linux/fs/ext4/inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  17 *      (jj@sunsite.ms.mff.cuni.cz)
  18 *
  19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/time.h>
  24#include <linux/highuid.h>
  25#include <linux/pagemap.h>
  26#include <linux/dax.h>
  27#include <linux/quotaops.h>
  28#include <linux/string.h>
  29#include <linux/buffer_head.h>
  30#include <linux/writeback.h>
  31#include <linux/pagevec.h>
  32#include <linux/mpage.h>
  33#include <linux/namei.h>
  34#include <linux/uio.h>
  35#include <linux/bio.h>
  36#include <linux/workqueue.h>
  37#include <linux/kernel.h>
  38#include <linux/printk.h>
  39#include <linux/slab.h>
  40#include <linux/bitops.h>
  41#include <linux/iomap.h>
  42#include <linux/iversion.h>
  43
  44#include "ext4_jbd2.h"
  45#include "xattr.h"
  46#include "acl.h"
  47#include "truncate.h"
  48
  49#include <trace/events/ext4.h>
  50
  51#define MPAGE_DA_EXTENT_TAIL 0x01
  52
  53static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  54                              struct ext4_inode_info *ei)
  55{
  56        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  57        __u32 csum;
  58        __u16 dummy_csum = 0;
  59        int offset = offsetof(struct ext4_inode, i_checksum_lo);
  60        unsigned int csum_size = sizeof(dummy_csum);
  61
  62        csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  63        csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  64        offset += csum_size;
  65        csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  66                           EXT4_GOOD_OLD_INODE_SIZE - offset);
  67
  68        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  69                offset = offsetof(struct ext4_inode, i_checksum_hi);
  70                csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  71                                   EXT4_GOOD_OLD_INODE_SIZE,
  72                                   offset - EXT4_GOOD_OLD_INODE_SIZE);
  73                if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  74                        csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  75                                           csum_size);
  76                        offset += csum_size;
  77                }
  78                csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  79                                   EXT4_INODE_SIZE(inode->i_sb) - offset);
  80        }
  81
  82        return csum;
  83}
  84
  85static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  86                                  struct ext4_inode_info *ei)
  87{
  88        __u32 provided, calculated;
  89
  90        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  91            cpu_to_le32(EXT4_OS_LINUX) ||
  92            !ext4_has_metadata_csum(inode->i_sb))
  93                return 1;
  94
  95        provided = le16_to_cpu(raw->i_checksum_lo);
  96        calculated = ext4_inode_csum(inode, raw, ei);
  97        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  98            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  99                provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
 100        else
 101                calculated &= 0xFFFF;
 102
 103        return provided == calculated;
 104}
 105
 106static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 107                                struct ext4_inode_info *ei)
 108{
 109        __u32 csum;
 110
 111        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 112            cpu_to_le32(EXT4_OS_LINUX) ||
 113            !ext4_has_metadata_csum(inode->i_sb))
 114                return;
 115
 116        csum = ext4_inode_csum(inode, raw, ei);
 117        raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 118        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 119            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 120                raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 121}
 122
 123static inline int ext4_begin_ordered_truncate(struct inode *inode,
 124                                              loff_t new_size)
 125{
 126        trace_ext4_begin_ordered_truncate(inode, new_size);
 127        /*
 128         * If jinode is zero, then we never opened the file for
 129         * writing, so there's no need to call
 130         * jbd2_journal_begin_ordered_truncate() since there's no
 131         * outstanding writes we need to flush.
 132         */
 133        if (!EXT4_I(inode)->jinode)
 134                return 0;
 135        return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 136                                                   EXT4_I(inode)->jinode,
 137                                                   new_size);
 138}
 139
 140static void ext4_invalidatepage(struct page *page, unsigned int offset,
 141                                unsigned int length);
 142static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 143static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 144static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 145                                  int pextents);
 146
 147/*
 148 * Test whether an inode is a fast symlink.
 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
 150 */
 151int ext4_inode_is_fast_symlink(struct inode *inode)
 152{
 153        if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
 154                int ea_blocks = EXT4_I(inode)->i_file_acl ?
 155                                EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 156
 157                if (ext4_has_inline_data(inode))
 158                        return 0;
 159
 160                return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 161        }
 162        return S_ISLNK(inode->i_mode) && inode->i_size &&
 163               (inode->i_size < EXT4_N_BLOCKS * 4);
 164}
 165
 166/*
 167 * Restart the transaction associated with *handle.  This does a commit,
 168 * so before we call here everything must be consistently dirtied against
 169 * this transaction.
 170 */
 171int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 172                                 int nblocks)
 173{
 174        int ret;
 175
 176        /*
 177         * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 178         * moment, get_block can be called only for blocks inside i_size since
 179         * page cache has been already dropped and writes are blocked by
 180         * i_mutex. So we can safely drop the i_data_sem here.
 181         */
 182        BUG_ON(EXT4_JOURNAL(inode) == NULL);
 183        jbd_debug(2, "restarting handle %p\n", handle);
 184        up_write(&EXT4_I(inode)->i_data_sem);
 185        ret = ext4_journal_restart(handle, nblocks);
 186        down_write(&EXT4_I(inode)->i_data_sem);
 187        ext4_discard_preallocations(inode);
 188
 189        return ret;
 190}
 191
 192/*
 193 * Called at the last iput() if i_nlink is zero.
 194 */
 195void ext4_evict_inode(struct inode *inode)
 196{
 197        handle_t *handle;
 198        int err;
 199        int extra_credits = 3;
 200        struct ext4_xattr_inode_array *ea_inode_array = NULL;
 201
 202        trace_ext4_evict_inode(inode);
 203
 204        if (inode->i_nlink) {
 205                /*
 206                 * When journalling data dirty buffers are tracked only in the
 207                 * journal. So although mm thinks everything is clean and
 208                 * ready for reaping the inode might still have some pages to
 209                 * write in the running transaction or waiting to be
 210                 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 211                 * (via truncate_inode_pages()) to discard these buffers can
 212                 * cause data loss. Also even if we did not discard these
 213                 * buffers, we would have no way to find them after the inode
 214                 * is reaped and thus user could see stale data if he tries to
 215                 * read them before the transaction is checkpointed. So be
 216                 * careful and force everything to disk here... We use
 217                 * ei->i_datasync_tid to store the newest transaction
 218                 * containing inode's data.
 219                 *
 220                 * Note that directories do not have this problem because they
 221                 * don't use page cache.
 222                 */
 223                if (inode->i_ino != EXT4_JOURNAL_INO &&
 224                    ext4_should_journal_data(inode) &&
 225                    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
 226                    inode->i_data.nrpages) {
 227                        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 228                        tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 229
 230                        jbd2_complete_transaction(journal, commit_tid);
 231                        filemap_write_and_wait(&inode->i_data);
 232                }
 233                truncate_inode_pages_final(&inode->i_data);
 234
 235                goto no_delete;
 236        }
 237
 238        if (is_bad_inode(inode))
 239                goto no_delete;
 240        dquot_initialize(inode);
 241
 242        if (ext4_should_order_data(inode))
 243                ext4_begin_ordered_truncate(inode, 0);
 244        truncate_inode_pages_final(&inode->i_data);
 245
 246        /*
 247         * Protect us against freezing - iput() caller didn't have to have any
 248         * protection against it
 249         */
 250        sb_start_intwrite(inode->i_sb);
 251
 252        if (!IS_NOQUOTA(inode))
 253                extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
 254
 255        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 256                                 ext4_blocks_for_truncate(inode)+extra_credits);
 257        if (IS_ERR(handle)) {
 258                ext4_std_error(inode->i_sb, PTR_ERR(handle));
 259                /*
 260                 * If we're going to skip the normal cleanup, we still need to
 261                 * make sure that the in-core orphan linked list is properly
 262                 * cleaned up.
 263                 */
 264                ext4_orphan_del(NULL, inode);
 265                sb_end_intwrite(inode->i_sb);
 266                goto no_delete;
 267        }
 268
 269        if (IS_SYNC(inode))
 270                ext4_handle_sync(handle);
 271
 272        /*
 273         * Set inode->i_size to 0 before calling ext4_truncate(). We need
 274         * special handling of symlinks here because i_size is used to
 275         * determine whether ext4_inode_info->i_data contains symlink data or
 276         * block mappings. Setting i_size to 0 will remove its fast symlink
 277         * status. Erase i_data so that it becomes a valid empty block map.
 278         */
 279        if (ext4_inode_is_fast_symlink(inode))
 280                memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
 281        inode->i_size = 0;
 282        err = ext4_mark_inode_dirty(handle, inode);
 283        if (err) {
 284                ext4_warning(inode->i_sb,
 285                             "couldn't mark inode dirty (err %d)", err);
 286                goto stop_handle;
 287        }
 288        if (inode->i_blocks) {
 289                err = ext4_truncate(inode);
 290                if (err) {
 291                        ext4_error(inode->i_sb,
 292                                   "couldn't truncate inode %lu (err %d)",
 293                                   inode->i_ino, err);
 294                        goto stop_handle;
 295                }
 296        }
 297
 298        /* Remove xattr references. */
 299        err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
 300                                      extra_credits);
 301        if (err) {
 302                ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
 303stop_handle:
 304                ext4_journal_stop(handle);
 305                ext4_orphan_del(NULL, inode);
 306                sb_end_intwrite(inode->i_sb);
 307                ext4_xattr_inode_array_free(ea_inode_array);
 308                goto no_delete;
 309        }
 310
 311        /*
 312         * Kill off the orphan record which ext4_truncate created.
 313         * AKPM: I think this can be inside the above `if'.
 314         * Note that ext4_orphan_del() has to be able to cope with the
 315         * deletion of a non-existent orphan - this is because we don't
 316         * know if ext4_truncate() actually created an orphan record.
 317         * (Well, we could do this if we need to, but heck - it works)
 318         */
 319        ext4_orphan_del(handle, inode);
 320        EXT4_I(inode)->i_dtime  = get_seconds();
 321
 322        /*
 323         * One subtle ordering requirement: if anything has gone wrong
 324         * (transaction abort, IO errors, whatever), then we can still
 325         * do these next steps (the fs will already have been marked as
 326         * having errors), but we can't free the inode if the mark_dirty
 327         * fails.
 328         */
 329        if (ext4_mark_inode_dirty(handle, inode))
 330                /* If that failed, just do the required in-core inode clear. */
 331                ext4_clear_inode(inode);
 332        else
 333                ext4_free_inode(handle, inode);
 334        ext4_journal_stop(handle);
 335        sb_end_intwrite(inode->i_sb);
 336        ext4_xattr_inode_array_free(ea_inode_array);
 337        return;
 338no_delete:
 339        ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
 340}
 341
 342#ifdef CONFIG_QUOTA
 343qsize_t *ext4_get_reserved_space(struct inode *inode)
 344{
 345        return &EXT4_I(inode)->i_reserved_quota;
 346}
 347#endif
 348
 349/*
 350 * Called with i_data_sem down, which is important since we can call
 351 * ext4_discard_preallocations() from here.
 352 */
 353void ext4_da_update_reserve_space(struct inode *inode,
 354                                        int used, int quota_claim)
 355{
 356        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 357        struct ext4_inode_info *ei = EXT4_I(inode);
 358
 359        spin_lock(&ei->i_block_reservation_lock);
 360        trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 361        if (unlikely(used > ei->i_reserved_data_blocks)) {
 362                ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 363                         "with only %d reserved data blocks",
 364                         __func__, inode->i_ino, used,
 365                         ei->i_reserved_data_blocks);
 366                WARN_ON(1);
 367                used = ei->i_reserved_data_blocks;
 368        }
 369
 370        /* Update per-inode reservations */
 371        ei->i_reserved_data_blocks -= used;
 372        percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 373
 374        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 375
 376        /* Update quota subsystem for data blocks */
 377        if (quota_claim)
 378                dquot_claim_block(inode, EXT4_C2B(sbi, used));
 379        else {
 380                /*
 381                 * We did fallocate with an offset that is already delayed
 382                 * allocated. So on delayed allocated writeback we should
 383                 * not re-claim the quota for fallocated blocks.
 384                 */
 385                dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 386        }
 387
 388        /*
 389         * If we have done all the pending block allocations and if
 390         * there aren't any writers on the inode, we can discard the
 391         * inode's preallocations.
 392         */
 393        if ((ei->i_reserved_data_blocks == 0) &&
 394            (atomic_read(&inode->i_writecount) == 0))
 395                ext4_discard_preallocations(inode);
 396}
 397
 398static int __check_block_validity(struct inode *inode, const char *func,
 399                                unsigned int line,
 400                                struct ext4_map_blocks *map)
 401{
 402        if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 403                                   map->m_len)) {
 404                ext4_error_inode(inode, func, line, map->m_pblk,
 405                                 "lblock %lu mapped to illegal pblock %llu "
 406                                 "(length %d)", (unsigned long) map->m_lblk,
 407                                 map->m_pblk, map->m_len);
 408                return -EFSCORRUPTED;
 409        }
 410        return 0;
 411}
 412
 413int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 414                       ext4_lblk_t len)
 415{
 416        int ret;
 417
 418        if (ext4_encrypted_inode(inode))
 419                return fscrypt_zeroout_range(inode, lblk, pblk, len);
 420
 421        ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 422        if (ret > 0)
 423                ret = 0;
 424
 425        return ret;
 426}
 427
 428#define check_block_validity(inode, map)        \
 429        __check_block_validity((inode), __func__, __LINE__, (map))
 430
 431#ifdef ES_AGGRESSIVE_TEST
 432static void ext4_map_blocks_es_recheck(handle_t *handle,
 433                                       struct inode *inode,
 434                                       struct ext4_map_blocks *es_map,
 435                                       struct ext4_map_blocks *map,
 436                                       int flags)
 437{
 438        int retval;
 439
 440        map->m_flags = 0;
 441        /*
 442         * There is a race window that the result is not the same.
 443         * e.g. xfstests #223 when dioread_nolock enables.  The reason
 444         * is that we lookup a block mapping in extent status tree with
 445         * out taking i_data_sem.  So at the time the unwritten extent
 446         * could be converted.
 447         */
 448        down_read(&EXT4_I(inode)->i_data_sem);
 449        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 450                retval = ext4_ext_map_blocks(handle, inode, map, flags &
 451                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 452        } else {
 453                retval = ext4_ind_map_blocks(handle, inode, map, flags &
 454                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 455        }
 456        up_read((&EXT4_I(inode)->i_data_sem));
 457
 458        /*
 459         * We don't check m_len because extent will be collpased in status
 460         * tree.  So the m_len might not equal.
