linux/drivers/soc/fsl/qbman/qman_test_stash.c
<<
>>
Prefs
   1/* Copyright 2009 - 2016 Freescale Semiconductor, Inc.
   2 *
   3 * Redistribution and use in source and binary forms, with or without
   4 * modification, are permitted provided that the following conditions are met:
   5 *     * Redistributions of source code must retain the above copyright
   6 *       notice, this list of conditions and the following disclaimer.
   7 *     * Redistributions in binary form must reproduce the above copyright
   8 *       notice, this list of conditions and the following disclaimer in the
   9 *       documentation and/or other materials provided with the distribution.
  10 *     * Neither the name of Freescale Semiconductor nor the
  11 *       names of its contributors may be used to endorse or promote products
  12 *       derived from this software without specific prior written permission.
  13 *
  14 * ALTERNATIVELY, this software may be distributed under the terms of the
  15 * GNU General Public License ("GPL") as published by the Free Software
  16 * Foundation, either version 2 of that License or (at your option) any
  17 * later version.
  18 *
  19 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
  20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  22 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
  23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  29 */
  30
  31#include "qman_test.h"
  32
  33#include <linux/dma-mapping.h>
  34#include <linux/delay.h>
  35
  36/*
  37 * Algorithm:
  38 *
  39 * Each cpu will have HP_PER_CPU "handlers" set up, each of which incorporates
  40 * an rx/tx pair of FQ objects (both of which are stashed on dequeue). The
  41 * organisation of FQIDs is such that the HP_PER_CPU*NUM_CPUS handlers will
  42 * shuttle a "hot potato" frame around them such that every forwarding action
  43 * moves it from one cpu to another. (The use of more than one handler per cpu
  44 * is to allow enough handlers/FQs to truly test the significance of caching -
  45 * ie. when cache-expiries are occurring.)
  46 *
  47 * The "hot potato" frame content will be HP_NUM_WORDS*4 bytes in size, and the
  48 * first and last words of the frame data will undergo a transformation step on
  49 * each forwarding action. To achieve this, each handler will be assigned a
  50 * 32-bit "mixer", that is produced using a 32-bit LFSR. When a frame is
  51 * received by a handler, the mixer of the expected sender is XOR'd into all
  52 * words of the entire frame, which is then validated against the original
  53 * values. Then, before forwarding, the entire frame is XOR'd with the mixer of
  54 * the current handler. Apart from validating that the frame is taking the
  55 * expected path, this also provides some quasi-realistic overheads to each
  56 * forwarding action - dereferencing *all* the frame data, computation, and
  57 * conditional branching. There is a "special" handler designated to act as the
  58 * instigator of the test by creating an enqueuing the "hot potato" frame, and
  59 * to determine when the test has completed by counting HP_LOOPS iterations.
  60 *
  61 * Init phases:
  62 *
  63 * 1. prepare each cpu's 'hp_cpu' struct using on_each_cpu(,,1) and link them
  64 *    into 'hp_cpu_list'. Specifically, set processor_id, allocate HP_PER_CPU
  65 *    handlers and link-list them (but do no other handler setup).
  66 *
  67 * 2. scan over 'hp_cpu_list' HP_PER_CPU times, the first time sets each
  68 *    hp_cpu's 'iterator' to point to its first handler. With each loop,
  69 *    allocate rx/tx FQIDs and mixer values to the hp_cpu's iterator handler
  70 *    and advance the iterator for the next loop. This includes a final fixup,
  71 *    which connects the last handler to the first (and which is why phase 2
  72 *    and 3 are separate).
  73 *
  74 * 3. scan over 'hp_cpu_list' HP_PER_CPU times, the first time sets each
  75 *    hp_cpu's 'iterator' to point to its first handler. With each loop,
  76 *    initialise FQ objects and advance the iterator for the next loop.
  77 *    Moreover, do this initialisation on the cpu it applies to so that Rx FQ
  78 *    initialisation targets the correct cpu.
  79 */
  80
  81/*
  82 * helper to run something on all cpus (can't use on_each_cpu(), as that invokes
  83 * the fn from irq context, which is too restrictive).
