linux/drivers/net/wan/z85230.c
<<
>>
Prefs
   1/*
   2 *      This program is free software; you can redistribute it and/or
   3 *      modify it under the terms of the GNU General Public License
   4 *      as published by the Free Software Foundation; either version
   5 *      2 of the License, or (at your option) any later version.
   6 *
   7 *      (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
   8 *      (c) Copyright 2000, 2001 Red Hat Inc
   9 *
  10 *      Development of this driver was funded by Equiinet Ltd
  11 *                      http://www.equiinet.com
  12 *
  13 *      ChangeLog:
  14 *
  15 *      Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
  16 *      unification of all the Z85x30 asynchronous drivers for real.
  17 *
  18 *      DMA now uses get_free_page as kmalloc buffers may span a 64K 
  19 *      boundary.
  20 *
  21 *      Modified for SMP safety and SMP locking by Alan Cox
  22 *                                      <alan@lxorguk.ukuu.org.uk>
  23 *
  24 *      Performance
  25 *
  26 *      Z85230:
  27 *      Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
  28 *      X.25 is not unrealistic on all machines. DMA mode can in theory
  29 *      handle T1/E1 quite nicely. In practice the limit seems to be about
  30 *      512Kbit->1Mbit depending on motherboard.
  31 *
  32 *      Z85C30:
  33 *      64K will take DMA, 9600 baud X.25 should be ok.
  34 *
  35 *      Z8530:
  36 *      Synchronous mode without DMA is unlikely to pass about 2400 baud.
  37 */
  38
  39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  40
  41#include <linux/module.h>
  42#include <linux/kernel.h>
  43#include <linux/mm.h>
  44#include <linux/net.h>
  45#include <linux/skbuff.h>
  46#include <linux/netdevice.h>
  47#include <linux/if_arp.h>
  48#include <linux/delay.h>
  49#include <linux/hdlc.h>
  50#include <linux/ioport.h>
  51#include <linux/init.h>
  52#include <linux/gfp.h>
  53#include <asm/dma.h>
  54#include <asm/io.h>
  55#define RT_LOCK
  56#define RT_UNLOCK
  57#include <linux/spinlock.h>
  58
  59#include "z85230.h"
  60
  61
  62/**
  63 *      z8530_read_port - Architecture specific interface function
  64 *      @p: port to read
  65 *
  66 *      Provided port access methods. The Comtrol SV11 requires no delays
  67 *      between accesses and uses PC I/O. Some drivers may need a 5uS delay
  68 *      
  69 *      In the longer term this should become an architecture specific
  70 *      section so that this can become a generic driver interface for all
  71 *      platforms. For now we only handle PC I/O ports with or without the
  72 *      dread 5uS sanity delay.
  73 *
  74 *      The caller must hold sufficient locks to avoid violating the horrible
  75 *      5uS delay rule.
  76 */
  77
  78static inline int z8530_read_port(unsigned long p)
  79{
  80        u8 r=inb(Z8530_PORT_OF(p));
  81        if(p&Z8530_PORT_SLEEP)  /* gcc should figure this out efficiently ! */
  82                udelay(5);
  83        return r;
  84}
  85
  86/**
  87 *      z8530_write_port - Architecture specific interface function
  88 *      @p: port to write
  89 *      @d: value to write
  90 *
  91 *      Write a value to a port with delays if need be. Note that the
  92 *      caller must hold locks to avoid read/writes from other contexts
  93 *      violating the 5uS rule
  94 *
  95 *      In the longer term this should become an architecture specific
  96 *      section so that this can become a generic driver interface for all
  97 *      platforms. For now we only handle PC I/O ports with or without the
  98 *      dread 5uS sanity delay.
  99 */
 100
 101
 102static inline void z8530_write_port(unsigned long p, u8 d)
 103{
 104        outb(d,Z8530_PORT_OF(p));
 105        if(p&Z8530_PORT_SLEEP)
 106                udelay(5);
 107}
 108
 109
 110
 111static void z8530_rx_done(struct z8530_channel *c);
 112static void z8530_tx_done(struct z8530_channel *c);
 113
 114
 115/**
 116 *      read_zsreg - Read a register from a Z85230 
 117 *      @c: Z8530 channel to read from (2 per chip)
 118 *      @reg: Register to read
 119 *      FIXME: Use a spinlock.
 120 *      
 121 *      Most of the Z8530 registers are indexed off the control registers.
 122 *      A read is done by writing to the control register and reading the
 123 *      register back.  The caller must hold the lock
 124 */
 125 
 126static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
 127{
 128        if(reg)
 129                z8530_write_port(c->ctrlio, reg);
 130        return z8530_read_port(c->ctrlio);
 131}
 132
 133/**
 134 *      read_zsdata - Read the data port of a Z8530 channel
 135 *      @c: The Z8530 channel to read the data port from
 136 *
 137 *      The data port provides fast access to some things. We still
 138 *      have all the 5uS delays to worry about.
 139 */
 140
 141static inline u8 read_zsdata(struct z8530_channel *c)
 142{
 143        u8 r;
 144        r=z8530_read_port(c->dataio);
 145        return r;
 146}
 147
 148/**
 149 *      write_zsreg - Write to a Z8530 channel register
 150 *      @c: The Z8530 channel
 151 *      @reg: Register number
 152 *      @val: Value to write
 153 *
 154 *      Write a value to an indexed register. The caller must hold the lock
 155 *      to honour the irritating delay rules. We know about register 0
 156 *      being fast to access.
 157 *
 158 *      Assumes c->lock is held.
 159 */
 160static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
 161{
 162        if(reg)
 163                z8530_write_port(c->ctrlio, reg);
 164        z8530_write_port(c->ctrlio, val);
 165
 166}
 167
 168/**
 169 *      write_zsctrl - Write to a Z8530 control register
 170 *      @c: The Z8530 channel
 171 *      @val: Value to write
 172 *
 173 *      Write directly to the control register on the Z8530
 174 */
 175
 176static inline void write_zsctrl(struct z8530_channel *c, u8 val)
 177{
 178        z8530_write_port(c->ctrlio, val);
 179}
 180
 181/**
 182 *      write_zsdata - Write to a Z8530 control register
 183 *      @c: The Z8530 channel
 184 *      @val: Value to write
 185 *
 186 *      Write directly to the data register on the Z8530
 187 */
 188
 189
 190static inline void write_zsdata(struct z8530_channel *c, u8 val)
 191{
 192        z8530_write_port(c->dataio, val);
 193}
 194
 195/*
 196 *      Register loading parameters for a dead port
 197 */
 198 
 199u8 z8530_dead_port[]=
 200{
 201        255
 202};
 203
 204EXPORT_SYMBOL(z8530_dead_port);
 205
 206/*
 207 *      Register loading parameters for currently supported circuit types
 208 */
 209
 210
 211/*
 212 *      Data clocked by telco end. This is the correct data for the UK
 213 *      "kilostream" service, and most other similar services.
 214 */
 215 
 216u8 z8530_hdlc_kilostream[]=
 217{
 218        4,      SYNC_ENAB|SDLC|X1CLK,
 219        2,      0,      /* No vector */
 220        1,      0,
 221        3,      ENT_HM|RxCRC_ENAB|Rx8,
 222        5,      TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
 223        9,      0,              /* Disable interrupts */
 224        6,      0xFF,
 225        7,      FLAG,
 226        10,     ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
 227        11,     TCTRxCP,
 228        14,     DISDPLL,
 229        15,     DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
 230        1,      EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
 231        9,      NV|MIE|NORESET,
 232        255
 233};
 234
 235EXPORT_SYMBOL(z8530_hdlc_kilostream);
 236
 237/*
 238 *      As above but for enhanced chips.
