1
2
3
4#include <linux/types.h>
5#include <linux/module.h>
6#include <net/ipv6.h>
7#include <net/ip.h>
8#include <net/tcp.h>
9#include <linux/if_macvlan.h>
10#include <linux/prefetch.h>
11
12#include "fm10k.h"
13
14#define DRV_VERSION "0.23.4-k"
15#define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver"
16const char fm10k_driver_version[] = DRV_VERSION;
17char fm10k_driver_name[] = "fm10k";
18static const char fm10k_driver_string[] = DRV_SUMMARY;
19static const char fm10k_copyright[] =
20 "Copyright(c) 2013 - 2018 Intel Corporation.";
21
22MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
23MODULE_DESCRIPTION(DRV_SUMMARY);
24MODULE_LICENSE("GPL");
25MODULE_VERSION(DRV_VERSION);
26
27
28struct workqueue_struct *fm10k_workqueue;
29
30
31
32
33
34
35
36static int __init fm10k_init_module(void)
37{
38 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
39 pr_info("%s\n", fm10k_copyright);
40
41
42 fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
43 fm10k_driver_name);
44
45 fm10k_dbg_init();
46
47 return fm10k_register_pci_driver();
48}
49module_init(fm10k_init_module);
50
51
52
53
54
55
56
57static void __exit fm10k_exit_module(void)
58{
59 fm10k_unregister_pci_driver();
60
61 fm10k_dbg_exit();
62
63
64 destroy_workqueue(fm10k_workqueue);
65}
66module_exit(fm10k_exit_module);
67
68static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
69 struct fm10k_rx_buffer *bi)
70{
71 struct page *page = bi->page;
72 dma_addr_t dma;
73
74
75 if (likely(page))
76 return true;
77
78
79 page = dev_alloc_page();
80 if (unlikely(!page)) {
81 rx_ring->rx_stats.alloc_failed++;
82 return false;
83 }
84
85
86 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
87
88
89
90
91 if (dma_mapping_error(rx_ring->dev, dma)) {
92 __free_page(page);
93
94 rx_ring->rx_stats.alloc_failed++;
95 return false;
96 }
97
98 bi->dma = dma;
99 bi->page = page;
100 bi->page_offset = 0;
101
102 return true;
103}
104
105
106
107
108
109
110void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
111{
112 union fm10k_rx_desc *rx_desc;
113 struct fm10k_rx_buffer *bi;
114 u16 i = rx_ring->next_to_use;
115
116
117 if (!cleaned_count)
118 return;
119
120 rx_desc = FM10K_RX_DESC(rx_ring, i);
121 bi = &rx_ring->rx_buffer[i];
122 i -= rx_ring->count;
123
124 do {
125 if (!fm10k_alloc_mapped_page(rx_ring, bi))
126 break;
127
128
129
130
131 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
132
133 rx_desc++;
134 bi++;
135 i++;
136 if (unlikely(!i)) {
137 rx_desc = FM10K_RX_DESC(rx_ring, 0);
138 bi = rx_ring->rx_buffer;
139 i -= rx_ring->count;
140 }
141
142
143 rx_desc->d.staterr = 0;
144
145 cleaned_count--;
146 } while (cleaned_count);
147
148 i += rx_ring->count;
149
150 if (rx_ring->next_to_use != i) {
151
152 rx_ring->next_to_use = i;
153
154
155 rx_ring->next_to_alloc = i;
156
157
158
159
160
161
162 wmb();
163
164
165 writel(i, rx_ring->tail);
166 }
167}
168
169
170
171
172
173
174
175
176static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
177 struct fm10k_rx_buffer *old_buff)
178{
179 struct fm10k_rx_buffer *new_buff;
180 u16 nta = rx_ring->next_to_alloc;
181
182 new_buff = &rx_ring->rx_buffer[nta];
183
184
185 nta++;
186 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
187
188
189 *new_buff = *old_buff;
190
191
192 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
193 old_buff->page_offset,
194 FM10K_RX_BUFSZ,
195 DMA_FROM_DEVICE);
196}
197
198static inline bool fm10k_page_is_reserved(struct page *page)
199{
200 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
201}
202
203static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
204 struct page *page,
205 unsigned int __maybe_unused truesize)
206{
207
208 if (unlikely(fm10k_page_is_reserved(page)))
209 return false;
210
211#if (PAGE_SIZE < 8192)
212
213 if (unlikely(page_count(page) != 1))
214 return false;
215
216
217 rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
218#else
219
220 rx_buffer->page_offset += truesize;
221
222 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
223 return false;
224#endif
225
226
227
228
229 page_ref_inc(page);
230
231 return true;
232}
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
250 unsigned int size,
251 union fm10k_rx_desc *rx_desc,
252 struct sk_buff *skb)
253{
254 struct page *page = rx_buffer->page;
255 unsigned char *va = page_address(page) + rx_buffer->page_offset;
256#if (PAGE_SIZE < 8192)
257 unsigned int truesize = FM10K_RX_BUFSZ;
258#else
259 unsigned int truesize = ALIGN(size, 512);
260#endif
261 unsigned int pull_len;
262
263 if (unlikely(skb_is_nonlinear(skb)))
264 goto add_tail_frag;
265
266 if (likely(size <= FM10K_RX_HDR_LEN)) {
267 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
268
269
270 if (likely(!fm10k_page_is_reserved(page)))
271 return true;
272
273
274 __free_page(page);
275 return false;
276 }
277
278
279
280
281 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
282
283
284 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
285
286
287 va += pull_len;
288 size -= pull_len;
289
290add_tail_frag:
291 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
292 (unsigned long)va & ~PAGE_MASK, size, truesize);
