linux/drivers/usb/dwc2/hcd.h
<<
>>
Prefs
   1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
   2/*
   3 * hcd.h - DesignWare HS OTG Controller host-mode declarations
   4 *
   5 * Copyright (C) 2004-2013 Synopsys, Inc.
   6 *
   7 * Redistribution and use in source and binary forms, with or without
   8 * modification, are permitted provided that the following conditions
   9 * are met:
  10 * 1. Redistributions of source code must retain the above copyright
  11 *    notice, this list of conditions, and the following disclaimer,
  12 *    without modification.
  13 * 2. Redistributions in binary form must reproduce the above copyright
  14 *    notice, this list of conditions and the following disclaimer in the
  15 *    documentation and/or other materials provided with the distribution.
  16 * 3. The names of the above-listed copyright holders may not be used
  17 *    to endorse or promote products derived from this software without
  18 *    specific prior written permission.
  19 *
  20 * ALTERNATIVELY, this software may be distributed under the terms of the
  21 * GNU General Public License ("GPL") as published by the Free Software
  22 * Foundation; either version 2 of the License, or (at your option) any
  23 * later version.
  24 *
  25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  36 */
  37#ifndef __DWC2_HCD_H__
  38#define __DWC2_HCD_H__
  39
  40/*
  41 * This file contains the structures, constants, and interfaces for the
  42 * Host Contoller Driver (HCD)
  43 *
  44 * The Host Controller Driver (HCD) is responsible for translating requests
  45 * from the USB Driver into the appropriate actions on the DWC_otg controller.
  46 * It isolates the USBD from the specifics of the controller by providing an
  47 * API to the USBD.
  48 */
  49
  50struct dwc2_qh;
  51
  52/**
  53 * struct dwc2_host_chan - Software host channel descriptor
  54 *
  55 * @hc_num:             Host channel number, used for register address lookup
  56 * @dev_addr:           Address of the device
  57 * @ep_num:             Endpoint of the device
  58 * @ep_is_in:           Endpoint direction
  59 * @speed:              Device speed. One of the following values:
  60 *                       - USB_SPEED_LOW
  61 *                       - USB_SPEED_FULL
  62 *                       - USB_SPEED_HIGH
  63 * @ep_type:            Endpoint type. One of the following values:
  64 *                       - USB_ENDPOINT_XFER_CONTROL: 0
  65 *                       - USB_ENDPOINT_XFER_ISOC:    1
  66 *                       - USB_ENDPOINT_XFER_BULK:    2
  67 *                       - USB_ENDPOINT_XFER_INTR:    3
  68 * @max_packet:         Max packet size in bytes
  69 * @data_pid_start:     PID for initial transaction.
  70 *                       0: DATA0
  71 *                       1: DATA2
  72 *                       2: DATA1
  73 *                       3: MDATA (non-Control EP),
  74 *                          SETUP (Control EP)
  75 * @multi_count:        Number of additional periodic transactions per
  76 *                      (micro)frame
  77 * @xfer_buf:           Pointer to current transfer buffer position
  78 * @xfer_dma:           DMA address of xfer_buf
  79 * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
  80 *                      DWORD aligned
  81 * @xfer_len:           Total number of bytes to transfer
  82 * @xfer_count:         Number of bytes transferred so far
  83 * @start_pkt_count:    Packet count at start of transfer
  84 * @xfer_started:       True if the transfer has been started
  85 * @do_ping:            True if a PING request should be issued on this channel
  86 * @error_state:        True if the error count for this transaction is non-zero
  87 * @halt_on_queue:      True if this channel should be halted the next time a
  88 *                      request is queued for the channel. This is necessary in
  89 *                      slave mode if no request queue space is available when
  90 *                      an attempt is made to halt the channel.