 461         */
 462        if (es_map->m_lblk != map->m_lblk ||
 463            es_map->m_flags != map->m_flags ||
 464            es_map->m_pblk != map->m_pblk) {
 465                printk("ES cache assertion failed for inode: %lu "
 466                       "es_cached ex [%d/%d/%llu/%x] != "
 467                       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 468                       inode->i_ino, es_map->m_lblk, es_map->m_len,
 469                       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 470                       map->m_len, map->m_pblk, map->m_flags,
 471                       retval, flags);
 472        }
 473}
 474#endif /* ES_AGGRESSIVE_TEST */
 475
 476/*
 477 * The ext4_map_blocks() function tries to look up the requested blocks,
 478 * and returns if the blocks are already mapped.
 479 *
 480 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 481 * and store the allocated blocks in the result buffer head and mark it
 482 * mapped.
 483 *
 484 * If file type is extents based, it will call ext4_ext_map_blocks(),
 485 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 486 * based files
 487 *
 488 * On success, it returns the number of blocks being mapped or allocated.  if
 489 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
 490 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
 491 *
 492 * It returns 0 if plain look up failed (blocks have not been allocated), in
 493 * that case, @map is returned as unmapped but we still do fill map->m_len to
 494 * indicate the length of a hole starting at map->m_lblk.
 495 *
 496 * It returns the error in case of allocation failure.
 497 */
 498int ext4_map_blocks(handle_t *handle, struct inode *inode,
 499                    struct ext4_map_blocks *map, int flags)
 500{
 501        struct extent_status es;
 502        int retval;
 503        int ret = 0;
 504#ifdef ES_AGGRESSIVE_TEST
 505        struct ext4_map_blocks orig_map;
 506
 507        memcpy(&orig_map, map, sizeof(*map));
 508#endif
 509
 510        map->m_flags = 0;
 511        ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 512                  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 513                  (unsigned long) map->m_lblk);
 514
 515        /*
 516         * ext4_map_blocks returns an int, and m_len is an unsigned int
 517         */
 518        if (unlikely(map->m_len > INT_MAX))
 519                map->m_len = INT_MAX;
 520
 521        /* We can handle the block number less than EXT_MAX_BLOCKS */
 522        if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 523                return -EFSCORRUPTED;
 524
 525        /* Lookup extent status tree firstly */
 526        if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 527                if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 528                        map->m_pblk = ext4_es_pblock(&es) +
 529                                        map->m_lblk - es.es_lblk;
 530                        map->m_flags |= ext4_es_is_written(&es) ?
 531                                        EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 532                        retval = es.es_len - (map->m_lblk - es.es_lblk);
 533                        if (retval > map->m_len)
 534                                retval = map->m_len;
 535                        map->m_len = retval;
 536                } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 537                        map->m_pblk = 0;
 538                        retval = es.es_len - (map->m_lblk - es.es_lblk);
 539                        if (retval > map->m_len)
 540                                retval = map->m_len;
 541                        map->m_len = retval;
 542                        retval = 0;
 543                } else {
 544                        BUG_ON(1);
 545                }
 546#ifdef ES_AGGRESSIVE_TEST
 547                ext4_map_blocks_es_recheck(handle, inode, map,
 548                                           &orig_map, flags);
 549#endif
 550                goto found;
 551        }
 552
 553        /*
 554         * Try to see if we can get the block without requesting a new
 555         * file system block.
 556         */
 557        down_read(&EXT4_I(inode)->i_data_sem);
 558        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 559                retval = ext4_ext_map_blocks(handle, inode, map, flags &
 560                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 561        } else {
 562                retval = ext4_ind_map_blocks(handle, inode, map, flags &
 563                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 564        }
 565        if (retval > 0) {
 566                unsigned int status;
 567
 568                if (unlikely(retval != map->m_len)) {
 569                        ext4_warning(inode->i_sb,
 570                                     "ES len assertion failed for inode "
 571                                     "%lu: retval %d != map->m_len %d",
 572                                     inode->i_ino, retval, map->m_len);
 573                        WARN_ON(1);
 574                }
 575
 576                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 577                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 578                if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 579                    !(status & EXTENT_STATUS_WRITTEN) &&
 580                    ext4_find_delalloc_range(inode, map->m_lblk,
 581                                             map->m_lblk + map->m_len - 1))
 582                        status |= EXTENT_STATUS_DELAYED;
 583                ret = ext4_es_insert_extent(inode, map->m_lblk,
 584                                            map->m_len, map->m_pblk, status);
 585                if (ret < 0)
 586                        retval = ret;
 587        }
 588        up_read((&EXT4_I(inode)->i_data_sem));
 589
 590found:
 591        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 592                ret = check_block_validity(inode, map);
 593                if (ret != 0)
 594                        return ret;
 595        }
 596
 597        /* If it is only a block(s) look up */
 598        if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 599                return retval;
 600
 601        /*
 602         * Returns if the blocks have already allocated
 603         *
 604         * Note that if blocks have been preallocated
 605         * ext4_ext_get_block() returns the create = 0
 606         * with buffer head unmapped.
 607         */
 608        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 609                /*
 610                 * If we need to convert extent to unwritten
 611                 * we continue and do the actual work in
 612                 * ext4_ext_map_blocks()
 613                 */
 614                if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 615                        return retval;
 616
 617        /*
 618         * Here we clear m_flags because after allocating an new extent,
 619         * it will be set again.
 620         */
 621        map->m_flags &= ~EXT4_MAP_FLAGS;
 622
 623        /*
 624         * New blocks allocate and/or writing to unwritten extent
 625         * will possibly result in updating i_data, so we take
 626         * the write lock of i_data_sem, and call get_block()
 627         * with create == 1 flag.
 628         */
 629        down_write(&EXT4_I(inode)->i_data_sem);
 630
 631        /*
 632         * We need to check for EXT4 here because migrate
 633         * could have changed the inode type in between
 634         */
 635        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 636                retval = ext4_ext_map_blocks(handle, inode, map, flags);
 637        } else {
 638                retval = ext4_ind_map_blocks(handle, inode, map, flags);
 639
 640                if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 641                        /*
 642                         * We allocated new blocks which will result in
 643                         * i_data's format changing.  Force the migrate
 644                         * to fail by clearing migrate flags
 645                         */
 646                        ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 647                }
 648
 649                /*
 650                 * Update reserved blocks/metadata blocks after successful
 651                 * block allocation which had been deferred till now. We don't
 652                 * support fallocate for non extent files. So we can update
 653                 * reserve space here.
 654                 */
 655                if ((retval > 0) &&
 656                        (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 657                        ext4_da_update_reserve_space(inode, retval, 1);
 658        }
 659
 660        if (retval > 0) {
 661                unsigned int status;
 662
 663                if (unlikely(retval != map->m_len)) {
 664                        ext4_warning(inode->i_sb,
 665                                     "ES len assertion failed for inode "
 666                                     "%lu: retval %d != map->m_len %d",
 667                                     inode->i_ino, retval, map->m_len);
 668                        WARN_ON(1);
 669                }
 670
 671                /*
 672                 * We have to zeroout blocks before inserting them into extent
 673                 * status tree. Otherwise someone could look them up there and
 674                 * use them before they are really zeroed. We also have to
 675                 * unmap metadata before zeroing as otherwise writeback can
 676                 * overwrite zeros with stale data from block device.
 677                 */
 678                if (flags & EXT4_GET_BLOCKS_ZERO &&
 679                    map->m_flags & EXT4_MAP_MAPPED &&
 680                    map->m_flags & EXT4_MAP_NEW) {
 681                        clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
 682                                           map->m_len);
 683                        ret = ext4_issue_zeroout(inode, map->m_lblk,
 684                                                 map->m_pblk, map->m_len);
 685                        if (ret) {
 686                                retval = ret;
 687                                goto out_sem;
 688                        }
 689                }
 690
 691                /*
 692                 * If the extent has been zeroed out, we don't need to update
 693                 * extent status tree.
 694                 */
 695                if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 696                    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 697                        if (ext4_es_is_written(&es))
 698                                goto out_sem;
 699                }
 700                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 701                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 702                if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 703                    !(status & EXTENT_STATUS_WRITTEN) &&
 704                    ext4_find_delalloc_range(inode, map->m_lblk,
 705                                             map->m_lblk + map->m_len - 1))
 706                        status |= EXTENT_STATUS_DELAYED;
 707                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 708                                            map->m_pblk, status);
 709                if (ret < 0) {
 710                        retval = ret;
 711                        goto out_sem;
 712                }
 713        }
 714
 715out_sem:
 716        up_write((&EXT4_I(inode)->i_data_sem));
 717        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 718                ret = check_block_validity(inode, map);
 719                if (ret != 0)
 720                        return ret;
 721
 722                /*
 723                 * Inodes with freshly allocated blocks where contents will be
 724                 * visible after transaction commit must be on transaction's
 725                 * ordered data list.
 726                 */
 727                if (map->m_flags & EXT4_MAP_NEW &&
 728                    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 729                    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 730                    !ext4_is_quota_file(inode) &&
 731                    ext4_should_order_data(inode)) {
 732                        if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 733                                ret = ext4_jbd2_inode_add_wait(handle, inode);
 734                        else
 735                                ret = ext4_jbd2_inode_add_write(handle, inode);
 736                        if (ret)
 737                                return ret;
 738                }
 739        }
 740        return retval;
 741}
 742
 743/*
 744 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 745 * we have to be careful as someone else may be manipulating b_state as well.
 746 */
 747static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 748{
 749        unsigned long old_state;
 750        unsigned long new_state;
 751
 752        flags &= EXT4_MAP_FLAGS;
 753
 754        /* Dummy buffer_head? Set non-atomically. */
 755        if (!bh->b_page) {
 756                bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 757                return;
 758        }
 759        /*
 760         * Someone else may be modifying b_state. Be careful! This is ugly but
 761         * once we get rid of using bh as a container for mapping information
 762         * to pass to / from get_block functions, this can go away.
 763         */
 764        do {
 765                old_state = READ_ONCE(bh->b_state);
 766                new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 767        } while (unlikely(
 768                 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
 769}
 770
 771static int _ext4_get_block(struct inode *inode, sector_t iblock,
 772                           struct buffer_head *bh, int flags)
 773{
 774        struct ext4_map_blocks map;
 775        int ret = 0;
 776
 777        if (ext4_has_inline_data(inode))
 778                return -ERANGE;
 779
 780        map.m_lblk = iblock;
 781        map.m_len = bh->b_size >> inode->i_blkbits;
 782
 783        ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 784                              flags);
 785        if (ret > 0) {
 786                map_bh(bh, inode->i_sb, map.m_pblk);
 787                ext4_update_bh_state(bh, map.m_flags);
 788                bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 789                ret = 0;
 790        } else if (ret == 0) {
 791                /* hole case, need to fill in bh->b_size */
 792                bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 793        }
 794        return ret;
 795}
 796
 797int ext4_get_block(struct inode *inode, sector_t iblock,
 798                   struct buffer_head *bh, int create)
 799{
 800        return _ext4_get_block(inode, iblock, bh,
 801                               create ? EXT4_GET_BLOCKS_CREATE : 0);
 802}
 803
 804/*
 805 * Get block function used when preparing for buffered write if we require
 806 * creating an unwritten extent if blocks haven't been allocated.  The extent
 807 * will be converted to written after the IO is complete.
 808 */
 809int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 810                             struct buffer_head *bh_result, int create)
 811{
 812        ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 813                   inode->i_ino, create);
 814        return _ext4_get_block(inode, iblock, bh_result,
 815                               EXT4_GET_BLOCKS_IO_CREATE_EXT);
 816}
 817
 818/* Maximum number of blocks we map for direct IO at once. */
 819#define DIO_MAX_BLOCKS 4096
 820
 821/*
 822 * Get blocks function for the cases that need to start a transaction -
 823 * generally difference cases of direct IO and DAX IO. It also handles retries
 824 * in case of ENOSPC.
 825 */
 826static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
 827                                struct buffer_head *bh_result, int flags)
 828{
 829        int dio_credits;
 830        handle_t *handle;
 831        int retries = 0;
 832        int ret;
 833
 834        /* Trim mapping request to maximum we can map at once for DIO */
 835        if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
 836                bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
 837        dio_credits = ext4_chunk_trans_blocks(inode,
 838                                      bh_result->b_size >> inode->i_blkbits);
 839retry:
 840        handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
 841        if (IS_ERR(handle))
 842                return PTR_ERR(handle);
 843
 844        ret = _ext4_get_block(inode, iblock, bh_result, flags);
 845        ext4_journal_stop(handle);
 846
 847        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 848                goto retry;
 849        return ret;
 850}
 851
 852/* Get block function for DIO reads and writes to inodes without extents */
 853int ext4_dio_get_block(struct inode *inode, sector_t iblock,
 854                       struct buffer_head *bh, int create)
 855{
 856        /* We don't expect handle for direct IO */
 857        WARN_ON_ONCE(ext4_journal_current_handle());
 858
 859        if (!create)
 860                return _ext4_get_block(inode, iblock, bh, 0);
 861        return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
 862}
 863
 864/*
 865 * Get block function for AIO DIO writes when we create unwritten extent if
 866 * blocks are not allocated yet. The extent will be converted to written
 867 * after IO is complete.
 868 */
 869static int ext4_dio_get_block_unwritten_async(struct inode *inode,
 870                sector_t iblock, struct buffer_head *bh_result, int create)
 871{
 872        int ret;
 873
 874        /* We don't expect handle for direct IO */
 875        WARN_ON_ONCE(ext4_journal_current_handle());
 876
 877        ret = ext4_get_block_trans(inode, iblock, bh_result,
 878                                   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 879
 880        /*
 881         * When doing DIO using unwritten extents, we need io_end to convert
 882         * unwritten extents to written on IO completion. We allocate io_end
 883         * once we spot unwritten extent and store it in b_private. Generic
 884         * DIO code keeps b_private set and furthermore passes the value to
 885         * our completion callback in 'private' argument.