293
294 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
295}
296
297static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
298 union fm10k_rx_desc *rx_desc,
299 struct sk_buff *skb)
300{
301 unsigned int size = le16_to_cpu(rx_desc->w.length);
302 struct fm10k_rx_buffer *rx_buffer;
303 struct page *page;
304
305 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
306 page = rx_buffer->page;
307 prefetchw(page);
308
309 if (likely(!skb)) {
310 void *page_addr = page_address(page) +
311 rx_buffer->page_offset;
312
313
314 prefetch(page_addr);
315#if L1_CACHE_BYTES < 128
316 prefetch(page_addr + L1_CACHE_BYTES);
317#endif
318
319
320 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
321 FM10K_RX_HDR_LEN);
322 if (unlikely(!skb)) {
323 rx_ring->rx_stats.alloc_failed++;
324 return NULL;
325 }
326
327
328
329
330
331 prefetchw(skb->data);
332 }
333
334
335 dma_sync_single_range_for_cpu(rx_ring->dev,
336 rx_buffer->dma,
337 rx_buffer->page_offset,
338 size,
339 DMA_FROM_DEVICE);
340
341
342 if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
343
344 fm10k_reuse_rx_page(rx_ring, rx_buffer);
345 } else {
346
347 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
348 PAGE_SIZE, DMA_FROM_DEVICE);
349 }
350
351
352 rx_buffer->page = NULL;
353
354 return skb;
355}
356
357static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
358 union fm10k_rx_desc *rx_desc,
359 struct sk_buff *skb)
360{
361 skb_checksum_none_assert(skb);
362
363
364 if (!(ring->netdev->features & NETIF_F_RXCSUM))
365 return;
366
367
368 if (fm10k_test_staterr(rx_desc,
369 FM10K_RXD_STATUS_L4E |
370 FM10K_RXD_STATUS_L4E2 |
371 FM10K_RXD_STATUS_IPE |
372 FM10K_RXD_STATUS_IPE2)) {
373 ring->rx_stats.csum_err++;
374 return;
375 }
376
377
378 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
379 skb->encapsulation = true;
380 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
381 return;
382
383 skb->ip_summed = CHECKSUM_UNNECESSARY;
384
385 ring->rx_stats.csum_good++;
386}
387
388#define FM10K_RSS_L4_TYPES_MASK \
389 (BIT(FM10K_RSSTYPE_IPV4_TCP) | \
390 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
391 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
392 BIT(FM10K_RSSTYPE_IPV6_UDP))
393
394static inline void fm10k_rx_hash(struct fm10k_ring *ring,
395 union fm10k_rx_desc *rx_desc,
396 struct sk_buff *skb)
397{
398 u16 rss_type;
399
400 if (!(ring->netdev->features & NETIF_F_RXHASH))
401 return;
402
403 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
404 if (!rss_type)
405 return;
406
407 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
408 (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
409 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
410}
411
412static void fm10k_type_trans(struct fm10k_ring *rx_ring,
413 union fm10k_rx_desc __maybe_unused *rx_desc,
414 struct sk_buff *skb)
415{
416 struct net_device *dev = rx_ring->netdev;
417 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
418
419
420 if (l2_accel) {
421 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
422
423 idx -= l2_accel->dglort;
424 if (idx < l2_accel->size && l2_accel->macvlan[idx])
425 dev = l2_accel->macvlan[idx];
426 else
427 l2_accel = NULL;
428 }
429
430
431 if (!l2_accel)
432 skb_record_rx_queue(skb, rx_ring->queue_index);
433 else
434 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
435 false);
436
437 skb->protocol = eth_type_trans(skb, dev);
438}
439
440
441
442
443
444
445
446
447
448
449
450static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
451 union fm10k_rx_desc *rx_desc,
452 struct sk_buff *skb)
453{
454 unsigned int len = skb->len;
455
456 fm10k_rx_hash(rx_ring, rx_desc, skb);
457
458 fm10k_rx_checksum(rx_ring, rx_desc, skb);
459
460 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
461
462 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
463
464 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
465
466 if (rx_desc->w.vlan) {
467 u16 vid = le16_to_cpu(rx_desc->w.vlan);
468
469 if ((vid & VLAN_VID_MASK) != rx_ring->vid)
470 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
471 else if (vid & VLAN_PRIO_MASK)
472 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
473 vid & VLAN_PRIO_MASK);
474 }
475
476 fm10k_type_trans(rx_ring, rx_desc, skb);
477
478 return len;
479}
480
481
482
483
484
485
486
487
488
489
490
491static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
492 union fm10k_rx_desc *rx_desc)
493{
494 u32 ntc = rx_ring->next_to_clean + 1;
495
496
497 ntc = (ntc < rx_ring->count) ? ntc : 0;
498 rx_ring->next_to_clean = ntc;
499
500 prefetch(FM10K_RX_DESC(rx_ring, ntc));
501
502 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
503 return false;
504
505 return true;
506}
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
523 union fm10k_rx_desc *rx_desc,
524 struct sk_buff *skb)
525{
526 if (unlikely((fm10k_test_staterr(rx_desc,
527 FM10K_RXD_STATUS_RXE)))) {
528#define FM10K_TEST_RXD_BIT(rxd, bit) \
529 ((rxd)->w.csum_err & cpu_to_le16(bit))
530 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
531 rx_ring->rx_stats.switch_errors++;
532 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
