linux/fs/dax.c
<<
>>
Prefs
   1/*
   2 * fs/dax.c - Direct Access filesystem code
   3 * Copyright (c) 2013-2014 Intel Corporation
   4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
   5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms and conditions of the GNU General Public License,
   9 * version 2, as published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope it will be useful, but WITHOUT
  12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14 * more details.
  15 */
  16
  17#include <linux/atomic.h>
  18#include <linux/blkdev.h>
  19#include <linux/buffer_head.h>
  20#include <linux/dax.h>
  21#include <linux/fs.h>
  22#include <linux/genhd.h>
  23#include <linux/highmem.h>
  24#include <linux/memcontrol.h>
  25#include <linux/mm.h>
  26#include <linux/mutex.h>
  27#include <linux/pagevec.h>
  28#include <linux/sched.h>
  29#include <linux/sched/signal.h>
  30#include <linux/uio.h>
  31#include <linux/vmstat.h>
  32#include <linux/pfn_t.h>
  33#include <linux/sizes.h>
  34#include <linux/mmu_notifier.h>
  35#include <linux/iomap.h>
  36#include "internal.h"
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/fs_dax.h>
  40
  41/* We choose 4096 entries - same as per-zone page wait tables */
  42#define DAX_WAIT_TABLE_BITS 12
  43#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
  44
  45/* The 'colour' (ie low bits) within a PMD of a page offset.  */
  46#define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
  47#define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
  48
  49static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
  50
  51static int __init init_dax_wait_table(void)
  52{
  53        int i;
  54
  55        for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
  56                init_waitqueue_head(wait_table + i);
  57        return 0;
  58}
  59fs_initcall(init_dax_wait_table);
  60
  61/*
  62 * We use lowest available bit in exceptional entry for locking, one bit for
  63 * the entry size (PMD) and two more to tell us if the entry is a zero page or
  64 * an empty entry that is just used for locking.  In total four special bits.
  65 *
  66 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
  67 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
  68 * block allocation.
  69 */
  70#define RADIX_DAX_SHIFT         (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
  71#define RADIX_DAX_ENTRY_LOCK    (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
  72#define RADIX_DAX_PMD           (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
  73#define RADIX_DAX_ZERO_PAGE     (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
  74#define RADIX_DAX_EMPTY         (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
  75
  76static unsigned long dax_radix_pfn(void *entry)
  77{
  78        return (unsigned long)entry >> RADIX_DAX_SHIFT;
  79}
  80
  81static void *dax_radix_locked_entry(unsigned long pfn, unsigned long flags)
  82{
  83        return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
  84                        (pfn << RADIX_DAX_SHIFT) | RADIX_DAX_ENTRY_LOCK);
  85}
  86
  87static unsigned int dax_radix_order(void *entry)
  88{
  89        if ((unsigned long)entry & RADIX_DAX_PMD)
  90                return PMD_SHIFT - PAGE_SHIFT;
  91        return 0;
  92}
  93
  94static int dax_is_pmd_entry(void *entry)
  95{
  96        return (unsigned long)entry & RADIX_DAX_PMD;
  97}
  98
  99static int dax_is_pte_entry(void *entry)
 100{
 101        return !((unsigned long)entry & RADIX_DAX_PMD);
 102}
 103
 104static int dax_is_zero_entry(void *entry)
 105{
 106        return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
 107}
 108
 109static int dax_is_empty_entry(void *entry)
 110{
 111        return (unsigned long)entry & RADIX_DAX_EMPTY;
 112}
 113
 114/*
 115 * DAX radix tree locking
 116 */
 117struct exceptional_entry_key {
 118        struct address_space *mapping;
 119        pgoff_t entry_start;
 120};
 121
 122struct wait_exceptional_entry_queue {
 123        wait_queue_entry_t wait;
 124        struct exceptional_entry_key key;
 125};
 126
 127static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
 128                pgoff_t index, void *entry, struct exceptional_entry_key *key)
 129{
 130        unsigned long hash;
 131
 132        /*
 133         * If 'entry' is a PMD, align the 'index' that we use for the wait
 134         * queue to the start of that PMD.  This ensures that all offsets in
 135         * the range covered by the PMD map to the same bit lock.
 136         */
 137        if (dax_is_pmd_entry(entry))
 138                index &= ~PG_PMD_COLOUR;
 139
 140        key->mapping = mapping;
 141        key->entry_start = index;
 142
 143        hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
 144        return wait_table + hash;
 145}
 146
 147static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
 148                                       int sync, void *keyp)
 149{
 150        struct exceptional_entry_key *key = keyp;
 151        struct wait_exceptional_entry_queue *ewait =
 152                container_of(wait, struct wait_exceptional_entry_queue, wait);
 153
 154        if (key->mapping != ewait->key.mapping ||
 155            key->entry_start != ewait->key.entry_start)
 156                return 0;
 157        return autoremove_wake_function(wait, mode, sync, NULL);
 158}
 159
 160/*
 161 * @entry may no longer be the entry at the index in the mapping.
 162 * The important information it's conveying is whether the entry at
 163 * this index used to be a PMD entry.
 164 */
 165static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
 166                pgoff_t index, void *entry, bool wake_all)
 167{
 168        struct exceptional_entry_key key;
 169        wait_queue_head_t *wq;
 170
 171        wq = dax_entry_waitqueue(mapping, index, entry, &key);
 172
 173        /*
 174         * Checking for locked entry and prepare_to_wait_exclusive() happens
 175         * under the i_pages lock, ditto for entry handling in our callers.
 176         * So at this point all tasks that could have seen our entry locked
 177         * must be in the waitqueue and the following check will see them.
 178         */
 179        if (waitqueue_active(wq))
 180                __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
 181}
 182
 183/*
 184 * Check whether the given slot is locked.  Must be called with the i_pages
 185 * lock held.
 186 */
 187static inline int slot_locked(struct address_space *mapping, void **slot)
 188{
 189        unsigned long entry = (unsigned long)
 190                radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
 191        return entry & RADIX_DAX_ENTRY_LOCK;
 192}
 193
 194/*
 195 * Mark the given slot as locked.  Must be called with the i_pages lock held.
 196 */
 197static inline void *lock_slot(struct address_space *mapping, void **slot)
 198{
 199        unsigned long entry = (unsigned long)
 200                radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
 201
 202        entry |= RADIX_DAX_ENTRY_LOCK;
 203        radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
 204        return (void *)entry;
 205}
 206
 207/*
 208 * Mark the given slot as unlocked.  Must be called with the i_pages lock held.
 209 */
 210static inline void *unlock_slot(struct address_space *mapping, void **slot)
 211{
 212        unsigned long entry = (unsigned long)
 213                radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
 214
 215        entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
 216        radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
 217        return (void *)entry;
 218}
 219
 220/*
 221 * Lookup entry in radix tree, wait for it to become unlocked if it is
 222 * exceptional entry and return it. The caller must call
 223 * put_unlocked_mapping_entry() when he decided not to lock the entry or
 224 * put_locked_mapping_entry() when he locked the entry and now wants to
 225 * unlock it.