  91 * @halt_pending:       True if the host channel has been halted, but the core
  92 *                      is not finished flushing queued requests
  93 * @do_split:           Enable split for the channel
  94 * @complete_split:     Enable complete split
  95 * @hub_addr:           Address of high speed hub for the split
  96 * @hub_port:           Port of the low/full speed device for the split
  97 * @xact_pos:           Split transaction position. One of the following values:
  98 *                       - DWC2_HCSPLT_XACTPOS_MID
  99 *                       - DWC2_HCSPLT_XACTPOS_BEGIN
 100 *                       - DWC2_HCSPLT_XACTPOS_END
 101 *                       - DWC2_HCSPLT_XACTPOS_ALL
 102 * @requests:           Number of requests issued for this channel since it was
 103 *                      assigned to the current transfer (not counting PINGs)
 104 * @schinfo:            Scheduling micro-frame bitmap
 105 * @ntd:                Number of transfer descriptors for the transfer
 106 * @halt_status:        Reason for halting the host channel
 107 * @hcint:               Contents of the HCINT register when the interrupt came
 108 * @qh:                 QH for the transfer being processed by this channel
 109 * @hc_list_entry:      For linking to list of host channels
 110 * @desc_list_addr:     Current QH's descriptor list DMA address
 111 * @desc_list_sz:       Current QH's descriptor list size
 112 * @split_order_list_entry: List entry for keeping track of the order of splits
 113 *
 114 * This structure represents the state of a single host channel when acting in
 115 * host mode. It contains the data items needed to transfer packets to an
 116 * endpoint via a host channel.
 117 */
 118struct dwc2_host_chan {
 119        u8 hc_num;
 120
 121        unsigned dev_addr:7;
 122        unsigned ep_num:4;
 123        unsigned ep_is_in:1;
 124        unsigned speed:4;
 125        unsigned ep_type:2;
 126        unsigned max_packet:11;
 127        unsigned data_pid_start:2;
 128#define DWC2_HC_PID_DATA0       TSIZ_SC_MC_PID_DATA0
 129#define DWC2_HC_PID_DATA2       TSIZ_SC_MC_PID_DATA2
 130#define DWC2_HC_PID_DATA1       TSIZ_SC_MC_PID_DATA1
 131#define DWC2_HC_PID_MDATA       TSIZ_SC_MC_PID_MDATA
 132#define DWC2_HC_PID_SETUP       TSIZ_SC_MC_PID_SETUP
 133
 134        unsigned multi_count:2;
 135
 136        u8 *xfer_buf;
 137        dma_addr_t xfer_dma;
 138        dma_addr_t align_buf;
 139        u32 xfer_len;
 140        u32 xfer_count;
 141        u16 start_pkt_count;
 142        u8 xfer_started;
 143        u8 do_ping;
 144        u8 error_state;
 145        u8 halt_on_queue;
 146        u8 halt_pending;
 147        u8 do_split;
 148        u8 complete_split;
 149        u8 hub_addr;
 150        u8 hub_port;
 151        u8 xact_pos;
 152#define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
 153#define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
 154#define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
 155#define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
 156
 157        u8 requests;
 158        u8 schinfo;
 159        u16 ntd;
 160        enum dwc2_halt_status halt_status;
 161        u32 hcint;
 162        struct dwc2_qh *qh;
 163        struct list_head hc_list_entry;
 164        dma_addr_t desc_list_addr;
 165        u32 desc_list_sz;
 166        struct list_head split_order_list_entry;
 167};
 168
 169struct dwc2_hcd_pipe_info {
 170        u8 dev_addr;
 171        u8 ep_num;
 172        u8 pipe_type;
 173        u8 pipe_dir;
 174        u16 mps;
 175};
 176
 177struct dwc2_hcd_iso_packet_desc {
 178        u32 offset;
 179        u32 length;
 180        u32 actual_length;
 181        u32 status;
 182};
 183
 184struct dwc2_qtd;
 185
 186struct dwc2_hcd_urb {
 187        void *priv;
 188        struct dwc2_qtd *qtd;
 189        void *buf;
 190        dma_addr_t dma;
 191        void *setup_packet;
 192        dma_addr_t setup_dma;
 193        u32 length;
 194        u32 actual_length;
 195        u32 status;
 196        u32 error_count;
 197        u32 packet_count;
 198        u32 flags;
 199        u16 interval;
 200        struct dwc2_hcd_pipe_info pipe_info;
 201        struct dwc2_hcd_iso_packet_desc iso_descs[0];
 202};
 203
 204/* Phases for control transfers */
 205enum dwc2_control_phase {
 206        DWC2_CONTROL_SETUP,
 207        DWC2_CONTROL_DATA,
 208        DWC2_CONTROL_STATUS,
 209};
 210
 211/* Transaction types */
 212enum dwc2_transaction_type {
 213        DWC2_TRANSACTION_NONE,
 214        DWC2_TRANSACTION_PERIODIC,
 215        DWC2_TRANSACTION_NON_PERIODIC,
 216        DWC2_TRANSACTION_ALL,
 217};
 218
 219/* The number of elements per LS bitmap (per port on multi_tt) */
 220#define DWC2_ELEMENTS_PER_LS_BITMAP     DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
 221                                                     BITS_PER_LONG)
 222
 223/**
 224 * struct dwc2_tt - dwc2 data associated with a usb_tt
 225 *
 226 * @refcount:           Number of Queue Heads (QHs) holding a reference.