533 rx_ring->rx_stats.drops++;
534 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
535 rx_ring->rx_stats.pp_errors++;
536 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
537 rx_ring->rx_stats.link_errors++;
538 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
539 rx_ring->rx_stats.length_errors++;
540 dev_kfree_skb_any(skb);
541 rx_ring->rx_stats.errors++;
542 return true;
543 }
544
545
546 if (eth_skb_pad(skb))
547 return true;
548
549 return false;
550}
551
552
553
554
555
556
557static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
558 struct sk_buff *skb)
559{
560 napi_gro_receive(&q_vector->napi, skb);
561}
562
563static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
564 struct fm10k_ring *rx_ring,
565 int budget)
566{
567 struct sk_buff *skb = rx_ring->skb;
568 unsigned int total_bytes = 0, total_packets = 0;
569 u16 cleaned_count = fm10k_desc_unused(rx_ring);
570
571 while (likely(total_packets < budget)) {
572 union fm10k_rx_desc *rx_desc;
573
574
575 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
576 fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
577 cleaned_count = 0;
578 }
579
580 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
581
582 if (!rx_desc->d.staterr)
583 break;
584
585
586
587
588
589 dma_rmb();
590
591
592 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
593
594
595 if (!skb)
596 break;
597
598 cleaned_count++;
599
600
601 if (fm10k_is_non_eop(rx_ring, rx_desc))
602 continue;
603
604
605 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
606 skb = NULL;
607 continue;
608 }
609
610
611 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
612
613 fm10k_receive_skb(q_vector, skb);
614
615
616 skb = NULL;
617
618
619 total_packets++;
620 }
621
622
623 rx_ring->skb = skb;
624
625 u64_stats_update_begin(&rx_ring->syncp);
626 rx_ring->stats.packets += total_packets;
627 rx_ring->stats.bytes += total_bytes;
628 u64_stats_update_end(&rx_ring->syncp);
629 q_vector->rx.total_packets += total_packets;
630 q_vector->rx.total_bytes += total_bytes;
631
632 return total_packets;
633}
634
635#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
636static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
637{
638 struct fm10k_intfc *interface = netdev_priv(skb->dev);
639 struct fm10k_udp_port *vxlan_port;
640
641
642 vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
643 struct fm10k_udp_port, list);
644
645 if (!vxlan_port)
646 return NULL;
647 if (vxlan_port->port != udp_hdr(skb)->dest)
648 return NULL;
649
650
651 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
652}
653
654#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
655#define NVGRE_TNI htons(0x2000)
656struct fm10k_nvgre_hdr {
657 __be16 flags;
658 __be16 proto;
659 __be32 tni;
660};
661
662static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
663{
664 struct fm10k_nvgre_hdr *nvgre_hdr;
665 int hlen = ip_hdrlen(skb);
666
667
668 if (vlan_get_protocol(skb) != htons(ETH_P_IP))
669 return NULL;
670
671
672 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
673
674
675 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
676 return NULL;
677
678
679 if (nvgre_hdr->flags & NVGRE_TNI)
680 return (struct ethhdr *)(nvgre_hdr + 1);
681
682 return (struct ethhdr *)(&nvgre_hdr->tni);
683}
684
685__be16 fm10k_tx_encap_offload(struct sk_buff *skb)
686{
687 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
688 struct ethhdr *eth_hdr;
689
690 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
691 skb->inner_protocol != htons(ETH_P_TEB))
692 return 0;
693
694 switch (vlan_get_protocol(skb)) {
695 case htons(ETH_P_IP):
696 l4_hdr = ip_hdr(skb)->protocol;
697 break;
698 case htons(ETH_P_IPV6):
699 l4_hdr = ipv6_hdr(skb)->nexthdr;
700 break;
701 default:
702 return 0;
703 }
704
705 switch (l4_hdr) {
706 case IPPROTO_UDP:
707 eth_hdr = fm10k_port_is_vxlan(skb);
708 break;
709 case IPPROTO_GRE:
710 eth_hdr = fm10k_gre_is_nvgre(skb);
711 break;
712 default:
713 return 0;
714 }
715
716 if (!eth_hdr)
717 return 0;
718
719 switch (eth_hdr->h_proto) {
720 case htons(ETH_P_IP):
721 inner_l4_hdr = inner_ip_hdr(skb)->protocol;
722 break;
723 case htons(ETH_P_IPV6):
724 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
725 break;
726 default:
727 return 0;
728 }
729
730 switch (inner_l4_hdr) {
731 case IPPROTO_TCP:
732 inner_l4_hlen = inner_tcp_hdrlen(skb);
733 break;
734 case IPPROTO_UDP:
735 inner_l4_hlen = 8;
736 break;
737 default:
738 return 0;
739 }
740
741
742
743
744 if (skb_inner_transport_header(skb) + inner_l4_hlen -
745 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
746 return 0;
747
748 return eth_hdr->h_proto;
749}
750
751static int fm10k_tso(struct fm10k_ring *tx_ring,
752 struct fm10k_tx_buffer *first)
753{
754 struct sk_buff *skb = first->skb;
755 struct fm10k_tx_desc *tx_desc;
756 unsigned char *th;
757 u8 hdrlen;
758
759 if (skb->ip_summed != CHECKSUM_PARTIAL)
760 return 0;
761
762 if (!skb_is_gso(skb))
763 return 0;
764
765
766 if (skb->encapsulation) {
767 if (!fm10k_tx_encap_offload(skb))
768 goto err_vxlan;
769 th = skb_inner_transport_header(skb);
770 } else {
771 th = skb_transport_header(skb);