 226 *
 227 * Must be called with the i_pages lock held.
 228 */
 229static void *get_unlocked_mapping_entry(struct address_space *mapping,
 230                                        pgoff_t index, void ***slotp)
 231{
 232        void *entry, **slot;
 233        struct wait_exceptional_entry_queue ewait;
 234        wait_queue_head_t *wq;
 235
 236        init_wait(&ewait.wait);
 237        ewait.wait.func = wake_exceptional_entry_func;
 238
 239        for (;;) {
 240                entry = __radix_tree_lookup(&mapping->i_pages, index, NULL,
 241                                          &slot);
 242                if (!entry ||
 243                    WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
 244                    !slot_locked(mapping, slot)) {
 245                        if (slotp)
 246                                *slotp = slot;
 247                        return entry;
 248                }
 249
 250                wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
 251                prepare_to_wait_exclusive(wq, &ewait.wait,
 252                                          TASK_UNINTERRUPTIBLE);
 253                xa_unlock_irq(&mapping->i_pages);
 254                schedule();
 255                finish_wait(wq, &ewait.wait);
 256                xa_lock_irq(&mapping->i_pages);
 257        }
 258}
 259
 260static void dax_unlock_mapping_entry(struct address_space *mapping,
 261                                     pgoff_t index)
 262{
 263        void *entry, **slot;
 264
 265        xa_lock_irq(&mapping->i_pages);
 266        entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, &slot);
 267        if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
 268                         !slot_locked(mapping, slot))) {
 269                xa_unlock_irq(&mapping->i_pages);
 270                return;
 271        }
 272        unlock_slot(mapping, slot);
 273        xa_unlock_irq(&mapping->i_pages);
 274        dax_wake_mapping_entry_waiter(mapping, index, entry, false);
 275}
 276
 277static void put_locked_mapping_entry(struct address_space *mapping,
 278                pgoff_t index)
 279{
 280        dax_unlock_mapping_entry(mapping, index);
 281}
 282
 283/*
 284 * Called when we are done with radix tree entry we looked up via
 285 * get_unlocked_mapping_entry() and which we didn't lock in the end.
 286 */
 287static void put_unlocked_mapping_entry(struct address_space *mapping,
 288                                       pgoff_t index, void *entry)
 289{
 290        if (!entry)
 291                return;
 292
 293        /* We have to wake up next waiter for the radix tree entry lock */
 294        dax_wake_mapping_entry_waiter(mapping, index, entry, false);
 295}
 296
 297static unsigned long dax_entry_size(void *entry)
 298{
 299        if (dax_is_zero_entry(entry))
 300                return 0;
 301        else if (dax_is_empty_entry(entry))
 302                return 0;
 303        else if (dax_is_pmd_entry(entry))
 304                return PMD_SIZE;
 305        else
 306                return PAGE_SIZE;
 307}
 308
 309static unsigned long dax_radix_end_pfn(void *entry)
 310{
 311        return dax_radix_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
 312}
 313
 314/*
 315 * Iterate through all mapped pfns represented by an entry, i.e. skip
 316 * 'empty' and 'zero' entries.
 317 */
 318#define for_each_mapped_pfn(entry, pfn) \
 319        for (pfn = dax_radix_pfn(entry); \
 320                        pfn < dax_radix_end_pfn(entry); pfn++)
 321
 322static void dax_associate_entry(void *entry, struct address_space *mapping)
 323{
 324        unsigned long pfn;
 325
 326        if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 327                return;
 328
 329        for_each_mapped_pfn(entry, pfn) {
 330                struct page *page = pfn_to_page(pfn);
 331
 332                WARN_ON_ONCE(page->mapping);
 333                page->mapping = mapping;
 334        }
 335}
 336
 337static void dax_disassociate_entry(void *entry, struct address_space *mapping,
 338                bool trunc)
 339{
 340        unsigned long pfn;
 341
 342        if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 343                return;
 344
 345        for_each_mapped_pfn(entry, pfn) {
 346                struct page *page = pfn_to_page(pfn);
 347
 348                WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
 349                WARN_ON_ONCE(page->mapping && page->mapping != mapping);
 350                page->mapping = NULL;
 351        }
 352}
 353
 354static struct page *dax_busy_page(void *entry)
 355{
 356        unsigned long pfn;
 357
 358        for_each_mapped_pfn(entry, pfn) {
 359                struct page *page = pfn_to_page(pfn);
 360
 361                if (page_ref_count(page) > 1)
 362                        return page;
 363        }
 364        return NULL;
 365}
 366
 367/*
 368 * Find radix tree entry at given index. If it points to an exceptional entry,
 369 * return it with the radix tree entry locked. If the radix tree doesn't
 370 * contain given index, create an empty exceptional entry for the index and
 371 * return with it locked.
 372 *
 373 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
 374 * either return that locked entry or will return an error.  This error will
 375 * happen if there are any 4k entries within the 2MiB range that we are
 376 * requesting.
 377 *
 378 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
 379 * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
 380 * insertion will fail if it finds any 4k entries already in the tree, and a
 381 * 4k insertion will cause an existing 2MiB entry to be unmapped and
 382 * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
 383 * well as 2MiB empty entries.
 384 *
 385 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
 386 * real storage backing them.  We will leave these real 2MiB DAX entries in
 387 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
 388 *
 389 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
 390 * persistent memory the benefit is doubtful. We can add that later if we can
 391 * show it helps.
 392 */
 393static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
 394                unsigned long size_flag)
 395{
 396        bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
 397        void *entry, **slot;
 398
 399restart:
 400        xa_lock_irq(&mapping->i_pages);
 401        entry = get_unlocked_mapping_entry(mapping, index, &slot);
 402
 403        if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
 404                entry = ERR_PTR(-EIO);
 405                goto out_unlock;
 406        }
 407
 408        if (entry) {
 409                if (size_flag & RADIX_DAX_PMD) {
 410                        if (dax_is_pte_entry(entry)) {
 411                                put_unlocked_mapping_entry(mapping, index,
 412                                                entry);
 413                                entry = ERR_PTR(-EEXIST);
 414                                goto out_unlock;
 415                        }
 416                } else { /* trying to grab a PTE entry */
 417                        if (dax_is_pmd_entry(entry) &&
 418                            (dax_is_zero_entry(entry) ||
 419                             dax_is_empty_entry(entry))) {
 420                                pmd_downgrade = true;
 421                        }
 422                }
 423        }
 424
 425        /* No entry for given index? Make sure radix tree is big enough. */
 426        if (!entry || pmd_downgrade) {
 427                int err;
 428
 429                if (pmd_downgrade) {
 430                        /*
 431                         * Make sure 'entry' remains valid while we drop
 432                         * the i_pages lock.
 433                         */
 434                        entry = lock_slot(mapping, slot);
 435                }
 436
 437                xa_unlock_irq(&mapping->i_pages);
 438                /*
 439                 * Besides huge zero pages the only other thing that gets
 440                 * downgraded are empty entries which don't need to be
 441                 * unmapped.