 227 * @usb_tt:             Pointer back to the official usb_tt.
 228 * @periodic_bitmaps:   Bitmap for which parts of the 1ms frame are accounted
 229 *                      for already.  Each is DWC2_ELEMENTS_PER_LS_BITMAP
 230 *                      elements (so sizeof(long) times that in bytes).
 231 *
 232 * This structure is stored in the hcpriv of the official usb_tt.
 233 */
 234struct dwc2_tt {
 235        int refcount;
 236        struct usb_tt *usb_tt;
 237        unsigned long periodic_bitmaps[];
 238};
 239
 240/**
 241 * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
 242 *
 243 * @start_schedule_us:  The start time on the main bus schedule.  Note that
 244 *                         the main bus schedule is tightly packed and this
 245 *                         time should be interpreted as tightly packed (so
 246 *                         uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
 247 *                         instead of 125 us).
 248 * @duration_us:           How long this transfer goes.
 249 */
 250
 251struct dwc2_hs_transfer_time {
 252        u32 start_schedule_us;
 253        u16 duration_us;
 254};
 255
 256/**
 257 * struct dwc2_qh - Software queue head structure
 258 *
 259 * @hsotg:              The HCD state structure for the DWC OTG controller
 260 * @ep_type:            Endpoint type. One of the following values:
 261 *                       - USB_ENDPOINT_XFER_CONTROL
 262 *                       - USB_ENDPOINT_XFER_BULK
 263 *                       - USB_ENDPOINT_XFER_INT
 264 *                       - USB_ENDPOINT_XFER_ISOC
 265 * @ep_is_in:           Endpoint direction
 266 * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
 267 * @dev_speed:          Device speed. One of the following values:
 268 *                       - USB_SPEED_LOW
 269 *                       - USB_SPEED_FULL
 270 *                       - USB_SPEED_HIGH
 271 * @data_toggle:        Determines the PID of the next data packet for
 272 *                      non-controltransfers. Ignored for control transfers.
 273 *                      One of the following values:
 274 *                       - DWC2_HC_PID_DATA0
 275 *                       - DWC2_HC_PID_DATA1
 276 * @ping_state:         Ping state
 277 * @do_split:           Full/low speed endpoint on high-speed hub requires split
 278 * @td_first:           Index of first activated isochronous transfer descriptor
 279 * @td_last:            Index of last activated isochronous transfer descriptor
 280 * @host_us:            Bandwidth in microseconds per transfer as seen by host
 281 * @device_us:          Bandwidth in microseconds per transfer as seen by device
 282 * @host_interval:      Interval between transfers as seen by the host.  If
 283 *                      the host is high speed and the device is low speed this
 284 *                      will be 8 times device interval.
 285 * @device_interval:    Interval between transfers as seen by the device.
 286 *                      interval.
 287 * @next_active_frame:  (Micro)frame _before_ we next need to put something on
 288 *                      the bus.  We'll move the qh to active here.  If the
 289 *                      host is in high speed mode this will be a uframe.  If
 290 *                      the host is in low speed mode this will be a full frame.