 239 */
 240 
 241u8 z8530_hdlc_kilostream_85230[]=
 242{
 243        4,      SYNC_ENAB|SDLC|X1CLK,
 244        2,      0,      /* No vector */
 245        1,      0,
 246        3,      ENT_HM|RxCRC_ENAB|Rx8,
 247        5,      TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
 248        9,      0,              /* Disable interrupts */
 249        6,      0xFF,
 250        7,      FLAG,
 251        10,     ABUNDER|NRZ|CRCPS,      /* MARKIDLE?? */
 252        11,     TCTRxCP,
 253        14,     DISDPLL,
 254        15,     DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
 255        1,      EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
 256        9,      NV|MIE|NORESET,
 257        23,     3,              /* Extended mode AUTO TX and EOM*/
 258        
 259        255
 260};
 261
 262EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
 263
 264/**
 265 *      z8530_flush_fifo - Flush on chip RX FIFO
 266 *      @c: Channel to flush
 267 *
 268 *      Flush the receive FIFO. There is no specific option for this, we 
 269 *      blindly read bytes and discard them. Reading when there is no data
 270 *      is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
 271 *      
 272 *      All locking is handled for the caller. On return data may still be
 273 *      present if it arrived during the flush.
 274 */
 275 
 276static void z8530_flush_fifo(struct z8530_channel *c)
 277{
 278        read_zsreg(c, R1);
 279        read_zsreg(c, R1);
 280        read_zsreg(c, R1);
 281        read_zsreg(c, R1);
 282        if(c->dev->type==Z85230)
 283        {
 284                read_zsreg(c, R1);
 285                read_zsreg(c, R1);
 286                read_zsreg(c, R1);
 287                read_zsreg(c, R1);
 288        }
 289}       
 290
 291/**
 292 *      z8530_rtsdtr - Control the outgoing DTS/RTS line
 293 *      @c: The Z8530 channel to control;
 294 *      @set: 1 to set, 0 to clear
 295 *
 296 *      Sets or clears DTR/RTS on the requested line. All locking is handled
 297 *      by the caller. For now we assume all boards use the actual RTS/DTR
 298 *      on the chip. Apparently one or two don't. We'll scream about them
 299 *      later.
 300 */
 301
 302static void z8530_rtsdtr(struct z8530_channel *c, int set)
 303{
 304        if (set)
 305                c->regs[5] |= (RTS | DTR);
 306        else
 307                c->regs[5] &= ~(RTS | DTR);
 308        write_zsreg(c, R5, c->regs[5]);
 309}
 310
 311/**
 312 *      z8530_rx - Handle a PIO receive event
 313 *      @c: Z8530 channel to process
 314 *
 315 *      Receive handler for receiving in PIO mode. This is much like the 
 316 *      async one but not quite the same or as complex
 317 *
 318 *      Note: Its intended that this handler can easily be separated from
 319 *      the main code to run realtime. That'll be needed for some machines
 320 *      (eg to ever clock 64kbits on a sparc ;)).
 321 *
 322 *      The RT_LOCK macros don't do anything now. Keep the code covered
 323 *      by them as short as possible in all circumstances - clocks cost
 324 *      baud. The interrupt handler is assumed to be atomic w.r.t. to
 325 *      other code - this is true in the RT case too.
 326 *
 327 *      We only cover the sync cases for this. If you want 2Mbit async
 328 *      do it yourself but consider medical assistance first. This non DMA 
 329 *      synchronous mode is portable code. The DMA mode assumes PCI like 
 330 *      ISA DMA
 331 *
 332 *      Called with the device lock held
 333 */
 334 
 335static void z8530_rx(struct z8530_channel *c)
 336{
 337        u8 ch,stat;
 338
 339        while(1)
 340        {
 341                /* FIFO empty ? */
 342                if(!(read_zsreg(c, R0)&1))
 343                        break;
 344                ch=read_zsdata(c);
 345                stat=read_zsreg(c, R1);
 346        
 347                /*
 348                 *      Overrun ?
 349                 */
 350                if(c->count < c->max)
 351                {
 352                        *c->dptr++=ch;
 353                        c->count++;
 354                }
 355
 356                if(stat&END_FR)
 357                {
 358                
 359                        /*
 360                         *      Error ?
 361                         */
 362                        if(stat&(Rx_OVR|CRC_ERR))
 363                        {
 364                                /* Rewind the buffer and return */
 365                                if(c->skb)
 366                                        c->dptr=c->skb->data;
 367                                c->count=0;
 368                                if(stat&Rx_OVR)
 369                                {
 370                                        pr_warn("%s: overrun\n", c->dev->name);
 371                                        c->rx_overrun++;
 372                                }
 373                                if(stat&CRC_ERR)
 374                                {
 375                                        c->rx_crc_err++;
 376                                        /* printk("crc error\n"); */
 377                                }
 378                                /* Shove the frame upstream */
 379                        }
 380                        else
 381                        {
 382                                /*
 383                                 *      Drop the lock for RX processing, or
 384                                 *      there are deadlocks
 385                                 */
 386                                z8530_rx_done(c);
 387                                write_zsctrl(c, RES_Rx_CRC);
 388                        }
 389                }
 390        }
 391        /*
 392         *      Clear irq
 393         */
 394        write_zsctrl(c, ERR_RES);
 395        write_zsctrl(c, RES_H_IUS);
 396}
 397
 398
 399/**
 400 *      z8530_tx - Handle a PIO transmit event
 401 *      @c: Z8530 channel to process
 402 *
 403 *      Z8530 transmit interrupt handler for the PIO mode. The basic
 404 *      idea is to attempt to keep the FIFO fed. We fill as many bytes
 405 *      in as possible, its quite possible that we won't keep up with the
 406 *      data rate otherwise.
 407 */
 408 
 409static void z8530_tx(struct z8530_channel *c)
 410{
 411        while(c->txcount) {
 412                /* FIFO full ? */
 413                if(!(read_zsreg(c, R0)&4))
 414                        return;
 415                c->txcount--;
 416                /*
 417                 *      Shovel out the byte
 418                 */
 419                write_zsreg(c, R8, *c->tx_ptr++);
 420                write_zsctrl(c, RES_H_IUS);
 421                /* We are about to underflow */
 422                if(c->txcount==0)
 423                {
 424                        write_zsctrl(c, RES_EOM_L);
 425                        write_zsreg(c, R10, c->regs[10]&~ABUNDER);
 426                }
 427        }
 428
 429        
 430        /*
 431         *      End of frame TX - fire another one
 432         */
 433         
 434        write_zsctrl(c, RES_Tx_P);
 435
 436        z8530_tx_done(c);        
 437        write_zsctrl(c, RES_H_IUS);
 438}
 439
 440/**
 441 *      z8530_status - Handle a PIO status exception
 442 *      @chan: Z8530 channel to process
 443 *
 444 *      A status event occurred in PIO synchronous mode. There are several
 445 *      reasons the chip will bother us here. A transmit underrun means we
 446 *      failed to feed the chip fast enough and just broke a packet. A DCD
 447 *      change is a line up or down.