 442                 */
 443                if (pmd_downgrade && dax_is_zero_entry(entry))
 444                        unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
 445                                                        PG_PMD_NR, false);
 446
 447                err = radix_tree_preload(
 448                                mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
 449                if (err) {
 450                        if (pmd_downgrade)
 451                                put_locked_mapping_entry(mapping, index);
 452                        return ERR_PTR(err);
 453                }
 454                xa_lock_irq(&mapping->i_pages);
 455
 456                if (!entry) {
 457                        /*
 458                         * We needed to drop the i_pages lock while calling
 459                         * radix_tree_preload() and we didn't have an entry to
 460                         * lock.  See if another thread inserted an entry at
 461                         * our index during this time.
 462                         */
 463                        entry = __radix_tree_lookup(&mapping->i_pages, index,
 464                                        NULL, &slot);
 465                        if (entry) {
 466                                radix_tree_preload_end();
 467                                xa_unlock_irq(&mapping->i_pages);
 468                                goto restart;
 469                        }
 470                }
 471
 472                if (pmd_downgrade) {
 473                        dax_disassociate_entry(entry, mapping, false);
 474                        radix_tree_delete(&mapping->i_pages, index);
 475                        mapping->nrexceptional--;
 476                        dax_wake_mapping_entry_waiter(mapping, index, entry,
 477                                        true);
 478                }
 479
 480                entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
 481
 482                err = __radix_tree_insert(&mapping->i_pages, index,
 483                                dax_radix_order(entry), entry);
 484                radix_tree_preload_end();
 485                if (err) {
 486                        xa_unlock_irq(&mapping->i_pages);
 487                        /*
 488                         * Our insertion of a DAX entry failed, most likely
 489                         * because we were inserting a PMD entry and it
 490                         * collided with a PTE sized entry at a different
 491                         * index in the PMD range.  We haven't inserted
 492                         * anything into the radix tree and have no waiters to
 493                         * wake.
 494                         */
 495                        return ERR_PTR(err);
 496                }
 497                /* Good, we have inserted empty locked entry into the tree. */
 498                mapping->nrexceptional++;
 499                xa_unlock_irq(&mapping->i_pages);
 500                return entry;
 501        }
 502        entry = lock_slot(mapping, slot);
 503 out_unlock:
 504        xa_unlock_irq(&mapping->i_pages);
 505        return entry;
 506}
 507
 508/**
 509 * dax_layout_busy_page - find first pinned page in @mapping
 510 * @mapping: address space to scan for a page with ref count > 1
 511 *
 512 * DAX requires ZONE_DEVICE mapped pages. These pages are never
 513 * 'onlined' to the page allocator so they are considered idle when
 514 * page->count == 1. A filesystem uses this interface to determine if
 515 * any page in the mapping is busy, i.e. for DMA, or other
 516 * get_user_pages() usages.
 517 *
 518 * It is expected that the filesystem is holding locks to block the
 519 * establishment of new mappings in this address_space. I.e. it expects
 520 * to be able to run unmap_mapping_range() and subsequently not race
 521 * mapping_mapped() becoming true.
 522 */
 523struct page *dax_layout_busy_page(struct address_space *mapping)
 524{
 525        pgoff_t indices[PAGEVEC_SIZE];
 526        struct page *page = NULL;
 527        struct pagevec pvec;
 528        pgoff_t index, end;
 529        unsigned i;
 530
 531        /*
 532         * In the 'limited' case get_user_pages() for dax is disabled.
 533         */
 534        if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 535                return NULL;
 536
 537        if (!dax_mapping(mapping) || !mapping_mapped(mapping))
 538                return NULL;
 539
 540        pagevec_init(&pvec);
 541        index = 0;
 542        end = -1;
 543
 544        /*
 545         * If we race get_user_pages_fast() here either we'll see the
 546         * elevated page count in the pagevec_lookup and wait, or
 547         * get_user_pages_fast() will see that the page it took a reference
 548         * against is no longer mapped in the page tables and bail to the
 549         * get_user_pages() slow path.  The slow path is protected by
 550         * pte_lock() and pmd_lock(). New references are not taken without
 551         * holding those locks, and unmap_mapping_range() will not zero the
 552         * pte or pmd without holding the respective lock, so we are
 553         * guaranteed to either see new references or prevent new
 554         * references from being established.
 555         */
 556        unmap_mapping_range(mapping, 0, 0, 1);
 557
 558        while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
 559                                min(end - index, (pgoff_t)PAGEVEC_SIZE),
 560                                indices)) {
 561                for (i = 0; i < pagevec_count(&pvec); i++) {
 562                        struct page *pvec_ent = pvec.pages[i];
 563                        void *entry;
 564
 565                        index = indices[i];
 566                        if (index >= end)
 567                                break;
 568
 569                        if (!radix_tree_exceptional_entry(pvec_ent))
 570                                continue;
 571
 572                        xa_lock_irq(&mapping->i_pages);
 573                        entry = get_unlocked_mapping_entry(mapping, index, NULL);
 574                        if (entry)
 575                                page = dax_busy_page(entry);
 576                        put_unlocked_mapping_entry(mapping, index, entry);
 577                        xa_unlock_irq(&mapping->i_pages);
 578                        if (page)
 579                                break;
 580                }
 581                pagevec_remove_exceptionals(&pvec);
 582                pagevec_release(&pvec);
 583                index++;
 584
 585                if (page)
 586                        break;
 587        }
 588        return page;
 589}
 590EXPORT_SYMBOL_GPL(dax_layout_busy_page);
 591
 592static int __dax_invalidate_mapping_entry(struct address_space *mapping,
 593                                          pgoff_t index, bool trunc)
 594{
 595        int ret = 0;
 596        void *entry;
 597        struct radix_tree_root *pages = &mapping->i_pages;
 598
 599        xa_lock_irq(pages);
 600        entry = get_unlocked_mapping_entry(mapping, index, NULL);
 601        if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
 602                goto out;
 603        if (!trunc &&
 604            (radix_tree_tag_get(pages, index, PAGECACHE_TAG_DIRTY) ||
 605             radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE)))
 606                goto out;
 607        dax_disassociate_entry(entry, mapping, trunc);
 608        radix_tree_delete(pages, index);
 609        mapping->nrexceptional--;
 610        ret = 1;
 611out:
 612        put_unlocked_mapping_entry(mapping, index, entry);
 613        xa_unlock_irq(pages);
 614        return ret;
 615}
 616/*
 617 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
 618 * entry to get unlocked before deleting it.
 619 */
 620int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
 621{
 622        int ret = __dax_invalidate_mapping_entry(mapping, index, true);
 623
 624        /*
 625         * This gets called from truncate / punch_hole path. As such, the caller
 626         * must hold locks protecting against concurrent modifications of the
 627         * radix tree (usually fs-private i_mmap_sem for writing). Since the
 628         * caller has seen exceptional entry for this index, we better find it
 629         * at that index as well...
 630         */
 631        WARN_ON_ONCE(!ret);
 632        return ret;
 633}
 634
 635/*
 636 * Invalidate exceptional DAX entry if it is clean.