772 }
773
774
775 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
776
777 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
778
779
780 first->gso_segs = skb_shinfo(skb)->gso_segs;
781 first->bytecount += (first->gso_segs - 1) * hdrlen;
782
783
784 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
785 tx_desc->hdrlen = hdrlen;
786 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
787
788 return 1;
789
790err_vxlan:
791 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
792 if (net_ratelimit())
793 netdev_err(tx_ring->netdev,
794 "TSO requested for unsupported tunnel, disabling offload\n");
795 return -1;
796}
797
798static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
799 struct fm10k_tx_buffer *first)
800{
801 struct sk_buff *skb = first->skb;
802 struct fm10k_tx_desc *tx_desc;
803 union {
804 struct iphdr *ipv4;
805 struct ipv6hdr *ipv6;
806 u8 *raw;
807 } network_hdr;
808 u8 *transport_hdr;
809 __be16 frag_off;
810 __be16 protocol;
811 u8 l4_hdr = 0;
812
813 if (skb->ip_summed != CHECKSUM_PARTIAL)
814 goto no_csum;
815
816 if (skb->encapsulation) {
817 protocol = fm10k_tx_encap_offload(skb);
818 if (!protocol) {
819 if (skb_checksum_help(skb)) {
820 dev_warn(tx_ring->dev,
821 "failed to offload encap csum!\n");
822 tx_ring->tx_stats.csum_err++;
823 }
824 goto no_csum;
825 }
826 network_hdr.raw = skb_inner_network_header(skb);
827 transport_hdr = skb_inner_transport_header(skb);
828 } else {
829 protocol = vlan_get_protocol(skb);
830 network_hdr.raw = skb_network_header(skb);
831 transport_hdr = skb_transport_header(skb);
832 }
833
834 switch (protocol) {
835 case htons(ETH_P_IP):
836 l4_hdr = network_hdr.ipv4->protocol;
837 break;
838 case htons(ETH_P_IPV6):
839 l4_hdr = network_hdr.ipv6->nexthdr;
840 if (likely((transport_hdr - network_hdr.raw) ==
841 sizeof(struct ipv6hdr)))
842 break;
843 ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
844 sizeof(struct ipv6hdr),
845 &l4_hdr, &frag_off);
846 if (unlikely(frag_off))
847 l4_hdr = NEXTHDR_FRAGMENT;
848 break;
849 default:
850 break;
851 }
852
853 switch (l4_hdr) {
854 case IPPROTO_TCP:
855 case IPPROTO_UDP:
856 break;
857 case IPPROTO_GRE:
858 if (skb->encapsulation)
859 break;
860
861 default:
862 if (unlikely(net_ratelimit())) {
863 dev_warn(tx_ring->dev,
864 "partial checksum, version=%d l4 proto=%x\n",
865 protocol, l4_hdr);
866 }
867 skb_checksum_help(skb);
868 tx_ring->tx_stats.csum_err++;
869 goto no_csum;
870 }
871
872
873 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
874 tx_ring->tx_stats.csum_good++;
875
876no_csum:
877
878 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
879 tx_desc->hdrlen = 0;
880 tx_desc->mss = 0;
881}
882
883#define FM10K_SET_FLAG(_input, _flag, _result) \
884 ((_flag <= _result) ? \
885 ((u32)(_input & _flag) * (_result / _flag)) : \
886 ((u32)(_input & _flag) / (_flag / _result)))
887
888static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
889{
890
891 u32 desc_flags = 0;
892
893
894 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
895 FM10K_TXD_FLAG_CSUM);
896
897 return desc_flags;
898}
899
900static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
901 struct fm10k_tx_desc *tx_desc, u16 i,
902 dma_addr_t dma, unsigned int size, u8 desc_flags)
903{
904
905 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
906 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
907
908
909 tx_desc->buffer_addr = cpu_to_le64(dma);
910 tx_desc->flags = desc_flags;
911 tx_desc->buflen = cpu_to_le16(size);
912
913
914 return i == tx_ring->count;
915}
916
917static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
918{
919 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
920
921
922 smp_mb();
923
924
925 if (likely(fm10k_desc_unused(tx_ring) < size))
926 return -EBUSY;
927
928
929 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
930 ++tx_ring->tx_stats.restart_queue;
931 return 0;
932}
933
934static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
935{
936 if (likely(fm10k_desc_unused(tx_ring) >= size))
937 return 0;
938 return __fm10k_maybe_stop_tx(tx_ring, size);
939}
940
941static void fm10k_tx_map(struct fm10k_ring *tx_ring,
942 struct fm10k_tx_buffer *first)
943{
944 struct sk_buff *skb = first->skb;
945 struct fm10k_tx_buffer *tx_buffer;
946 struct fm10k_tx_desc *tx_desc;
947 struct skb_frag_struct *frag;
948 unsigned char *data;
949 dma_addr_t dma;
950 unsigned int data_len, size;
951 u32 tx_flags = first->tx_flags;
952 u16 i = tx_ring->next_to_use;
953 u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
954
955 tx_desc = FM10K_TX_DESC(tx_ring, i);
956
957
958 if (skb_vlan_tag_present(skb))
959 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
960 else
961 tx_desc->vlan = 0;
962
963 size = skb_headlen(skb);
964 data = skb->data;
965
966 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
967
968 data_len = skb->data_len;
969 tx_buffer = first;
970
971 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
972 if (dma_mapping_error(tx_ring->dev, dma))
973 goto dma_error;
974
975
976 dma_unmap_len_set(tx_buffer, len, size);
977 dma_unmap_addr_set(tx_buffer, dma, dma);
