linux/drivers/staging/greybus/operation.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Greybus operations
   4 *
   5 * Copyright 2014-2015 Google Inc.
   6 * Copyright 2014-2015 Linaro Ltd.
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/module.h>
  12#include <linux/sched.h>
  13#include <linux/wait.h>
  14#include <linux/workqueue.h>
  15
  16#include "greybus.h"
  17#include "greybus_trace.h"
  18
  19static struct kmem_cache *gb_operation_cache;
  20static struct kmem_cache *gb_message_cache;
  21
  22/* Workqueue to handle Greybus operation completions. */
  23static struct workqueue_struct *gb_operation_completion_wq;
  24
  25/* Wait queue for synchronous cancellations. */
  26static DECLARE_WAIT_QUEUE_HEAD(gb_operation_cancellation_queue);
  27
  28/*
  29 * Protects updates to operation->errno.
  30 */
  31static DEFINE_SPINLOCK(gb_operations_lock);
  32
  33static int gb_operation_response_send(struct gb_operation *operation,
  34                                        int errno);
  35
  36/*
  37 * Increment operation active count and add to connection list unless the
  38 * connection is going away.
  39 *
  40 * Caller holds operation reference.
  41 */
  42static int gb_operation_get_active(struct gb_operation *operation)
  43{
  44        struct gb_connection *connection = operation->connection;
  45        unsigned long flags;
  46
  47        spin_lock_irqsave(&connection->lock, flags);
  48        switch (connection->state) {
  49        case GB_CONNECTION_STATE_ENABLED:
  50                break;
  51        case GB_CONNECTION_STATE_ENABLED_TX:
  52                if (gb_operation_is_incoming(operation))
  53                        goto err_unlock;
  54                break;
  55        case GB_CONNECTION_STATE_DISCONNECTING:
  56                if (!gb_operation_is_core(operation))
  57                        goto err_unlock;
  58                break;
  59        default:
  60                goto err_unlock;
  61        }
  62
  63        if (operation->active++ == 0)
  64                list_add_tail(&operation->links, &connection->operations);
  65
  66        trace_gb_operation_get_active(operation);
  67
  68        spin_unlock_irqrestore(&connection->lock, flags);
  69
  70        return 0;
  71
  72err_unlock:
  73        spin_unlock_irqrestore(&connection->lock, flags);
  74
  75        return -ENOTCONN;
  76}
  77
  78/* Caller holds operation reference. */
  79static void gb_operation_put_active(struct gb_operation *operation)
  80{
  81        struct gb_connection *connection = operation->connection;
  82        unsigned long flags;
  83
  84        spin_lock_irqsave(&connection->lock, flags);
  85
  86        trace_gb_operation_put_active(operation);
  87
  88        if (--operation->active == 0) {
  89                list_del(&operation->links);
  90                if (atomic_read(&operation->waiters))
  91                        wake_up(&gb_operation_cancellation_queue);
  92        }
  93        spin_unlock_irqrestore(&connection->lock, flags);
  94}
  95
  96static bool gb_operation_is_active(struct gb_operation *operation)
  97{
  98        struct gb_connection *connection = operation->connection;
  99        unsigned long flags;
 100        bool ret;
 101
 102        spin_lock_irqsave(&connection->lock, flags);
 103        ret = operation->active;
 104        spin_unlock_irqrestore(&connection->lock, flags);
 105
 106        return ret;
 107}
 108
 109/*
 110 * Set an operation's result.
 111 *
 112 * Initially an outgoing operation's errno value is -EBADR.
 113 * If no error occurs before sending the request message the only
 114 * valid value operation->errno can be set to is -EINPROGRESS,
 115 * indicating the request has been (or rather is about to be) sent.
 116 * At that point nobody should be looking at the result until the
 117 * response arrives.
 118 *
 119 * The first time the result gets set after the request has been
 120 * sent, that result "sticks."  That is, if two concurrent threads
 121 * race to set the result, the first one wins.  The return value
 122 * tells the caller whether its result was recorded; if not the
 123 * caller has nothing more to do.
 124 *
 125 * The result value -EILSEQ is reserved to signal an implementation
 126 * error; if it's ever observed, the code performing the request has
 127 * done something fundamentally wrong.  It is an error to try to set
 128 * the result to -EBADR, and attempts to do so result in a warning,
 129 * and -EILSEQ is used instead.  Similarly, the only valid result
 130 * value to set for an operation in initial state is -EINPROGRESS.
 131 * Attempts to do otherwise will also record a (successful) -EILSEQ
 132 * operation result.
 133 */
 134static bool gb_operation_result_set(struct gb_operation *operation, int result)
 135{
 136        unsigned long flags;
 137        int prev;
 138
 139        if (result == -EINPROGRESS) {
 140                /*
 141                 * -EINPROGRESS is used to indicate the request is
 142                 * in flight.  It should be the first result value
 143                 * set after the initial -EBADR.  Issue a warning
 144                 * and record an implementation error if it's
 145                 * set at any other time.
 146                 */
 147                spin_lock_irqsave(&gb_operations_lock, flags);
 148                prev = operation->errno;
 149                if (prev == -EBADR)
 150                        operation->errno = result;
 151                else
 152                        operation->errno = -EILSEQ;
 153                spin_unlock_irqrestore(&gb_operations_lock, flags);
 154                WARN_ON(prev != -EBADR);
 155
 156                return true;
 157        }
 158
 159        /*
 160         * The first result value set after a request has been sent
 161         * will be the final result of the operation.  Subsequent
 162         * attempts to set the result are ignored.