 291 * @start_active_frame: If we are partway through a split transfer, this will be
 292 *                      what next_active_frame was when we started.  Otherwise
 293 *                      it should always be the same as next_active_frame.
 294 * @num_hs_transfers:   Number of transfers in hs_transfers.
 295 *                      Normally this is 1 but can be more than one for splits.
 296 *                      Always >= 1 unless the host is in low/full speed mode.
 297 * @hs_transfers:       Transfers that are scheduled as seen by the high speed
 298 *                      bus.  Not used if host is in low or full speed mode (but
 299 *                      note that it IS USED if the device is low or full speed
 300 *                      as long as the HOST is in high speed mode).
 301 * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
 302 *                           schedule that's being used by this device.  This
 303 *                           will be on the periodic_bitmap in a
 304 *                           "struct dwc2_tt".  Not used if this device is high
 305 *                           speed.  Note that this is in "schedule slice" which
 306 *                           is tightly packed.
 307 * @ntd:                Actual number of transfer descriptors in a list
 308 * @dw_align_buf:       Used instead of original buffer if its physical address
 309 *                      is not dword-aligned
 310 * @dw_align_buf_dma:   DMA address for dw_align_buf
 311 * @qtd_list:           List of QTDs for this QH
 312 * @channel:            Host channel currently processing transfers for this QH
 313 * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
 314 *                      schedule
 315 * @desc_list:          List of transfer descriptors
 316 * @desc_list_dma:      Physical address of desc_list
 317 * @desc_list_sz:       Size of descriptors list
 318 * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
 319 *                      descriptor and indicates original XferSize value for the
 320 *                      descriptor
 321 * @unreserve_timer:    Timer for releasing periodic reservation.
 322 * @wait_timer:         Timer used to wait before re-queuing.
 323 * @dwc_tt:            Pointer to our tt info (or NULL if no tt).
 324 * @ttport:             Port number within our tt.
 325 * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
 326 * @unreserve_pending:  True if we planned to unreserve but haven't yet.
 327 * @schedule_low_speed: True if we have a low/full speed component (either the
 328 *                      host is in low/full speed mode or do_split).
 329 * @want_wait:          We should wait before re-queuing; only matters for non-
 330 *                      periodic transfers and is ignored for periodic ones.
 331 * @wait_timer_cancel:  Set to true to cancel the wait_timer.
 332 *
 333 * @tt_buffer_dirty:    True if EP's TT buffer is not clean.
 334 * A Queue Head (QH) holds the static characteristics of an endpoint and
 335 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
 336 * be entered in either the non-periodic or periodic schedule.
 337 */
 338struct dwc2_qh {
 339        struct dwc2_hsotg *hsotg;
 340        u8 ep_type;
 341        u8 ep_is_in;
 342        u16 maxp;
 343        u8 dev_speed;
 344        u8 data_toggle;
 345        u8 ping_state;
 346        u8 do_split;
 347        u8 td_first;
 348        u8 td_last;
 349        u16 host_us;
 350        u16 device_us;
 351        u16 host_interval;
 352        u16 device_interval;
 353        u16 next_active_frame;
 354        u16 start_active_frame;
 355        s16 num_hs_transfers;
 356        struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
 357        u32 ls_start_schedule_slice;
 358        u16 ntd;
 359        u8 *dw_align_buf;
 360        dma_addr_t dw_align_buf_dma;
 361        struct list_head qtd_list;
 362        struct dwc2_host_chan *channel;
 363        struct list_head qh_list_entry;
 364        struct dwc2_dma_desc *desc_list;
 365        dma_addr_t desc_list_dma;
 366        u32 desc_list_sz;
 367        u32 *n_bytes;
 368        struct timer_list unreserve_timer;
 369        struct timer_list wait_timer;
 370        struct dwc2_tt *dwc_tt;
 371        int ttport;
 372        unsigned tt_buffer_dirty:1;
 373        unsigned unreserve_pending:1;
 374        unsigned schedule_low_speed:1;
 375        unsigned want_wait:1;
 376        unsigned wait_timer_cancel:1;
 377};
 378
 379/**
 380 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
 381 *
 382 * @control_phase:      Current phase for control transfers (Setup, Data, or
 383 *                      Status)
 384 * @in_process:         Indicates if this QTD is currently processed by HW
 385 * @data_toggle:        Determines the PID of the next data packet for the
 386 *                      data phase of control transfers. Ignored for other
 387 *                      transfer types. One of the following values:
 388 *                       - DWC2_HC_PID_DATA0
 389 *                       - DWC2_HC_PID_DATA1
 390 * @complete_split:     Keeps track of the current split type for FS/LS
 391 *                      endpoints on a HS Hub
 392 * @isoc_split_pos:     Position of the ISOC split in full/low speed
 393 * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
 394 *                      transfer. A frame descriptor describes the buffer
 395 *                      position and length of the data to be transferred in the
 396 *                      next scheduled (micro)frame of an isochronous transfer.