 886         */
 887        if (!ret && buffer_unwritten(bh_result)) {
 888                if (!bh_result->b_private) {
 889                        ext4_io_end_t *io_end;
 890
 891                        io_end = ext4_init_io_end(inode, GFP_KERNEL);
 892                        if (!io_end)
 893                                return -ENOMEM;
 894                        bh_result->b_private = io_end;
 895                        ext4_set_io_unwritten_flag(inode, io_end);
 896                }
 897                set_buffer_defer_completion(bh_result);
 898        }
 899
 900        return ret;
 901}
 902
 903/*
 904 * Get block function for non-AIO DIO writes when we create unwritten extent if
 905 * blocks are not allocated yet. The extent will be converted to written
 906 * after IO is complete by ext4_direct_IO_write().
 907 */
 908static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
 909                sector_t iblock, struct buffer_head *bh_result, int create)
 910{
 911        int ret;
 912
 913        /* We don't expect handle for direct IO */
 914        WARN_ON_ONCE(ext4_journal_current_handle());
 915
 916        ret = ext4_get_block_trans(inode, iblock, bh_result,
 917                                   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 918
 919        /*
 920         * Mark inode as having pending DIO writes to unwritten extents.
 921         * ext4_direct_IO_write() checks this flag and converts extents to
 922         * written.
 923         */
 924        if (!ret && buffer_unwritten(bh_result))
 925                ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
 926
 927        return ret;
 928}
 929
 930static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
 931                   struct buffer_head *bh_result, int create)
 932{
 933        int ret;
 934
 935        ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
 936                   inode->i_ino, create);
 937        /* We don't expect handle for direct IO */
 938        WARN_ON_ONCE(ext4_journal_current_handle());
 939
 940        ret = _ext4_get_block(inode, iblock, bh_result, 0);
 941        /*
 942         * Blocks should have been preallocated! ext4_file_write_iter() checks
 943         * that.
 944         */
 945        WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
 946
 947        return ret;
 948}
 949
 950
 951/*
 952 * `handle' can be NULL if create is zero
 953 */
 954struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 955                                ext4_lblk_t block, int map_flags)
 956{
 957        struct ext4_map_blocks map;
 958        struct buffer_head *bh;
 959        int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 960        int err;
 961
 962        J_ASSERT(handle != NULL || create == 0);
 963
 964        map.m_lblk = block;
 965        map.m_len = 1;
 966        err = ext4_map_blocks(handle, inode, &map, map_flags);
 967
 968        if (err == 0)
 969                return create ? ERR_PTR(-ENOSPC) : NULL;
 970        if (err < 0)
 971                return ERR_PTR(err);
 972
 973        bh = sb_getblk(inode->i_sb, map.m_pblk);
 974        if (unlikely(!bh))
 975                return ERR_PTR(-ENOMEM);
 976        if (map.m_flags & EXT4_MAP_NEW) {
 977                J_ASSERT(create != 0);
 978                J_ASSERT(handle != NULL);
 979
 980                /*
 981                 * Now that we do not always journal data, we should
 982                 * keep in mind whether this should always journal the
 983                 * new buffer as metadata.  For now, regular file
 984                 * writes use ext4_get_block instead, so it's not a
 985                 * problem.
 986                 */
 987                lock_buffer(bh);
 988                BUFFER_TRACE(bh, "call get_create_access");
 989                err = ext4_journal_get_create_access(handle, bh);
 990                if (unlikely(err)) {
 991                        unlock_buffer(bh);
 992                        goto errout;
 993                }
 994                if (!buffer_uptodate(bh)) {
 995                        memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 996                        set_buffer_uptodate(bh);
 997                }
 998                unlock_buffer(bh);
 999                BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1000                err = ext4_handle_dirty_metadata(handle, inode, bh);
1001                if (unlikely(err))
1002                        goto errout;
1003        } else
1004                BUFFER_TRACE(bh, "not a new buffer");
1005        return bh;
1006errout:
1007        brelse(bh);
1008        return ERR_PTR(err);
1009}
1010
1011struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1012                               ext4_lblk_t block, int map_flags)
1013{
1014        struct buffer_head *bh;
1015
1016        bh = ext4_getblk(handle, inode, block, map_flags);
1017        if (IS_ERR(bh))
1018                return bh;
1019        if (!bh || buffer_uptodate(bh))
1020                return bh;
1021        ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1022        wait_on_buffer(bh);
1023        if (buffer_uptodate(bh))
1024                return bh;
1025        put_bh(bh);
1026        return ERR_PTR(-EIO);
1027}
1028
1029/* Read a contiguous batch of blocks. */
1030int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1031                     bool wait, struct buffer_head **bhs)
1032{
1033        int i, err;
1034
1035        for (i = 0; i < bh_count; i++) {
1036                bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1037                if (IS_ERR(bhs[i])) {
1038                        err = PTR_ERR(bhs[i]);
1039                        bh_count = i;
1040                        goto out_brelse;
1041                }
1042        }
1043
1044        for (i = 0; i < bh_count; i++)
1045                /* Note that NULL bhs[i] is valid because of holes. */
1046                if (bhs[i] && !buffer_uptodate(bhs[i]))
1047                        ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1048                                    &bhs[i]);
1049
1050        if (!wait)
1051                return 0;
1052
1053        for (i = 0; i < bh_count; i++)
1054                if (bhs[i])
1055                        wait_on_buffer(bhs[i]);
1056
1057        for (i = 0; i < bh_count; i++) {
1058                if (bhs[i] && !buffer_uptodate(bhs[i])) {
1059                        err = -EIO;
1060                        goto out_brelse;
1061                }
1062        }
1063        return 0;
1064
1065out_brelse:
1066        for (i = 0; i < bh_count; i++) {
1067                brelse(bhs[i]);
1068                bhs[i] = NULL;
1069        }
1070        return err;
1071}
1072
1073int ext4_walk_page_buffers(handle_t *handle,
1074                           struct buffer_head *head,
1075                           unsigned from,
1076                           unsigned to,
1077                           int *partial,
1078                           int (*fn)(handle_t *handle,
1079                                     struct buffer_head *bh))
1080{
1081        struct buffer_head *bh;
1082        unsigned block_start, block_end;
1083        unsigned blocksize = head->b_size;
1084        int err, ret = 0;
1085        struct buffer_head *next;
1086
1087        for (bh = head, block_start = 0;
1088             ret == 0 && (bh != head || !block_start);
1089             block_start = block_end, bh = next) {
1090                next = bh->b_this_page;
1091                block_end = block_start + blocksize;
1092                if (block_end <= from || block_start >= to) {
1093                        if (partial && !buffer_uptodate(bh))
1094                                *partial = 1;
1095                        continue;
1096                }
1097                err = (*fn)(handle, bh);
1098                if (!ret)
1099                        ret = err;
1100        }
1101        return ret;
1102}
1103
1104/*
1105 * To preserve ordering, it is essential that the hole instantiation and
1106 * the data write be encapsulated in a single transaction.  We cannot
1107 * close off a transaction and start a new one between the ext4_get_block()
1108 * and the commit_write().  So doing the jbd2_journal_start at the start of
1109 * prepare_write() is the right place.
1110 *
1111 * Also, this function can nest inside ext4_writepage().  In that case, we
1112 * *know* that ext4_writepage() has generated enough buffer credits to do the
1113 * whole page.  So we won't block on the journal in that case, which is good,
1114 * because the caller may be PF_MEMALLOC.
1115 *
1116 * By accident, ext4 can be reentered when a transaction is open via
1117 * quota file writes.  If we were to commit the transaction while thus
1118 * reentered, there can be a deadlock - we would be holding a quota
1119 * lock, and the commit would never complete if another thread had a
1120 * transaction open and was blocking on the quota lock - a ranking
1121 * violation.
1122 *
1123 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1124 * will _not_ run commit under these circumstances because handle->h_ref
1125 * is elevated.  We'll still have enough credits for the tiny quotafile
1126 * write.
1127 */
1128int do_journal_get_write_access(handle_t *handle,
1129                                struct buffer_head *bh)
1130{
1131        int dirty = buffer_dirty(bh);
1132        int ret;
1133
1134        if (!buffer_mapped(bh) || buffer_freed(bh))
1135                return 0;
1136        /*
1137         * __block_write_begin() could have dirtied some buffers. Clean
1138         * the dirty bit as jbd2_journal_get_write_access() could complain
1139         * otherwise about fs integrity issues. Setting of the dirty bit
1140         * by __block_write_begin() isn't a real problem here as we clear
1141         * the bit before releasing a page lock and thus writeback cannot
1142         * ever write the buffer.
1143         */
1144        if (dirty)
1145                clear_buffer_dirty(bh);
1146        BUFFER_TRACE(bh, "get write access");
1147        ret = ext4_journal_get_write_access(handle, bh);
1148        if (!ret && dirty)
1149                ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1150        return ret;
1151}
1152
1153#ifdef CONFIG_EXT4_FS_ENCRYPTION
1154static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1155                                  get_block_t *get_block)
1156{
1157        unsigned from = pos & (PAGE_SIZE - 1);
1158        unsigned to = from + len;
1159        struct inode *inode = page->mapping->host;
1160        unsigned block_start, block_end;
1161        sector_t block;
1162        int err = 0;
1163        unsigned blocksize = inode->i_sb->s_blocksize;
1164        unsigned bbits;
1165        struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1166        bool decrypt = false;
1167
1168        BUG_ON(!PageLocked(page));
1169        BUG_ON(from > PAGE_SIZE);
1170        BUG_ON(to > PAGE_SIZE);
1171        BUG_ON(from > to);
1172
1173        if (!page_has_buffers(page))
1174                create_empty_buffers(page, blocksize, 0);
1175        head = page_buffers(page);
1176        bbits = ilog2(blocksize);
1177        block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1178
1179        for (bh = head, block_start = 0; bh != head || !block_start;
1180            block++, block_start = block_end, bh = bh->b_this_page) {
1181                block_end = block_start + blocksize;
1182                if (block_end <= from || block_start >= to) {
1183                        if (PageUptodate(page)) {
1184                                if (!buffer_uptodate(bh))
1185                                        set_buffer_uptodate(bh);
1186                        }
1187                        continue;
1188                }
1189                if (buffer_new(bh))
1190                        clear_buffer_new(bh);
1191                if (!buffer_mapped(bh)) {
1192                        WARN_ON(bh->b_size != blocksize);
1193                        err = get_block(inode, block, bh, 1);
1194                        if (err)
1195                                break;
1196                        if (buffer_new(bh)) {
1197                                clean_bdev_bh_alias(bh);
1198                                if (PageUptodate(page)) {
1199                                        clear_buffer_new(bh);
1200                                        set_buffer_uptodate(bh);
1201                                        mark_buffer_dirty(bh);
1202                                        continue;
1203                                }
1204                                if (block_end > to || block_start < from)
1205                                        zero_user_segments(page, to, block_end,
1206                                                           block_start, from);
1207                                continue;
1208                        }
1209                }
1210                if (PageUptodate(page)) {
1211                        if (!buffer_uptodate(bh))
1212                                set_buffer_uptodate(bh);
1213                        continue;
1214                }
1215                if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1216                    !buffer_unwritten(bh) &&
1217                    (block_start < from || block_end > to)) {
1218                        ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219                        *wait_bh++ = bh;
1220                        decrypt = ext4_encrypted_inode(inode) &&
1221                                S_ISREG(inode->i_mode);
1222                }
1223        }
1224        /*
1225         * If we issued read requests, let them complete.
1226         */
1227        while (wait_bh > wait) {
1228                wait_on_buffer(*--wait_bh);
1229                if (!buffer_uptodate(*wait_bh))
1230                        err = -EIO;
1231        }
1232        if (unlikely(err))
1233                page_zero_new_buffers(page, from, to);
1234        else if (decrypt)
1235                err = fscrypt_decrypt_page(page->mapping->host, page,
1236                                PAGE_SIZE, 0, page->index);
1237        return err;
1238}
1239#endif
1240
1241static int ext4_write_begin(struct file *file, struct address_space *mapping,
1242                            loff_t pos, unsigned len, unsigned flags,
1243                            struct page **pagep, void **fsdata)
1244{
1245        struct inode *inode = mapping->host;
1246        int ret, needed_blocks;
1247        handle_t *handle;
1248        int retries = 0;
1249        struct page *page;
1250        pgoff_t index;
1251        unsigned from, to;
1252
1253        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1254                return -EIO;
1255
1256        trace_ext4_write_begin(inode, pos, len, flags);
1257        /*
1258         * Reserve one block more for addition to orphan list in case
1259         * we allocate blocks but write fails for some reason
1260         */
1261        needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1262        index = pos >> PAGE_SHIFT;
1263        from = pos & (PAGE_SIZE - 1);
1264        to = from + len;
1265
1266        if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1267                ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1268                                                    flags, pagep);
1269                if (ret < 0)
1270                        return ret;
1271                if (ret == 1)
1272                        return 0;
1273        }
1274
1275        /*
1276         * grab_cache_page_write_begin() can take a long time if the
1277         * system is thrashing due to memory pressure, or if the page
1278         * is being written back.  So grab it first before we start
1279         * the transaction handle.  This also allows us to allocate
1280         * the page (if needed) without using GFP_NOFS.
1281         */
1282retry_grab:
1283        page = grab_cache_page_write_begin(mapping, index, flags);
1284        if (!page)
1285                return -ENOMEM;
1286        unlock_page(page);
1287
1288retry_journal:
1289        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1290        if (IS_ERR(handle)) {
1291                put_page(page);
1292                return PTR_ERR(handle);
1293        }
1294
1295        lock_page(page);
1296        if (page->mapping != mapping) {
1297                /* The page got truncated from under us */
1298                unlock_page(page);
1299                put_page(page);
1300                ext4_journal_stop(handle);
1301                goto retry_grab;
1302        }
1303        /* In case writeback began while the page was unlocked */
1304        wait_for_stable_page(page);
1305
1306#ifdef CONFIG_EXT4_FS_ENCRYPTION
1307        if (ext4_should_dioread_nolock(inode))
1308                ret = ext4_block_write_begin(page, pos, len,
1309                                             ext4_get_block_unwritten);
1310        else
1311                ret = ext4_block_write_begin(page, pos, len,
1312                                             ext4_get_block);
1313#else
1314        if (ext4_should_dioread_nolock(inode))
1315                ret = __block_write_begin(page, pos, len,
1316                                          ext4_get_block_unwritten);
1317        else
1318                ret = __block_write_begin(page, pos, len, ext4_get_block);
1319#endif
1320        if (!ret && ext4_should_journal_data(inode)) {
1321                ret = ext4_walk_page_buffers(handle, page_buffers(page),
1322                                             from, to, NULL,
1323                                             do_journal_get_write_access);
1324        }
1325
1326        if (ret) {
1327                unlock_page(page);
1328                /*
1329                 * __block_write_begin may have instantiated a few blocks
1330                 * outside i_size.  Trim these off again. Don't need
1331                 * i_size_read because we hold i_mutex.