 163         *
 164         * Note that -EBADR is a reserved "initial state" result
 165         * value.  Attempts to set this value result in a warning,
 166         * and the result code is set to -EILSEQ instead.
 167         */
 168        if (WARN_ON(result == -EBADR))
 169                result = -EILSEQ; /* Nobody should be setting -EBADR */
 170
 171        spin_lock_irqsave(&gb_operations_lock, flags);
 172        prev = operation->errno;
 173        if (prev == -EINPROGRESS)
 174                operation->errno = result;      /* First and final result */
 175        spin_unlock_irqrestore(&gb_operations_lock, flags);
 176
 177        return prev == -EINPROGRESS;
 178}
 179
 180int gb_operation_result(struct gb_operation *operation)
 181{
 182        int result = operation->errno;
 183
 184        WARN_ON(result == -EBADR);
 185        WARN_ON(result == -EINPROGRESS);
 186
 187        return result;
 188}
 189EXPORT_SYMBOL_GPL(gb_operation_result);
 190
 191/*
 192 * Looks up an outgoing operation on a connection and returns a refcounted
 193 * pointer if found, or NULL otherwise.
 194 */
 195static struct gb_operation *
 196gb_operation_find_outgoing(struct gb_connection *connection, u16 operation_id)
 197{
 198        struct gb_operation *operation;
 199        unsigned long flags;
 200        bool found = false;
 201
 202        spin_lock_irqsave(&connection->lock, flags);
 203        list_for_each_entry(operation, &connection->operations, links)
 204                if (operation->id == operation_id &&
 205                                !gb_operation_is_incoming(operation)) {
 206                        gb_operation_get(operation);
 207                        found = true;
 208                        break;
 209                }
 210        spin_unlock_irqrestore(&connection->lock, flags);
 211
 212        return found ? operation : NULL;
 213}
 214
 215static int gb_message_send(struct gb_message *message, gfp_t gfp)
 216{
 217        struct gb_connection *connection = message->operation->connection;
 218
 219        trace_gb_message_send(message);
 220        return connection->hd->driver->message_send(connection->hd,
 221                                        connection->hd_cport_id,
 222                                        message,
 223                                        gfp);
 224}
 225
 226/*
 227 * Cancel a message we have passed to the host device layer to be sent.
 228 */
 229static void gb_message_cancel(struct gb_message *message)
 230{
 231        struct gb_host_device *hd = message->operation->connection->hd;
 232
 233        hd->driver->message_cancel(message);
 234}
 235
 236static void gb_operation_request_handle(struct gb_operation *operation)
 237{
 238        struct gb_connection *connection = operation->connection;
 239        int status;
 240        int ret;
 241
 242        if (connection->handler) {
 243                status = connection->handler(operation);
 244        } else {
 245                dev_err(&connection->hd->dev,
 246                        "%s: unexpected incoming request of type 0x%02x\n",
 247                        connection->name, operation->type);
 248
 249                status = -EPROTONOSUPPORT;
 250        }
 251
 252        ret = gb_operation_response_send(operation, status);
 253        if (ret) {
 254                dev_err(&connection->hd->dev,
 255                        "%s: failed to send response %d for type 0x%02x: %d\n",
 256                        connection->name, status, operation->type, ret);
 257                return;
 258        }
 259}
 260
 261/*
 262 * Process operation work.
 263 *
 264 * For incoming requests, call the protocol request handler. The operation
 265 * result should be -EINPROGRESS at this point.
 266 *
 267 * For outgoing requests, the operation result value should have
 268 * been set before queueing this.  The operation callback function
 269 * allows the original requester to know the request has completed
 270 * and its result is available.
 271 */
 272static void gb_operation_work(struct work_struct *work)
 273{
 274        struct gb_operation *operation;
 275        int ret;
 276
 277        operation = container_of(work, struct gb_operation, work);
 278
 279        if (gb_operation_is_incoming(operation)) {
 280                gb_operation_request_handle(operation);
 281        } else {
 282                ret = del_timer_sync(&operation->timer);
 283                if (!ret) {
 284                        /* Cancel request message if scheduled by timeout. */
 285                        if (gb_operation_result(operation) == -ETIMEDOUT)
 286                                gb_message_cancel(operation->request);
 287                }
 288
 289                operation->callback(operation);
 290        }
 291
 292        gb_operation_put_active(operation);
 293        gb_operation_put(operation);
 294}
 295
 296static void gb_operation_timeout(struct timer_list *t)
 297{
 298        struct gb_operation *operation = from_timer(operation, t, timer);
 299
 300        if (gb_operation_result_set(operation, -ETIMEDOUT)) {
 301                /*
 302                 * A stuck request message will be cancelled from the
 303                 * workqueue.
 304                 */
 305                queue_work(gb_operation_completion_wq, &operation->work);
 306        }
 307}
 308
 309static void gb_operation_message_init(struct gb_host_device *hd,
 310                                struct gb_message *message, u16 operation_id,
 311                                size_t payload_size, u8 type)
 312{
 313        struct gb_operation_msg_hdr *header;
 314
 315        header = message->buffer;
 316
 317        message->header = header;
 318        message->payload = payload_size ? header + 1 : NULL;
 319        message->payload_size = payload_size;
 320
 321        /*
 322         * The type supplied for incoming message buffers will be
 323         * GB_REQUEST_TYPE_INVALID. Such buffers will be overwritten by
 324         * arriving data so there's no need to initialize the message header.