 448 */
 449
 450static void z8530_status(struct z8530_channel *chan)
 451{
 452        u8 status, altered;
 453
 454        status = read_zsreg(chan, R0);
 455        altered = chan->status ^ status;
 456
 457        chan->status = status;
 458
 459        if (status & TxEOM) {
 460/*              printk("%s: Tx underrun.\n", chan->dev->name); */
 461                chan->netdevice->stats.tx_fifo_errors++;
 462                write_zsctrl(chan, ERR_RES);
 463                z8530_tx_done(chan);
 464        }
 465
 466        if (altered & chan->dcdcheck)
 467        {
 468                if (status & chan->dcdcheck) {
 469                        pr_info("%s: DCD raised\n", chan->dev->name);
 470                        write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
 471                        if (chan->netdevice)
 472                                netif_carrier_on(chan->netdevice);
 473                } else {
 474                        pr_info("%s: DCD lost\n", chan->dev->name);
 475                        write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
 476                        z8530_flush_fifo(chan);
 477                        if (chan->netdevice)
 478                                netif_carrier_off(chan->netdevice);
 479                }
 480
 481        }
 482        write_zsctrl(chan, RES_EXT_INT);
 483        write_zsctrl(chan, RES_H_IUS);
 484}
 485
 486struct z8530_irqhandler z8530_sync = {
 487        .rx = z8530_rx,
 488        .tx = z8530_tx,
 489        .status = z8530_status,
 490};
 491
 492EXPORT_SYMBOL(z8530_sync);
 493
 494/**
 495 *      z8530_dma_rx - Handle a DMA RX event
 496 *      @chan: Channel to handle
 497 *
 498 *      Non bus mastering DMA interfaces for the Z8x30 devices. This
 499 *      is really pretty PC specific. The DMA mode means that most receive
 500 *      events are handled by the DMA hardware. We get a kick here only if
 501 *      a frame ended.
 502 */
 503 
 504static void z8530_dma_rx(struct z8530_channel *chan)
 505{
 506        if(chan->rxdma_on)
 507        {
 508                /* Special condition check only */
 509                u8 status;
 510        
 511                read_zsreg(chan, R7);
 512                read_zsreg(chan, R6);
 513                
 514                status=read_zsreg(chan, R1);
 515        
 516                if(status&END_FR)
 517                {
 518                        z8530_rx_done(chan);    /* Fire up the next one */
 519                }               
 520                write_zsctrl(chan, ERR_RES);
 521                write_zsctrl(chan, RES_H_IUS);
 522        }
 523        else
 524        {
 525                /* DMA is off right now, drain the slow way */
 526                z8530_rx(chan);
 527        }       
 528}
 529
 530/**
 531 *      z8530_dma_tx - Handle a DMA TX event
 532 *      @chan:  The Z8530 channel to handle
 533 *
 534 *      We have received an interrupt while doing DMA transmissions. It
 535 *      shouldn't happen. Scream loudly if it does.
 536 */
 537 
 538static void z8530_dma_tx(struct z8530_channel *chan)
 539{
 540        if(!chan->dma_tx)
 541        {
 542                pr_warn("Hey who turned the DMA off?\n");
 543                z8530_tx(chan);
 544                return;
 545        }
 546        /* This shouldn't occur in DMA mode */
 547        pr_err("DMA tx - bogus event!\n");
 548        z8530_tx(chan);
 549}
 550
 551/**
 552 *      z8530_dma_status - Handle a DMA status exception
 553 *      @chan: Z8530 channel to process
 554 *      
 555 *      A status event occurred on the Z8530. We receive these for two reasons
 556 *      when in DMA mode. Firstly if we finished a packet transfer we get one
 557 *      and kick the next packet out. Secondly we may see a DCD change.
 558 *
 559 */
 560 
 561static void z8530_dma_status(struct z8530_channel *chan)
 562{
 563        u8 status, altered;
 564
 565        status=read_zsreg(chan, R0);
 566        altered=chan->status^status;
 567        
 568        chan->status=status;
 569
 570
 571        if(chan->dma_tx)
 572        {
 573                if(status&TxEOM)
 574                {
 575                        unsigned long flags;
 576        
 577                        flags=claim_dma_lock();
 578                        disable_dma(chan->txdma);
 579                        clear_dma_ff(chan->txdma);      
 580                        chan->txdma_on=0;
 581                        release_dma_lock(flags);
 582                        z8530_tx_done(chan);
 583                }
 584        }
 585
 586        if (altered & chan->dcdcheck)
 587        {
 588                if (status & chan->dcdcheck) {
 589                        pr_info("%s: DCD raised\n", chan->dev->name);
 590                        write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
 591                        if (chan->netdevice)
 592                                netif_carrier_on(chan->netdevice);
 593                } else {
 594                        pr_info("%s: DCD lost\n", chan->dev->name);
 595                        write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
 596                        z8530_flush_fifo(chan);
 597                        if (chan->netdevice)
 598                                netif_carrier_off(chan->netdevice);
 599                }
 600        }
 601
 602        write_zsctrl(chan, RES_EXT_INT);
 603        write_zsctrl(chan, RES_H_IUS);
 604}
 605
 606static struct z8530_irqhandler z8530_dma_sync = {
 607        .rx = z8530_dma_rx,
 608        .tx = z8530_dma_tx,
 609        .status = z8530_dma_status,
 610};
 611
 612static struct z8530_irqhandler z8530_txdma_sync = {
 613        .rx = z8530_rx,
 614        .tx = z8530_dma_tx,
 615        .status = z8530_dma_status,
 616};
 617
 618/**
 619 *      z8530_rx_clear - Handle RX events from a stopped chip
 620 *      @c: Z8530 channel to shut up
 621 *
 622 *      Receive interrupt vectors for a Z8530 that is in 'parked' mode.
 623 *      For machines with PCI Z85x30 cards, or level triggered interrupts
 624 *      (eg the MacII) we must clear the interrupt cause or die.
 625 */
 626
 627
 628static void z8530_rx_clear(struct z8530_channel *c)
 629{
 630        /*
 631         *      Data and status bytes
 632         */
 633        u8 stat;
 634
 635        read_zsdata(c);
 636        stat=read_zsreg(c, R1);
 637        
 638        if(stat&END_FR)
 639                write_zsctrl(c, RES_Rx_CRC);
 640        /*
 641         *      Clear irq
 642         */
 643        write_zsctrl(c, ERR_RES);
 644        write_zsctrl(c, RES_H_IUS);
 645}
 646
 647/**
 648 *      z8530_tx_clear - Handle TX events from a stopped chip
 649 *      @c: Z8530 channel to shut up
 650 *
 651 *      Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
 652 *      For machines with PCI Z85x30 cards, or level triggered interrupts
 653 *      (eg the MacII) we must clear the interrupt cause or die.
 654 */
 655
 656static void z8530_tx_clear(struct z8530_channel *c)
 657{
 658        write_zsctrl(c, RES_Tx_P);
 659        write_zsctrl(c, RES_H_IUS);
 660}
 661
 662/**
 663 *      z8530_status_clear - Handle status events from a stopped chip
 664 *      @chan: Z8530 channel to shut up
 665 *
 666 *      Status interrupt vectors for a Z8530 that is in 'parked' mode.
 667 *      For machines with PCI Z85x30 cards, or level triggered interrupts
 668 *      (eg the MacII) we must clear the interrupt cause or die.
