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1907{
1908        int i;
1909
1910        for (i = 0; i < interface->num_rx_queues; i++)
1911                interface->rx_ring[i]->reg_idx = i;
1912
1913        for (i = 0; i < interface->num_tx_queues; i++)
1914                interface->tx_ring[i]->reg_idx = i;
1915}
1916
1917/**
1918 * fm10k_assign_rings - Map rings to network devices
1919 * @interface: Interface structure containing rings and devices
1920 *
1921 * This function is meant to go though and configure both the network
1922 * devices so that they contain rings, and configure the rings so that
1923 * they function with their network devices.
1924 **/
1925static void fm10k_assign_rings(struct fm10k_intfc *interface)
1926{
1927        if (fm10k_cache_ring_qos(interface))
1928                return;
1929
1930        fm10k_cache_ring_rss(interface);
1931}
1932
1933static void fm10k_init_reta(struct fm10k_intfc *interface)
1934{
1935        u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1936        u32 reta;
1937
1938        /* If the Rx flow indirection table has been configured manually, we
1939         * need to maintain it when possible.
1940         */
1941        if (netif_is_rxfh_configured(interface->netdev)) {
1942                for (i = FM10K_RETA_SIZE; i--;) {
1943                        reta = interface->reta[i];
1944                        if ((((reta << 24) >> 24) < rss_i) &&
1945                            (((reta << 16) >> 24) < rss_i) &&
1946                            (((reta <<  8) >> 24) < rss_i) &&
1947                            (((reta)       >> 24) < rss_i))
1948                                continue;
1949
1950                        /* this should never happen */
1951                        dev_err(&interface->pdev->dev,
1952                                "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1953                        goto repopulate_reta;
1954                }
1955
1956                /* do nothing if all of the elements are in bounds */
1957                return;
1958        }
1959
1960repopulate_reta:
1961        fm10k_write_reta(interface, NULL);
1962}
1963
1964/**
1965 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1966 * @interface: board private structure to initialize
1967 *
1968 * We determine which queueing scheme to use based on...
1969 * - Hardware queue count (num_*_queues)
1970 *   - defined by miscellaneous hardware support/features (RSS, etc.)
1971 **/
1972int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1973{
1974        int err;
1975
1976        /* Number of supported queues */
1977        fm10k_set_num_queues(interface);
1978
1979        /* Configure MSI-X capability */
1980        err = fm10k_init_msix_capability(interface);
1981        if (err) {
1982                dev_err(&interface->pdev->dev,
1983                        "Unable to initialize MSI-X capability\n");
1984                goto err_init_msix;
1985        }
1986
1987        /* Allocate memory for queues */
1988        err = fm10k_alloc_q_vectors(interface);
1989        if (err) {
1990                dev_err(&interface->pdev->dev,
1991                        "Unable to allocate queue vectors\n");
1992                goto err_alloc_q_vectors;
1993        }
1994
1995        /* Map rings to devices, and map devices to physical queues */
1996        fm10k_assign_rings(interface);
1997
1998        /* Initialize RSS redirection table */
1999        fm10k_init_reta(interface);
2000
2001        return 0;
2002
2003err_alloc_q_vectors:
2004        fm10k_reset_msix_capability(interface);
2005err_init_msix:
2006        fm10k_reset_num_queues(interface);
2007        return err;
2008}
2009
2010/**
2011 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2012 * @interface: board private structure to clear queueing scheme on
2013 *
2014 * We go through and clear queueing specific resources and reset the structure
2015 * to pre-load conditions
2016 **/
2017void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2018{
2019        fm10k_free_q_vectors(interface);
2020        fm10k_reset_msix_capability(interface);
2021}
2022