 637 */
 638int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
 639                                      pgoff_t index)
 640{
 641        return __dax_invalidate_mapping_entry(mapping, index, false);
 642}
 643
 644static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
 645                sector_t sector, size_t size, struct page *to,
 646                unsigned long vaddr)
 647{
 648        void *vto, *kaddr;
 649        pgoff_t pgoff;
 650        pfn_t pfn;
 651        long rc;
 652        int id;
 653
 654        rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
 655        if (rc)
 656                return rc;
 657
 658        id = dax_read_lock();
 659        rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
 660        if (rc < 0) {
 661                dax_read_unlock(id);
 662                return rc;
 663        }
 664        vto = kmap_atomic(to);
 665        copy_user_page(vto, (void __force *)kaddr, vaddr, to);
 666        kunmap_atomic(vto);
 667        dax_read_unlock(id);
 668        return 0;
 669}
 670
 671/*
 672 * By this point grab_mapping_entry() has ensured that we have a locked entry
 673 * of the appropriate size so we don't have to worry about downgrading PMDs to
 674 * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
 675 * already in the tree, we will skip the insertion and just dirty the PMD as
 676 * appropriate.
 677 */
 678static void *dax_insert_mapping_entry(struct address_space *mapping,
 679                                      struct vm_fault *vmf,
 680                                      void *entry, pfn_t pfn_t,
 681                                      unsigned long flags, bool dirty)
 682{
 683        struct radix_tree_root *pages = &mapping->i_pages;
 684        unsigned long pfn = pfn_t_to_pfn(pfn_t);
 685        pgoff_t index = vmf->pgoff;
 686        void *new_entry;
 687
 688        if (dirty)
 689                __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 690
 691        if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
 692                /* we are replacing a zero page with block mapping */
 693                if (dax_is_pmd_entry(entry))
 694                        unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
 695                                                        PG_PMD_NR, false);
 696                else /* pte entry */
 697                        unmap_mapping_pages(mapping, vmf->pgoff, 1, false);
 698        }
 699
 700        xa_lock_irq(pages);
 701        new_entry = dax_radix_locked_entry(pfn, flags);
 702        if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
 703                dax_disassociate_entry(entry, mapping, false);
 704                dax_associate_entry(new_entry, mapping);
 705        }
 706
 707        if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
 708                /*
 709                 * Only swap our new entry into the radix tree if the current
 710                 * entry is a zero page or an empty entry.  If a normal PTE or
 711                 * PMD entry is already in the tree, we leave it alone.  This
 712                 * means that if we are trying to insert a PTE and the
 713                 * existing entry is a PMD, we will just leave the PMD in the
 714                 * tree and dirty it if necessary.
 715                 */
 716                struct radix_tree_node *node;
 717                void **slot;
 718                void *ret;
 719
 720                ret = __radix_tree_lookup(pages, index, &node, &slot);
 721                WARN_ON_ONCE(ret != entry);
 722                __radix_tree_replace(pages, node, slot,
 723                                     new_entry, NULL);
 724                entry = new_entry;
 725        }
 726
 727        if (dirty)
 728                radix_tree_tag_set(pages, index, PAGECACHE_TAG_DIRTY);
 729
 730        xa_unlock_irq(pages);
 731        return entry;
 732}
 733
 734static inline unsigned long
 735pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
 736{
 737        unsigned long address;
 738
 739        address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 740        VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
 741        return address;
 742}
 743
 744/* Walk all mappings of a given index of a file and writeprotect them */
 745static void dax_mapping_entry_mkclean(struct address_space *mapping,
 746                                      pgoff_t index, unsigned long pfn)
 747{
 748        struct vm_area_struct *vma;
 749        pte_t pte, *ptep = NULL;
 750        pmd_t *pmdp = NULL;
 751        spinlock_t *ptl;
 752
 753        i_mmap_lock_read(mapping);
 754        vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
 755                unsigned long address, start, end;
 756
 757                cond_resched();
 758
 759                if (!(vma->vm_flags & VM_SHARED))
 760                        continue;
 761
 762                address = pgoff_address(index, vma);
 763
 764                /*
 765                 * Note because we provide start/end to follow_pte_pmd it will
 766                 * call mmu_notifier_invalidate_range_start() on our behalf
 767                 * before taking any lock.
 768                 */
 769                if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
 770                        continue;
 771
 772                /*
 773                 * No need to call mmu_notifier_invalidate_range() as we are
 774                 * downgrading page table protection not changing it to point
 775                 * to a new page.
 776                 *
 777                 * See Documentation/vm/mmu_notifier.rst
 778                 */
 779                if (pmdp) {
 780#ifdef CONFIG_FS_DAX_PMD
 781                        pmd_t pmd;
 782
 783                        if (pfn != pmd_pfn(*pmdp))
 784                                goto unlock_pmd;
 785                        if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
 786                                goto unlock_pmd;
 787
 788                        flush_cache_page(vma, address, pfn);
 789                        pmd = pmdp_huge_clear_flush(vma, address, pmdp);
 790                        pmd = pmd_wrprotect(pmd);
 791                        pmd = pmd_mkclean(pmd);
 792                        set_pmd_at(vma->vm_mm, address, pmdp, pmd);
 793unlock_pmd:
 794#endif
 795                        spin_unlock(ptl);
 796                } else {
 797                        if (pfn != pte_pfn(*ptep))
 798                                goto unlock_pte;
 799                        if (!pte_dirty(*ptep) && !pte_write(*ptep))
 800                                goto unlock_pte;
 801
 802                        flush_cache_page(vma, address, pfn);
 803                        pte = ptep_clear_flush(vma, address, ptep);
 804                        pte = pte_wrprotect(pte);
 805                        pte = pte_mkclean(pte);
 806                        set_pte_at(vma->vm_mm, address, ptep, pte);
 807unlock_pte:
 808                        pte_unmap_unlock(ptep, ptl);
 809                }
 810
 811                mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
 812        }
 813        i_mmap_unlock_read(mapping);
 814}
 815
 816static int dax_writeback_one(struct dax_device *dax_dev,
 817                struct address_space *mapping, pgoff_t index, void *entry)
 818{
 819        struct radix_tree_root *pages = &mapping->i_pages;
 820        void *entry2, **slot;
 821        unsigned long pfn;
 822        long ret = 0;
 823        size_t size;
 824
 825        /*
 826         * A page got tagged dirty in DAX mapping? Something is seriously
 827         * wrong.
 828         */
 829        if (WARN_ON(!radix_tree_exceptional_entry(entry)))
 830                return -EIO;
 831
 832        xa_lock_irq(pages);
 833        entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
 834        /* Entry got punched out / reallocated? */
 835        if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
 836                goto put_unlocked;
 837        /*
 838         * Entry got reallocated elsewhere? No need to writeback. We have to
 839         * compare pfns as we must not bail out due to difference in lockbit
 840         * or entry type.