  84 */
  85struct bstrap {
  86        int (*fn)(void);
  87        atomic_t started;
  88};
  89static int bstrap_fn(void *bs)
  90{
  91        struct bstrap *bstrap = bs;
  92        int err;
  93
  94        atomic_inc(&bstrap->started);
  95        err = bstrap->fn();
  96        if (err)
  97                return err;
  98        while (!kthread_should_stop())
  99                msleep(20);
 100        return 0;
 101}
 102static int on_all_cpus(int (*fn)(void))
 103{
 104        int cpu;
 105
 106        for_each_cpu(cpu, cpu_online_mask) {
 107                struct bstrap bstrap = {
 108                        .fn = fn,
 109                        .started = ATOMIC_INIT(0)
 110                };
 111                struct task_struct *k = kthread_create(bstrap_fn, &bstrap,
 112                        "hotpotato%d", cpu);
 113                int ret;
 114
 115                if (IS_ERR(k))
 116                        return -ENOMEM;
 117                kthread_bind(k, cpu);
 118                wake_up_process(k);
 119                /*
 120                 * If we call kthread_stop() before the "wake up" has had an
 121                 * effect, then the thread may exit with -EINTR without ever
 122                 * running the function. So poll until it's started before
 123                 * requesting it to stop.
 124                 */
 125                while (!atomic_read(&bstrap.started))
 126                        msleep(20);
 127                ret = kthread_stop(k);
 128                if (ret)
 129                        return ret;
 130        }
 131        return 0;
 132}
 133
 134struct hp_handler {
 135
 136        /* The following data is stashed when 'rx' is dequeued; */
 137        /* -------------- */
 138        /* The Rx FQ, dequeues of which will stash the entire hp_handler */
 139        struct qman_fq rx;
 140        /* The Tx FQ we should forward to */
 141        struct qman_fq tx;
 142        /* The value we XOR post-dequeue, prior to validating */
 143        u32 rx_mixer;
 144        /* The value we XOR pre-enqueue, after validating */
 145        u32 tx_mixer;
 146        /* what the hotpotato address should be on dequeue */
 147        dma_addr_t addr;
 148        u32 *frame_ptr;
 149
 150        /* The following data isn't (necessarily) stashed on dequeue; */
 151        /* -------------- */
 152        u32 fqid_rx, fqid_tx;
 153        /* list node for linking us into 'hp_cpu' */
 154        struct list_head node;
 155        /* Just to check ... */
 156        unsigned int processor_id;
 157} ____cacheline_aligned;
 158
 159struct hp_cpu {
 160        /* identify the cpu we run on; */
 161        unsigned int processor_id;
 162        /* root node for the per-cpu list of handlers */
 163        struct list_head handlers;
 164        /* list node for linking us into 'hp_cpu_list' */
 165        struct list_head node;
 166        /*
 167         * when repeatedly scanning 'hp_list', each time linking the n'th
 168         * handlers together, this is used as per-cpu iterator state
 169         */
 170        struct hp_handler *iterator;
 171};
 172
 173/* Each cpu has one of these */
 174static DEFINE_PER_CPU(struct hp_cpu, hp_cpus);
 175
 176/* links together the hp_cpu structs, in first-come first-serve order. */
 177static LIST_HEAD(hp_cpu_list);
 178static DEFINE_SPINLOCK(hp_lock);
 179
 180static unsigned int hp_cpu_list_length;
 181
 182/* the "special" handler, that starts and terminates the test. */
 183static struct hp_handler *special_handler;
 184static int loop_counter;
 185
 186/* handlers are allocated out of this, so they're properly aligned. */
 187static struct kmem_cache *hp_handler_slab;
 188
 189/* this is the frame data */
 190static void *__frame_ptr;
 191static u32 *frame_ptr;
 192static dma_addr_t frame_dma;
 193
 194/* needed for dma_map*() */
 195static const struct qm_portal_config *pcfg;
 196
 197/* the main function waits on this */
 198static DECLARE_WAIT_QUEUE_HEAD(queue);
 199