 325         */
 326        if (type != GB_REQUEST_TYPE_INVALID) {
 327                u16 message_size = (u16)(sizeof(*header) + payload_size);
 328
 329                /*
 330                 * For a request, the operation id gets filled in
 331                 * when the message is sent.  For a response, it
 332                 * will be copied from the request by the caller.
 333                 *
 334                 * The result field in a request message must be
 335                 * zero.  It will be set just prior to sending for
 336                 * a response.
 337                 */
 338                header->size = cpu_to_le16(message_size);
 339                header->operation_id = 0;
 340                header->type = type;
 341                header->result = 0;
 342        }
 343}
 344
 345/*
 346 * Allocate a message to be used for an operation request or response.
 347 * Both types of message contain a common header.  The request message
 348 * for an outgoing operation is outbound, as is the response message
 349 * for an incoming operation.  The message header for an outbound
 350 * message is partially initialized here.
 351 *
 352 * The headers for inbound messages don't need to be initialized;
 353 * they'll be filled in by arriving data.
 354 *
 355 * Our message buffers have the following layout:
 356 *      message header  \_ these combined are
 357 *      message payload /  the message size
 358 */
 359static struct gb_message *
 360gb_operation_message_alloc(struct gb_host_device *hd, u8 type,
 361                                size_t payload_size, gfp_t gfp_flags)
 362{
 363        struct gb_message *message;
 364        struct gb_operation_msg_hdr *header;
 365        size_t message_size = payload_size + sizeof(*header);
 366
 367        if (message_size > hd->buffer_size_max) {
 368                dev_warn(&hd->dev, "requested message size too big (%zu > %zu)\n",
 369                                message_size, hd->buffer_size_max);
 370                return NULL;
 371        }
 372
 373        /* Allocate the message structure and buffer. */
 374        message = kmem_cache_zalloc(gb_message_cache, gfp_flags);
 375        if (!message)
 376                return NULL;
 377
 378        message->buffer = kzalloc(message_size, gfp_flags);
 379        if (!message->buffer)
 380                goto err_free_message;
 381
 382        /* Initialize the message.  Operation id is filled in later. */
 383        gb_operation_message_init(hd, message, 0, payload_size, type);
 384
 385        return message;
 386
 387err_free_message:
 388        kmem_cache_free(gb_message_cache, message);
 389
 390        return NULL;
 391}
 392
 393static void gb_operation_message_free(struct gb_message *message)
 394{
 395        kfree(message->buffer);
 396        kmem_cache_free(gb_message_cache, message);
 397}
 398
 399/*
 400 * Map an enum gb_operation_status value (which is represented in a
 401 * message as a single byte) to an appropriate Linux negative errno.
 402 */
 403static int gb_operation_status_map(u8 status)
 404{
 405        switch (status) {
 406        case GB_OP_SUCCESS:
 407                return 0;
 408        case GB_OP_INTERRUPTED:
 409                return -EINTR;
 410        case GB_OP_TIMEOUT:
 411                return -ETIMEDOUT;
 412        case GB_OP_NO_MEMORY:
 413                return -ENOMEM;
 414        case GB_OP_PROTOCOL_BAD:
 415                return -EPROTONOSUPPORT;
 416        case GB_OP_OVERFLOW:
 417                return -EMSGSIZE;
 418        case GB_OP_INVALID:
 419                return -EINVAL;
 420        case GB_OP_RETRY:
 421                return -EAGAIN;
 422        case GB_OP_NONEXISTENT:
 423                return -ENODEV;
 424        case GB_OP_MALFUNCTION:
 425                return -EILSEQ;
 426        case GB_OP_UNKNOWN_ERROR:
 427        default:
 428                return -EIO;
 429        }
 430}
 431
 432/*
 433 * Map a Linux errno value (from operation->errno) into the value
 434 * that should represent it in a response message status sent
 435 * over the wire.  Returns an enum gb_operation_status value (which
 436 * is represented in a message as a single byte).
 437 */
 438static u8 gb_operation_errno_map(int errno)
 439{
 440        switch (errno) {
 441        case 0:
 442                return GB_OP_SUCCESS;
 443        case -EINTR:
 444                return GB_OP_INTERRUPTED;
 445        case -ETIMEDOUT:
 446                return GB_OP_TIMEOUT;
 447        case -ENOMEM:
 448                return GB_OP_NO_MEMORY;
 449        case -EPROTONOSUPPORT:
 450                return GB_OP_PROTOCOL_BAD;
 451        case -EMSGSIZE:
 452                return GB_OP_OVERFLOW;  /* Could be underflow too */
 453        case -EINVAL:
 454                return GB_OP_INVALID;
 455        case -EAGAIN:
 456                return GB_OP_RETRY;
 457        case -EILSEQ:
 458                return GB_OP_MALFUNCTION;
 459        case -ENODEV:
 460                return GB_OP_NONEXISTENT;
 461        case -EIO:
 462        default:
 463                return GB_OP_UNKNOWN_ERROR;
 464        }
 465}
 466
 467bool gb_operation_response_alloc(struct gb_operation *operation,
 468                                        size_t response_size, gfp_t gfp)
 469{
 470        struct gb_host_device *hd = operation->connection->hd;
 471        struct gb_operation_msg_hdr *request_header;
 472        struct gb_message *response;
 473        u8 type;
 474
 475        type = operation->type | GB_MESSAGE_TYPE_RESPONSE;
 476        response = gb_operation_message_alloc(hd, type, response_size, gfp);
 477        if (!response)
 478                return false;
 479        response->operation = operation;
 480
 481        /*
 482         * Size and type get initialized when the message is
 483         * allocated.  The errno will be set before sending.  All
 484         * that's left is the operation id, which we copy from the
 485         * request message header (as-is, in little-endian order).