 841         */
 842        if (dax_radix_pfn(entry2) != dax_radix_pfn(entry))
 843                goto put_unlocked;
 844        if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
 845                                dax_is_zero_entry(entry))) {
 846                ret = -EIO;
 847                goto put_unlocked;
 848        }
 849
 850        /* Another fsync thread may have already written back this entry */
 851        if (!radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE))
 852                goto put_unlocked;
 853        /* Lock the entry to serialize with page faults */
 854        entry = lock_slot(mapping, slot);
 855        /*
 856         * We can clear the tag now but we have to be careful so that concurrent
 857         * dax_writeback_one() calls for the same index cannot finish before we
 858         * actually flush the caches. This is achieved as the calls will look
 859         * at the entry only under the i_pages lock and once they do that
 860         * they will see the entry locked and wait for it to unlock.
 861         */
 862        radix_tree_tag_clear(pages, index, PAGECACHE_TAG_TOWRITE);
 863        xa_unlock_irq(pages);
 864
 865        /*
 866         * Even if dax_writeback_mapping_range() was given a wbc->range_start
 867         * in the middle of a PMD, the 'index' we are given will be aligned to
 868         * the start index of the PMD, as will the pfn we pull from 'entry'.
 869         * This allows us to flush for PMD_SIZE and not have to worry about
 870         * partial PMD writebacks.
 871         */
 872        pfn = dax_radix_pfn(entry);
 873        size = PAGE_SIZE << dax_radix_order(entry);
 874
 875        dax_mapping_entry_mkclean(mapping, index, pfn);
 876        dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
 877        /*
 878         * After we have flushed the cache, we can clear the dirty tag. There
 879         * cannot be new dirty data in the pfn after the flush has completed as
 880         * the pfn mappings are writeprotected and fault waits for mapping
 881         * entry lock.
 882         */
 883        xa_lock_irq(pages);
 884        radix_tree_tag_clear(pages, index, PAGECACHE_TAG_DIRTY);
 885        xa_unlock_irq(pages);
 886        trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
 887        put_locked_mapping_entry(mapping, index);
 888        return ret;
 889
 890 put_unlocked:
 891        put_unlocked_mapping_entry(mapping, index, entry2);
 892        xa_unlock_irq(pages);
 893        return ret;
 894}
 895
 896/*
 897 * Flush the mapping to the persistent domain within the byte range of [start,
 898 * end]. This is required by data integrity operations to ensure file data is
 899 * on persistent storage prior to completion of the operation.
 900 */
 901int dax_writeback_mapping_range(struct address_space *mapping,
 902                struct block_device *bdev, struct writeback_control *wbc)
 903{
 904        struct inode *inode = mapping->host;
 905        pgoff_t start_index, end_index;
 906        pgoff_t indices[PAGEVEC_SIZE];
 907        struct dax_device *dax_dev;
 908        struct pagevec pvec;
 909        bool done = false;
 910        int i, ret = 0;
 911
 912        if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
 913                return -EIO;
 914
 915        if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
 916                return 0;
 917
 918        dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 919        if (!dax_dev)
 920                return -EIO;
 921
 922        start_index = wbc->range_start >> PAGE_SHIFT;
 923        end_index = wbc->range_end >> PAGE_SHIFT;
 924
 925        trace_dax_writeback_range(inode, start_index, end_index);
 926
 927        tag_pages_for_writeback(mapping, start_index, end_index);
 928
 929        pagevec_init(&pvec);
 930        while (!done) {
 931                pvec.nr = find_get_entries_tag(mapping, start_index,
 932                                PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
 933                                pvec.pages, indices);
 934
 935                if (pvec.nr == 0)
 936                        break;
 937
 938                for (i = 0; i < pvec.nr; i++) {
 939                        if (indices[i] > end_index) {
 940                                done = true;
 941                                break;
 942                        }
 943
 944                        ret = dax_writeback_one(dax_dev, mapping, indices[i],
 945                                        pvec.pages[i]);
 946                        if (ret < 0) {
 947                                mapping_set_error(mapping, ret);
 948                                goto out;
 949                        }
 950                }
 951                start_index = indices[pvec.nr - 1] + 1;
 952        }
 953out:
 954        put_dax(dax_dev);
 955        trace_dax_writeback_range_done(inode, start_index, end_index);
 956        return (ret < 0 ? ret : 0);
 957}
 958EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
 959
 960static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
 961{
 962        return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
 963}
 964
 965static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
 966                         pfn_t *pfnp)
 967{
 968        const sector_t sector = dax_iomap_sector(iomap, pos);
 969        pgoff_t pgoff;
 970        void *kaddr;
 971        int id, rc;
 972        long length;
 973
 974        rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
 975        if (rc)
 976                return rc;
 977        id = dax_read_lock();
 978        length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
 979                                   &kaddr, pfnp);
 980        if (length < 0) {
 981                rc = length;
 982                goto out;
 983        }
 984        rc = -EINVAL;
 985        if (PFN_PHYS(length) < size)
 986                goto out;
 987        if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
 988                goto out;
 989        /* For larger pages we need devmap */
 990        if (length > 1 && !pfn_t_devmap(*pfnp))
 991                goto out;
 992        rc = 0;
 993out:
 994        dax_read_unlock(id);
 995        return rc;
 996}
 997
 998/*
 999 * The user has performed a load from a hole in the file.  Allocating a new
1000 * page in the file would cause excessive storage usage for workloads with
1001 * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1002 * If this page is ever written to we will re-fault and change the mapping to
1003 * point to real DAX storage instead.
1004 */
1005static vm_fault_t dax_load_hole(struct address_space *mapping, void *entry,
1006                         struct vm_fault *vmf)
1007{
1008        struct inode *inode = mapping->host;
1009        unsigned long vaddr = vmf->address;
1010        vm_fault_t ret = VM_FAULT_NOPAGE;
1011        struct page *zero_page;
1012        pfn_t pfn;
1013
1014        zero_page = ZERO_PAGE(0);
1015        if (unlikely(!zero_page)) {
1016                ret = VM_FAULT_OOM;
1017                goto out;
1018        }
1019
1020        pfn = page_to_pfn_t(zero_page);
1021        dax_insert_mapping_entry(mapping, vmf, entry, pfn, RADIX_DAX_ZERO_PAGE,
1022                        false);
1023        ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1024out:
1025        trace_dax_load_hole(inode, vmf, ret);
1026        return ret;
1027}
1028
1029static bool dax_range_is_aligned(struct block_device *bdev,
1030                                 unsigned int offset, unsigned int length)
1031{
1032        unsigned short sector_size = bdev_logical_block_size(bdev);
1033
1034        if (!IS_ALIGNED(offset, sector_size))
1035                return false;
1036        if (!IS_ALIGNED(length, sector_size))
1037                return false;
1038
1039        return true;
1040}
1041
1042int __dax_zero_page_range(struct block_device *bdev,
1043                struct dax_device *dax_dev, sector_t sector,
1044                unsigned int offset, unsigned int size)
1045{
1046        if (dax_range_is_aligned(bdev, offset, size)) {
1047                sector_t start_sector = sector + (offset >> 9);
1048
1049                return blkdev_issue_zeroout(bdev, start_sector,
1050                                size >> 9, GFP_NOFS, 0);
1051        } else {
1052                pgoff_t pgoff;
1053                long rc, id;
1054                void *kaddr;
1055                pfn_t pfn;
1056
1057                rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1058                if (rc)
1059                        return rc;
1060
1061                id = dax_read_lock();
1062                rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
1063                                &pfn);
1064                if (rc < 0) {
1065                        dax_read_unlock(id);
1066                        return rc;
1067                }
1068                memset(kaddr + offset, 0, size);
1069                dax_flush(dax_dev, kaddr + offset, size);
1070                dax_read_unlock(id);
1071        }
1072        return 0;
1073}
1074EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1075
1076static loff_t
1077dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1078                struct iomap *iomap)
1079{
1080        struct block_device *bdev = iomap->bdev;
1081        struct dax_device *dax_dev = iomap->dax_dev;
1082        struct iov_iter *iter = data;
1083        loff_t end = pos + length, done = 0;
1084        ssize_t ret = 0;
1085        size_t xfer;
1086        int id;
1087
1088        if (iov_iter_rw(iter) == READ) {
1089                end = min(end, i_size_read(inode));
1090                if (pos >= end)
1091                        return 0;
1092
1093                if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1094                        return iov_iter_zero(min(length, end - pos), iter);
1095        }
1096
1097        if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1098                return -EIO;
1099
1100        /*
1101         * Write can allocate block for an area which has a hole page mapped
1102         * into page tables. We have to tear down these mappings so that data
1103         * written by write(2) is visible in mmap.