 397 *                      It also holds status for that transaction. The frame
 398 *                      index starts at 0.
 399 * @isoc_split_offset:  Position of the ISOC split in the buffer for the
 400 *                      current frame
 401 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
 402 * @error_count:        Holds the number of bus errors that have occurred for
 403 *                      a transaction within this transfer
 404 * @n_desc:             Number of DMA descriptors for this QTD
 405 * @isoc_frame_index_last: Last activated frame (packet) index, used in
 406 *                      descriptor DMA mode only
 407 * @num_naks:           Number of NAKs received on this QTD.
 408 * @urb:                URB for this transfer
 409 * @qh:                 Queue head for this QTD
 410 * @qtd_list_entry:     For linking to the QH's list of QTDs
 411 * @isoc_td_first:      Index of first activated isochronous transfer
 412 *                      descriptor in Descriptor DMA mode
 413 * @isoc_td_last:       Index of last activated isochronous transfer
 414 *                      descriptor in Descriptor DMA mode
 415 *
 416 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
 417 * interrupt, or isochronous transfer. A single QTD is created for each URB
 418 * (of one of these types) submitted to the HCD. The transfer associated with
 419 * a QTD may require one or multiple transactions.
 420 *
 421 * A QTD is linked to a Queue Head, which is entered in either the
 422 * non-periodic or periodic schedule for execution. When a QTD is chosen for
 423 * execution, some or all of its transactions may be executed. After
 424 * execution, the state of the QTD is updated. The QTD may be retired if all
 425 * its transactions are complete or if an error occurred. Otherwise, it
 426 * remains in the schedule so more transactions can be executed later.
 427 */
 428struct dwc2_qtd {
 429        enum dwc2_control_phase control_phase;
 430        u8 in_process;
 431        u8 data_toggle;
 432        u8 complete_split;
 433        u8 isoc_split_pos;
 434        u16 isoc_frame_index;
 435        u16 isoc_split_offset;
 436        u16 isoc_td_last;
 437        u16 isoc_td_first;
 438        u32 ssplit_out_xfer_count;
 439        u8 error_count;
 440        u8 n_desc;
 441        u16 isoc_frame_index_last;
 442        u16 num_naks;
 443        struct dwc2_hcd_urb *urb;
 444        struct dwc2_qh *qh;
 445        struct list_head qtd_list_entry;
 446};
 447
 448#ifdef DEBUG
 449struct hc_xfer_info {
 450        struct dwc2_hsotg *hsotg;
 451        struct dwc2_host_chan *chan;
 452};
 453#endif
 454
 455u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
 456
 457/* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
 458static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
 459{
 460        return (struct usb_hcd *)hsotg->priv;
 461}
 462
 463/*
 464 * Inline used to disable one channel interrupt. Channel interrupts are
 465 * disabled when the channel is halted or released by the interrupt handler.
 466 * There is no need to handle further interrupts of that type until the
 467 * channel is re-assigned. In fact, subsequent handling may cause crashes
 468 * because the channel structures are cleaned up when the channel is released.
 469 */
 470static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
 471{
 472        u32 mask = dwc2_readl(hsotg->regs + HCINTMSK(chnum));
 473
 474        mask &= ~intr;
 475        dwc2_writel(mask, hsotg->regs + HCINTMSK(chnum));
 476}
 477
 478void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
 479void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
 480                  enum dwc2_halt_status halt_status);
 481void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
 482                                 struct dwc2_host_chan *chan);
 483
 484/*
 485 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
 486 * are read as 1, they won't clear when written back.