 486         */
 487        request_header = operation->request->header;
 488        response->header->operation_id = request_header->operation_id;
 489        operation->response = response;
 490
 491        return true;
 492}
 493EXPORT_SYMBOL_GPL(gb_operation_response_alloc);
 494
 495/*
 496 * Create a Greybus operation to be sent over the given connection.
 497 * The request buffer will be big enough for a payload of the given
 498 * size.
 499 *
 500 * For outgoing requests, the request message's header will be
 501 * initialized with the type of the request and the message size.
 502 * Outgoing operations must also specify the response buffer size,
 503 * which must be sufficient to hold all expected response data.  The
 504 * response message header will eventually be overwritten, so there's
 505 * no need to initialize it here.
 506 *
 507 * Request messages for incoming operations can arrive in interrupt
 508 * context, so they must be allocated with GFP_ATOMIC.  In this case
 509 * the request buffer will be immediately overwritten, so there is
 510 * no need to initialize the message header.  Responsibility for
 511 * allocating a response buffer lies with the incoming request
 512 * handler for a protocol.  So we don't allocate that here.
 513 *
 514 * Returns a pointer to the new operation or a null pointer if an
 515 * error occurs.
 516 */
 517static struct gb_operation *
 518gb_operation_create_common(struct gb_connection *connection, u8 type,
 519                                size_t request_size, size_t response_size,
 520                                unsigned long op_flags, gfp_t gfp_flags)
 521{
 522        struct gb_host_device *hd = connection->hd;
 523        struct gb_operation *operation;
 524
 525        operation = kmem_cache_zalloc(gb_operation_cache, gfp_flags);
 526        if (!operation)
 527                return NULL;
 528        operation->connection = connection;
 529
 530        operation->request = gb_operation_message_alloc(hd, type, request_size,
 531                                                        gfp_flags);
 532        if (!operation->request)
 533                goto err_cache;
 534        operation->request->operation = operation;
 535
 536        /* Allocate the response buffer for outgoing operations */
 537        if (!(op_flags & GB_OPERATION_FLAG_INCOMING)) {
 538                if (!gb_operation_response_alloc(operation, response_size,
 539                                                 gfp_flags)) {
 540                        goto err_request;
 541                }
 542
 543                timer_setup(&operation->timer, gb_operation_timeout, 0);
 544        }
 545
 546        operation->flags = op_flags;
 547        operation->type = type;
 548        operation->errno = -EBADR;  /* Initial value--means "never set" */
 549
 550        INIT_WORK(&operation->work, gb_operation_work);
 551        init_completion(&operation->completion);
 552        kref_init(&operation->kref);
 553        atomic_set(&operation->waiters, 0);
 554
 555        return operation;
 556
 557err_request:
 558        gb_operation_message_free(operation->request);
 559err_cache:
 560        kmem_cache_free(gb_operation_cache, operation);
 561
 562        return NULL;
 563}
 564
 565/*
 566 * Create a new operation associated with the given connection.  The
 567 * request and response sizes provided are the number of bytes
 568 * required to hold the request/response payload only.  Both of
 569 * these are allowed to be 0.  Note that 0x00 is reserved as an
 570 * invalid operation type for all protocols, and this is enforced
 571 * here.
 572 */
 573struct gb_operation *
 574gb_operation_create_flags(struct gb_connection *connection,
 575                                u8 type, size_t request_size,
 576                                size_t response_size, unsigned long flags,
 577                                gfp_t gfp)
 578{
 579        struct gb_operation *operation;
 580
 581        if (WARN_ON_ONCE(type == GB_REQUEST_TYPE_INVALID))
 582                return NULL;
 583        if (WARN_ON_ONCE(type & GB_MESSAGE_TYPE_RESPONSE))
 584                type &= ~GB_MESSAGE_TYPE_RESPONSE;
 585
 586        if (WARN_ON_ONCE(flags & ~GB_OPERATION_FLAG_USER_MASK))
 587                flags &= GB_OPERATION_FLAG_USER_MASK;
 588
 589        operation = gb_operation_create_common(connection, type,
 590                                                request_size, response_size,
 591                                                flags, gfp);
 592        if (operation)
 593                trace_gb_operation_create(operation);
 594
 595        return operation;
 596}
 597EXPORT_SYMBOL_GPL(gb_operation_create_flags);
 598
 599struct gb_operation *
 600gb_operation_create_core(struct gb_connection *connection,
 601                                u8 type, size_t request_size,
 602                                size_t response_size, unsigned long flags,
 603                                gfp_t gfp)
 604{
 605        struct gb_operation *operation;
 606
 607        flags |= GB_OPERATION_FLAG_CORE;
 608
 609        operation = gb_operation_create_common(connection, type,
 610                                                request_size, response_size,
 611                                                flags, gfp);
 612        if (operation)
 613                trace_gb_operation_create_core(operation);
 614
 615        return operation;
 616}
 617/* Do not export this function. */
 618
 619size_t gb_operation_get_payload_size_max(struct gb_connection *connection)
 620{
 621        struct gb_host_device *hd = connection->hd;
 622
 623        return hd->buffer_size_max - sizeof(struct gb_operation_msg_hdr);
 624}
 625EXPORT_SYMBOL_GPL(gb_operation_get_payload_size_max);
 626
 627static struct gb_operation *
 628gb_operation_create_incoming(struct gb_connection *connection, u16 id,
 629                                u8 type, void *data, size_t size)
 630{
 631        struct gb_operation *operation;
 632        size_t request_size;
 633        unsigned long flags = GB_OPERATION_FLAG_INCOMING;
 634
 635        /* Caller has made sure we at least have a message header. */
 636        request_size = size - sizeof(struct gb_operation_msg_hdr);
 637
 638        if (!id)
 639                flags |= GB_OPERATION_FLAG_UNIDIRECTIONAL;
 640
 641        operation = gb_operation_create_common(connection, type,
 642                                                request_size,
 643                                                GB_REQUEST_TYPE_INVALID,
 644                                                flags, GFP_ATOMIC);
 645        if (!operation)
 646                return NULL;
 647
 648        operation->id = id;
 649        memcpy(operation->request->header, data, size);
 650        trace_gb_operation_create_incoming(operation);
 651
 652        return operation;
 653}
 654
 655/*
 656 * Get an additional reference on an operation.