 669 */
 670
 671static void z8530_status_clear(struct z8530_channel *chan)
 672{
 673        u8 status=read_zsreg(chan, R0);
 674        if(status&TxEOM)
 675                write_zsctrl(chan, ERR_RES);
 676        write_zsctrl(chan, RES_EXT_INT);
 677        write_zsctrl(chan, RES_H_IUS);
 678}
 679
 680struct z8530_irqhandler z8530_nop = {
 681        .rx = z8530_rx_clear,
 682        .tx = z8530_tx_clear,
 683        .status = z8530_status_clear,
 684};
 685
 686
 687EXPORT_SYMBOL(z8530_nop);
 688
 689/**
 690 *      z8530_interrupt - Handle an interrupt from a Z8530
 691 *      @irq:   Interrupt number
 692 *      @dev_id: The Z8530 device that is interrupting.
 693 *
 694 *      A Z85[2]30 device has stuck its hand in the air for attention.
 695 *      We scan both the channels on the chip for events and then call
 696 *      the channel specific call backs for each channel that has events.
 697 *      We have to use callback functions because the two channels can be
 698 *      in different modes.
 699 *
 700 *      Locking is done for the handlers. Note that locking is done
 701 *      at the chip level (the 5uS delay issue is per chip not per
 702 *      channel). c->lock for both channels points to dev->lock
 703 */
 704
 705irqreturn_t z8530_interrupt(int irq, void *dev_id)
 706{
 707        struct z8530_dev *dev=dev_id;
 708        u8 uninitialized_var(intr);
 709        static volatile int locker=0;
 710        int work=0;
 711        struct z8530_irqhandler *irqs;
 712        
 713        if(locker)
 714        {
 715                pr_err("IRQ re-enter\n");
 716                return IRQ_NONE;
 717        }
 718        locker=1;
 719
 720        spin_lock(&dev->lock);
 721
 722        while(++work<5000)
 723        {
 724
 725                intr = read_zsreg(&dev->chanA, R3);
 726                if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
 727                        break;
 728        
 729                /* This holds the IRQ status. On the 8530 you must read it from chan 
 730                   A even though it applies to the whole chip */
 731                
 732                /* Now walk the chip and see what it is wanting - it may be
 733                   an IRQ for someone else remember */
 734                   
 735                irqs=dev->chanA.irqs;
 736
 737                if(intr & (CHARxIP|CHATxIP|CHAEXT))
 738                {
 739                        if(intr&CHARxIP)
 740                                irqs->rx(&dev->chanA);
 741                        if(intr&CHATxIP)
 742                                irqs->tx(&dev->chanA);
 743                        if(intr&CHAEXT)
 744                                irqs->status(&dev->chanA);
 745                }
 746
 747                irqs=dev->chanB.irqs;
 748
 749                if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
 750                {
 751                        if(intr&CHBRxIP)
 752                                irqs->rx(&dev->chanB);
 753                        if(intr&CHBTxIP)
 754                                irqs->tx(&dev->chanB);
 755                        if(intr&CHBEXT)
 756                                irqs->status(&dev->chanB);
 757                }
 758        }
 759        spin_unlock(&dev->lock);
 760        if(work==5000)
 761                pr_err("%s: interrupt jammed - abort(0x%X)!\n",
 762                       dev->name, intr);
 763        /* Ok all done */
 764        locker=0;
 765        return IRQ_HANDLED;
 766}
 767
 768EXPORT_SYMBOL(z8530_interrupt);
 769
 770static const u8 reg_init[16]=
 771{
 772        0,0,0,0,
 773        0,0,0,0,
 774        0,0,0,0,
 775        0x55,0,0,0
 776};
 777
 778
 779/**
 780 *      z8530_sync_open - Open a Z8530 channel for PIO
 781 *      @dev:   The network interface we are using
 782 *      @c:     The Z8530 channel to open in synchronous PIO mode
 783 *
 784 *      Switch a Z8530 into synchronous mode without DMA assist. We
 785 *      raise the RTS/DTR and commence network operation.
 786 */
 787 
 788int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
 789{
 790        unsigned long flags;
 791
 792        spin_lock_irqsave(c->lock, flags);
 793
 794        c->sync = 1;
 795        c->mtu = dev->mtu+64;
 796        c->count = 0;
 797        c->skb = NULL;
 798        c->skb2 = NULL;
 799        c->irqs = &z8530_sync;
 800
 801        /* This loads the double buffer up */
 802        z8530_rx_done(c);       /* Load the frame ring */
 803        z8530_rx_done(c);       /* Load the backup frame */
 804        z8530_rtsdtr(c,1);
 805        c->dma_tx = 0;
 806        c->regs[R1]|=TxINT_ENAB;
 807        write_zsreg(c, R1, c->regs[R1]);
 808        write_zsreg(c, R3, c->regs[R3]|RxENABLE);
 809
 810        spin_unlock_irqrestore(c->lock, flags);
 811        return 0;
 812}
 813
 814
 815EXPORT_SYMBOL(z8530_sync_open);
 816
 817/**
 818 *      z8530_sync_close - Close a PIO Z8530 channel
 819 *      @dev: Network device to close
 820 *      @c: Z8530 channel to disassociate and move to idle
 821 *
 822 *      Close down a Z8530 interface and switch its interrupt handlers
 823 *      to discard future events.
 824 */
 825 
 826int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
 827{
 828        u8 chk;
 829        unsigned long flags;
 830        
 831        spin_lock_irqsave(c->lock, flags);
 832        c->irqs = &z8530_nop;
 833        c->max = 0;
 834        c->sync = 0;
 835        
 836        chk=read_zsreg(c,R0);
 837        write_zsreg(c, R3, c->regs[R3]);
 838        z8530_rtsdtr(c,0);
 839
 840        spin_unlock_irqrestore(c->lock, flags);
 841        return 0;
 842}
 843
 844EXPORT_SYMBOL(z8530_sync_close);
 845
 846/**
 847 *      z8530_sync_dma_open - Open a Z8530 for DMA I/O
 848 *      @dev: The network device to attach
 849 *      @c: The Z8530 channel to configure in sync DMA mode.
 850 *
 851 *      Set up a Z85x30 device for synchronous DMA in both directions. Two
 852 *      ISA DMA channels must be available for this to work. We assume ISA
 853 *      DMA driven I/O and PC limits on access.
 854 */
 855 
 856int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
 857{
 858        unsigned long cflags, dflags;
 859        
 860        c->sync = 1;
 861        c->mtu = dev->mtu+64;
 862        c->count = 0;
 863        c->skb = NULL;
 864        c->skb2 = NULL;
 865        /*
 866         *      Load the DMA interfaces up
 867         */
 868        c->rxdma_on = 0;
 869        c->txdma_on = 0;
 870        
 871        /*
 872         *      Allocate the DMA flip buffers. Limit by page size.
 873         *      Everyone runs 1500 mtu or less on wan links so this
 874         *      should be fine.