978
979 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
980 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
981 FM10K_MAX_DATA_PER_TXD, flags)) {
982 tx_desc = FM10K_TX_DESC(tx_ring, 0);
983 i = 0;
984 }
985
986 dma += FM10K_MAX_DATA_PER_TXD;
987 size -= FM10K_MAX_DATA_PER_TXD;
988 }
989
990 if (likely(!data_len))
991 break;
992
993 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
994 dma, size, flags)) {
995 tx_desc = FM10K_TX_DESC(tx_ring, 0);
996 i = 0;
997 }
998
999 size = skb_frag_size(frag);
1000 data_len -= size;
1001
1002 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1003 DMA_TO_DEVICE);
1004
1005 tx_buffer = &tx_ring->tx_buffer[i];
1006 }
1007
1008
1009 flags |= FM10K_TXD_FLAG_LAST;
1010
1011 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1012 i = 0;
1013
1014
1015 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1016
1017
1018 skb_tx_timestamp(first->skb);
1019
1020
1021
1022
1023
1024
1025
1026
1027 wmb();
1028
1029
1030 first->next_to_watch = tx_desc;
1031
1032 tx_ring->next_to_use = i;
1033
1034
1035 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1036
1037
1038 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1039 writel(i, tx_ring->tail);
1040
1041
1042
1043
1044 mmiowb();
1045 }
1046
1047 return;
1048dma_error:
1049 dev_err(tx_ring->dev, "TX DMA map failed\n");
1050
1051
1052 for (;;) {
1053 tx_buffer = &tx_ring->tx_buffer[i];
1054 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1055 if (tx_buffer == first)
1056 break;
1057 if (i == 0)
1058 i = tx_ring->count;
1059 i--;
1060 }
1061
1062 tx_ring->next_to_use = i;
1063}
1064
1065netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1066 struct fm10k_ring *tx_ring)
1067{
1068 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1069 struct fm10k_tx_buffer *first;
1070 unsigned short f;
1071 u32 tx_flags = 0;
1072 int tso;
1073
1074
1075
1076
1077
1078
1079 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1080 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1081
1082 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1083 tx_ring->tx_stats.tx_busy++;
1084 return NETDEV_TX_BUSY;
1085 }
1086
1087
1088 first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1089 first->skb = skb;
1090 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1091 first->gso_segs = 1;
1092
1093
1094 first->tx_flags = tx_flags;
1095
1096 tso = fm10k_tso(tx_ring, first);
1097 if (tso < 0)
1098 goto out_drop;
1099 else if (!tso)
1100 fm10k_tx_csum(tx_ring, first);
1101
1102 fm10k_tx_map(tx_ring, first);
1103
1104 return NETDEV_TX_OK;
1105
1106out_drop:
1107 dev_kfree_skb_any(first->skb);
1108 first->skb = NULL;
1109
1110 return NETDEV_TX_OK;
1111}
1112
1113static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1114{
1115 return ring->stats.packets;
1116}
1117
1118
1119
1120
1121
1122
1123u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1124{
1125 struct fm10k_intfc *interface = ring->q_vector->interface;
1126 struct fm10k_hw *hw = &interface->hw;
1127 u32 head, tail;
1128
1129 if (likely(in_sw)) {
1130 head = ring->next_to_clean;
1131 tail = ring->next_to_use;
1132 } else {
1133 head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1134 tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1135 }
1136
1137 return ((head <= tail) ? tail : tail + ring->count) - head;
1138}
1139
1140bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1141{
1142 u32 tx_done = fm10k_get_tx_completed(tx_ring);
1143 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1144 u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1145
1146 clear_check_for_tx_hang(tx_ring);
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156 if (!tx_pending || (tx_done_old != tx_done)) {
1157
1158 tx_ring->tx_stats.tx_done_old = tx_done;
1159
1160 clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1161
1162 return false;
1163 }
1164
1165
1166 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1167}
1168
1169
1170
1171
1172
1173void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1174{
1175
1176 if (!test_bit(__FM10K_DOWN, interface->state)) {
1177 interface->tx_timeout_count++;
1178 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1179 fm10k_service_event_schedule(interface);
1180 }
1181}
1182
1183
1184
1185
1186
1187
1188
1189static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1190 struct fm10k_ring *tx_ring, int napi_budget)
1191{
1192 struct fm10k_intfc *interface = q_vector->interface;
1193 struct fm10k_tx_buffer *tx_buffer;
1194 struct fm10k_tx_desc *tx_desc;
1195 unsigned int total_bytes = 0, total_packets = 0;
1196 unsigned int budget = q_vector->tx.work_limit;
1197 unsigned int i = tx_ring->next_to_clean;
1198
1199 if (test_bit(__FM10K_DOWN, interface->state))
1200 return true;
1201
1202 tx_buffer = &tx_ring->tx_buffer[i];
1203 tx_desc = FM10K_TX_DESC(tx_ring, i);
1204 i -= tx_ring->count;
1205
1206 do {
1207 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1208
1209
1210 if (!eop_desc)
1211 break;
1212
1213
1214 smp_rmb();
1215
1216
1217 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1218 break;
1219
1220
1221 tx_buffer->next_to_watch = NULL;