1332                 *
1333                 * Add inode to orphan list in case we crash before
1334                 * truncate finishes
1335                 */
1336                if (pos + len > inode->i_size && ext4_can_truncate(inode))
1337                        ext4_orphan_add(handle, inode);
1338
1339                ext4_journal_stop(handle);
1340                if (pos + len > inode->i_size) {
1341                        ext4_truncate_failed_write(inode);
1342                        /*
1343                         * If truncate failed early the inode might
1344                         * still be on the orphan list; we need to
1345                         * make sure the inode is removed from the
1346                         * orphan list in that case.
1347                         */
1348                        if (inode->i_nlink)
1349                                ext4_orphan_del(NULL, inode);
1350                }
1351
1352                if (ret == -ENOSPC &&
1353                    ext4_should_retry_alloc(inode->i_sb, &retries))
1354                        goto retry_journal;
1355                put_page(page);
1356                return ret;
1357        }
1358        *pagep = page;
1359        return ret;
1360}
1361
1362/* For write_end() in data=journal mode */
1363static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1364{
1365        int ret;
1366        if (!buffer_mapped(bh) || buffer_freed(bh))
1367                return 0;
1368        set_buffer_uptodate(bh);
1369        ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1370        clear_buffer_meta(bh);
1371        clear_buffer_prio(bh);
1372        return ret;
1373}
1374
1375/*
1376 * We need to pick up the new inode size which generic_commit_write gave us
1377 * `file' can be NULL - eg, when called from page_symlink().
1378 *
1379 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1380 * buffers are managed internally.
1381 */
1382static int ext4_write_end(struct file *file,
1383                          struct address_space *mapping,
1384                          loff_t pos, unsigned len, unsigned copied,
1385                          struct page *page, void *fsdata)
1386{
1387        handle_t *handle = ext4_journal_current_handle();
1388        struct inode *inode = mapping->host;
1389        loff_t old_size = inode->i_size;
1390        int ret = 0, ret2;
1391        int i_size_changed = 0;
1392        int inline_data = ext4_has_inline_data(inode);
1393
1394        trace_ext4_write_end(inode, pos, len, copied);
1395        if (inline_data) {
1396                ret = ext4_write_inline_data_end(inode, pos, len,
1397                                                 copied, page);
1398                if (ret < 0) {
1399                        unlock_page(page);
1400                        put_page(page);
1401                        goto errout;
1402                }
1403                copied = ret;
1404        } else
1405                copied = block_write_end(file, mapping, pos,
1406                                         len, copied, page, fsdata);
1407        /*
1408         * it's important to update i_size while still holding page lock:
1409         * page writeout could otherwise come in and zero beyond i_size.
1410         */
1411        i_size_changed = ext4_update_inode_size(inode, pos + copied);
1412        unlock_page(page);
1413        put_page(page);
1414
1415        if (old_size < pos)
1416                pagecache_isize_extended(inode, old_size, pos);
1417        /*
1418         * Don't mark the inode dirty under page lock. First, it unnecessarily
1419         * makes the holding time of page lock longer. Second, it forces lock
1420         * ordering of page lock and transaction start for journaling
1421         * filesystems.
1422         */
1423        if (i_size_changed || inline_data)
1424                ext4_mark_inode_dirty(handle, inode);
1425
1426        if (pos + len > inode->i_size && ext4_can_truncate(inode))
1427                /* if we have allocated more blocks and copied
1428                 * less. We will have blocks allocated outside
1429                 * inode->i_size. So truncate them
1430                 */
1431                ext4_orphan_add(handle, inode);
1432errout:
1433        ret2 = ext4_journal_stop(handle);
1434        if (!ret)
1435                ret = ret2;
1436
1437        if (pos + len > inode->i_size) {
1438                ext4_truncate_failed_write(inode);
1439                /*
1440                 * If truncate failed early the inode might still be
1441                 * on the orphan list; we need to make sure the inode
1442                 * is removed from the orphan list in that case.
1443                 */
1444                if (inode->i_nlink)
1445                        ext4_orphan_del(NULL, inode);
1446        }
1447
1448        return ret ? ret : copied;
1449}
1450
1451/*
1452 * This is a private version of page_zero_new_buffers() which doesn't
1453 * set the buffer to be dirty, since in data=journalled mode we need
1454 * to call ext4_handle_dirty_metadata() instead.
1455 */
1456static void ext4_journalled_zero_new_buffers(handle_t *handle,
1457                                            struct page *page,
1458                                            unsigned from, unsigned to)
1459{
1460        unsigned int block_start = 0, block_end;
1461        struct buffer_head *head, *bh;
1462
1463        bh = head = page_buffers(page);
1464        do {
1465                block_end = block_start + bh->b_size;
1466                if (buffer_new(bh)) {
1467                        if (block_end > from && block_start < to) {
1468                                if (!PageUptodate(page)) {
1469                                        unsigned start, size;
1470
1471                                        start = max(from, block_start);
1472                                        size = min(to, block_end) - start;
1473
1474                                        zero_user(page, start, size);
1475                                        write_end_fn(handle, bh);
1476                                }
1477                                clear_buffer_new(bh);
1478                        }
1479                }
1480                block_start = block_end;
1481                bh = bh->b_this_page;
1482        } while (bh != head);
1483}
1484
1485static int ext4_journalled_write_end(struct file *file,
1486                                     struct address_space *mapping,
1487                                     loff_t pos, unsigned len, unsigned copied,
1488                                     struct page *page, void *fsdata)
1489{
1490        handle_t *handle = ext4_journal_current_handle();
1491        struct inode *inode = mapping->host;
1492        loff_t old_size = inode->i_size;
1493        int ret = 0, ret2;
1494        int partial = 0;
1495        unsigned from, to;
1496        int size_changed = 0;
1497        int inline_data = ext4_has_inline_data(inode);
1498
1499        trace_ext4_journalled_write_end(inode, pos, len, copied);
1500        from = pos & (PAGE_SIZE - 1);
1501        to = from + len;
1502
1503        BUG_ON(!ext4_handle_valid(handle));
1504
1505        if (inline_data) {
1506                ret = ext4_write_inline_data_end(inode, pos, len,
1507                                                 copied, page);
1508                if (ret < 0) {
1509                        unlock_page(page);
1510                        put_page(page);
1511                        goto errout;
1512                }
1513                copied = ret;
1514        } else if (unlikely(copied < len) && !PageUptodate(page)) {
1515                copied = 0;
1516                ext4_journalled_zero_new_buffers(handle, page, from, to);
1517        } else {
1518                if (unlikely(copied < len))
1519                        ext4_journalled_zero_new_buffers(handle, page,
1520                                                         from + copied, to);
1521                ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1522                                             from + copied, &partial,
1523                                             write_end_fn);
1524                if (!partial)
1525                        SetPageUptodate(page);
1526        }
1527        size_changed = ext4_update_inode_size(inode, pos + copied);
1528        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1529        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1530        unlock_page(page);
1531        put_page(page);
1532
1533        if (old_size < pos)
1534                pagecache_isize_extended(inode, old_size, pos);
1535
1536        if (size_changed || inline_data) {
1537                ret2 = ext4_mark_inode_dirty(handle, inode);
1538                if (!ret)
1539                        ret = ret2;
1540        }
1541
1542        if (pos + len > inode->i_size && ext4_can_truncate(inode))
1543                /* if we have allocated more blocks and copied
1544                 * less. We will have blocks allocated outside
1545                 * inode->i_size. So truncate them
1546                 */
1547                ext4_orphan_add(handle, inode);
1548
1549errout:
1550        ret2 = ext4_journal_stop(handle);
1551        if (!ret)
1552                ret = ret2;
1553        if (pos + len > inode->i_size) {
1554                ext4_truncate_failed_write(inode);
1555                /*
1556                 * If truncate failed early the inode might still be
1557                 * on the orphan list; we need to make sure the inode
1558                 * is removed from the orphan list in that case.
1559                 */
1560                if (inode->i_nlink)
1561                        ext4_orphan_del(NULL, inode);
1562        }
1563
1564        return ret ? ret : copied;
1565}
1566
1567/*
1568 * Reserve space for a single cluster
1569 */
1570static int ext4_da_reserve_space(struct inode *inode)
1571{
1572        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1573        struct ext4_inode_info *ei = EXT4_I(inode);
1574        int ret;
1575
1576        /*
1577         * We will charge metadata quota at writeout time; this saves
1578         * us from metadata over-estimation, though we may go over by
1579         * a small amount in the end.  Here we just reserve for data.
1580         */
1581        ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1582        if (ret)
1583                return ret;
1584
1585        spin_lock(&ei->i_block_reservation_lock);
1586        if (ext4_claim_free_clusters(sbi, 1, 0)) {
1587                spin_unlock(&ei->i_block_reservation_lock);
1588                dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1589                return -ENOSPC;
1590        }
1591        ei->i_reserved_data_blocks++;
1592        trace_ext4_da_reserve_space(inode);
1593        spin_unlock(&ei->i_block_reservation_lock);
1594
1595        return 0;       /* success */
1596}
1597
1598static void ext4_da_release_space(struct inode *inode, int to_free)
1599{
1600        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1601        struct ext4_inode_info *ei = EXT4_I(inode);
1602
1603        if (!to_free)
1604                return;         /* Nothing to release, exit */
1605
1606        spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1607
1608        trace_ext4_da_release_space(inode, to_free);
1609        if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1610                /*
1611                 * if there aren't enough reserved blocks, then the
1612                 * counter is messed up somewhere.  Since this
1613                 * function is called from invalidate page, it's
1614                 * harmless to return without any action.
1615                 */
1616                ext4_warning(inode->i_sb, "ext4_da_release_space: "
1617                         "ino %lu, to_free %d with only %d reserved "
1618                         "data blocks", inode->i_ino, to_free,
1619                         ei->i_reserved_data_blocks);
1620                WARN_ON(1);
1621                to_free = ei->i_reserved_data_blocks;
1622        }
1623        ei->i_reserved_data_blocks -= to_free;
1624
1625        /* update fs dirty data blocks counter */
1626        percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1627
1628        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1629
1630        dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1631}
1632
1633static void ext4_da_page_release_reservation(struct page *page,
1634                                             unsigned int offset,
1635                                             unsigned int length)
1636{
1637        int to_release = 0, contiguous_blks = 0;
1638        struct buffer_head *head, *bh;
1639        unsigned int curr_off = 0;
1640        struct inode *inode = page->mapping->host;
1641        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1642        unsigned int stop = offset + length;
1643        int num_clusters;
1644        ext4_fsblk_t lblk;
1645
1646        BUG_ON(stop > PAGE_SIZE || stop < length);
1647
1648        head = page_buffers(page);
1649        bh = head;
1650        do {
1651                unsigned int next_off = curr_off + bh->b_size;
1652
1653                if (next_off > stop)
1654                        break;
1655
1656                if ((offset <= curr_off) && (buffer_delay(bh))) {
1657                        to_release++;
1658                        contiguous_blks++;
1659                        clear_buffer_delay(bh);
1660                } else if (contiguous_blks) {
1661                        lblk = page->index <<
1662                               (PAGE_SHIFT - inode->i_blkbits);
1663                        lblk += (curr_off >> inode->i_blkbits) -
1664                                contiguous_blks;
1665                        ext4_es_remove_extent(inode, lblk, contiguous_blks);
1666                        contiguous_blks = 0;
1667                }
1668                curr_off = next_off;
1669        } while ((bh = bh->b_this_page) != head);
1670
1671        if (contiguous_blks) {
1672                lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1673                lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1674                ext4_es_remove_extent(inode, lblk, contiguous_blks);
1675        }
1676
1677        /* If we have released all the blocks belonging to a cluster, then we
1678         * need to release the reserved space for that cluster. */
1679        num_clusters = EXT4_NUM_B2C(sbi, to_release);
1680        while (num_clusters > 0) {
1681                lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1682                        ((num_clusters - 1) << sbi->s_cluster_bits);
1683                if (sbi->s_cluster_ratio == 1 ||
1684                    !ext4_find_delalloc_cluster(inode, lblk))
1685                        ext4_da_release_space(inode, 1);
1686
1687                num_clusters--;
1688        }
1689}
1690
1691/*
1692 * Delayed allocation stuff
1693 */
1694
1695struct mpage_da_data {
1696        struct inode *inode;
1697        struct writeback_control *wbc;
1698
1699        pgoff_t first_page;     /* The first page to write */
1700        pgoff_t next_page;      /* Current page to examine */
1701        pgoff_t last_page;      /* Last page to examine */
1702        /*
1703         * Extent to map - this can be after first_page because that can be
1704         * fully mapped. We somewhat abuse m_flags to store whether the extent
1705         * is delalloc or unwritten.