 875         */
 876         
 877        if(c->mtu  > PAGE_SIZE/2)
 878                return -EMSGSIZE;
 879         
 880        c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
 881        if(c->rx_buf[0]==NULL)
 882                return -ENOBUFS;
 883        c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
 884        
 885        c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
 886        if(c->tx_dma_buf[0]==NULL)
 887        {
 888                free_page((unsigned long)c->rx_buf[0]);
 889                c->rx_buf[0]=NULL;
 890                return -ENOBUFS;
 891        }
 892        c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;
 893
 894        c->tx_dma_used=0;
 895        c->dma_tx = 1;
 896        c->dma_num=0;
 897        c->dma_ready=1;
 898        
 899        /*
 900         *      Enable DMA control mode
 901         */
 902
 903        spin_lock_irqsave(c->lock, cflags);
 904         
 905        /*
 906         *      TX DMA via DIR/REQ
 907         */
 908         
 909        c->regs[R14]|= DTRREQ;
 910        write_zsreg(c, R14, c->regs[R14]);     
 911
 912        c->regs[R1]&= ~TxINT_ENAB;
 913        write_zsreg(c, R1, c->regs[R1]);
 914        
 915        /*
 916         *      RX DMA via W/Req
 917         */      
 918
 919        c->regs[R1]|= WT_FN_RDYFN;
 920        c->regs[R1]|= WT_RDY_RT;
 921        c->regs[R1]|= INT_ERR_Rx;
 922        c->regs[R1]&= ~TxINT_ENAB;
 923        write_zsreg(c, R1, c->regs[R1]);
 924        c->regs[R1]|= WT_RDY_ENAB;
 925        write_zsreg(c, R1, c->regs[R1]);            
 926        
 927        /*
 928         *      DMA interrupts
 929         */
 930         
 931        /*
 932         *      Set up the DMA configuration
 933         */     
 934         
 935        dflags=claim_dma_lock();
 936         
 937        disable_dma(c->rxdma);
 938        clear_dma_ff(c->rxdma);
 939        set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
 940        set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
 941        set_dma_count(c->rxdma, c->mtu);
 942        enable_dma(c->rxdma);
 943
 944        disable_dma(c->txdma);
 945        clear_dma_ff(c->txdma);
 946        set_dma_mode(c->txdma, DMA_MODE_WRITE);
 947        disable_dma(c->txdma);
 948        
 949        release_dma_lock(dflags);
 950        
 951        /*
 952         *      Select the DMA interrupt handlers
 953         */
 954
 955        c->rxdma_on = 1;
 956        c->txdma_on = 1;
 957        c->tx_dma_used = 1;
 958         
 959        c->irqs = &z8530_dma_sync;
 960        z8530_rtsdtr(c,1);
 961        write_zsreg(c, R3, c->regs[R3]|RxENABLE);
 962
 963        spin_unlock_irqrestore(c->lock, cflags);
 964        
 965        return 0;
 966}
 967
 968EXPORT_SYMBOL(z8530_sync_dma_open);
 969
 970/**
 971 *      z8530_sync_dma_close - Close down DMA I/O
 972 *      @dev: Network device to detach
 973 *      @c: Z8530 channel to move into discard mode
 974 *
 975 *      Shut down a DMA mode synchronous interface. Halt the DMA, and
 976 *      free the buffers.
 977 */
 978 
 979int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
 980{
 981        u8 chk;
 982        unsigned long flags;
 983        
 984        c->irqs = &z8530_nop;
 985        c->max = 0;
 986        c->sync = 0;
 987        
 988        /*
 989         *      Disable the PC DMA channels
 990         */
 991        
 992        flags=claim_dma_lock(); 
 993        disable_dma(c->rxdma);
 994        clear_dma_ff(c->rxdma);
 995        
 996        c->rxdma_on = 0;
 997        
 998        disable_dma(c->txdma);
 999        clear_dma_ff(c->txdma);
1000        release_dma_lock(flags);
1001        
1002        c->txdma_on = 0;
1003        c->tx_dma_used = 0;
1004
1005        spin_lock_irqsave(c->lock, flags);
1006
1007        /*
1008         *      Disable DMA control mode
1009         */
1010         
1011        c->regs[R1]&= ~WT_RDY_ENAB;
1012        write_zsreg(c, R1, c->regs[R1]);            
1013        c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1014        c->regs[R1]|= INT_ALL_Rx;
1015        write_zsreg(c, R1, c->regs[R1]);
1016        c->regs[R14]&= ~DTRREQ;
1017        write_zsreg(c, R14, c->regs[R14]);   
1018        
1019        if(c->rx_buf[0])
1020        {
1021                free_page((unsigned long)c->rx_buf[0]);
1022                c->rx_buf[0]=NULL;
1023        }
1024        if(c->tx_dma_buf[0])
1025        {
1026                free_page((unsigned  long)c->tx_dma_buf[0]);
1027                c->tx_dma_buf[0]=NULL;
1028        }
1029        chk=read_zsreg(c,R0);
1030        write_zsreg(c, R3, c->regs[R3]);
1031        z8530_rtsdtr(c,0);
1032
1033        spin_unlock_irqrestore(c->lock, flags);
1034
1035        return 0;
1036}
1037
1038EXPORT_SYMBOL(z8530_sync_dma_close);
1039
1040/**
1041 *      z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
1042 *      @dev: The network device to attach
1043 *      @c: The Z8530 channel to configure in sync DMA mode.
1044 *
1045 *      Set up a Z85x30 device for synchronous DMA transmission. One
1046 *      ISA DMA channel must be available for this to work. The receive
1047 *      side is run in PIO mode, but then it has the bigger FIFO.
1048 */
1049
1050int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
1051{
1052        unsigned long cflags, dflags;
1053
1054        printk("Opening sync interface for TX-DMA\n");
1055        c->sync = 1;
1056        c->mtu = dev->mtu+64;
1057        c->count = 0;
1058        c->skb = NULL;
1059        c->skb2 = NULL;
1060        
1061        /*
1062         *      Allocate the DMA flip buffers. Limit by page size.
1063         *      Everyone runs 1500 mtu or less on wan links so this
1064         *      should be fine.
1065         */
1066         
1067        if(c->mtu  > PAGE_SIZE/2)
1068                return -EMSGSIZE;
1069         
1070        c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
1071        if(c->tx_dma_buf[0]==NULL)
1072                return -ENOBUFS;
1073
1074        c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;
1075
1076
1077        spin_lock_irqsave(c->lock, cflags);
1078
1079        /*
1080         *      Load the PIO receive ring
1081         */
1082
1083        z8530_rx_done(c);
1084        z8530_rx_done(c);
1085
1086        /*
1087         *      Load the DMA interfaces up
1088         */
1089
1090        c->rxdma_on = 0;
1091        c->txdma_on = 0;
1092        
1093        c->tx_dma_used=0;
1094        c->dma_num=0;
1095        c->dma_ready=1;
1096        c->dma_tx = 1;
1097
1098        /*
1099         *      Enable DMA control mode
1100         */
1101
1102        /*
1103         *      TX DMA via DIR/REQ
1104         */
1105        c->regs[R14]|= DTRREQ;
1106        write_zsreg(c, R14, c->regs[R14]);     
1107        
1108        c->regs[R1]&= ~TxINT_ENAB;
1109        write_zsreg(c, R1, c->regs[R1]);
1110        
1111        /*
1112         *      Set up the DMA configuration
1113         */     
1114         
1115        dflags = claim_dma_lock();
1116
1117        disable_dma(c->txdma);
1118        clear_dma_ff(c->txdma);
1119        set_dma_mode(c->txdma, DMA_MODE_WRITE);
1120        disable_dma(c->txdma);
1121
1122        release_dma_lock(dflags);
1123        
1124        /*
1125         *      Select the DMA interrupt handlers
1126         */
1127
1128        c->rxdma_on = 0;
1129        c->txdma_on = 1;
1130        c->tx_dma_used = 1;
1131         
1132        c->irqs = &z8530_txdma_sync;
1133        z8530_rtsdtr(c,1);
1134        write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1135        spin_unlock_irqrestore(c->lock, cflags);
1136        
1137        return 0;
1138}
1139
1140EXPORT_SYMBOL(z8530_sync_txdma_open);
1141
1142/**
1143 *      z8530_sync_txdma_close - Close down a TX driven DMA channel
1144 *      @dev: Network device to detach
1145 *      @c: Z8530 channel to move into discard mode
1146 *
1147 *      Shut down a DMA/PIO split mode synchronous interface. Halt the DMA, 
1148 *      and  free the buffers.