 200#define HP_PER_CPU      2
 201#define HP_LOOPS        8
 202/* 80 bytes, like a small ethernet frame, and bleeds into a second cacheline */
 203#define HP_NUM_WORDS    80
 204/* First word of the LFSR-based frame data */
 205#define HP_FIRST_WORD   0xabbaf00d
 206
 207static inline u32 do_lfsr(u32 prev)
 208{
 209        return (prev >> 1) ^ (-(prev & 1u) & 0xd0000001u);
 210}
 211
 212static int allocate_frame_data(void)
 213{
 214        u32 lfsr = HP_FIRST_WORD;
 215        int loop;
 216
 217        if (!qman_dma_portal) {
 218                pr_crit("portal not available\n");
 219                return -EIO;
 220        }
 221
 222        pcfg = qman_get_qm_portal_config(qman_dma_portal);
 223
 224        __frame_ptr = kmalloc(4 * HP_NUM_WORDS, GFP_KERNEL);
 225        if (!__frame_ptr)
 226                return -ENOMEM;
 227
 228        frame_ptr = PTR_ALIGN(__frame_ptr, 64);
 229        for (loop = 0; loop < HP_NUM_WORDS; loop++) {
 230                frame_ptr[loop] = lfsr;
 231                lfsr = do_lfsr(lfsr);
 232        }
 233
 234        frame_dma = dma_map_single(pcfg->dev, frame_ptr, 4 * HP_NUM_WORDS,
 235                                   DMA_BIDIRECTIONAL);
 236        if (dma_mapping_error(pcfg->dev, frame_dma)) {
 237                pr_crit("dma mapping failure\n");
 238                kfree(__frame_ptr);
 239                return -EIO;
 240        }
 241
 242        return 0;
 243}
 244
 245static void deallocate_frame_data(void)
 246{
 247        dma_unmap_single(pcfg->dev, frame_dma, 4 * HP_NUM_WORDS,
 248                         DMA_BIDIRECTIONAL);
 249        kfree(__frame_ptr);
 250}
 251
 252static inline int process_frame_data(struct hp_handler *handler,
 253                                     const struct qm_fd *fd)
 254{
 255        u32 *p = handler->frame_ptr;
 256        u32 lfsr = HP_FIRST_WORD;
 257        int loop;
 258
 259        if (qm_fd_addr_get64(fd) != handler->addr) {
 260                pr_crit("bad frame address, [%llX != %llX]\n",
 261                        qm_fd_addr_get64(fd), handler->addr);
 262                return -EIO;
 263        }
 264        for (loop = 0; loop < HP_NUM_WORDS; loop++, p++) {
 265                *p ^= handler->rx_mixer;
 266                if (*p != lfsr) {
 267                        pr_crit("corrupt frame data");
 268                        return -EIO;
 269                }
 270                *p ^= handler->tx_mixer;
 271                lfsr = do_lfsr(lfsr);
 272        }
 273        return 0;
 274}
 275
 276static enum qman_cb_dqrr_result normal_dqrr(struct qman_portal *portal,
 277                                            struct qman_fq *fq,
 278                                            const struct qm_dqrr_entry *dqrr)
 279{
 280        struct hp_handler *handler = (struct hp_handler *)fq;
 281
 282        if (process_frame_data(handler, &dqrr->fd)) {
 283                WARN_ON(1);
 284                goto skip;
 285        }
 286        if (qman_enqueue(&handler->tx, &dqrr->fd)) {
 287                pr_crit("qman_enqueue() failed");
 288                WARN_ON(1);
 289        }
 290skip:
 291        return qman_cb_dqrr_consume;
 292}
 293
 294static enum qman_cb_dqrr_result special_dqrr(struct qman_portal *portal,
 295                                             struct qman_fq *fq,
 296                                             const struct qm_dqrr_entry *dqrr)
 297{
 298        struct hp_handler *handler = (struct hp_handler *)fq;
 299
 300        process_frame_data(handler, &dqrr->fd);
 301        if (++loop_counter < HP_LOOPS) {
 302                if (qman_enqueue(&handler->tx, &dqrr->fd)) {
 303                        pr_crit("qman_enqueue() failed");
 304                        WARN_ON(1);
 305                        goto skip;
 306                }
 307        } else {
 308                pr_info("Received final (%dth) frame\n", loop_counter);
 309                wake_up(&queue);
 310        }
 311skip:
 312        return qman_cb_dqrr_consume;