 657 */
 658void gb_operation_get(struct gb_operation *operation)
 659{
 660        kref_get(&operation->kref);
 661}
 662EXPORT_SYMBOL_GPL(gb_operation_get);
 663
 664/*
 665 * Destroy a previously created operation.
 666 */
 667static void _gb_operation_destroy(struct kref *kref)
 668{
 669        struct gb_operation *operation;
 670
 671        operation = container_of(kref, struct gb_operation, kref);
 672
 673        trace_gb_operation_destroy(operation);
 674
 675        if (operation->response)
 676                gb_operation_message_free(operation->response);
 677        gb_operation_message_free(operation->request);
 678
 679        kmem_cache_free(gb_operation_cache, operation);
 680}
 681
 682/*
 683 * Drop a reference on an operation, and destroy it when the last
 684 * one is gone.
 685 */
 686void gb_operation_put(struct gb_operation *operation)
 687{
 688        if (WARN_ON(!operation))
 689                return;
 690
 691        kref_put(&operation->kref, _gb_operation_destroy);
 692}
 693EXPORT_SYMBOL_GPL(gb_operation_put);
 694
 695/* Tell the requester we're done */
 696static void gb_operation_sync_callback(struct gb_operation *operation)
 697{
 698        complete(&operation->completion);
 699}
 700
 701/**
 702 * gb_operation_request_send() - send an operation request message
 703 * @operation:  the operation to initiate
 704 * @callback:   the operation completion callback
 705 * @timeout:    operation timeout in milliseconds, or zero for no timeout
 706 * @gfp:        the memory flags to use for any allocations
 707 *
 708 * The caller has filled in any payload so the request message is ready to go.
 709 * The callback function supplied will be called when the response message has
 710 * arrived, a unidirectional request has been sent, or the operation is
 711 * cancelled, indicating that the operation is complete. The callback function
 712 * can fetch the result of the operation using gb_operation_result() if
 713 * desired.
 714 *
 715 * Return: 0 if the request was successfully queued in the host-driver queues,
 716 * or a negative errno.
 717 */
 718int gb_operation_request_send(struct gb_operation *operation,
 719                                gb_operation_callback callback,
 720                                unsigned int timeout,
 721                                gfp_t gfp)
 722{
 723        struct gb_connection *connection = operation->connection;
 724        struct gb_operation_msg_hdr *header;
 725        unsigned int cycle;
 726        int ret;
 727
 728        if (gb_connection_is_offloaded(connection))
 729                return -EBUSY;
 730
 731        if (!callback)
 732                return -EINVAL;
 733
 734        /*
 735         * Record the callback function, which is executed in
 736         * non-atomic (workqueue) context when the final result
 737         * of an operation has been set.
 738         */
 739        operation->callback = callback;
 740
 741        /*
 742         * Assign the operation's id, and store it in the request header.
 743         * Zero is a reserved operation id for unidirectional operations.
 744         */
 745        if (gb_operation_is_unidirectional(operation)) {
 746                operation->id = 0;
 747        } else {
 748                cycle = (unsigned int)atomic_inc_return(&connection->op_cycle);
 749                operation->id = (u16)(cycle % U16_MAX + 1);
 750        }
 751
 752        header = operation->request->header;
 753        header->operation_id = cpu_to_le16(operation->id);
 754
 755        gb_operation_result_set(operation, -EINPROGRESS);
 756
 757        /*
 758         * Get an extra reference on the operation. It'll be dropped when the
 759         * operation completes.
 760         */
 761        gb_operation_get(operation);
 762        ret = gb_operation_get_active(operation);
 763        if (ret)
 764                goto err_put;
 765
 766        ret = gb_message_send(operation->request, gfp);
 767        if (ret)
 768                goto err_put_active;
 769
 770        if (timeout) {
 771                operation->timer.expires = jiffies + msecs_to_jiffies(timeout);
 772                add_timer(&operation->timer);
 773        }
 774
 775        return 0;
 776
 777err_put_active:
 778        gb_operation_put_active(operation);
 779err_put:
 780        gb_operation_put(operation);
 781
 782        return ret;
 783}
 784EXPORT_SYMBOL_GPL(gb_operation_request_send);
 785
 786/*
 787 * Send a synchronous operation.  This function is expected to
 788 * block, returning only when the response has arrived, (or when an
 789 * error is detected.  The return value is the result of the
 790 * operation.