1149 */
1150
1151int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
1152{
1153        unsigned long dflags, cflags;
1154        u8 chk;
1155
1156        
1157        spin_lock_irqsave(c->lock, cflags);
1158        
1159        c->irqs = &z8530_nop;
1160        c->max = 0;
1161        c->sync = 0;
1162        
1163        /*
1164         *      Disable the PC DMA channels
1165         */
1166         
1167        dflags = claim_dma_lock();
1168
1169        disable_dma(c->txdma);
1170        clear_dma_ff(c->txdma);
1171        c->txdma_on = 0;
1172        c->tx_dma_used = 0;
1173
1174        release_dma_lock(dflags);
1175
1176        /*
1177         *      Disable DMA control mode
1178         */
1179         
1180        c->regs[R1]&= ~WT_RDY_ENAB;
1181        write_zsreg(c, R1, c->regs[R1]);            
1182        c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1183        c->regs[R1]|= INT_ALL_Rx;
1184        write_zsreg(c, R1, c->regs[R1]);
1185        c->regs[R14]&= ~DTRREQ;
1186        write_zsreg(c, R14, c->regs[R14]);   
1187        
1188        if(c->tx_dma_buf[0])
1189        {
1190                free_page((unsigned long)c->tx_dma_buf[0]);
1191                c->tx_dma_buf[0]=NULL;
1192        }
1193        chk=read_zsreg(c,R0);
1194        write_zsreg(c, R3, c->regs[R3]);
1195        z8530_rtsdtr(c,0);
1196
1197        spin_unlock_irqrestore(c->lock, cflags);
1198        return 0;
1199}
1200
1201
1202EXPORT_SYMBOL(z8530_sync_txdma_close);
1203
1204
1205/*
1206 *      Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
1207 *      it exists...
1208 */
1209 
1210static const char *z8530_type_name[]={
1211        "Z8530",
1212        "Z85C30",
1213        "Z85230"
1214};
1215
1216/**
1217 *      z8530_describe - Uniformly describe a Z8530 port
1218 *      @dev: Z8530 device to describe
1219 *      @mapping: string holding mapping type (eg "I/O" or "Mem")
1220 *      @io: the port value in question
1221 *
1222 *      Describe a Z8530 in a standard format. We must pass the I/O as
1223 *      the port offset isn't predictable. The main reason for this function
1224 *      is to try and get a common format of report.
1225 */
1226
1227void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
1228{
1229        pr_info("%s: %s found at %s 0x%lX, IRQ %d\n",
1230                dev->name, 
1231                z8530_type_name[dev->type],
1232                mapping,
1233                Z8530_PORT_OF(io),
1234                dev->irq);
1235}
1236
1237EXPORT_SYMBOL(z8530_describe);
1238
1239/*
1240 *      Locked operation part of the z8530 init code
1241 */
1242 
1243static inline int do_z8530_init(struct z8530_dev *dev)
1244{
1245        /* NOP the interrupt handlers first - we might get a
1246           floating IRQ transition when we reset the chip */
1247        dev->chanA.irqs=&z8530_nop;
1248        dev->chanB.irqs=&z8530_nop;
1249        dev->chanA.dcdcheck=DCD;
1250        dev->chanB.dcdcheck=DCD;
1251
1252        /* Reset the chip */
1253        write_zsreg(&dev->chanA, R9, 0xC0);
1254        udelay(200);
1255        /* Now check its valid */
1256        write_zsreg(&dev->chanA, R12, 0xAA);
1257        if(read_zsreg(&dev->chanA, R12)!=0xAA)
1258                return -ENODEV;
1259        write_zsreg(&dev->chanA, R12, 0x55);
1260        if(read_zsreg(&dev->chanA, R12)!=0x55)
1261                return -ENODEV;
1262                
1263        dev->type=Z8530;
1264        
1265        /*
1266         *      See the application note.
1267         */
1268         
1269        write_zsreg(&dev->chanA, R15, 0x01);
1270        
1271        /*
1272         *      If we can set the low bit of R15 then
1273         *      the chip is enhanced.
1274         */
1275         
1276        if(read_zsreg(&dev->chanA, R15)==0x01)
1277        {
1278                /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
1279                /* Put a char in the fifo */
1280                write_zsreg(&dev->chanA, R8, 0);
1281                if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
1282                        dev->type = Z85230;     /* Has a FIFO */
1283                else
1284                        dev->type = Z85C30;     /* Z85C30, 1 byte FIFO */
1285        }
1286                
1287        /*
1288         *      The code assumes R7' and friends are
1289         *      off. Use write_zsext() for these and keep
1290         *      this bit clear.
1291         */
1292         
1293        write_zsreg(&dev->chanA, R15, 0);
1294                
1295        /*
1296         *      At this point it looks like the chip is behaving
1297         */
1298         
1299        memcpy(dev->chanA.regs, reg_init, 16);
1300        memcpy(dev->chanB.regs, reg_init ,16);
1301        
1302        return 0;
1303}
1304
1305/**
1306 *      z8530_init - Initialise a Z8530 device
1307 *      @dev: Z8530 device to initialise.
1308 *
1309 *      Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
1310 *      is present, identify the type and then program it to hopefully
1311 *      keep quite and behave. This matters a lot, a Z8530 in the wrong
1312 *      state will sometimes get into stupid modes generating 10Khz
1313 *      interrupt streams and the like.
1314 *
1315 *      We set the interrupt handler up to discard any events, in case
1316 *      we get them during reset or setp.
1317 *
1318 *      Return 0 for success, or a negative value indicating the problem
1319 *      in errno form.
1320 */
1321
1322int z8530_init(struct z8530_dev *dev)
1323{
1324        unsigned long flags;
1325        int ret;
1326
1327        /* Set up the chip level lock */
1328        spin_lock_init(&dev->lock);
1329        dev->chanA.lock = &dev->lock;
1330        dev->chanB.lock = &dev->lock;
1331
1332        spin_lock_irqsave(&dev->lock, flags);
1333        ret = do_z8530_init(dev);
1334        spin_unlock_irqrestore(&dev->lock, flags);
1335
1336        return ret;
1337}
1338
1339
1340EXPORT_SYMBOL(z8530_init);
1341
1342/**
1343 *      z8530_shutdown - Shutdown a Z8530 device
1344 *      @dev: The Z8530 chip to shutdown
1345 *
1346 *      We set the interrupt handlers to silence any interrupts. We then 
1347 *      reset the chip and wait 100uS to be sure the reset completed. Just
1348 *      in case the caller then tries to do stuff.