 313}
 314
 315static int create_per_cpu_handlers(void)
 316{
 317        struct hp_handler *handler;
 318        int loop;
 319        struct hp_cpu *hp_cpu = this_cpu_ptr(&hp_cpus);
 320
 321        hp_cpu->processor_id = smp_processor_id();
 322        spin_lock(&hp_lock);
 323        list_add_tail(&hp_cpu->node, &hp_cpu_list);
 324        hp_cpu_list_length++;
 325        spin_unlock(&hp_lock);
 326        INIT_LIST_HEAD(&hp_cpu->handlers);
 327        for (loop = 0; loop < HP_PER_CPU; loop++) {
 328                handler = kmem_cache_alloc(hp_handler_slab, GFP_KERNEL);
 329                if (!handler) {
 330                        pr_crit("kmem_cache_alloc() failed");
 331                        WARN_ON(1);
 332                        return -EIO;
 333                }
 334                handler->processor_id = hp_cpu->processor_id;
 335                handler->addr = frame_dma;
 336                handler->frame_ptr = frame_ptr;
 337                list_add_tail(&handler->node, &hp_cpu->handlers);
 338        }
 339        return 0;
 340}
 341
 342static int destroy_per_cpu_handlers(void)
 343{
 344        struct list_head *loop, *tmp;
 345        struct hp_cpu *hp_cpu = this_cpu_ptr(&hp_cpus);
 346
 347        spin_lock(&hp_lock);
 348        list_del(&hp_cpu->node);
 349        spin_unlock(&hp_lock);
 350        list_for_each_safe(loop, tmp, &hp_cpu->handlers) {
 351                u32 flags = 0;
 352                struct hp_handler *handler = list_entry(loop, struct hp_handler,
 353                                                        node);
 354                if (qman_retire_fq(&handler->rx, &flags) ||
 355                    (flags & QMAN_FQ_STATE_BLOCKOOS)) {
 356                        pr_crit("qman_retire_fq(rx) failed, flags: %x", flags);
 357                        WARN_ON(1);
 358                        return -EIO;
 359                }
 360                if (qman_oos_fq(&handler->rx)) {
 361                        pr_crit("qman_oos_fq(rx) failed");
 362                        WARN_ON(1);
 363                        return -EIO;
 364                }
 365                qman_destroy_fq(&handler->rx);
 366                qman_destroy_fq(&handler->tx);
 367                qman_release_fqid(handler->fqid_rx);
 368                list_del(&handler->node);
 369                kmem_cache_free(hp_handler_slab, handler);
 370        }
 371        return 0;
 372}
 373
 374static inline u8 num_cachelines(u32 offset)
 375{
 376        u8 res = (offset + (L1_CACHE_BYTES - 1))
 377                         / (L1_CACHE_BYTES);
 378        if (res > 3)
 379                return 3;
 380        return res;
 381}
 382#define STASH_DATA_CL \
 383        num_cachelines(HP_NUM_WORDS * 4)
 384#define STASH_CTX_CL \
 385        num_cachelines(offsetof(struct hp_handler, fqid_rx))
 386
 387static int init_handler(void *h)
 388{
 389        struct qm_mcc_initfq opts;
 390        struct hp_handler *handler = h;
 391        int err;
 392
 393        if (handler->processor_id != smp_processor_id()) {
 394                err = -EIO;
 395                goto failed;
 396        }
 397        /* Set up rx */
 398        memset(&handler->rx, 0, sizeof(handler->rx));
 399        if (handler == special_handler)
 400                handler->rx.cb.dqrr = special_dqrr;
 401        else
 402                handler->rx.cb.dqrr = normal_dqrr;
 403        err = qman_create_fq(handler->fqid_rx, 0, &handler->rx);
 404        if (err) {
 405                pr_crit("qman_create_fq(rx) failed");
 406                goto failed;
 407        }
 408        memset(&opts, 0, sizeof(opts));
 409        opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL |
 410                                   QM_INITFQ_WE_CONTEXTA);
 411        opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING);
 412        qm_fqd_set_stashing(&opts.fqd, 0, STASH_DATA_CL, STASH_CTX_CL);
 413        err = qman_init_fq(&handler->rx, QMAN_INITFQ_FLAG_SCHED |
 414                           QMAN_INITFQ_FLAG_LOCAL, &opts);