1706         */
1707        struct ext4_map_blocks map;
1708        struct ext4_io_submit io_submit;        /* IO submission data */
1709        unsigned int do_map:1;
1710};
1711
1712static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1713                                       bool invalidate)
1714{
1715        int nr_pages, i;
1716        pgoff_t index, end;
1717        struct pagevec pvec;
1718        struct inode *inode = mpd->inode;
1719        struct address_space *mapping = inode->i_mapping;
1720
1721        /* This is necessary when next_page == 0. */
1722        if (mpd->first_page >= mpd->next_page)
1723                return;
1724
1725        index = mpd->first_page;
1726        end   = mpd->next_page - 1;
1727        if (invalidate) {
1728                ext4_lblk_t start, last;
1729                start = index << (PAGE_SHIFT - inode->i_blkbits);
1730                last = end << (PAGE_SHIFT - inode->i_blkbits);
1731                ext4_es_remove_extent(inode, start, last - start + 1);
1732        }
1733
1734        pagevec_init(&pvec);
1735        while (index <= end) {
1736                nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1737                if (nr_pages == 0)
1738                        break;
1739                for (i = 0; i < nr_pages; i++) {
1740                        struct page *page = pvec.pages[i];
1741
1742                        BUG_ON(!PageLocked(page));
1743                        BUG_ON(PageWriteback(page));
1744                        if (invalidate) {
1745                                if (page_mapped(page))
1746                                        clear_page_dirty_for_io(page);
1747                                block_invalidatepage(page, 0, PAGE_SIZE);
1748                                ClearPageUptodate(page);
1749                        }
1750                        unlock_page(page);
1751                }
1752                pagevec_release(&pvec);
1753        }
1754}
1755
1756static void ext4_print_free_blocks(struct inode *inode)
1757{
1758        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1759        struct super_block *sb = inode->i_sb;
1760        struct ext4_inode_info *ei = EXT4_I(inode);
1761
1762        ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1763               EXT4_C2B(EXT4_SB(inode->i_sb),
1764                        ext4_count_free_clusters(sb)));
1765        ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1766        ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1767               (long long) EXT4_C2B(EXT4_SB(sb),
1768                percpu_counter_sum(&sbi->s_freeclusters_counter)));
1769        ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1770               (long long) EXT4_C2B(EXT4_SB(sb),
1771                percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1772        ext4_msg(sb, KERN_CRIT, "Block reservation details");
1773        ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1774                 ei->i_reserved_data_blocks);
1775        return;
1776}
1777
1778static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1779{
1780        return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1781}
1782
1783/*
1784 * This function is grabs code from the very beginning of
1785 * ext4_map_blocks, but assumes that the caller is from delayed write
1786 * time. This function looks up the requested blocks and sets the
1787 * buffer delay bit under the protection of i_data_sem.
1788 */
1789static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1790                              struct ext4_map_blocks *map,
1791                              struct buffer_head *bh)
1792{
1793        struct extent_status es;
1794        int retval;
1795        sector_t invalid_block = ~((sector_t) 0xffff);
1796#ifdef ES_AGGRESSIVE_TEST
1797        struct ext4_map_blocks orig_map;
1798
1799        memcpy(&orig_map, map, sizeof(*map));
1800#endif
1801
1802        if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1803                invalid_block = ~0;
1804
1805        map->m_flags = 0;
1806        ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1807                  "logical block %lu\n", inode->i_ino, map->m_len,
1808                  (unsigned long) map->m_lblk);
1809
1810        /* Lookup extent status tree firstly */
1811        if (ext4_es_lookup_extent(inode, iblock, &es)) {
1812                if (ext4_es_is_hole(&es)) {
1813                        retval = 0;
1814                        down_read(&EXT4_I(inode)->i_data_sem);
1815                        goto add_delayed;
1816                }
1817
1818                /*
1819                 * Delayed extent could be allocated by fallocate.
1820                 * So we need to check it.
1821                 */
1822                if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1823                        map_bh(bh, inode->i_sb, invalid_block);
1824                        set_buffer_new(bh);
1825                        set_buffer_delay(bh);
1826                        return 0;
1827                }
1828
1829                map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1830                retval = es.es_len - (iblock - es.es_lblk);
1831                if (retval > map->m_len)
1832                        retval = map->m_len;
1833                map->m_len = retval;
1834                if (ext4_es_is_written(&es))
1835                        map->m_flags |= EXT4_MAP_MAPPED;
1836                else if (ext4_es_is_unwritten(&es))
1837                        map->m_flags |= EXT4_MAP_UNWRITTEN;
1838                else
1839                        BUG_ON(1);
1840
1841#ifdef ES_AGGRESSIVE_TEST
1842                ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1843#endif
1844                return retval;
1845        }
1846
1847        /*
1848         * Try to see if we can get the block without requesting a new
1849         * file system block.
1850         */
1851        down_read(&EXT4_I(inode)->i_data_sem);
1852        if (ext4_has_inline_data(inode))
1853                retval = 0;
1854        else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1855                retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1856        else
1857                retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1858
1859add_delayed:
1860        if (retval == 0) {
1861                int ret;
1862                /*
1863                 * XXX: __block_prepare_write() unmaps passed block,
1864                 * is it OK?
1865                 */
1866                /*
1867                 * If the block was allocated from previously allocated cluster,
1868                 * then we don't need to reserve it again. However we still need
1869                 * to reserve metadata for every block we're going to write.
1870                 */
1871                if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1872                    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1873                        ret = ext4_da_reserve_space(inode);
1874                        if (ret) {
1875                                /* not enough space to reserve */
1876                                retval = ret;
1877                                goto out_unlock;
1878                        }
1879                }
1880
1881                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1882                                            ~0, EXTENT_STATUS_DELAYED);
1883                if (ret) {
1884                        retval = ret;
1885                        goto out_unlock;
1886                }
1887
1888                map_bh(bh, inode->i_sb, invalid_block);
1889                set_buffer_new(bh);
1890                set_buffer_delay(bh);
1891        } else if (retval > 0) {
1892                int ret;
1893                unsigned int status;
1894
1895                if (unlikely(retval != map->m_len)) {
1896                        ext4_warning(inode->i_sb,
1897                                     "ES len assertion failed for inode "
1898                                     "%lu: retval %d != map->m_len %d",
1899                                     inode->i_ino, retval, map->m_len);
1900                        WARN_ON(1);
1901                }
1902
1903                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1904                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1905                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1906                                            map->m_pblk, status);
1907                if (ret != 0)
1908                        retval = ret;
1909        }
1910
1911out_unlock:
1912        up_read((&EXT4_I(inode)->i_data_sem));
1913
1914        return retval;
1915}
1916
1917/*
1918 * This is a special get_block_t callback which is used by
1919 * ext4_da_write_begin().  It will either return mapped block or
1920 * reserve space for a single block.
1921 *
1922 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1923 * We also have b_blocknr = -1 and b_bdev initialized properly
1924 *
1925 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1926 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1927 * initialized properly.
1928 */
1929int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1930                           struct buffer_head *bh, int create)
1931{
1932        struct ext4_map_blocks map;
1933        int ret = 0;
1934
1935        BUG_ON(create == 0);
1936        BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1937
1938        map.m_lblk = iblock;
1939        map.m_len = 1;
1940
1941        /*
1942         * first, we need to know whether the block is allocated already
1943         * preallocated blocks are unmapped but should treated
1944         * the same as allocated blocks.
1945         */
1946        ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1947        if (ret <= 0)
1948                return ret;
1949
1950        map_bh(bh, inode->i_sb, map.m_pblk);
1951        ext4_update_bh_state(bh, map.m_flags);
1952
1953        if (buffer_unwritten(bh)) {
1954                /* A delayed write to unwritten bh should be marked
1955                 * new and mapped.  Mapped ensures that we don't do
1956                 * get_block multiple times when we write to the same
1957                 * offset and new ensures that we do proper zero out
1958                 * for partial write.
1959                 */
1960                set_buffer_new(bh);
1961                set_buffer_mapped(bh);
1962        }
1963        return 0;
1964}
1965
1966static int bget_one(handle_t *handle, struct buffer_head *bh)
1967{
1968        get_bh(bh);
1969        return 0;
1970}
1971
1972static int bput_one(handle_t *handle, struct buffer_head *bh)
1973{
1974        put_bh(bh);
1975        return 0;
1976}
1977
1978static int __ext4_journalled_writepage(struct page *page,
1979                                       unsigned int len)
1980{
1981        struct address_space *mapping = page->mapping;
1982        struct inode *inode = mapping->host;
1983        struct buffer_head *page_bufs = NULL;
1984        handle_t *handle = NULL;
1985        int ret = 0, err = 0;
1986        int inline_data = ext4_has_inline_data(inode);
1987        struct buffer_head *inode_bh = NULL;
1988
1989        ClearPageChecked(page);
1990
1991        if (inline_data) {
1992                BUG_ON(page->index != 0);
1993                BUG_ON(len > ext4_get_max_inline_size(inode));
1994                inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1995                if (inode_bh == NULL)
1996                        goto out;
1997        } else {
1998                page_bufs = page_buffers(page);
1999                if (!page_bufs) {
2000                        BUG();
2001                        goto out;
2002                }
2003                ext4_walk_page_buffers(handle, page_bufs, 0, len,
2004                                       NULL, bget_one);
2005        }
2006        /*
2007         * We need to release the page lock before we start the
2008         * journal, so grab a reference so the page won't disappear
2009         * out from under us.
2010         */
2011        get_page(page);
2012        unlock_page(page);
2013
2014        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2015                                    ext4_writepage_trans_blocks(inode));
2016        if (IS_ERR(handle)) {
2017                ret = PTR_ERR(handle);
2018                put_page(page);
2019                goto out_no_pagelock;
2020        }
2021        BUG_ON(!ext4_handle_valid(handle));
2022
2023        lock_page(page);
2024        put_page(page);
2025        if (page->mapping != mapping) {
2026                /* The page got truncated from under us */
2027                ext4_journal_stop(handle);
2028                ret = 0;
2029                goto out;
2030        }
2031
2032        if (inline_data) {
2033                ret = ext4_mark_inode_dirty(handle, inode);
2034        } else {
2035                ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2036                                             do_journal_get_write_access);
2037
2038                err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2039                                             write_end_fn);
2040        }
2041        if (ret == 0)
2042                ret = err;
2043        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2044        err = ext4_journal_stop(handle);
2045        if (!ret)
2046                ret = err;
2047
2048        if (!ext4_has_inline_data(inode))
2049                ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2050                                       NULL, bput_one);
2051        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2052out:
2053        unlock_page(page);
2054out_no_pagelock:
2055        brelse(inode_bh);
2056        return ret;
2057}
2058
2059/*
2060 * Note that we don't need to start a transaction unless we're journaling data
2061 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2062 * need to file the inode to the transaction's list in ordered mode because if
2063 * we are writing back data added by write(), the inode is already there and if
2064 * we are writing back data modified via mmap(), no one guarantees in which
2065 * transaction the data will hit the disk. In case we are journaling data, we
2066 * cannot start transaction directly because transaction start ranks above page
2067 * lock so we have to do some magic.
2068 *
2069 * This function can get called via...
2070 *   - ext4_writepages after taking page lock (have journal handle)
2071 *   - journal_submit_inode_data_buffers (no journal handle)
2072 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2073 *   - grab_page_cache when doing write_begin (have journal handle)
2074 *
2075 * We don't do any block allocation in this function. If we have page with
2076 * multiple blocks we need to write those buffer_heads that are mapped. This
2077 * is important for mmaped based write. So if we do with blocksize 1K
2078 * truncate(f, 1024);
2079 * a = mmap(f, 0, 4096);
2080 * a[0] = 'a';
2081 * truncate(f, 4096);
2082 * we have in the page first buffer_head mapped via page_mkwrite call back
2083 * but other buffer_heads would be unmapped but dirty (dirty done via the
2084 * do_wp_page). So writepage should write the first block. If we modify
2085 * the mmap area beyond 1024 we will again get a page_fault and the
2086 * page_mkwrite callback will do the block allocation and mark the
2087 * buffer_heads mapped.
2088 *
2089 * We redirty the page if we have any buffer_heads that is either delay or
2090 * unwritten in the page.
2091 *
2092 * We can get recursively called as show below.
2093 *
2094 *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2095 *              ext4_writepage()
2096 *
2097 * But since we don't do any block allocation we should not deadlock.
2098 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2099 */
2100static int ext4_writepage(struct page *page,
2101                          struct writeback_control *wbc)
2102{
2103        int ret = 0;
2104        loff_t size;
2105        unsigned int len;
2106        struct buffer_head *page_bufs = NULL;
2107        struct inode *inode = page->mapping->host;
2108        struct ext4_io_submit io_submit;
2109        bool keep_towrite = false;
2110
2111        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2112                ext4_invalidatepage(page, 0, PAGE_SIZE);
2113                unlock_page(page);
2114                return -EIO;
2115        }
2116
2117        trace_ext4_writepage(page);
2118        size = i_size_read(inode);
2119        if (page->index == size >> PAGE_SHIFT)
2120                len = size & ~PAGE_MASK;
2121        else
2122                len = PAGE_SIZE;
2123
2124        page_bufs = page_buffers(page);
2125        /*
2126         * We cannot do block allocation or other extent handling in this
2127         * function. If there are buffers needing that, we have to redirty
2128         * the page. But we may reach here when we do a journal commit via
2129         * journal_submit_inode_data_buffers() and in that case we must write
2130         * allocated buffers to achieve data=ordered mode guarantees.
2131         *
2132         * Also, if there is only one buffer per page (the fs block
2133         * size == the page size), if one buffer needs block
2134         * allocation or needs to modify the extent tree to clear the
2135         * unwritten flag, we know that the page can't be written at
2136         * all, so we might as well refuse the write immediately.
2137         * Unfortunately if the block size != page size, we can't as
2138         * easily detect this case using ext4_walk_page_buffers(), but
2139         * for the extremely common case, this is an optimization that
2140         * skips a useless round trip through ext4_bio_write_page().
2141         */
2142        if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2143                                   ext4_bh_delay_or_unwritten)) {
2144                redirty_page_for_writepage(wbc, page);
2145                if ((current->flags & PF_MEMALLOC) ||
2146                    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2147                        /*
2148                         * For memory cleaning there's no point in writing only
2149                         * some buffers. So just bail out. Warn if we came here
2150                         * from direct reclaim.
2151                         */
2152                        WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2153                                                        == PF_MEMALLOC);
2154                        unlock_page(page);
2155                        return 0;
2156                }
2157                keep_towrite = true;
2158        }
2159
2160        if (PageChecked(page) && ext4_should_journal_data(inode))
2161                /*
2162                 * It's mmapped pagecache.  Add buffers and journal it.  There
2163                 * doesn't seem much point in redirtying the page here.
2164                 */
2165                return __ext4_journalled_writepage(page, len);
2166
2167        ext4_io_submit_init(&io_submit, wbc);
2168        io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2169        if (!io_submit.io_end) {
2170                redirty_page_for_writepage(wbc, page);
2171                unlock_page(page);
2172                return -ENOMEM;
2173        }
2174        ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2175        ext4_io_submit(&io_submit);
2176        /* Drop io_end reference we got from init */
2177        ext4_put_io_end_defer(io_submit.io_end);
2178        return ret;
2179}
2180
2181static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2182{
2183        int len;
2184        loff_t size;
2185        int err;
2186
2187        BUG_ON(page->index != mpd->first_page);
2188        clear_page_dirty_for_io(page);
2189        /*
2190         * We have to be very careful here!  Nothing protects writeback path
2191         * against i_size changes and the page can be writeably mapped into
2192         * page tables. So an application can be growing i_size and writing
2193         * data through mmap while writeback runs. clear_page_dirty_for_io()
2194         * write-protects our page in page tables and the page cannot get
2195         * written to again until we release page lock. So only after
2196         * clear_page_dirty_for_io() we are safe to sample i_size for
2197         * ext4_bio_write_page() to zero-out tail of the written page. We rely
2198         * on the barrier provided by TestClearPageDirty in
2199         * clear_page_dirty_for_io() to make sure i_size is really sampled only
2200         * after page tables are updated.