1222
1223
1224 total_bytes += tx_buffer->bytecount;
1225 total_packets += tx_buffer->gso_segs;
1226
1227
1228 napi_consume_skb(tx_buffer->skb, napi_budget);
1229
1230
1231 dma_unmap_single(tx_ring->dev,
1232 dma_unmap_addr(tx_buffer, dma),
1233 dma_unmap_len(tx_buffer, len),
1234 DMA_TO_DEVICE);
1235
1236
1237 tx_buffer->skb = NULL;
1238 dma_unmap_len_set(tx_buffer, len, 0);
1239
1240
1241 while (tx_desc != eop_desc) {
1242 tx_buffer++;
1243 tx_desc++;
1244 i++;
1245 if (unlikely(!i)) {
1246 i -= tx_ring->count;
1247 tx_buffer = tx_ring->tx_buffer;
1248 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1249 }
1250
1251
1252 if (dma_unmap_len(tx_buffer, len)) {
1253 dma_unmap_page(tx_ring->dev,
1254 dma_unmap_addr(tx_buffer, dma),
1255 dma_unmap_len(tx_buffer, len),
1256 DMA_TO_DEVICE);
1257 dma_unmap_len_set(tx_buffer, len, 0);
1258 }
1259 }
1260
1261
1262 tx_buffer++;
1263 tx_desc++;
1264 i++;
1265 if (unlikely(!i)) {
1266 i -= tx_ring->count;
1267 tx_buffer = tx_ring->tx_buffer;
1268 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1269 }
1270
1271
1272 prefetch(tx_desc);
1273
1274
1275 budget--;
1276 } while (likely(budget));
1277
1278 i += tx_ring->count;
1279 tx_ring->next_to_clean = i;
1280 u64_stats_update_begin(&tx_ring->syncp);
1281 tx_ring->stats.bytes += total_bytes;
1282 tx_ring->stats.packets += total_packets;
1283 u64_stats_update_end(&tx_ring->syncp);
1284 q_vector->tx.total_bytes += total_bytes;
1285 q_vector->tx.total_packets += total_packets;
1286
1287 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1288
1289 struct fm10k_hw *hw = &interface->hw;
1290
1291 netif_err(interface, drv, tx_ring->netdev,
1292 "Detected Tx Unit Hang\n"
1293 " Tx Queue <%d>\n"
1294 " TDH, TDT <%x>, <%x>\n"
1295 " next_to_use <%x>\n"
1296 " next_to_clean <%x>\n",
1297 tx_ring->queue_index,
1298 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1299 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1300 tx_ring->next_to_use, i);
1301
1302 netif_stop_subqueue(tx_ring->netdev,
1303 tx_ring->queue_index);
1304
1305 netif_info(interface, probe, tx_ring->netdev,
1306 "tx hang %d detected on queue %d, resetting interface\n",
1307 interface->tx_timeout_count + 1,
1308 tx_ring->queue_index);
1309
1310 fm10k_tx_timeout_reset(interface);
1311
1312
1313 return true;
1314 }
1315
1316
1317 netdev_tx_completed_queue(txring_txq(tx_ring),
1318 total_packets, total_bytes);
1319
1320#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1321 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1322 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1323
1324
1325
1326 smp_mb();
1327 if (__netif_subqueue_stopped(tx_ring->netdev,
1328 tx_ring->queue_index) &&
1329 !test_bit(__FM10K_DOWN, interface->state)) {
1330 netif_wake_subqueue(tx_ring->netdev,
1331 tx_ring->queue_index);
1332 ++tx_ring->tx_stats.restart_queue;
1333 }
1334 }
1335
1336 return !!budget;
1337}
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1350{
1351 unsigned int avg_wire_size, packets, itr_round;
1352
1353
1354 if (!ITR_IS_ADAPTIVE(ring_container->itr))
1355 goto clear_counts;
1356
1357 packets = ring_container->total_packets;
1358 if (!packets)
1359 goto clear_counts;
1360
1361 avg_wire_size = ring_container->total_bytes / packets;
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378 if (avg_wire_size <= 360) {
1379
1380 avg_wire_size *= 8;
1381 avg_wire_size += 376;
1382 } else if (avg_wire_size <= 1152) {
1383
1384 avg_wire_size *= 3;
1385 avg_wire_size += 2176;
1386 } else if (avg_wire_size <= 1920) {
1387
1388 avg_wire_size += 4480;
1389 } else {
1390
1391 avg_wire_size = 6656;
1392 }
1393
1394
1395
1396
1397
1398 itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1399 avg_wire_size += BIT(itr_round) - 1;
1400 avg_wire_size >>= itr_round;
1401
1402
1403 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1404
1405clear_counts:
1406 ring_container->total_bytes = 0;
1407 ring_container->total_packets = 0;
1408}
1409
1410static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1411{
1412
1413 u32 itr = FM10K_ITR_ENABLE;
1414
1415
1416 fm10k_update_itr(&q_vector->tx);
1417
1418
1419 fm10k_update_itr(&q_vector->rx);
1420
1421
1422 itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1423
1424
1425 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1426
1427
1428 writel(itr, q_vector->itr);
1429}
1430
1431static int fm10k_poll(struct napi_struct *napi, int budget)
1432{
1433 struct fm10k_q_vector *q_vector =
1434 container_of(napi, struct fm10k_q_vector, napi);
1435 struct fm10k_ring *ring;
1436 int per_ring_budget, work_done = 0;
1437 bool clean_complete = true;
1438
1439 fm10k_for_each_ring(ring, q_vector->tx) {
1440 if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1441 clean_complete = false;
1442 }
1443
1444
1445 if (budget <= 0)
1446 return budget;
1447
1448
1449
1450
1451 if (q_vector->rx.count > 1)
1452 per_ring_budget = max(budget / q_vector->rx.count, 1);
1453 else
1454 per_ring_budget = budget;
1455
1456 fm10k_for_each_ring(ring, q_vector->rx) {
1457 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1458
1459 work_done += work;
1460 if (work >= per_ring_budget)