 791 */
 792int gb_operation_request_send_sync_timeout(struct gb_operation *operation,
 793                                                unsigned int timeout)
 794{
 795        int ret;
 796
 797        ret = gb_operation_request_send(operation, gb_operation_sync_callback,
 798                                        timeout, GFP_KERNEL);
 799        if (ret)
 800                return ret;
 801
 802        ret = wait_for_completion_interruptible(&operation->completion);
 803        if (ret < 0) {
 804                /* Cancel the operation if interrupted */
 805                gb_operation_cancel(operation, -ECANCELED);
 806        }
 807
 808        return gb_operation_result(operation);
 809}
 810EXPORT_SYMBOL_GPL(gb_operation_request_send_sync_timeout);
 811
 812/*
 813 * Send a response for an incoming operation request.  A non-zero
 814 * errno indicates a failed operation.
 815 *
 816 * If there is any response payload, the incoming request handler is
 817 * responsible for allocating the response message.  Otherwise the
 818 * it can simply supply the result errno; this function will
 819 * allocate the response message if necessary.
 820 */
 821static int gb_operation_response_send(struct gb_operation *operation,
 822                                        int errno)
 823{
 824        struct gb_connection *connection = operation->connection;
 825        int ret;
 826
 827        if (!operation->response &&
 828                        !gb_operation_is_unidirectional(operation)) {
 829                if (!gb_operation_response_alloc(operation, 0, GFP_KERNEL))
 830                        return -ENOMEM;
 831        }
 832
 833        /* Record the result */
 834        if (!gb_operation_result_set(operation, errno)) {
 835                dev_err(&connection->hd->dev, "request result already set\n");
 836                return -EIO;    /* Shouldn't happen */
 837        }
 838
 839        /* Sender of request does not care about response. */
 840        if (gb_operation_is_unidirectional(operation))
 841                return 0;
 842
 843        /* Reference will be dropped when message has been sent. */
 844        gb_operation_get(operation);
 845        ret = gb_operation_get_active(operation);
 846        if (ret)
 847                goto err_put;
 848
 849        /* Fill in the response header and send it */
 850        operation->response->header->result = gb_operation_errno_map(errno);
 851
 852        ret = gb_message_send(operation->response, GFP_KERNEL);
 853        if (ret)
 854                goto err_put_active;
 855
 856        return 0;
 857
 858err_put_active:
 859        gb_operation_put_active(operation);
 860err_put:
 861        gb_operation_put(operation);
 862
 863        return ret;
 864}
 865
 866/*
 867 * This function is called when a message send request has completed.
 868 */
 869void greybus_message_sent(struct gb_host_device *hd,
 870                                        struct gb_message *message, int status)
 871{
 872        struct gb_operation *operation = message->operation;
 873        struct gb_connection *connection = operation->connection;
 874
 875        /*
 876         * If the message was a response, we just need to drop our
 877         * reference to the operation.  If an error occurred, report
 878         * it.
 879         *
 880         * For requests, if there's no error and the operation in not
 881         * unidirectional, there's nothing more to do until the response
 882         * arrives. If an error occurred attempting to send it, or if the
 883         * operation is unidrectional, record the result of the operation and
 884         * schedule its completion.
 885         */
 886        if (message == operation->response) {
 887                if (status) {
 888                        dev_err(&connection->hd->dev,
 889                                "%s: error sending response 0x%02x: %d\n",
 890                                connection->name, operation->type, status);
 891                }
 892
 893                gb_operation_put_active(operation);
 894                gb_operation_put(operation);
 895        } else if (status || gb_operation_is_unidirectional(operation)) {
 896                if (gb_operation_result_set(operation, status)) {
 897                        queue_work(gb_operation_completion_wq,
 898                                        &operation->work);
 899                }
 900        }
 901}
 902EXPORT_SYMBOL_GPL(greybus_message_sent);
 903
 904/*
 905 * We've received data on a connection, and it doesn't look like a
 906 * response, so we assume it's a request.
 907 *
 908 * This is called in interrupt context, so just copy the incoming
 909 * data into the request buffer and handle the rest via workqueue.
 910 */
 911static void gb_connection_recv_request(struct gb_connection *connection,
 912                                const struct gb_operation_msg_hdr *header,
 913                                void *data, size_t size)
 914{
 915        struct gb_operation *operation;
 916        u16 operation_id;
 917        u8 type;
 918        int ret;
 919
 920        operation_id = le16_to_cpu(header->operation_id);
 921        type = header->type;
 922
 923        operation = gb_operation_create_incoming(connection, operation_id,
 924                                                type, data, size);
 925        if (!operation) {
 926                dev_err(&connection->hd->dev,
 927                        "%s: can't create incoming operation\n",
 928                        connection->name);
 929                return;
 930        }
 931
 932        ret = gb_operation_get_active(operation);
 933        if (ret) {
 934                gb_operation_put(operation);
 935                return;
 936        }
 937        trace_gb_message_recv_request(operation->request);
 938
 939        /*
 940         * The initial reference to the operation will be dropped when the
 941         * request handler returns.
 942         */
 943        if (gb_operation_result_set(operation, -EINPROGRESS))
 944                queue_work(connection->wq, &operation->work);
 945}
 946
 947/*
 948 * We've received data that appears to be an operation response
 949 * message.  Look up the operation, and record that we've received
 950 * its response.
 951 *
 952 * This is called in interrupt context, so just copy the incoming
 953 * data into the response buffer and handle the rest via workqueue.