1104         */
1105        if (iomap->flags & IOMAP_F_NEW) {
1106                invalidate_inode_pages2_range(inode->i_mapping,
1107                                              pos >> PAGE_SHIFT,
1108                                              (end - 1) >> PAGE_SHIFT);
1109        }
1110
1111        id = dax_read_lock();
1112        while (pos < end) {
1113                unsigned offset = pos & (PAGE_SIZE - 1);
1114                const size_t size = ALIGN(length + offset, PAGE_SIZE);
1115                const sector_t sector = dax_iomap_sector(iomap, pos);
1116                ssize_t map_len;
1117                pgoff_t pgoff;
1118                void *kaddr;
1119                pfn_t pfn;
1120
1121                if (fatal_signal_pending(current)) {
1122                        ret = -EINTR;
1123                        break;
1124                }
1125
1126                ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1127                if (ret)
1128                        break;
1129
1130                map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1131                                &kaddr, &pfn);
1132                if (map_len < 0) {
1133                        ret = map_len;
1134                        break;
1135                }
1136
1137                map_len = PFN_PHYS(map_len);
1138                kaddr += offset;
1139                map_len -= offset;
1140                if (map_len > end - pos)
1141                        map_len = end - pos;
1142
1143                /*
1144                 * The userspace address for the memory copy has already been
1145                 * validated via access_ok() in either vfs_read() or
1146                 * vfs_write(), depending on which operation we are doing.
1147                 */
1148                if (iov_iter_rw(iter) == WRITE)
1149                        xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1150                                        map_len, iter);
1151                else
1152                        xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1153                                        map_len, iter);
1154
1155                pos += xfer;
1156                length -= xfer;
1157                done += xfer;
1158
1159                if (xfer == 0)
1160                        ret = -EFAULT;
1161                if (xfer < map_len)
1162                        break;
1163        }
1164        dax_read_unlock(id);
1165
1166        return done ? done : ret;
1167}
1168
1169/**
1170 * dax_iomap_rw - Perform I/O to a DAX file
1171 * @iocb:       The control block for this I/O
1172 * @iter:       The addresses to do I/O from or to
1173 * @ops:        iomap ops passed from the file system
1174 *
1175 * This function performs read and write operations to directly mapped
1176 * persistent memory.  The callers needs to take care of read/write exclusion
1177 * and evicting any page cache pages in the region under I/O.
1178 */
1179ssize_t
1180dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1181                const struct iomap_ops *ops)
1182{
1183        struct address_space *mapping = iocb->ki_filp->f_mapping;
1184        struct inode *inode = mapping->host;
1185        loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1186        unsigned flags = 0;
1187
1188        if (iov_iter_rw(iter) == WRITE) {
1189                lockdep_assert_held_exclusive(&inode->i_rwsem);
1190                flags |= IOMAP_WRITE;
1191        } else {
1192                lockdep_assert_held(&inode->i_rwsem);
1193        }
1194
1195        while (iov_iter_count(iter)) {
1196                ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1197                                iter, dax_iomap_actor);
1198                if (ret <= 0)
1199                        break;
1200                pos += ret;
1201                done += ret;
1202        }
1203
1204        iocb->ki_pos += done;
1205        return done ? done : ret;
1206}
1207EXPORT_SYMBOL_GPL(dax_iomap_rw);
1208
1209static vm_fault_t dax_fault_return(int error)
1210{
1211        if (error == 0)
1212                return VM_FAULT_NOPAGE;
1213        if (error == -ENOMEM)
1214                return VM_FAULT_OOM;
1215        return VM_FAULT_SIGBUS;
1216}
1217
1218/*
1219 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1220 * flushed on write-faults (non-cow), but not read-faults.
1221 */
1222static bool dax_fault_is_synchronous(unsigned long flags,
1223                struct vm_area_struct *vma, struct iomap *iomap)
1224{
1225        return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1226                && (iomap->flags & IOMAP_F_DIRTY);
1227}
1228
1229static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1230                               int *iomap_errp, const struct iomap_ops *ops)
1231{
1232        struct vm_area_struct *vma = vmf->vma;
1233        struct address_space *mapping = vma->vm_file->f_mapping;
1234        struct inode *inode = mapping->host;
1235        unsigned long vaddr = vmf->address;
1236        loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1237        struct iomap iomap = { 0 };
1238        unsigned flags = IOMAP_FAULT;
1239        int error, major = 0;
1240        bool write = vmf->flags & FAULT_FLAG_WRITE;
1241        bool sync;
1242        vm_fault_t ret = 0;
1243        void *entry;
1244        pfn_t pfn;
1245
1246        trace_dax_pte_fault(inode, vmf, ret);
1247        /*
1248         * Check whether offset isn't beyond end of file now. Caller is supposed
1249         * to hold locks serializing us with truncate / punch hole so this is
1250         * a reliable test.
1251         */
1252        if (pos >= i_size_read(inode)) {
1253                ret = VM_FAULT_SIGBUS;
1254                goto out;
1255        }
1256
1257        if (write && !vmf->cow_page)
1258                flags |= IOMAP_WRITE;
1259
1260        entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1261        if (IS_ERR(entry)) {
1262                ret = dax_fault_return(PTR_ERR(entry));
1263                goto out;
1264        }
1265
1266        /*
1267         * It is possible, particularly with mixed reads & writes to private
1268         * mappings, that we have raced with a PMD fault that overlaps with
1269         * the PTE we need to set up.  If so just return and the fault will be
1270         * retried.