 487 */
 488static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
 489{
 490        u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
 491
 492        hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
 493        return hprt0;
 494}
 495
 496static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
 497{
 498        return pipe->ep_num;
 499}
 500
 501static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
 502{
 503        return pipe->pipe_type;
 504}
 505
 506static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
 507{
 508        return pipe->mps;
 509}
 510
 511static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
 512{
 513        return pipe->dev_addr;
 514}
 515
 516static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
 517{
 518        return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
 519}
 520
 521static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
 522{
 523        return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
 524}
 525
 526static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
 527{
 528        return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
 529}
 530
 531static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
 532{
 533        return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
 534}
 535
 536static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
 537{
 538        return pipe->pipe_dir == USB_DIR_IN;
 539}
 540
 541static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
 542{
 543        return !dwc2_hcd_is_pipe_in(pipe);
 544}
 545
 546int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
 547void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
 548
 549/* Transaction Execution Functions */
 550enum dwc2_transaction_type dwc2_hcd_select_transactions(
 551                                                struct dwc2_hsotg *hsotg);
 552void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
 553                                 enum dwc2_transaction_type tr_type);
 554
 555/* Schedule Queue Functions */
 556/* Implemented in hcd_queue.c */
 557struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
 558                                   struct dwc2_hcd_urb *urb,
 559                                          gfp_t mem_flags);
 560void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
 561int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
 562void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
 563void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
 564                            int sched_csplit);
 565
 566void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
 567int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
 568                     struct dwc2_qh *qh);
 569
 570/* Unlinks and frees a QTD */
 571static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
 572                                                struct dwc2_qtd *qtd,
 573                                                struct dwc2_qh *qh)
 574{
 575        list_del(&qtd->qtd_list_entry);
 576        kfree(qtd);
 577        qtd = NULL;
 578}
 579
 580/* Descriptor DMA support functions */
 581void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
 582                              struct dwc2_qh *qh);
 583void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
 584                                 struct dwc2_host_chan *chan, int chnum,
 585                                        enum dwc2_halt_status halt_status);
 586
 587int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
 588                          gfp_t mem_flags);
 589void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
 590
 591/* Check if QH is non-periodic */
 592#define dwc2_qh_is_non_per(_qh_ptr_) \
 593        ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
 594         (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
 595
 596#ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
 597static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
 598static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
 599static inline bool dbg_urb(struct urb *urb) { return true; }
 600static inline bool dbg_perio(void) { return true; }
 601#else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
 602static inline bool dbg_hc(struct dwc2_host_chan *hc)
 603{
 604        return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
 605               hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
 606}
 607
 608static inline bool dbg_qh(struct dwc2_qh *qh)
 609{
 610        return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
 611               qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
 612}
 613
 614static inline bool dbg_urb(struct urb *urb)
 615{
 616        return usb_pipetype(urb->pipe) == PIPE_BULK ||
 617               usb_pipetype(urb->pipe) == PIPE_CONTROL;
 618}
 619
 620static inline bool dbg_perio(void) { return false; }
 621#endif
 622
 623/* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
 624#define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
 625
 626/* Packet size for any kind of endpoint descriptor */
 627#define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
 628
 629/*
 630 * Returns true if frame1 index is greater than frame2 index. The comparison
 631 * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
 632 * frame number when the max index frame number is reached.
 633 */
 634static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
 635{
 636        u16 diff = fr_idx1 - fr_idx2;
 637        u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
 638
 639        return diff && !sign;
 640}
 641
 642/*
 643 * Returns true if frame1 is less than or equal to frame2. The comparison is
 644 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
 645 * frame number when the max frame number is reached.
 646 */
 647static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
 648{
 649        return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
 650}
 651
 652/*
 653 * Returns true if frame1 is greater than frame2. The comparison is done
 654 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
 655 * number when the max frame number is reached.