 954 */
 955static void gb_connection_recv_response(struct gb_connection *connection,
 956                                const struct gb_operation_msg_hdr *header,
 957                                void *data, size_t size)
 958{
 959        struct gb_operation *operation;
 960        struct gb_message *message;
 961        size_t message_size;
 962        u16 operation_id;
 963        int errno;
 964
 965        operation_id = le16_to_cpu(header->operation_id);
 966
 967        if (!operation_id) {
 968                dev_err_ratelimited(&connection->hd->dev,
 969                                "%s: invalid response id 0 received\n",
 970                                connection->name);
 971                return;
 972        }
 973
 974        operation = gb_operation_find_outgoing(connection, operation_id);
 975        if (!operation) {
 976                dev_err_ratelimited(&connection->hd->dev,
 977                                "%s: unexpected response id 0x%04x received\n",
 978                                connection->name, operation_id);
 979                return;
 980        }
 981
 982        errno = gb_operation_status_map(header->result);
 983        message = operation->response;
 984        message_size = sizeof(*header) + message->payload_size;
 985        if (!errno && size > message_size) {
 986                dev_err_ratelimited(&connection->hd->dev,
 987                                "%s: malformed response 0x%02x received (%zu > %zu)\n",
 988                                connection->name, header->type,
 989                                size, message_size);
 990                errno = -EMSGSIZE;
 991        } else if (!errno && size < message_size) {
 992                if (gb_operation_short_response_allowed(operation)) {
 993                        message->payload_size = size - sizeof(*header);
 994                } else {
 995                        dev_err_ratelimited(&connection->hd->dev,
 996                                        "%s: short response 0x%02x received (%zu < %zu)\n",
 997                                        connection->name, header->type,
 998                                        size, message_size);
 999                        errno = -EMSGSIZE;
1000                }
1001        }
1002
1003        /* We must ignore the payload if a bad status is returned */
1004        if (errno)
1005                size = sizeof(*header);
1006
1007        /* The rest will be handled in work queue context */
1008        if (gb_operation_result_set(operation, errno)) {
1009                memcpy(message->buffer, data, size);
1010
1011                trace_gb_message_recv_response(message);
1012
1013                queue_work(gb_operation_completion_wq, &operation->work);
1014        }
1015
1016        gb_operation_put(operation);
1017}
1018
1019/*
1020 * Handle data arriving on a connection.  As soon as we return the
1021 * supplied data buffer will be reused (so unless we do something
1022 * with, it's effectively dropped).
1023 */
1024void gb_connection_recv(struct gb_connection *connection,
1025                                void *data, size_t size)
1026{
1027        struct gb_operation_msg_hdr header;
1028        struct device *dev = &connection->hd->dev;
1029        size_t msg_size;
1030
1031        if (connection->state == GB_CONNECTION_STATE_DISABLED ||
1032                        gb_connection_is_offloaded(connection)) {
1033                dev_warn_ratelimited(dev, "%s: dropping %zu received bytes\n",
1034                                connection->name, size);
1035                return;
1036        }
1037
1038        if (size < sizeof(header)) {
1039                dev_err_ratelimited(dev, "%s: short message received\n",
1040                                connection->name);
1041                return;
1042        }
1043
1044        /* Use memcpy as data may be unaligned */
1045        memcpy(&header, data, sizeof(header));
1046        msg_size = le16_to_cpu(header.size);
1047        if (size < msg_size) {
1048                dev_err_ratelimited(dev,
1049                                "%s: incomplete message 0x%04x of type 0x%02x received (%zu < %zu)\n",
1050                                connection->name,
1051                                le16_to_cpu(header.operation_id),
1052                                header.type, size, msg_size);
1053                return;         /* XXX Should still complete operation */
1054        }
1055
1056        if (header.type & GB_MESSAGE_TYPE_RESPONSE) {
1057                gb_connection_recv_response(connection, &header, data,
1058                                                msg_size);
1059        } else {
1060                gb_connection_recv_request(connection, &header, data,
1061                                                msg_size);
1062        }
1063}
1064
1065/*
1066 * Cancel an outgoing operation synchronously, and record the given error to
1067 * indicate why.
1068 */
1069void gb_operation_cancel(struct gb_operation *operation, int errno)
1070{
1071        if (WARN_ON(gb_operation_is_incoming(operation)))
1072                return;
1073
1074        if (gb_operation_result_set(operation, errno)) {
1075                gb_message_cancel(operation->request);
1076                queue_work(gb_operation_completion_wq, &operation->work);
1077        }
1078        trace_gb_message_cancel_outgoing(operation->request);
1079
1080        atomic_inc(&operation->waiters);
1081        wait_event(gb_operation_cancellation_queue,
1082                        !gb_operation_is_active(operation));
1083        atomic_dec(&operation->waiters);
1084}
1085EXPORT_SYMBOL_GPL(gb_operation_cancel);
1086
1087/*
1088 * Cancel an incoming operation synchronously. Called during connection tear
1089 * down.
1090 */
1091void gb_operation_cancel_incoming(struct gb_operation *operation, int errno)
1092{
1093        if (WARN_ON(!gb_operation_is_incoming(operation)))
1094                return;
1095
1096        if (!gb_operation_is_unidirectional(operation)) {
1097                /*
1098                 * Make sure the request handler has submitted the response
1099                 * before cancelling it.