 415        if (err) {
 416                pr_crit("qman_init_fq(rx) failed");
 417                goto failed;
 418        }
 419        /* Set up tx */
 420        memset(&handler->tx, 0, sizeof(handler->tx));
 421        err = qman_create_fq(handler->fqid_tx, QMAN_FQ_FLAG_NO_MODIFY,
 422                             &handler->tx);
 423        if (err) {
 424                pr_crit("qman_create_fq(tx) failed");
 425                goto failed;
 426        }
 427
 428        return 0;
 429failed:
 430        return err;
 431}
 432
 433static void init_handler_cb(void *h)
 434{
 435        if (init_handler(h))
 436                WARN_ON(1);
 437}
 438
 439static int init_phase2(void)
 440{
 441        int loop;
 442        u32 fqid = 0;
 443        u32 lfsr = 0xdeadbeef;
 444        struct hp_cpu *hp_cpu;
 445        struct hp_handler *handler;
 446
 447        for (loop = 0; loop < HP_PER_CPU; loop++) {
 448                list_for_each_entry(hp_cpu, &hp_cpu_list, node) {
 449                        int err;
 450
 451                        if (!loop)
 452                                hp_cpu->iterator = list_first_entry(
 453                                                &hp_cpu->handlers,
 454                                                struct hp_handler, node);
 455                        else
 456                                hp_cpu->iterator = list_entry(
 457                                                hp_cpu->iterator->node.next,
 458                                                struct hp_handler, node);
 459                        /* Rx FQID is the previous handler's Tx FQID */
 460                        hp_cpu->iterator->fqid_rx = fqid;
 461                        /* Allocate new FQID for Tx */
 462                        err = qman_alloc_fqid(&fqid);
 463                        if (err) {
 464                                pr_crit("qman_alloc_fqid() failed");
 465                                return err;
 466                        }
 467                        hp_cpu->iterator->fqid_tx = fqid;
 468                        /* Rx mixer is the previous handler's Tx mixer */
 469                        hp_cpu->iterator->rx_mixer = lfsr;
 470                        /* Get new mixer for Tx */
 471                        lfsr = do_lfsr(lfsr);
 472                        hp_cpu->iterator->tx_mixer = lfsr;
 473                }
 474        }
 475        /* Fix up the first handler (fqid_rx==0, rx_mixer=0xdeadbeef) */
 476        hp_cpu = list_first_entry(&hp_cpu_list, struct hp_cpu, node);
 477        handler = list_first_entry(&hp_cpu->handlers, struct hp_handler, node);
 478        if (handler->fqid_rx != 0 || handler->rx_mixer != 0xdeadbeef)
 479                return 1;
 480        handler->fqid_rx = fqid;
 481        handler->rx_mixer = lfsr;
 482        /* and tag it as our "special" handler */
 483        special_handler = handler;
 484        return 0;
 485}
 486
 487static int init_phase3(void)
 488{
 489        int loop, err;
 490        struct hp_cpu *hp_cpu;
 491
 492        for (loop = 0; loop < HP_PER_CPU; loop++) {
 493                list_for_each_entry(hp_cpu, &hp_cpu_list, node) {
 494                        if (!loop)
 495                                hp_cpu->iterator = list_first_entry(
 496                                                &hp_cpu->handlers,
 497                                                struct hp_handler, node);
 498                        else
 499                                hp_cpu->iterator = list_entry(
 500                                                hp_cpu->iterator->node.next,
 501                                                struct hp_handler, node);
 502                        preempt_disable();
 503                        if (hp_cpu->processor_id == smp_processor_id()) {
 504                                err = init_handler(hp_cpu->iterator);
 505                                if (err)
 506                                        return err;