1271         */
1272        if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1273                ret = VM_FAULT_NOPAGE;
1274                goto unlock_entry;
1275        }
1276
1277        /*
1278         * Note that we don't bother to use iomap_apply here: DAX required
1279         * the file system block size to be equal the page size, which means
1280         * that we never have to deal with more than a single extent here.
1281         */
1282        error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1283        if (iomap_errp)
1284                *iomap_errp = error;
1285        if (error) {
1286                ret = dax_fault_return(error);
1287                goto unlock_entry;
1288        }
1289        if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1290                error = -EIO;   /* fs corruption? */
1291                goto error_finish_iomap;
1292        }
1293
1294        if (vmf->cow_page) {
1295                sector_t sector = dax_iomap_sector(&iomap, pos);
1296
1297                switch (iomap.type) {
1298                case IOMAP_HOLE:
1299                case IOMAP_UNWRITTEN:
1300                        clear_user_highpage(vmf->cow_page, vaddr);
1301                        break;
1302                case IOMAP_MAPPED:
1303                        error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1304                                        sector, PAGE_SIZE, vmf->cow_page, vaddr);
1305                        break;
1306                default:
1307                        WARN_ON_ONCE(1);
1308                        error = -EIO;
1309                        break;
1310                }
1311
1312                if (error)
1313                        goto error_finish_iomap;
1314
1315                __SetPageUptodate(vmf->cow_page);
1316                ret = finish_fault(vmf);
1317                if (!ret)
1318                        ret = VM_FAULT_DONE_COW;
1319                goto finish_iomap;
1320        }
1321
1322        sync = dax_fault_is_synchronous(flags, vma, &iomap);
1323
1324        switch (iomap.type) {
1325        case IOMAP_MAPPED:
1326                if (iomap.flags & IOMAP_F_NEW) {
1327                        count_vm_event(PGMAJFAULT);
1328                        count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1329                        major = VM_FAULT_MAJOR;
1330                }
1331                error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1332                if (error < 0)
1333                        goto error_finish_iomap;
1334
1335                entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1336                                                 0, write && !sync);
1337
1338                /*
1339                 * If we are doing synchronous page fault and inode needs fsync,
1340                 * we can insert PTE into page tables only after that happens.
1341                 * Skip insertion for now and return the pfn so that caller can
1342                 * insert it after fsync is done.
1343                 */
1344                if (sync) {
1345                        if (WARN_ON_ONCE(!pfnp)) {
1346                                error = -EIO;
1347                                goto error_finish_iomap;
1348                        }
1349                        *pfnp = pfn;
1350                        ret = VM_FAULT_NEEDDSYNC | major;
1351                        goto finish_iomap;
1352                }
1353                trace_dax_insert_mapping(inode, vmf, entry);
1354                if (write)
1355                        ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1356                else
1357                        ret = vmf_insert_mixed(vma, vaddr, pfn);
1358
1359                goto finish_iomap;
1360        case IOMAP_UNWRITTEN:
1361        case IOMAP_HOLE:
1362                if (!write) {
1363                        ret = dax_load_hole(mapping, entry, vmf);
1364                        goto finish_iomap;
1365                }
1366                /*FALLTHRU*/
1367        default:
1368                WARN_ON_ONCE(1);
1369                error = -EIO;
1370                break;
1371        }
1372
1373 error_finish_iomap:
1374        ret = dax_fault_return(error);
1375 finish_iomap:
1376        if (ops->iomap_end) {
1377                int copied = PAGE_SIZE;
1378
1379                if (ret & VM_FAULT_ERROR)
1380                        copied = 0;
1381                /*
1382                 * The fault is done by now and there's no way back (other
1383                 * thread may be already happily using PTE we have installed).
1384                 * Just ignore error from ->iomap_end since we cannot do much
1385                 * with it.
1386                 */
1387                ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1388        }
1389 unlock_entry:
1390        put_locked_mapping_entry(mapping, vmf->pgoff);
1391 out:
1392        trace_dax_pte_fault_done(inode, vmf, ret);
1393        return ret | major;
1394}
1395
1396#ifdef CONFIG_FS_DAX_PMD
1397static vm_fault_t dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1398                void *entry)
1399{
1400        struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1401        unsigned long pmd_addr = vmf->address & PMD_MASK;
1402        struct inode *inode = mapping->host;
1403        struct page *zero_page;
1404        void *ret = NULL;
1405        spinlock_t *ptl;
1406        pmd_t pmd_entry;
1407        pfn_t pfn;
1408
1409        zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1410
1411        if (unlikely(!zero_page))
1412                goto fallback;
1413
1414        pfn = page_to_pfn_t(zero_page);
1415        ret = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1416                        RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false);
1417
1418        ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1419        if (!pmd_none(*(vmf->pmd))) {
1420                spin_unlock(ptl);
1421                goto fallback;
1422        }
1423
1424        pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1425        pmd_entry = pmd_mkhuge(pmd_entry);
1426        set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1427        spin_unlock(ptl);
1428        trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1429        return VM_FAULT_NOPAGE;
1430
1431fallback:
1432        trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1433        return VM_FAULT_FALLBACK;
1434}
1435
1436static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1437                               const struct iomap_ops *ops)
1438{
1439        struct vm_area_struct *vma = vmf->vma;
1440        struct address_space *mapping = vma->vm_file->f_mapping;
1441        unsigned long pmd_addr = vmf->address & PMD_MASK;
1442        bool write = vmf->flags & FAULT_FLAG_WRITE;
1443        bool sync;
1444        unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1445        struct inode *inode = mapping->host;
1446        vm_fault_t result = VM_FAULT_FALLBACK;
1447        struct iomap iomap = { 0 };
1448        pgoff_t max_pgoff, pgoff;
1449        void *entry;
1450        loff_t pos;
1451        int error;
1452        pfn_t pfn;
1453
1454        /*
1455         * Check whether offset isn't beyond end of file now. Caller is
1456         * supposed to hold locks serializing us with truncate / punch hole so
1457         * this is a reliable test.
1458         */
1459        pgoff = linear_page_index(vma, pmd_addr);
1460        max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1461
1462        trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1463
1464        /*
1465         * Make sure that the faulting address's PMD offset (color) matches
1466         * the PMD offset from the start of the file.  This is necessary so
1467         * that a PMD range in the page table overlaps exactly with a PMD
1468         * range in the radix tree.
1469         */
1470        if ((vmf->pgoff & PG_PMD_COLOUR) !=
1471            ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1472                goto fallback;
1473
1474        /* Fall back to PTEs if we're going to COW */
1475        if (write && !(vma->vm_flags & VM_SHARED))
1476                goto fallback;
1477
1478        /* If the PMD would extend outside the VMA */
1479        if (pmd_addr < vma->vm_start)
1480                goto fallback;
1481        if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1482                goto fallback;
1483
1484        if (pgoff >= max_pgoff) {
1485                result = VM_FAULT_SIGBUS;
1486                goto out;
1487        }
1488
1489        /* If the PMD would extend beyond the file size */
1490        if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
1491                goto fallback;
1492
1493        /*
1494         * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1495         * 2MiB zero page entry or a DAX PMD.  If it can't (because a 4k page
1496         * is already in the tree, for instance), it will return -EEXIST and
1497         * we just fall back to 4k entries.