1100                 */
1101                flush_work(&operation->work);
1102                if (!gb_operation_result_set(operation, errno))
1103                        gb_message_cancel(operation->response);
1104        }
1105        trace_gb_message_cancel_incoming(operation->response);
1106
1107        atomic_inc(&operation->waiters);
1108        wait_event(gb_operation_cancellation_queue,
1109                        !gb_operation_is_active(operation));
1110        atomic_dec(&operation->waiters);
1111}
1112
1113/**
1114 * gb_operation_sync_timeout() - implement a "simple" synchronous operation
1115 * @connection: the Greybus connection to send this to
1116 * @type: the type of operation to send
1117 * @request: pointer to a memory buffer to copy the request from
1118 * @request_size: size of @request
1119 * @response: pointer to a memory buffer to copy the response to
1120 * @response_size: the size of @response.
1121 * @timeout: operation timeout in milliseconds
1122 *
1123 * This function implements a simple synchronous Greybus operation.  It sends
1124 * the provided operation request and waits (sleeps) until the corresponding
1125 * operation response message has been successfully received, or an error
1126 * occurs.  @request and @response are buffers to hold the request and response
1127 * data respectively, and if they are not NULL, their size must be specified in
1128 * @request_size and @response_size.
1129 *
1130 * If a response payload is to come back, and @response is not NULL,
1131 * @response_size number of bytes will be copied into @response if the operation
1132 * is successful.
1133 *
1134 * If there is an error, the response buffer is left alone.
1135 */
1136int gb_operation_sync_timeout(struct gb_connection *connection, int type,
1137                                void *request, int request_size,
1138                                void *response, int response_size,
1139                                unsigned int timeout)
1140{
1141        struct gb_operation *operation;
1142        int ret;
1143
1144        if ((response_size && !response) ||
1145            (request_size && !request))
1146                return -EINVAL;
1147
1148        operation = gb_operation_create(connection, type,
1149                                        request_size, response_size,
1150                                        GFP_KERNEL);
1151        if (!operation)
1152                return -ENOMEM;
1153
1154        if (request_size)
1155                memcpy(operation->request->payload, request, request_size);
1156
1157        ret = gb_operation_request_send_sync_timeout(operation, timeout);
1158        if (ret) {
1159                dev_err(&connection->hd->dev,
1160                        "%s: synchronous operation id 0x%04x of type 0x%02x failed: %d\n",
1161                        connection->name, operation->id, type, ret);
1162        } else {
1163                if (response_size) {
1164                        memcpy(response, operation->response->payload,
1165                               response_size);
1166                }
1167        }
1168
1169        gb_operation_put(operation);
1170
1171        return ret;
1172}
1173EXPORT_SYMBOL_GPL(gb_operation_sync_timeout);
1174
1175/**
1176 * gb_operation_unidirectional_timeout() - initiate a unidirectional operation
1177 * @connection:         connection to use
1178 * @type:               type of operation to send
1179 * @request:            memory buffer to copy the request from
1180 * @request_size:       size of @request
1181 * @timeout:            send timeout in milliseconds
1182 *
1183 * Initiate a unidirectional operation by sending a request message and
1184 * waiting for it to be acknowledged as sent by the host device.
1185 *
1186 * Note that successful send of a unidirectional operation does not imply that
1187 * the request as actually reached the remote end of the connection.
1188 */
1189int gb_operation_unidirectional_timeout(struct gb_connection *connection,
1190                                int type, void *request, int request_size,
1191                                unsigned int timeout)
1192{
1193        struct gb_operation *operation;
1194        int ret;
1195
1196        if (request_size && !request)
1197                return -EINVAL;
1198
1199        operation = gb_operation_create_flags(connection, type,
1200                                        request_size, 0,
1201                                        GB_OPERATION_FLAG_UNIDIRECTIONAL,
1202                                        GFP_KERNEL);
1203        if (!operation)
1204                return -ENOMEM;
1205
1206        if (request_size)
1207                memcpy(operation->request->payload, request, request_size);
1208
1209        ret = gb_operation_request_send_sync_timeout(operation, timeout);
1210        if (ret) {
1211                dev_err(&connection->hd->dev,
1212                        "%s: unidirectional operation of type 0x%02x failed: %d\n",
1213                        connection->name, type, ret);
1214        }
1215
1216        gb_operation_put(operation);
1217
1218        return ret;
1219}
1220EXPORT_SYMBOL_GPL(gb_operation_unidirectional_timeout);
1221
1222int __init gb_operation_init(void)
1223{
1224        gb_message_cache = kmem_cache_create("gb_message_cache",
1225                                sizeof(struct gb_message), 0, 0, NULL);
1226        if (!gb_message_cache)
1227                return -ENOMEM;
1228
1229        gb_operation_cache = kmem_cache_create("gb_operation_cache",
1230                                sizeof(struct gb_operation), 0, 0, NULL);
1231        if (!gb_operation_cache)
1232                goto err_destroy_message_cache;
1233
1234        gb_operation_completion_wq = alloc_workqueue("greybus_completion",
1235                                0, 0);
1236        if (!gb_operation_completion_wq)
1237                goto err_destroy_operation_cache;
1238
1239        return 0;
1240
1241err_destroy_operation_cache:
1242        kmem_cache_destroy(gb_operation_cache);
1243        gb_operation_cache = NULL;
1244err_destroy_message_cache:
1245        kmem_cache_destroy(gb_message_cache);
1246        gb_message_cache = NULL;
1247
1248        return -ENOMEM;
1249}
1250
1251void gb_operation_exit(void)
1252{
1253        destroy_workqueue(gb_operation_completion_wq);
1254        gb_operation_completion_wq = NULL;
1255        kmem_cache_destroy(gb_operation_cache);
1256        gb_operation_cache = NULL;
1257        kmem_cache_destroy(gb_message_cache);
1258        gb_message_cache = NULL;
1259}
1260