1461 clean_complete = false;
1462 }
1463
1464
1465 if (!clean_complete)
1466 return budget;
1467
1468
1469 napi_complete_done(napi, work_done);
1470
1471
1472 fm10k_qv_enable(q_vector);
1473
1474 return min(work_done, budget - 1);
1475}
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1489{
1490 struct net_device *dev = interface->netdev;
1491 struct fm10k_ring_feature *f;
1492 int rss_i, i;
1493 int pcs;
1494
1495
1496 pcs = netdev_get_num_tc(dev);
1497
1498 if (pcs <= 1)
1499 return false;
1500
1501
1502 f = &interface->ring_feature[RING_F_QOS];
1503 f->indices = pcs;
1504 f->mask = BIT(fls(pcs - 1)) - 1;
1505
1506
1507 rss_i = interface->hw.mac.max_queues / pcs;
1508 rss_i = BIT(fls(rss_i) - 1);
1509
1510
1511 f = &interface->ring_feature[RING_F_RSS];
1512 rss_i = min_t(u16, rss_i, f->limit);
1513 f->indices = rss_i;
1514 f->mask = BIT(fls(rss_i - 1)) - 1;
1515
1516
1517 for (i = 0; i < pcs; i++)
1518 netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1519
1520 interface->num_rx_queues = rss_i * pcs;
1521 interface->num_tx_queues = rss_i * pcs;
1522
1523 return true;
1524}
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1535{
1536 struct fm10k_ring_feature *f;
1537 u16 rss_i;
1538
1539 f = &interface->ring_feature[RING_F_RSS];
1540 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1541
1542
1543 f->indices = rss_i;
1544 f->mask = BIT(fls(rss_i - 1)) - 1;
1545
1546 interface->num_rx_queues = rss_i;
1547 interface->num_tx_queues = rss_i;
1548
1549 return true;
1550}
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1564{
1565
1566 if (fm10k_set_qos_queues(interface))
1567 return;
1568
1569
1570 fm10k_set_rss_queues(interface);
1571}
1572
1573
1574
1575
1576
1577
1578
1579
1580static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1581{
1582 interface->num_tx_queues = 0;
1583 interface->num_rx_queues = 0;
1584 interface->num_q_vectors = 0;
1585}
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1600 unsigned int v_count, unsigned int v_idx,
1601 unsigned int txr_count, unsigned int txr_idx,
1602 unsigned int rxr_count, unsigned int rxr_idx)
1603{
1604 struct fm10k_q_vector *q_vector;
1605 struct fm10k_ring *ring;
1606 int ring_count, size;
1607
1608 ring_count = txr_count + rxr_count;
1609 size = sizeof(struct fm10k_q_vector) +
1610 (sizeof(struct fm10k_ring) * ring_count);
1611
1612
1613 q_vector = kzalloc(size, GFP_KERNEL);
1614 if (!q_vector)
1615 return -ENOMEM;
1616
1617
1618 netif_napi_add(interface->netdev, &q_vector->napi,
1619 fm10k_poll, NAPI_POLL_WEIGHT);
1620
1621
1622 interface->q_vector[v_idx] = q_vector;
1623 q_vector->interface = interface;
1624 q_vector->v_idx = v_idx;
1625
1626
1627 ring = q_vector->ring;
1628
1629
1630 q_vector->tx.ring = ring;
1631 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1632 q_vector->tx.itr = interface->tx_itr;
1633 q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1634 q_vector->tx.count = txr_count;
1635
1636 while (txr_count) {
1637
1638 ring->dev = &interface->pdev->dev;
1639 ring->netdev = interface->netdev;
1640
1641
1642 ring->q_vector = q_vector;
1643
1644
1645 ring->count = interface->tx_ring_count;
1646 ring->queue_index = txr_idx;
1647
1648
1649 interface->tx_ring[txr_idx] = ring;
1650
1651
1652 txr_count--;
1653 txr_idx += v_count;
1654
1655
1656 ring++;
1657 }
1658
1659
1660 q_vector->rx.ring = ring;
1661 q_vector->rx.itr = interface->rx_itr;
1662 q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1663 q_vector->rx.count = rxr_count;
1664
1665 while (rxr_count) {
1666
1667 ring->dev = &interface->pdev->dev;
1668 ring->netdev = interface->netdev;
1669 rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1670
1671
1672 ring->q_vector = q_vector;
1673
1674
1675 ring->count = interface->rx_ring_count;
1676 ring->queue_index = rxr_idx;
1677
1678
1679 interface->rx_ring[rxr_idx] = ring;
1680
1681
1682 rxr_count--;
1683 rxr_idx += v_count;
1684
1685
1686 ring++;
1687 }
1688
1689 fm10k_dbg_q_vector_init(q_vector);
1690
1691 return 0;
1692}
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1704{
1705 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1706 struct fm10k_ring *ring;
1707
1708 fm10k_dbg_q_vector_exit(q_vector);
1709
1710 fm10k_for_each_ring(ring, q_vector->tx)
1711 interface->tx_ring[ring->queue_index] = NULL;
1712
1713 fm10k_for_each_ring(ring, q_vector->rx)
1714 interface->rx_ring[ring->queue_index] = NULL;
1715
1716 interface->q_vector[v_idx] = NULL;
1717 netif_napi_del(&q_vector->napi);
1718 kfree_rcu(q_vector, rcu);
1719}
1720
1721
1722
1723
1724
1725
1726
1727
1728static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1729{
1730 unsigned int q_vectors = interface->num_q_vectors;
1731 unsigned int rxr_remaining = interface->num_rx_queues;
1732 unsigned int txr_remaining = interface->num_tx_queues;
1733 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1734 int err;
1735
1736 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1737 for (; rxr_remaining; v_idx++) {
1738 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1739 0, 0, 1, rxr_idx);
1740 if (err)
1741 goto err_out;
1742
1743
1744 rxr_remaining--;
1745 rxr_idx++;