2201         */
2202        size = i_size_read(mpd->inode);
2203        if (page->index == size >> PAGE_SHIFT)
2204                len = size & ~PAGE_MASK;
2205        else
2206                len = PAGE_SIZE;
2207        err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2208        if (!err)
2209                mpd->wbc->nr_to_write--;
2210        mpd->first_page++;
2211
2212        return err;
2213}
2214
2215#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2216
2217/*
2218 * mballoc gives us at most this number of blocks...
2219 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2220 * The rest of mballoc seems to handle chunks up to full group size.
2221 */
2222#define MAX_WRITEPAGES_EXTENT_LEN 2048
2223
2224/*
2225 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2226 *
2227 * @mpd - extent of blocks
2228 * @lblk - logical number of the block in the file
2229 * @bh - buffer head we want to add to the extent
2230 *
2231 * The function is used to collect contig. blocks in the same state. If the
2232 * buffer doesn't require mapping for writeback and we haven't started the
2233 * extent of buffers to map yet, the function returns 'true' immediately - the
2234 * caller can write the buffer right away. Otherwise the function returns true
2235 * if the block has been added to the extent, false if the block couldn't be
2236 * added.
2237 */
2238static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2239                                   struct buffer_head *bh)
2240{
2241        struct ext4_map_blocks *map = &mpd->map;
2242
2243        /* Buffer that doesn't need mapping for writeback? */
2244        if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2245            (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2246                /* So far no extent to map => we write the buffer right away */
2247                if (map->m_len == 0)
2248                        return true;
2249                return false;
2250        }
2251
2252        /* First block in the extent? */
2253        if (map->m_len == 0) {
2254                /* We cannot map unless handle is started... */
2255                if (!mpd->do_map)
2256                        return false;
2257                map->m_lblk = lblk;
2258                map->m_len = 1;
2259                map->m_flags = bh->b_state & BH_FLAGS;
2260                return true;
2261        }
2262
2263        /* Don't go larger than mballoc is willing to allocate */
2264        if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2265                return false;
2266
2267        /* Can we merge the block to our big extent? */
2268        if (lblk == map->m_lblk + map->m_len &&
2269            (bh->b_state & BH_FLAGS) == map->m_flags) {
2270                map->m_len++;
2271                return true;
2272        }
2273        return false;
2274}
2275
2276/*
2277 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2278 *
2279 * @mpd - extent of blocks for mapping
2280 * @head - the first buffer in the page
2281 * @bh - buffer we should start processing from
2282 * @lblk - logical number of the block in the file corresponding to @bh
2283 *
2284 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2285 * the page for IO if all buffers in this page were mapped and there's no
2286 * accumulated extent of buffers to map or add buffers in the page to the
2287 * extent of buffers to map. The function returns 1 if the caller can continue
2288 * by processing the next page, 0 if it should stop adding buffers to the
2289 * extent to map because we cannot extend it anymore. It can also return value
2290 * < 0 in case of error during IO submission.
2291 */
2292static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2293                                   struct buffer_head *head,
2294                                   struct buffer_head *bh,
2295                                   ext4_lblk_t lblk)
2296{
2297        struct inode *inode = mpd->inode;
2298        int err;
2299        ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2300                                                        >> inode->i_blkbits;
2301
2302        do {
2303                BUG_ON(buffer_locked(bh));
2304
2305                if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2306                        /* Found extent to map? */
2307                        if (mpd->map.m_len)
2308                                return 0;
2309                        /* Buffer needs mapping and handle is not started? */
2310                        if (!mpd->do_map)
2311                                return 0;
2312                        /* Everything mapped so far and we hit EOF */
2313                        break;
2314                }
2315        } while (lblk++, (bh = bh->b_this_page) != head);
2316        /* So far everything mapped? Submit the page for IO. */
2317        if (mpd->map.m_len == 0) {
2318                err = mpage_submit_page(mpd, head->b_page);
2319                if (err < 0)
2320                        return err;
2321        }
2322        return lblk < blocks;
2323}
2324
2325/*
2326 * mpage_map_buffers - update buffers corresponding to changed extent and
2327 *                     submit fully mapped pages for IO
2328 *
2329 * @mpd - description of extent to map, on return next extent to map
2330 *
2331 * Scan buffers corresponding to changed extent (we expect corresponding pages
2332 * to be already locked) and update buffer state according to new extent state.
2333 * We map delalloc buffers to their physical location, clear unwritten bits,
2334 * and mark buffers as uninit when we perform writes to unwritten extents
2335 * and do extent conversion after IO is finished. If the last page is not fully
2336 * mapped, we update @map to the next extent in the last page that needs
2337 * mapping. Otherwise we submit the page for IO.
2338 */
2339static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2340{
2341        struct pagevec pvec;
2342        int nr_pages, i;
2343        struct inode *inode = mpd->inode;
2344        struct buffer_head *head, *bh;
2345        int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2346        pgoff_t start, end;
2347        ext4_lblk_t lblk;
2348        sector_t pblock;
2349        int err;
2350
2351        start = mpd->map.m_lblk >> bpp_bits;
2352        end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2353        lblk = start << bpp_bits;
2354        pblock = mpd->map.m_pblk;
2355
2356        pagevec_init(&pvec);
2357        while (start <= end) {
2358                nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2359                                                &start, end);
2360                if (nr_pages == 0)
2361                        break;
2362                for (i = 0; i < nr_pages; i++) {
2363                        struct page *page = pvec.pages[i];
2364
2365                        bh = head = page_buffers(page);
2366                        do {
2367                                if (lblk < mpd->map.m_lblk)
2368                                        continue;
2369                                if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2370                                        /*
2371                                         * Buffer after end of mapped extent.
2372                                         * Find next buffer in the page to map.
2373                                         */
2374                                        mpd->map.m_len = 0;
2375                                        mpd->map.m_flags = 0;
2376                                        /*
2377                                         * FIXME: If dioread_nolock supports
2378                                         * blocksize < pagesize, we need to make
2379                                         * sure we add size mapped so far to
2380                                         * io_end->size as the following call
2381                                         * can submit the page for IO.
2382                                         */
2383                                        err = mpage_process_page_bufs(mpd, head,
2384                                                                      bh, lblk);
2385                                        pagevec_release(&pvec);
2386                                        if (err > 0)
2387                                                err = 0;
2388                                        return err;
2389                                }
2390                                if (buffer_delay(bh)) {
2391                                        clear_buffer_delay(bh);
2392                                        bh->b_blocknr = pblock++;
2393                                }
2394                                clear_buffer_unwritten(bh);
2395                        } while (lblk++, (bh = bh->b_this_page) != head);
2396
2397                        /*
2398                         * FIXME: This is going to break if dioread_nolock
2399                         * supports blocksize < pagesize as we will try to
2400                         * convert potentially unmapped parts of inode.
2401                         */
2402                        mpd->io_submit.io_end->size += PAGE_SIZE;
2403                        /* Page fully mapped - let IO run! */
2404                        err = mpage_submit_page(mpd, page);
2405                        if (err < 0) {
2406                                pagevec_release(&pvec);
2407                                return err;
2408                        }
2409                }
2410                pagevec_release(&pvec);
2411        }
2412        /* Extent fully mapped and matches with page boundary. We are done. */
2413        mpd->map.m_len = 0;
2414        mpd->map.m_flags = 0;
2415        return 0;
2416}
2417
2418static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2419{
2420        struct inode *inode = mpd->inode;
2421        struct ext4_map_blocks *map = &mpd->map;
2422        int get_blocks_flags;
2423        int err, dioread_nolock;
2424
2425        trace_ext4_da_write_pages_extent(inode, map);
2426        /*
2427         * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2428         * to convert an unwritten extent to be initialized (in the case
2429         * where we have written into one or more preallocated blocks).  It is
2430         * possible that we're going to need more metadata blocks than
2431         * previously reserved. However we must not fail because we're in
2432         * writeback and there is nothing we can do about it so it might result
2433         * in data loss.  So use reserved blocks to allocate metadata if
2434         * possible.
2435         *
2436         * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2437         * the blocks in question are delalloc blocks.  This indicates
2438         * that the blocks and quotas has already been checked when
2439         * the data was copied into the page cache.
2440         */
2441        get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2442                           EXT4_GET_BLOCKS_METADATA_NOFAIL |
2443                           EXT4_GET_BLOCKS_IO_SUBMIT;
2444        dioread_nolock = ext4_should_dioread_nolock(inode);
2445        if (dioread_nolock)
2446                get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2447        if (map->m_flags & (1 << BH_Delay))
2448                get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2449
2450        err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2451        if (err < 0)
2452                return err;
2453        if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2454                if (!mpd->io_submit.io_end->handle &&
2455                    ext4_handle_valid(handle)) {
2456                        mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2457                        handle->h_rsv_handle = NULL;
2458                }
2459                ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2460        }
2461
2462        BUG_ON(map->m_len == 0);
2463        if (map->m_flags & EXT4_MAP_NEW) {
2464                clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2465                                   map->m_len);
2466        }
2467        return 0;
2468}
2469
2470/*
2471 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2472 *                               mpd->len and submit pages underlying it for IO
2473 *
2474 * @handle - handle for journal operations
2475 * @mpd - extent to map
2476 * @give_up_on_write - we set this to true iff there is a fatal error and there
2477 *                     is no hope of writing the data. The caller should discard
2478 *                     dirty pages to avoid infinite loops.
2479 *
2480 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2481 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2482 * them to initialized or split the described range from larger unwritten
2483 * extent. Note that we need not map all the described range since allocation
2484 * can return less blocks or the range is covered by more unwritten extents. We
2485 * cannot map more because we are limited by reserved transaction credits. On
2486 * the other hand we always make sure that the last touched page is fully
2487 * mapped so that it can be written out (and thus forward progress is
2488 * guaranteed). After mapping we submit all mapped pages for IO.
2489 */
2490static int mpage_map_and_submit_extent(handle_t *handle,
2491                                       struct mpage_da_data *mpd,
2492                                       bool *give_up_on_write)
2493{
2494        struct inode *inode = mpd->inode;
2495        struct ext4_map_blocks *map = &mpd->map;
2496        int err;
2497        loff_t disksize;
2498        int progress = 0;
2499
2500        mpd->io_submit.io_end->offset =
2501                                ((loff_t)map->m_lblk) << inode->i_blkbits;
2502        do {
2503                err = mpage_map_one_extent(handle, mpd);
2504                if (err < 0) {
2505                        struct super_block *sb = inode->i_sb;
2506
2507                        if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2508                            EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2509                                goto invalidate_dirty_pages;
2510                        /*
2511                         * Let the uper layers retry transient errors.
2512                         * In the case of ENOSPC, if ext4_count_free_blocks()
2513                         * is non-zero, a commit should free up blocks.
2514                         */
2515                        if ((err == -ENOMEM) ||
2516                            (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2517                                if (progress)
2518                                        goto update_disksize;
2519                                return err;
2520                        }
2521                        ext4_msg(sb, KERN_CRIT,
2522                                 "Delayed block allocation failed for "
2523                                 "inode %lu at logical offset %llu with"
2524                                 " max blocks %u with error %d",
2525                                 inode->i_ino,
2526                                 (unsigned long long)map->m_lblk,
2527                                 (unsigned)map->m_len, -err);
2528                        ext4_msg(sb, KERN_CRIT,
2529                                 "This should not happen!! Data will "
2530                                 "be lost\n");
2531                        if (err == -ENOSPC)
2532                                ext4_print_free_blocks(inode);
2533                invalidate_dirty_pages:
2534                        *give_up_on_write = true;
2535                        return err;
2536                }
2537                progress = 1;
2538                /*
2539                 * Update buffer state, submit mapped pages, and get us new
2540                 * extent to map
2541                 */
2542                err = mpage_map_and_submit_buffers(mpd);
2543                if (err < 0)
2544                        goto update_disksize;
2545        } while (map->m_len);
2546
2547update_disksize:
2548        /*
2549         * Update on-disk size after IO is submitted.  Races with
2550         * truncate are avoided by checking i_size under i_data_sem.
2551         */
2552        disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2553        if (disksize > EXT4_I(inode)->i_disksize) {
2554                int err2;
2555                loff_t i_size;
2556
2557                down_write(&EXT4_I(inode)->i_data_sem);
2558                i_size = i_size_read(inode);
2559                if (disksize > i_size)
2560                        disksize = i_size;
2561                if (disksize > EXT4_I(inode)->i_disksize)
2562                        EXT4_I(inode)->i_disksize = disksize;
2563                up_write(&EXT4_I(inode)->i_data_sem);
2564                err2 = ext4_mark_inode_dirty(handle, inode);
2565                if (err2)
2566                        ext4_error(inode->i_sb,
2567                                   "Failed to mark inode %lu dirty",
2568                                   inode->i_ino);
2569                if (!err)
2570                        err = err2;
2571        }
2572        return err;
2573}
2574
2575/*
2576 * Calculate the total number of credits to reserve for one writepages
2577 * iteration. This is called from ext4_writepages(). We map an extent of
2578 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2579 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2580 * bpp - 1 blocks in bpp different extents.
2581 */
2582static int ext4_da_writepages_trans_blocks(struct inode *inode)
2583{
2584        int bpp = ext4_journal_blocks_per_page(inode);
2585
2586        return ext4_meta_trans_blocks(inode,
2587                                MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2588}
2589
2590/*
2591 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2592 *                               and underlying extent to map
2593 *
2594 * @mpd - where to look for pages
2595 *
2596 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2597 * IO immediately. When we find a page which isn't mapped we start accumulating
2598 * extent of buffers underlying these pages that needs mapping (formed by
2599 * either delayed or unwritten buffers). We also lock the pages containing
2600 * these buffers. The extent found is returned in @mpd structure (starting at
2601 * mpd->lblk with length mpd->len blocks).
2602 *
2603 * Note that this function can attach bios to one io_end structure which are
2604 * neither logically nor physically contiguous. Although it may seem as an
2605 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2606 * case as we need to track IO to all buffers underlying a page in one io_end.