1349 *
1350 *      This is called without the lock held
1351 */
1352 
1353int z8530_shutdown(struct z8530_dev *dev)
1354{
1355        unsigned long flags;
1356        /* Reset the chip */
1357
1358        spin_lock_irqsave(&dev->lock, flags);
1359        dev->chanA.irqs=&z8530_nop;
1360        dev->chanB.irqs=&z8530_nop;
1361        write_zsreg(&dev->chanA, R9, 0xC0);
1362        /* We must lock the udelay, the chip is offlimits here */
1363        udelay(100);
1364        spin_unlock_irqrestore(&dev->lock, flags);
1365        return 0;
1366}
1367
1368EXPORT_SYMBOL(z8530_shutdown);
1369
1370/**
1371 *      z8530_channel_load - Load channel data
1372 *      @c: Z8530 channel to configure
1373 *      @rtable: table of register, value pairs
1374 *      FIXME: ioctl to allow user uploaded tables
1375 *
1376 *      Load a Z8530 channel up from the system data. We use +16 to 
1377 *      indicate the "prime" registers. The value 255 terminates the
1378 *      table.
1379 */
1380
1381int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
1382{
1383        unsigned long flags;
1384
1385        spin_lock_irqsave(c->lock, flags);
1386
1387        while(*rtable!=255)
1388        {
1389                int reg=*rtable++;
1390                if(reg>0x0F)
1391                        write_zsreg(c, R15, c->regs[15]|1);
1392                write_zsreg(c, reg&0x0F, *rtable);
1393                if(reg>0x0F)
1394                        write_zsreg(c, R15, c->regs[15]&~1);
1395                c->regs[reg]=*rtable++;
1396        }
1397        c->rx_function=z8530_null_rx;
1398        c->skb=NULL;
1399        c->tx_skb=NULL;
1400        c->tx_next_skb=NULL;
1401        c->mtu=1500;
1402        c->max=0;
1403        c->count=0;
1404        c->status=read_zsreg(c, R0);
1405        c->sync=1;
1406        write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1407
1408        spin_unlock_irqrestore(c->lock, flags);
1409        return 0;
1410}
1411
1412EXPORT_SYMBOL(z8530_channel_load);
1413
1414
1415/**
1416 *      z8530_tx_begin - Begin packet transmission
1417 *      @c: The Z8530 channel to kick
1418 *
1419 *      This is the speed sensitive side of transmission. If we are called
1420 *      and no buffer is being transmitted we commence the next buffer. If
1421 *      nothing is queued we idle the sync. 
1422 *
1423 *      Note: We are handling this code path in the interrupt path, keep it
1424 *      fast or bad things will happen.
1425 *
1426 *      Called with the lock held.
1427 */
1428
1429static void z8530_tx_begin(struct z8530_channel *c)
1430{
1431        unsigned long flags;
1432        if(c->tx_skb)
1433                return;
1434                
1435        c->tx_skb=c->tx_next_skb;
1436        c->tx_next_skb=NULL;
1437        c->tx_ptr=c->tx_next_ptr;
1438        
1439        if(c->tx_skb==NULL)
1440        {
1441                /* Idle on */
1442                if(c->dma_tx)
1443                {
1444                        flags=claim_dma_lock();
1445                        disable_dma(c->txdma);
1446                        /*
1447                         *      Check if we crapped out.
1448                         */
1449                        if (get_dma_residue(c->txdma))
1450                        {
1451                                c->netdevice->stats.tx_dropped++;
1452                                c->netdevice->stats.tx_fifo_errors++;
1453                        }
1454                        release_dma_lock(flags);
1455                }
1456                c->txcount=0;
1457        }
1458        else
1459        {
1460                c->txcount=c->tx_skb->len;
1461                
1462                
1463                if(c->dma_tx)
1464                {
1465                        /*
1466                         *      FIXME. DMA is broken for the original 8530,
1467                         *      on the older parts we need to set a flag and
1468                         *      wait for a further TX interrupt to fire this
1469                         *      stage off       
1470                         */
1471                         
1472                        flags=claim_dma_lock();
1473                        disable_dma(c->txdma);
1474
1475                        /*
1476                         *      These two are needed by the 8530/85C30
1477                         *      and must be issued when idling.
1478                         */
1479                         
1480                        if(c->dev->type!=Z85230)
1481                        {
1482                                write_zsctrl(c, RES_Tx_CRC);
1483                                write_zsctrl(c, RES_EOM_L);
1484                        }       
1485                        write_zsreg(c, R10, c->regs[10]&~ABUNDER);
1486                        clear_dma_ff(c->txdma);
1487                        set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
1488                        set_dma_count(c->txdma, c->txcount);
1489                        enable_dma(c->txdma);
1490                        release_dma_lock(flags);
1491                        write_zsctrl(c, RES_EOM_L);
1492                        write_zsreg(c, R5, c->regs[R5]|TxENAB);
1493                }
1494                else
1495                {
1496
1497                        /* ABUNDER off */
1498                        write_zsreg(c, R10, c->regs[10]);
1499                        write_zsctrl(c, RES_Tx_CRC);
1500        
1501                        while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
1502                        {               
1503                                write_zsreg(c, R8, *c->tx_ptr++);
1504                                c->txcount--;
1505                        }
1506
1507                }
1508        }
1509        /*
1510         *      Since we emptied tx_skb we can ask for more
1511         */
1512        netif_wake_queue(c->netdevice);
1513}
1514
1515/**
1516 *      z8530_tx_done - TX complete callback
1517 *      @c: The channel that completed a transmit.
1518 *
1519 *      This is called when we complete a packet send. We wake the queue,
1520 *      start the next packet going and then free the buffer of the existing
1521 *      packet. This code is fairly timing sensitive.
1522 *
1523 *      Called with the register lock held.
1524 */
1525
1526static void z8530_tx_done(struct z8530_channel *c)
1527{
1528        struct sk_buff *skb;
1529
1530        /* Actually this can happen.*/
1531        if (c->tx_skb == NULL)
1532                return;
1533
1534        skb = c->tx_skb;
1535        c->tx_skb = NULL;
1536        z8530_tx_begin(c);
1537        c->netdevice->stats.tx_packets++;
1538        c->netdevice->stats.tx_bytes += skb->len;
1539        dev_kfree_skb_irq(skb);
1540}
1541
1542/**
1543 *      z8530_null_rx - Discard a packet
1544 *      @c: The channel the packet arrived on
1545 *      @skb: The buffer
1546 *
1547 *      We point the receive handler at this function when idle. Instead
1548 *      of processing the frames we get to throw them away.