1498         */
1499        entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1500        if (IS_ERR(entry))
1501                goto fallback;
1502
1503        /*
1504         * It is possible, particularly with mixed reads & writes to private
1505         * mappings, that we have raced with a PTE fault that overlaps with
1506         * the PMD we need to set up.  If so just return and the fault will be
1507         * retried.
1508         */
1509        if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1510                        !pmd_devmap(*vmf->pmd)) {
1511                result = 0;
1512                goto unlock_entry;
1513        }
1514
1515        /*
1516         * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1517         * setting up a mapping, so really we're using iomap_begin() as a way
1518         * to look up our filesystem block.
1519         */
1520        pos = (loff_t)pgoff << PAGE_SHIFT;
1521        error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1522        if (error)
1523                goto unlock_entry;
1524
1525        if (iomap.offset + iomap.length < pos + PMD_SIZE)
1526                goto finish_iomap;
1527
1528        sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1529
1530        switch (iomap.type) {
1531        case IOMAP_MAPPED:
1532                error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1533                if (error < 0)
1534                        goto finish_iomap;
1535
1536                entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1537                                                RADIX_DAX_PMD, write && !sync);
1538
1539                /*
1540                 * If we are doing synchronous page fault and inode needs fsync,
1541                 * we can insert PMD into page tables only after that happens.
1542                 * Skip insertion for now and return the pfn so that caller can
1543                 * insert it after fsync is done.
1544                 */
1545                if (sync) {
1546                        if (WARN_ON_ONCE(!pfnp))
1547                                goto finish_iomap;
1548                        *pfnp = pfn;
1549                        result = VM_FAULT_NEEDDSYNC;
1550                        goto finish_iomap;
1551                }
1552
1553                trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1554                result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1555                                            write);
1556                break;
1557        case IOMAP_UNWRITTEN:
1558        case IOMAP_HOLE:
1559                if (WARN_ON_ONCE(write))
1560                        break;
1561                result = dax_pmd_load_hole(vmf, &iomap, entry);
1562                break;
1563        default:
1564                WARN_ON_ONCE(1);
1565                break;
1566        }
1567
1568 finish_iomap:
1569        if (ops->iomap_end) {
1570                int copied = PMD_SIZE;
1571
1572                if (result == VM_FAULT_FALLBACK)
1573                        copied = 0;
1574                /*
1575                 * The fault is done by now and there's no way back (other
1576                 * thread may be already happily using PMD we have installed).
1577                 * Just ignore error from ->iomap_end since we cannot do much
1578                 * with it.
1579                 */
1580                ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1581                                &iomap);
1582        }
1583 unlock_entry:
1584        put_locked_mapping_entry(mapping, pgoff);
1585 fallback:
1586        if (result == VM_FAULT_FALLBACK) {
1587                split_huge_pmd(vma, vmf->pmd, vmf->address);
1588                count_vm_event(THP_FAULT_FALLBACK);
1589        }
1590out:
1591        trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1592        return result;
1593}
1594#else
1595static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1596                               const struct iomap_ops *ops)
1597{
1598        return VM_FAULT_FALLBACK;
1599}
1600#endif /* CONFIG_FS_DAX_PMD */
1601
1602/**
1603 * dax_iomap_fault - handle a page fault on a DAX file
1604 * @vmf: The description of the fault
1605 * @pe_size: Size of the page to fault in
1606 * @pfnp: PFN to insert for synchronous faults if fsync is required
1607 * @iomap_errp: Storage for detailed error code in case of error
1608 * @ops: Iomap ops passed from the file system
1609 *
1610 * When a page fault occurs, filesystems may call this helper in
1611 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1612 * has done all the necessary locking for page fault to proceed
1613 * successfully.
1614 */
1615vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1616                    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1617{
1618        switch (pe_size) {
1619        case PE_SIZE_PTE:
1620                return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1621        case PE_SIZE_PMD:
1622                return dax_iomap_pmd_fault(vmf, pfnp, ops);
1623        default:
1624                return VM_FAULT_FALLBACK;
1625        }
1626}
1627EXPORT_SYMBOL_GPL(dax_iomap_fault);
1628
1629/**
1630 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1631 * @vmf: The description of the fault
1632 * @pe_size: Size of entry to be inserted
1633 * @pfn: PFN to insert
1634 *
1635 * This function inserts writeable PTE or PMD entry into page tables for mmaped
1636 * DAX file.  It takes care of marking corresponding radix tree entry as dirty
1637 * as well.
1638 */
1639static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault *vmf,
1640                                  enum page_entry_size pe_size,
1641                                  pfn_t pfn)
1642{
1643        struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1644        void *entry, **slot;
1645        pgoff_t index = vmf->pgoff;
1646        vm_fault_t ret;
1647
1648        xa_lock_irq(&mapping->i_pages);
1649        entry = get_unlocked_mapping_entry(mapping, index, &slot);
1650        /* Did we race with someone splitting entry or so? */
1651        if (!entry ||
1652            (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) ||
1653            (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) {
1654                put_unlocked_mapping_entry(mapping, index, entry);
1655                xa_unlock_irq(&mapping->i_pages);
1656                trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1657                                                      VM_FAULT_NOPAGE);
1658                return VM_FAULT_NOPAGE;
1659        }
1660        radix_tree_tag_set(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY);
1661        entry = lock_slot(mapping, slot);
1662        xa_unlock_irq(&mapping->i_pages);
1663        switch (pe_size) {
1664        case PE_SIZE_PTE:
1665                ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1666                break;
1667#ifdef CONFIG_FS_DAX_PMD
1668        case PE_SIZE_PMD:
1669                ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1670                        pfn, true);
1671                break;
1672#endif
1673        default:
1674                ret = VM_FAULT_FALLBACK;
1675        }
1676        put_locked_mapping_entry(mapping, index);
1677        trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1678        return ret;
1679}
1680
1681/**
1682 * dax_finish_sync_fault - finish synchronous page fault
1683 * @vmf: The description of the fault
1684 * @pe_size: Size of entry to be inserted
1685 * @pfn: PFN to insert
1686 *
1687 * This function ensures that the file range touched by the page fault is
1688 * stored persistently on the media and handles inserting of appropriate page
1689 * table entry.
1690 */
1691vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1692                enum page_entry_size pe_size, pfn_t pfn)
1693{
1694        int err;
1695        loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1696        size_t len = 0;
1697
1698        if (pe_size == PE_SIZE_PTE)
1699                len = PAGE_SIZE;
1700        else if (pe_size == PE_SIZE_PMD)
1701                len = PMD_SIZE;
1702        else
1703                WARN_ON_ONCE(1);
1704        err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1705        if (err)
1706                return VM_FAULT_SIGBUS;
1707        return dax_insert_pfn_mkwrite(vmf, pe_size, pfn);
1708}
1709EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1710