1746 }
1747 }
1748
1749 for (; v_idx < q_vectors; v_idx++) {
1750 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1751 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1752
1753 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1754 tqpv, txr_idx,
1755 rqpv, rxr_idx);
1756
1757 if (err)
1758 goto err_out;
1759
1760
1761 rxr_remaining -= rqpv;
1762 txr_remaining -= tqpv;
1763 rxr_idx++;
1764 txr_idx++;
1765 }
1766
1767 return 0;
1768
1769err_out:
1770 fm10k_reset_num_queues(interface);
1771
1772 while (v_idx--)
1773 fm10k_free_q_vector(interface, v_idx);
1774
1775 return -ENOMEM;
1776}
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1787{
1788 int v_idx = interface->num_q_vectors;
1789
1790 fm10k_reset_num_queues(interface);
1791
1792 while (v_idx--)
1793 fm10k_free_q_vector(interface, v_idx);
1794}
1795
1796
1797
1798
1799
1800
1801
1802static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1803{
1804 pci_disable_msix(interface->pdev);
1805 kfree(interface->msix_entries);
1806 interface->msix_entries = NULL;
1807}
1808
1809
1810
1811
1812
1813
1814
1815
1816static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1817{
1818 struct fm10k_hw *hw = &interface->hw;
1819 int v_budget, vector;
1820
1821
1822
1823
1824
1825
1826
1827 v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1828 v_budget = min_t(u16, v_budget, num_online_cpus());
1829
1830
1831 v_budget += NON_Q_VECTORS(hw);
1832
1833
1834
1835
1836
1837
1838
1839 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1840
1841
1842 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1843 GFP_KERNEL);
1844 if (!interface->msix_entries)
1845 return -ENOMEM;
1846
1847
1848 for (vector = 0; vector < v_budget; vector++)
1849 interface->msix_entries[vector].entry = vector;
1850
1851
1852 v_budget = pci_enable_msix_range(interface->pdev,
1853 interface->msix_entries,
1854 MIN_MSIX_COUNT(hw),
1855 v_budget);
1856 if (v_budget < 0) {
1857 kfree(interface->msix_entries);
1858 interface->msix_entries = NULL;
1859 return v_budget;
1860 }
1861
1862
1863 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1864
1865 return 0;
1866}
1867
1868
1869
1870
1871
1872
1873
1874static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1875{
1876 struct net_device *dev = interface->netdev;
1877 int pc, offset, rss_i, i, q_idx;
1878 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1879 u8 num_pcs = netdev_get_num_tc(dev);
1880
1881 if (num_pcs <= 1)
1882 return false;
1883
1884 rss_i = interface->ring_feature[RING_F_RSS].indices;
1885
1886 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1887 q_idx = pc;
1888 for (i = 0; i < rss_i; i++) {
1889 interface->tx_ring[offset + i]->reg_idx = q_idx;
1890 interface->tx_ring[offset + i]->qos_pc = pc;
1891 interface->rx_ring[offset + i]->reg_idx = q_idx;
1892 interface->rx_ring[offset + i]->qos_pc = pc;
1893 q_idx += pc_stride;
1894 }
1895 }
1896
1897 return true;
1898}
1899
1900
1901
1902
1903
1904
1905
1906static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1907{
1908 int i;
1909
1910 for (i = 0; i < interface->num_rx_queues; i++)
1911 interface->rx_ring[i]->reg_idx = i;
1912
1913 for (i = 0; i < interface->num_tx_queues; i++)
1914 interface->tx_ring[i]->reg_idx = i;
1915}
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925static void fm10k_assign_rings(struct fm10k_intfc *interface)
1926{
1927 if (fm10k_cache_ring_qos(interface))
1928 return;
1929
1930 fm10k_cache_ring_rss(interface);
1931}
1932
1933static void fm10k_init_reta(struct fm10k_intfc *interface)
1934{
1935 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1936 u32 reta;
1937
1938
1939
1940
1941 if (netif_is_rxfh_configured(interface->netdev)) {
1942 for (i = FM10K_RETA_SIZE; i--;) {
1943 reta = interface->reta[i];
1944 if ((((reta << 24) >> 24) < rss_i) &&
1945 (((reta << 16) >> 24) < rss_i) &&
1946 (((reta << 8) >> 24) < rss_i) &&
1947 (((reta) >> 24) < rss_i))
1948 continue;
1949
1950
1951 dev_err(&interface->pdev->dev,
1952 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1953 goto repopulate_reta;
1954 }
1955
1956
1957 return;
1958 }
1959
1960repopulate_reta:
1961 fm10k_write_reta(interface, NULL);
1962}
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1973{
1974 int err;
1975
1976
1977 fm10k_set_num_queues(interface);
1978
1979
1980 err = fm10k_init_msix_capability(interface);
1981 if (err) {
1982 dev_err(&interface->pdev->dev,
1983 "Unable to initialize MSI-X capability\n");
1984 goto err_init_msix;
1985 }
1986
1987
1988 err = fm10k_alloc_q_vectors(interface);
1989 if (err) {
1990 dev_err(&interface->pdev->dev,
1991 "Unable to allocate queue vectors\n");
1992 goto err_alloc_q_vectors;
1993 }
1994
1995
1996 fm10k_assign_rings(interface);
1997
1998
1999 fm10k_init_reta(interface);
2000
2001 return 0;
2002
2003err_alloc_q_vectors:
2004 fm10k_reset_msix_capability(interface);
2005err_init_msix:
2006 fm10k_reset_num_queues(interface);
2007 return err;
2008}
2009
2010
2011
2012
2013
2014
2015
2016
2017void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2018{
2019 fm10k_free_q_vectors(interface);
2020 fm10k_reset_msix_capability(interface);
2021}
2022