 656 */
 657static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
 658{
 659        return (frame1 != frame2) &&
 660               ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
 661}
 662
 663/*
 664 * Increments frame by the amount specified by inc. The addition is done
 665 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
 666 */
 667static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
 668{
 669        return (frame + inc) & HFNUM_MAX_FRNUM;
 670}
 671
 672static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
 673{
 674        return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
 675}
 676
 677static inline u16 dwc2_full_frame_num(u16 frame)
 678{
 679        return (frame & HFNUM_MAX_FRNUM) >> 3;
 680}
 681
 682static inline u16 dwc2_micro_frame_num(u16 frame)
 683{
 684        return frame & 0x7;
 685}
 686
 687/*
 688 * Returns the Core Interrupt Status register contents, ANDed with the Core
 689 * Interrupt Mask register contents
 690 */
 691static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
 692{
 693        return dwc2_readl(hsotg->regs + GINTSTS) &
 694               dwc2_readl(hsotg->regs + GINTMSK);
 695}
 696
 697static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
 698{
 699        return dwc2_urb->status;
 700}
 701
 702static inline u32 dwc2_hcd_urb_get_actual_length(
 703                struct dwc2_hcd_urb *dwc2_urb)
 704{
 705        return dwc2_urb->actual_length;
 706}
 707
 708static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
 709{
 710        return dwc2_urb->error_count;
 711}
 712
 713static inline void dwc2_hcd_urb_set_iso_desc_params(
 714                struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
 715                u32 length)
 716{
 717        dwc2_urb->iso_descs[desc_num].offset = offset;
 718        dwc2_urb->iso_descs[desc_num].length = length;
 719}
 720
 721static inline u32 dwc2_hcd_urb_get_iso_desc_status(
 722                struct dwc2_hcd_urb *dwc2_urb, int desc_num)
 723{
 724        return dwc2_urb->iso_descs[desc_num].status;
 725}
 726
 727static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
 728                struct dwc2_hcd_urb *dwc2_urb, int desc_num)
 729{
 730        return dwc2_urb->iso_descs[desc_num].actual_length;
 731}
 732
 733static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
 734                                                  struct usb_host_endpoint *ep)
 735{
 736        struct dwc2_qh *qh = ep->hcpriv;
 737
 738        if (qh && !list_empty(&qh->qh_list_entry))
 739                return 1;
 740
 741        return 0;
 742}
 743
 744static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
 745                                            struct usb_host_endpoint *ep)
 746{
 747        struct dwc2_qh *qh = ep->hcpriv;
 748
 749        if (!qh) {
 750                WARN_ON(1);
 751                return 0;
 752        }
 753
 754        return qh->host_us;
 755}
 756
 757void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
 758                               struct dwc2_host_chan *chan, int chnum,
 759                                      struct dwc2_qtd *qtd);
 760
 761/* HCD Core API */
 762
 763/**
 764 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
 765 *
 766 * @hsotg: The DWC2 HCD
 767 *
 768 * Returns IRQ_HANDLED if interrupt is handled
 769 * Return IRQ_NONE if interrupt is not handled
 770 */
 771irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
 772
 773/**
 774 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
 775 *
 776 * @hsotg: The DWC2 HCD
 777 */
 778void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
 779
 780/**
 781 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
 782 * and 0 otherwise
 783 *
 784 * @hsotg: The DWC2 HCD
 785 */
 786int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
 787
 788/**
 789 * dwc2_hcd_dump_state() - Dumps hsotg state
 790 *
 791 * @hsotg: The DWC2 HCD
 792 *
 793 * NOTE: This function will be removed once the peripheral controller code
 794 * is integrated and the driver is stable
 795 */
 796void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
 797
 798/* URB interface */
 799
 800/* Transfer flags */
 801#define URB_GIVEBACK_ASAP       0x1
 802#define URB_SEND_ZERO_PACKET    0x2
 803
 804/* Host driver callbacks */
 805struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
 806                                      void *context, gfp_t mem_flags,
 807                                      int *ttport);
 808
 809void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
 810                           struct dwc2_tt *dwc_tt);
 811int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
 812void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
 813                        int status);
 814
 815#endif /* __DWC2_HCD_H__ */
 816