 507                        } else {
 508                                smp_call_function_single(hp_cpu->processor_id,
 509                                        init_handler_cb, hp_cpu->iterator, 1);
 510                        }
 511                        preempt_enable();
 512                }
 513        }
 514        return 0;
 515}
 516
 517static int send_first_frame(void *ignore)
 518{
 519        u32 *p = special_handler->frame_ptr;
 520        u32 lfsr = HP_FIRST_WORD;
 521        int loop, err;
 522        struct qm_fd fd;
 523
 524        if (special_handler->processor_id != smp_processor_id()) {
 525                err = -EIO;
 526                goto failed;
 527        }
 528        memset(&fd, 0, sizeof(fd));
 529        qm_fd_addr_set64(&fd, special_handler->addr);
 530        qm_fd_set_contig_big(&fd, HP_NUM_WORDS * 4);
 531        for (loop = 0; loop < HP_NUM_WORDS; loop++, p++) {
 532                if (*p != lfsr) {
 533                        err = -EIO;
 534                        pr_crit("corrupt frame data");
 535                        goto failed;
 536                }
 537                *p ^= special_handler->tx_mixer;
 538                lfsr = do_lfsr(lfsr);
 539        }
 540        pr_info("Sending first frame\n");
 541        err = qman_enqueue(&special_handler->tx, &fd);
 542        if (err) {
 543                pr_crit("qman_enqueue() failed");
 544                goto failed;
 545        }
 546
 547        return 0;
 548failed:
 549        return err;
 550}
 551
 552static void send_first_frame_cb(void *ignore)
 553{
 554        if (send_first_frame(NULL))
 555                WARN_ON(1);
 556}
 557
 558int qman_test_stash(void)
 559{
 560        int err;
 561
 562        if (cpumask_weight(cpu_online_mask) < 2) {
 563                pr_info("%s(): skip - only 1 CPU\n", __func__);
 564                return 0;
 565        }
 566
 567        pr_info("%s(): Starting\n", __func__);
 568
 569        hp_cpu_list_length = 0;
 570        loop_counter = 0;
 571        hp_handler_slab = kmem_cache_create("hp_handler_slab",
 572                        sizeof(struct hp_handler), L1_CACHE_BYTES,
 573                        SLAB_HWCACHE_ALIGN, NULL);
 574        if (!hp_handler_slab) {
 575                err = -EIO;
 576                pr_crit("kmem_cache_create() failed");
 577                goto failed;
 578        }
 579
 580        err = allocate_frame_data();
 581        if (err)
 582                goto failed;
 583
 584        /* Init phase 1 */
 585        pr_info("Creating %d handlers per cpu...\n", HP_PER_CPU);
 586        if (on_all_cpus(create_per_cpu_handlers)) {
 587                err = -EIO;
 588                pr_crit("on_each_cpu() failed");
 589                goto failed;
 590        }
 591        pr_info("Number of cpus: %d, total of %d handlers\n",
 592                hp_cpu_list_length, hp_cpu_list_length * HP_PER_CPU);
 593
 594        err = init_phase2();
 595        if (err)
 596                goto failed;
 597
 598        err = init_phase3();
 599        if (err)
 600                goto failed;
 601
 602        preempt_disable();
 603        if (special_handler->processor_id == smp_processor_id()) {
 604                err = send_first_frame(NULL);
 605                if (err)
 606                        goto failed;
 607        } else {
 608                smp_call_function_single(special_handler->processor_id,
 609                                         send_first_frame_cb, NULL, 1);
 610        }
 611        preempt_enable();
 612
 613        wait_event(queue, loop_counter == HP_LOOPS);
 614        deallocate_frame_data();
 615        if (on_all_cpus(destroy_per_cpu_handlers)) {
 616                err = -EIO;
 617                pr_crit("on_each_cpu() failed");
 618                goto failed;
 619        }
 620        kmem_cache_destroy(hp_handler_slab);
 621        pr_info("%s(): Finished\n", __func__);
 622
 623        return 0;
 624failed:
 625        WARN_ON(1);
 626        return err;
 627}
 628