1549 */
1550 
1551void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
1552{
1553        dev_kfree_skb_any(skb);
1554}
1555
1556EXPORT_SYMBOL(z8530_null_rx);
1557
1558/**
1559 *      z8530_rx_done - Receive completion callback
1560 *      @c: The channel that completed a receive
1561 *
1562 *      A new packet is complete. Our goal here is to get back into receive
1563 *      mode as fast as possible. On the Z85230 we could change to using
1564 *      ESCC mode, but on the older chips we have no choice. We flip to the
1565 *      new buffer immediately in DMA mode so that the DMA of the next
1566 *      frame can occur while we are copying the previous buffer to an sk_buff
1567 *
1568 *      Called with the lock held
1569 */
1570 
1571static void z8530_rx_done(struct z8530_channel *c)
1572{
1573        struct sk_buff *skb;
1574        int ct;
1575        
1576        /*
1577         *      Is our receive engine in DMA mode
1578         */
1579         
1580        if(c->rxdma_on)
1581        {
1582                /*
1583                 *      Save the ready state and the buffer currently
1584                 *      being used as the DMA target
1585                 */
1586                 
1587                int ready=c->dma_ready;
1588                unsigned char *rxb=c->rx_buf[c->dma_num];
1589                unsigned long flags;
1590                
1591                /*
1592                 *      Complete this DMA. Necessary to find the length
1593                 */             
1594                 
1595                flags=claim_dma_lock();
1596                
1597                disable_dma(c->rxdma);
1598                clear_dma_ff(c->rxdma);
1599                c->rxdma_on=0;
1600                ct=c->mtu-get_dma_residue(c->rxdma);
1601                if(ct<0)
1602                        ct=2;   /* Shit happens.. */
1603                c->dma_ready=0;
1604                
1605                /*
1606                 *      Normal case: the other slot is free, start the next DMA
1607                 *      into it immediately.
1608                 */
1609                 
1610                if(ready)
1611                {
1612                        c->dma_num^=1;
1613                        set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
1614                        set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
1615                        set_dma_count(c->rxdma, c->mtu);
1616                        c->rxdma_on = 1;
1617                        enable_dma(c->rxdma);
1618                        /* Stop any frames that we missed the head of 
1619                           from passing */
1620                        write_zsreg(c, R0, RES_Rx_CRC);
1621                }
1622                else
1623                        /* Can't occur as we dont reenable the DMA irq until
1624                           after the flip is done */
1625                        netdev_warn(c->netdevice, "DMA flip overrun!\n");
1626
1627                release_dma_lock(flags);
1628
1629                /*
1630                 *      Shove the old buffer into an sk_buff. We can't DMA
1631                 *      directly into one on a PC - it might be above the 16Mb
1632                 *      boundary. Optimisation - we could check to see if we
1633                 *      can avoid the copy. Optimisation 2 - make the memcpy
1634                 *      a copychecksum.
1635                 */
1636
1637                skb = dev_alloc_skb(ct);
1638                if (skb == NULL) {
1639                        c->netdevice->stats.rx_dropped++;
1640                        netdev_warn(c->netdevice, "Memory squeeze\n");
1641                } else {
1642                        skb_put(skb, ct);
1643                        skb_copy_to_linear_data(skb, rxb, ct);
1644                        c->netdevice->stats.rx_packets++;
1645                        c->netdevice->stats.rx_bytes += ct;
1646                }
1647                c->dma_ready = 1;
1648        } else {
1649                RT_LOCK;
1650                skb = c->skb;
1651
1652                /*
1653                 *      The game we play for non DMA is similar. We want to
1654                 *      get the controller set up for the next packet as fast
1655                 *      as possible. We potentially only have one byte + the
1656                 *      fifo length for this. Thus we want to flip to the new
1657                 *      buffer and then mess around copying and allocating
1658                 *      things. For the current case it doesn't matter but
1659                 *      if you build a system where the sync irq isn't blocked
1660                 *      by the kernel IRQ disable then you need only block the
1661                 *      sync IRQ for the RT_LOCK area.
1662                 *
1663                 */
1664                ct=c->count;
1665
1666                c->skb = c->skb2;
1667                c->count = 0;
1668                c->max = c->mtu;
1669                if (c->skb) {
1670                        c->dptr = c->skb->data;
1671                        c->max = c->mtu;
1672                } else {
1673                        c->count = 0;
1674                        c->max = 0;
1675                }
1676                RT_UNLOCK;
1677
1678                c->skb2 = dev_alloc_skb(c->mtu);
1679                if (c->skb2 == NULL)
1680                        netdev_warn(c->netdevice, "memory squeeze\n");
1681                else
1682                        skb_put(c->skb2, c->mtu);
1683                c->netdevice->stats.rx_packets++;
1684                c->netdevice->stats.rx_bytes += ct;
1685        }
1686        /*
1687         *      If we received a frame we must now process it.
1688         */
1689        if (skb) {
1690                skb_trim(skb, ct);
1691                c->rx_function(c, skb);
1692        } else {
1693                c->netdevice->stats.rx_dropped++;
1694                netdev_err(c->netdevice, "Lost a frame\n");
1695        }
1696}
1697
1698/**
1699 *      spans_boundary - Check a packet can be ISA DMA'd
1700 *      @skb: The buffer to check
1701 *
1702 *      Returns true if the buffer cross a DMA boundary on a PC. The poor
1703 *      thing can only DMA within a 64K block not across the edges of it.
1704 */
1705
1706static inline int spans_boundary(struct sk_buff *skb)
1707{
1708        unsigned long a=(unsigned long)skb->data;
1709        a^=(a+skb->len);
1710        if(a&0x00010000)        /* If the 64K bit is different.. */
1711                return 1;
1712        return 0;
1713}
1714
1715/**
1716 *      z8530_queue_xmit - Queue a packet
1717 *      @c: The channel to use
1718 *      @skb: The packet to kick down the channel
1719 *
1720 *      Queue a packet for transmission. Because we have rather
1721 *      hard to hit interrupt latencies for the Z85230 per packet 
1722 *      even in DMA mode we do the flip to DMA buffer if needed here
1723 *      not in the IRQ.
1724 *
1725 *      Called from the network code. The lock is not held at this 
1726 *      point.
1727 */
1728
1729netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
1730{
1731        unsigned long flags;
1732        
1733        netif_stop_queue(c->netdevice);
1734        if(c->tx_next_skb)
1735                return NETDEV_TX_BUSY;
1736
1737        
1738        /* PC SPECIFIC - DMA limits */
1739        
1740        /*
1741         *      If we will DMA the transmit and its gone over the ISA bus
1742         *      limit, then copy to the flip buffer
1743         */
1744         
1745        if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
1746        {
1747                /* 
1748                 *      Send the flip buffer, and flip the flippy bit.
1749                 *      We don't care which is used when just so long as
1750                 *      we never use the same buffer twice in a row. Since
1751                 *      only one buffer can be going out at a time the other
1752                 *      has to be safe.
1753                 */
1754                c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
1755                c->tx_dma_used^=1;      /* Flip temp buffer */
1756                skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
1757        }
1758        else
1759                c->tx_next_ptr=skb->data;       
1760        RT_LOCK;
1761        c->tx_next_skb=skb;
1762        RT_UNLOCK;
1763        
1764        spin_lock_irqsave(c->lock, flags);
1765        z8530_tx_begin(c);
1766        spin_unlock_irqrestore(c->lock, flags);
1767        
1768        return NETDEV_TX_OK;
1769}
1770
1771EXPORT_SYMBOL(z8530_queue_xmit);
1772
1773/*
1774 *      Module support
1775 */
1776static const char banner[] __initconst =
1777        KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
1778
1779static int __init z85230_init_driver(void)
1780{
1781        printk(banner);
1782        return 0;
1783}
1784module_init(z85230_init_driver);
1785
1786static void __exit z85230_cleanup_driver(void)
1787{
1788}
1789module_exit(z85230_cleanup_driver);
1790
1791MODULE_AUTHOR("Red Hat Inc.");
1792MODULE_DESCRIPTION("Z85x30 synchronous driver core");
1793MODULE_LICENSE("GPL");
1794