2607 */
2608static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2609{
2610        struct address_space *mapping = mpd->inode->i_mapping;
2611        struct pagevec pvec;
2612        unsigned int nr_pages;
2613        long left = mpd->wbc->nr_to_write;
2614        pgoff_t index = mpd->first_page;
2615        pgoff_t end = mpd->last_page;
2616        int tag;
2617        int i, err = 0;
2618        int blkbits = mpd->inode->i_blkbits;
2619        ext4_lblk_t lblk;
2620        struct buffer_head *head;
2621
2622        if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2623                tag = PAGECACHE_TAG_TOWRITE;
2624        else
2625                tag = PAGECACHE_TAG_DIRTY;
2626
2627        pagevec_init(&pvec);
2628        mpd->map.m_len = 0;
2629        mpd->next_page = index;
2630        while (index <= end) {
2631                nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2632                                tag);
2633                if (nr_pages == 0)
2634                        goto out;
2635
2636                for (i = 0; i < nr_pages; i++) {
2637                        struct page *page = pvec.pages[i];
2638
2639                        /*
2640                         * Accumulated enough dirty pages? This doesn't apply
2641                         * to WB_SYNC_ALL mode. For integrity sync we have to
2642                         * keep going because someone may be concurrently
2643                         * dirtying pages, and we might have synced a lot of
2644                         * newly appeared dirty pages, but have not synced all
2645                         * of the old dirty pages.
2646                         */
2647                        if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2648                                goto out;
2649
2650                        /* If we can't merge this page, we are done. */
2651                        if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2652                                goto out;
2653
2654                        lock_page(page);
2655                        /*
2656                         * If the page is no longer dirty, or its mapping no
2657                         * longer corresponds to inode we are writing (which
2658                         * means it has been truncated or invalidated), or the
2659                         * page is already under writeback and we are not doing
2660                         * a data integrity writeback, skip the page
2661                         */
2662                        if (!PageDirty(page) ||
2663                            (PageWriteback(page) &&
2664                             (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2665                            unlikely(page->mapping != mapping)) {
2666                                unlock_page(page);
2667                                continue;
2668                        }
2669
2670                        wait_on_page_writeback(page);
2671                        BUG_ON(PageWriteback(page));
2672
2673                        if (mpd->map.m_len == 0)
2674                                mpd->first_page = page->index;
2675                        mpd->next_page = page->index + 1;
2676                        /* Add all dirty buffers to mpd */
2677                        lblk = ((ext4_lblk_t)page->index) <<
2678                                (PAGE_SHIFT - blkbits);
2679                        head = page_buffers(page);
2680                        err = mpage_process_page_bufs(mpd, head, head, lblk);
2681                        if (err <= 0)
2682                                goto out;
2683                        err = 0;
2684                        left--;
2685                }
2686                pagevec_release(&pvec);
2687                cond_resched();
2688        }
2689        return 0;
2690out:
2691        pagevec_release(&pvec);
2692        return err;
2693}
2694
2695static int ext4_writepages(struct address_space *mapping,
2696                           struct writeback_control *wbc)
2697{
2698        pgoff_t writeback_index = 0;
2699        long nr_to_write = wbc->nr_to_write;
2700        int range_whole = 0;
2701        int cycled = 1;
2702        handle_t *handle = NULL;
2703        struct mpage_da_data mpd;
2704        struct inode *inode = mapping->host;
2705        int needed_blocks, rsv_blocks = 0, ret = 0;
2706        struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2707        bool done;
2708        struct blk_plug plug;
2709        bool give_up_on_write = false;
2710
2711        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2712                return -EIO;
2713
2714        percpu_down_read(&sbi->s_journal_flag_rwsem);
2715        trace_ext4_writepages(inode, wbc);
2716
2717        /*
2718         * No pages to write? This is mainly a kludge to avoid starting
2719         * a transaction for special inodes like journal inode on last iput()
2720         * because that could violate lock ordering on umount
2721         */
2722        if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2723                goto out_writepages;
2724
2725        if (ext4_should_journal_data(inode)) {
2726                ret = generic_writepages(mapping, wbc);
2727                goto out_writepages;
2728        }
2729
2730        /*
2731         * If the filesystem has aborted, it is read-only, so return
2732         * right away instead of dumping stack traces later on that
2733         * will obscure the real source of the problem.  We test
2734         * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2735         * the latter could be true if the filesystem is mounted
2736         * read-only, and in that case, ext4_writepages should
2737         * *never* be called, so if that ever happens, we would want
2738         * the stack trace.
2739         */
2740        if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2741                     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2742                ret = -EROFS;
2743                goto out_writepages;
2744        }
2745
2746        if (ext4_should_dioread_nolock(inode)) {
2747                /*
2748                 * We may need to convert up to one extent per block in
2749                 * the page and we may dirty the inode.
2750                 */
2751                rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2752        }
2753
2754        /*
2755         * If we have inline data and arrive here, it means that
2756         * we will soon create the block for the 1st page, so
2757         * we'd better clear the inline data here.
2758         */
2759        if (ext4_has_inline_data(inode)) {
2760                /* Just inode will be modified... */
2761                handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2762                if (IS_ERR(handle)) {
2763                        ret = PTR_ERR(handle);
2764                        goto out_writepages;
2765                }
2766                BUG_ON(ext4_test_inode_state(inode,
2767                                EXT4_STATE_MAY_INLINE_DATA));
2768                ext4_destroy_inline_data(handle, inode);
2769                ext4_journal_stop(handle);
2770        }
2771
2772        if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2773                range_whole = 1;
2774
2775        if (wbc->range_cyclic) {
2776                writeback_index = mapping->writeback_index;
2777                if (writeback_index)
2778                        cycled = 0;
2779                mpd.first_page = writeback_index;
2780                mpd.last_page = -1;
2781        } else {
2782                mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2783                mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2784        }
2785
2786        mpd.inode = inode;
2787        mpd.wbc = wbc;
2788        ext4_io_submit_init(&mpd.io_submit, wbc);
2789retry:
2790        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2791                tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2792        done = false;
2793        blk_start_plug(&plug);
2794
2795        /*
2796         * First writeback pages that don't need mapping - we can avoid
2797         * starting a transaction unnecessarily and also avoid being blocked
2798         * in the block layer on device congestion while having transaction
2799         * started.
2800         */
2801        mpd.do_map = 0;
2802        mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2803        if (!mpd.io_submit.io_end) {
2804                ret = -ENOMEM;
2805                goto unplug;
2806        }
2807        ret = mpage_prepare_extent_to_map(&mpd);
2808        /* Submit prepared bio */
2809        ext4_io_submit(&mpd.io_submit);
2810        ext4_put_io_end_defer(mpd.io_submit.io_end);
2811        mpd.io_submit.io_end = NULL;
2812        /* Unlock pages we didn't use */
2813        mpage_release_unused_pages(&mpd, false);
2814        if (ret < 0)
2815                goto unplug;
2816
2817        while (!done && mpd.first_page <= mpd.last_page) {
2818                /* For each extent of pages we use new io_end */
2819                mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2820                if (!mpd.io_submit.io_end) {
2821                        ret = -ENOMEM;
2822                        break;
2823                }
2824
2825                /*
2826                 * We have two constraints: We find one extent to map and we
2827                 * must always write out whole page (makes a difference when
2828                 * blocksize < pagesize) so that we don't block on IO when we
2829                 * try to write out the rest of the page. Journalled mode is
2830                 * not supported by delalloc.
2831                 */
2832                BUG_ON(ext4_should_journal_data(inode));
2833                needed_blocks = ext4_da_writepages_trans_blocks(inode);
2834
2835                /* start a new transaction */
2836                handle = ext4_journal_start_with_reserve(inode,
2837                                EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2838                if (IS_ERR(handle)) {
2839                        ret = PTR_ERR(handle);
2840                        ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2841                               "%ld pages, ino %lu; err %d", __func__,
2842                                wbc->nr_to_write, inode->i_ino, ret);
2843                        /* Release allocated io_end */
2844                        ext4_put_io_end(mpd.io_submit.io_end);
2845                        mpd.io_submit.io_end = NULL;
2846                        break;
2847                }
2848                mpd.do_map = 1;
2849
2850                trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2851                ret = mpage_prepare_extent_to_map(&mpd);
2852                if (!ret) {
2853                        if (mpd.map.m_len)
2854                                ret = mpage_map_and_submit_extent(handle, &mpd,
2855                                        &give_up_on_write);
2856                        else {
2857                                /*
2858                                 * We scanned the whole range (or exhausted
2859                                 * nr_to_write), submitted what was mapped and
2860                                 * didn't find anything needing mapping. We are
2861                                 * done.
2862                                 */
2863                                done = true;
2864                        }
2865                }
2866                /*
2867                 * Caution: If the handle is synchronous,
2868                 * ext4_journal_stop() can wait for transaction commit
2869                 * to finish which may depend on writeback of pages to
2870                 * complete or on page lock to be released.  In that
2871                 * case, we have to wait until after after we have
2872                 * submitted all the IO, released page locks we hold,
2873                 * and dropped io_end reference (for extent conversion
2874                 * to be able to complete) before stopping the handle.
2875                 */
2876                if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2877                        ext4_journal_stop(handle);
2878                        handle = NULL;
2879                        mpd.do_map = 0;
2880                }
2881                /* Submit prepared bio */
2882                ext4_io_submit(&mpd.io_submit);
2883                /* Unlock pages we didn't use */
2884                mpage_release_unused_pages(&mpd, give_up_on_write);
2885                /*
2886                 * Drop our io_end reference we got from init. We have
2887                 * to be careful and use deferred io_end finishing if
2888                 * we are still holding the transaction as we can
2889                 * release the last reference to io_end which may end
2890                 * up doing unwritten extent conversion.
2891                 */
2892                if (handle) {
2893                        ext4_put_io_end_defer(mpd.io_submit.io_end);
2894                        ext4_journal_stop(handle);
2895                } else
2896                        ext4_put_io_end(mpd.io_submit.io_end);
2897                mpd.io_submit.io_end = NULL;
2898
2899                if (ret == -ENOSPC && sbi->s_journal) {
2900                        /*
2901                         * Commit the transaction which would
2902                         * free blocks released in the transaction
2903                         * and try again
2904                         */
2905                        jbd2_journal_force_commit_nested(sbi->s_journal);
2906                        ret = 0;
2907                        continue;
2908                }
2909                /* Fatal error - ENOMEM, EIO... */
2910                if (ret)
2911                        break;
2912        }
2913unplug:
2914        blk_finish_plug(&plug);
2915        if (!ret && !cycled && wbc->nr_to_write > 0) {
2916                cycled = 1;
2917                mpd.last_page = writeback_index - 1;
2918                mpd.first_page = 0;
2919                goto retry;
2920        }
2921
2922        /* Update index */
2923        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2924                /*
2925                 * Set the writeback_index so that range_cyclic
2926                 * mode will write it back later
2927                 */
2928                mapping->writeback_index = mpd.first_page;
2929
2930out_writepages:
2931        trace_ext4_writepages_result(inode, wbc, ret,
2932                                     nr_to_write - wbc->nr_to_write);
2933        percpu_up_read(&sbi->s_journal_flag_rwsem);
2934        return ret;
2935}
2936
2937static int ext4_dax_writepages(struct address_space *mapping,
2938                               struct writeback_control *wbc)
2939{
2940        int ret;
2941        long nr_to_write = wbc->nr_to_write;
2942        struct inode *inode = mapping->host;
2943        struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2944
2945        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2946                return -EIO;
2947
2948        percpu_down_read(&sbi->s_journal_flag_rwsem);
2949        trace_ext4_writepages(inode, wbc);
2950
2951        ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2952        trace_ext4_writepages_result(inode, wbc, ret,
2953                                     nr_to_write - wbc->nr_to_write);
2954        percpu_up_read(&sbi->s_journal_flag_rwsem);
2955        return ret;
2956}
2957
2958static int ext4_nonda_switch(struct super_block *sb)
2959{
2960        s64 free_clusters, dirty_clusters;
2961        struct ext4_sb_info *sbi = EXT4_SB(sb);
2962
2963        /*
2964         * switch to non delalloc mode if we are running low
2965         * on free block. The free block accounting via percpu
2966         * counters can get slightly wrong with percpu_counter_batch getting
2967         * accumulated on each CPU without updating global counters
2968         * Delalloc need an accurate free block accounting. So switch
2969         * to non delalloc when we are near to error range.
2970         */
2971        free_clusters =
2972                percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2973        dirty_clusters =
2974                percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2975        /*
2976         * Start pushing delalloc when 1/2 of free blocks are dirty.
2977         */
2978        if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2979                try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2980
2981        if (2 * free_clusters < 3 * dirty_clusters ||
2982            free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2983                /*
2984                 * free block count is less than 150% of dirty blocks
2985                 * or free blocks is less than watermark
2986                 */
2987                return 1;
2988        }
2989        return 0;
2990}
2991
2992/* We always reserve for an inode update; the superblock could be there too */
2993static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2994{
2995        if (likely(ext4_has_feature_large_file(inode->i_sb)))
2996                return 1;
2997
2998        if (pos + len <= 0x7fffffffULL)
2999                return 1;
3000
3001        /* We might need to update the superblock to set LARGE_FILE */
3002        return 2;
3003}
3004
3005static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3006                               loff_t pos, unsigned len, unsigned flags,
3007                               struct page **pagep, void **fsdata)
3008{
3009        int ret, retries = 0;
3010        struct page *page;
3011        pgoff_t index;
3012        struct inode *inode = mapping->host;
3013        handle_t *handle;
3014
3015        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3016                return -EIO;
3017
3018        index = pos >> PAGE_SHIFT;
3019
3020        if (ext4_nonda_switch(inode->i_sb) ||
3021            S_ISLNK(inode->i_mode)) {
3022                *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3023                return ext4_write_begin(file, mapping, pos,
3024                                        len, flags, pagep, fsdata);
3025        }
3026        *fsdata = (void *)0;
3027        trace_ext4_da_write_begin(inode, pos, len, flags);
3028
3029        if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3030                ret = ext4_da_write_inline_data_begin(mapping, inode,
3031                                                      pos, len, flags,
3032                                                      pagep, fsdata);
3033                if (ret < 0)
3034                        return ret;
3035                if (ret == 1)
3036                        return 0;
3037        }
3038
3039        /*
3040         * grab_cache_page_write_begin() can take a long time if the
3041         * system is thrashing due to memory pressure, or if the page
3042         * is being written back.  So grab it first before we start
3043         * the transaction handle.  This also allows us to allocate
3044         * the page (if needed) without using GFP_NOFS.
3045         */
3046retry_grab:
3047        page = grab_cache_page_write_begin(mapping, index, flags);
3048        if (!page)
3049                return -ENOMEM;
3050        unlock_page(page);
3051
3052        /*
3053         * With delayed allocation, we don't log the i_disksize update
3054         * if there is delayed block allocation. But we still need
3055         * to journalling the i_disksize update if writes to the end
3056         * of file which has an already mapped buffer.
3057         */
3058retry_journal:
3059        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3060                                ext4_da_write_credits(inode, pos, len));
3061        if (IS_ERR(handle)) {
3062                put_page(page);
3063                return PTR_ERR(handle);
3064        }
3065
3066        lock_page(page);
3067        if (page->mapping != mapping) {
3068                /* The page got truncated from under us */
3069                unlock_page(page);
3070                put_page(page);
3071                ext4_journal_stop(handle);
3072                goto retry_grab;
3073        }
3074        /* In case writeback began while the page was unlocked */
3075        wait_for_stable_page(page);
3076
3077#ifdef CONFIG_EXT4_FS_ENCRYPTION
3078        ret = ext4_block_write_begin(page, pos, len,
3079                                     ext4_da_get_block_prep);
3080#else
3081        ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3082#endif
3083        if (ret < 0) {
3084                unlock_page(page);
3085                ext4_journal_stop(handle);
3086                /*
3087                 * block_write_begin may have instantiated a few blocks
3088                 * outside i_size.  Trim these off again. Don't need
3089                 * i_size_read because we hold i_mutex.
3090                 */
3091                if (pos + len > inode->i_size)
3092                        ext4_truncate_failed_write(inode);
3093
3094                if (ret == -ENOSPC &&
3095                    ext4_should_retry_alloc(inode->i_sb, &retries))
3096                        goto retry_journal;
3097
3098                put_page(page);
3099                return ret;
3100        }
3101
3102        *pagep = page;
3103        return ret;
3104}
3105
3106/*
3107 * Check if we should update i_disksize
3108 * when write to the end of file but not require block allocation
3109 */
3110static int ext4_da_should_update_i_disksize(struct page *page,
3111                                            unsigned long offset)
3112{
3113        struct buffer_head *bh;
3114        struct inode *inode = page->mapping->host;
3115        unsigned int idx;
3116        int i;
3117
3118        bh = page_buffers(page);
3119        idx = offset >> inode->i_blkbits;
3120
3121        for (i = 0; i < idx; i++)
3122                bh = bh->b_this_page;
3123
3124        if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3125                return 0;
3126        return 1;
3127}
3128
3129static int ext4_da_write_end(struct file *file,
3130                             struct address_space *mapping,
3131                             loff_t pos, unsigned len, unsigned copied,
3132                             struct page *page, void *fsdata)
3133{
3134        struct inode *inode = mapping->host;
3135        int ret = 0, ret2;
3136        handle_t *handle = ext4_journal_current_handle();
3137        loff_t new_i_size;
3138        unsigned long start, end;
3139        int write_mode = (int)(unsigned long)fsdata;
3140
3141        if (write_mode == FALL_BACK_TO_NONDELALLOC)
3142                return ext4_write_end(file, mapping, pos,
3143                                      len, copied, page, fsdata);
3144
3145        trace_ext4_da_write_end(inode, pos, len, copied);
3146        start = pos & (PAGE_SIZE - 1);
3147        end = start + copied - 1;
3148
3149        /*
3150         * generic_write_end() will run mark_inode_dirty() if i_size
3151         * changes.  So let's piggyback the i_disksize mark_inode_dirty
3152         * into that.
3153         */
3154        new_i_size = pos + copied;
3155        if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3156                if (ext4_has_inline_data(inode) ||
3157                    ext4_da_should_update_i_disksize(page, end)) {
3158                        ext4_update_i_disksize(inode, new_i_size);
3159                        /* We need to mark inode dirty even if
3160                         * new_i_size is less that inode->i_size
3161                         * bu greater than i_disksize.(hint delalloc)
3162                         */
3163                        ext4_mark_inode_dirty(handle, inode);
3164                }
3165        }
3166
3167        if (write_mode != CONVERT_INLINE_DATA &&
3168            ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3169            ext4_has_inline_data(inode))
3170                ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3171                                                     page);
3172        else
3173                ret2 = generic_write_end(file, mapping, pos, len, copied,
3174                                                        page, fsdata);
3175
3176        copied = ret2;
3177        if (ret2 < 0)
3178                ret = ret2;
3179        ret2 = ext4_journal_stop(handle);
3180        if (!ret)
3181                ret = ret2;
3182
3183        return ret ? ret : copied;
3184}
3185
3186static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3187                                   unsigned int length)
3188{
3189        /*
3190         * Drop reserved blocks
3191         */
3192        BUG_ON(!PageLocked(page));
3193        if (!page_has_buffers(page))
3194                goto out;
3195
3196        ext4_da_page_release_reservation(page, offset, length);
3197
3198out:
3199        ext4_invalidatepage(page, offset, length);
3200
3201        return;
3202}
3203
3204/*
3205 * Force all delayed allocation blocks to be allocated for a given inode.
3206 */
3207int ext4_alloc_da_blocks(struct inode *inode)
3208{
3209        trace_ext4_alloc_da_blocks(inode);
3210
3211        if (!EXT4_I(inode)->i_reserved_data_blocks)
3212                return 0;
3213
3214        /*
3215         * We do something simple for now.  The filemap_flush() will
3216         * also start triggering a write of the data blocks, which is
3217         * not strictly speaking necessary (and for users of
3218         * laptop_mode, not even desirable).  However, to do otherwise
3219         * would require replicating code paths in:
3220         *
3221         * ext4_writepages() ->
3222         *    write_cache_pages() ---> (via passed in callback function)
3223         *        __mpage_da_writepage() -->
3224         *           mpage_add_bh_to_extent()
3225         *           mpage_da_map_blocks()
3226         *
3227         * The problem is that write_cache_pages(), located in
3228         * mm/page-writeback.c, marks pages clean in preparation for
3229         * doing I/O, which is not desirable if we're not planning on
3230         * doing I/O at all.
3231         *
3232         * We could call write_cache_pages(), and then redirty all of
3233         * the pages by calling redirty_page_for_writepage() but that
3234         * would be ugly in the extreme.  So instead we would need to
3235         * replicate parts of the code in the above functions,
3236         * simplifying them because we wouldn't actually intend to
3237         * write out the pages, but rather only collect contiguous
3238         * logical block extents, call the multi-block allocator, and
3239         * then update the buffer heads with the block allocations.
3240         *
3241         * For now, though, we'll cheat by calling filemap_flush(),
3242         * which will map the blocks, and start the I/O, but not
3243         * actually wait for the I/O to complete.
3244         */
3245        return filemap_flush(inode->i_mapping);
3246}
3247
3248/*
3249 * bmap() is special.  It gets used by applications such as lilo and by
3250 * the swapper to find the on-disk block of a specific piece of data.
3251 *
3252 * Naturally, this is dangerous if the block concerned is still in the
3253 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3254 * filesystem and enables swap, then they may get a nasty shock when the
3255 * data getting swapped to that swapfile suddenly gets overwritten by
3256 * the original zero's written out previously to the journal and
3257 * awaiting writeback in the kernel's buffer cache.
3258 *
3259 * So, if we see any bmap calls here on a modified, data-journaled file,
3260 * take extra steps to flush any blocks which might be in the cache.
3261 */
3262static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3263{
3264        struct inode *inode = mapping->host;
3265        journal_t *journal;
3266        int err;
3267
3268        /*
3269         * We can get here for an inline file via the FIBMAP ioctl
3270         */
3271        if (ext4_has_inline_data(inode))
3272                return 0;
3273
3274        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3275                        test_opt(inode->i_sb, DELALLOC)) {
3276                /*
3277                 * With delalloc we want to sync the file
3278                 * so that we can make sure we allocate
3279                 * blocks for file
3280                 */
3281                filemap_write_and_wait(mapping);
3282        }
3283
3284        if (EXT4_JOURNAL(inode) &&
3285            ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3286                /*
3287                 * This is a REALLY heavyweight approach, but the use of
3288                 * bmap on dirty files is expected to be extremely rare:
3289                 * only if we run lilo or swapon on a freshly made file
3290                 * do we expect this to happen.
3291                 *
3292                 * (bmap requires CAP_SYS_RAWIO so this does not
3293                 * represent an unprivileged user DOS attack --- we'd be
3294                 * in trouble if mortal users could trigger this path at
3295                 * will.)
3296                 *
3297                 * NB. EXT4_STATE_JDATA is not set on files other than
3298                 * regular files.  If somebody wants to bmap a directory
3299                 * or symlink and gets confused because the buffer
3300                 * hasn't yet been flushed to disk, they deserve
3301                 * everything they get.
3302                 */
3303
3304                ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3305                journal = EXT4_JOURNAL(inode);
3306                jbd2_journal_lock_updates(journal);
3307                err = jbd2_journal_flush(journal);
3308                jbd2_journal_unlock_updates(journal);
3309
3310                if (err)
3311                        return 0;
3312        }
3313
3314        return generic_block_bmap(mapping, block, ext4_get_block);
3315}
3316
3317static int ext4_readpage(struct file *file, struct page *page)
3318{
3319        int ret = -EAGAIN;
3320        struct inode *inode = page->mapping->host;
3321
3322        trace_ext4_readpage(page);
3323
3324        if (ext4_has_inline_data(inode))
3325                ret = ext4_readpage_inline(inode, page);
3326
3327        if (ret == -EAGAIN)
3328                return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3329
3330        return ret;
3331}
3332
3333static int
3334ext4_readpages(struct file *file, struct address_space *mapping,
3335                struct list_head *pages, unsigned nr_pages)
3336{
3337        struct inode *inode = mapping->host;
3338
3339        /* If the file has inline data, no need to do readpages. */
3340        if (ext4_has_inline_data(inode))
3341                return 0;
3342
3343        return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3344}
3345
3346static void ext4_invalidatepage(struct page *page, unsigned int offset,
3347                                unsigned int length)
3348{
3349        trace_ext4_invalidatepage(page, offset, length);
3350
3351        /* No journalling happens on data buffers when this function is used */
3352        WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3353
3354        block_invalidatepage(page, offset, length);
3355}
3356
3357static int __ext4_journalled_invalidatepage(struct page *page,
3358                                            unsigned int offset,
3359                                            unsigned int length)
3360{
3361        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3362
3363        trace_ext4_journalled_invalidatepage(page, offset, length);
3364
3365        /*
3366         * If it's a full truncate we just forget about the pending dirtying
3367         */
3368        if (offset == 0 && length == PAGE_SIZE)
3369                ClearPageChecked(page);
3370
3371        return jbd2_journal_invalidatepage(journal, page, offset, length);
3372}
3373
3374/* Wrapper for aops... */
3375static void ext4_journalled_invalidatepage(struct page *page,
3376                                           unsigned int offset,
3377                                           unsigned int length)
3378{
3379        WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3380}
3381
3382static int ext4_releasepage(struct page *page, gfp_t wait)
3383{
3384        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3385
3386        trace_ext4_releasepage(page);
3387
3388        /* Page has dirty journalled data -> cannot release */
3389        if (PageChecked(page))
3390                return 0;
3391        if (journal)
3392                return jbd2_journal_try_to_free_buffers(journal, page, wait);
3393        else
3394                return try_to_free_buffers(page);
3395}
3396
3397static bool ext4_inode_datasync_dirty(struct inode *inode)
3398{
3399        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3400
3401        if (journal)
3402                return !jbd2_transaction_committed(journal,
3403                                        EXT4_I(inode)->i_datasync_tid);
3404        /* Any metadata buffers to write? */
3405        if (!list_empty(&inode->i_mapping->private_list))
3406                return true;
3407        return inode->i_state & I_DIRTY_DATASYNC;
3408}
3409
3410static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3411                            unsigned flags, struct iomap *iomap)
3412{
3413        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3414        unsigned int blkbits = inode->i_blkbits;
3415        unsigned long first_block = offset >> blkbits;
3416        unsigned long last_block = (offset + length - 1) >> blkbits;
3417        struct ext4_map_blocks map;
3418        bool delalloc = false;
3419        int ret;
3420
3421
3422        if (flags & IOMAP_REPORT) {
3423                if (ext4_has_inline_data(inode)) {
3424                        ret = ext4_inline_data_iomap(inode, iomap);
3425                        if (ret != -EAGAIN) {
3426                                if (ret == 0 && offset >= iomap->length)
3427                                        ret = -ENOENT;
3428                                return ret;
3429                        }
3430                }
3431        } else {
3432                if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3433                        return -ERANGE;
3434        }
3435
3436        map.m_lblk = first_block;
3437        map.m_len = last_block - first_block + 1;
3438
3439        if (flags & IOMAP_REPORT) {
3440                ret = ext4_map_blocks(NULL, inode, &map, 0);
3441                if (ret < 0)
3442                        return ret;
3443
3444                if (ret == 0) {
3445                        ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3446                        struct extent_status es;
3447
3448                        ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3449
3450                        if (!es.es_len || es.es_lblk > end) {
3451                                /* entire range is a hole */
3452                        } else if (es.es_lblk > map.m_lblk) {
3453                                /* range starts with a hole */
3454                                map.m_len = es.es_lblk - map.m_lblk;
3455                        } else {
3456                                ext4_lblk_t offs = 0;
3457
3458                                if (es.es_lblk < map.m_lblk)
3459                                        offs = map.m_lblk - es.es_lblk;
3460                                map.m_lblk = es.es_lblk + offs;
3461                                map.m_len = es.es_len - offs;
3462                                delalloc = true;
3463                        }
3464                }
3465        } else if (flags & IOMAP_WRITE) {
3466                int dio_credits;
3467                handle_t *handle;
3468                int retries = 0;
3469
3470                /* Trim mapping request to maximum we can map at once for DIO */
3471                if (map.m_len > DIO_MAX_BLOCKS)
3472                        map.m_len = DIO_MAX_BLOCKS;
3473                dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3474retry:
3475                /*
3476                 * Either we allocate blocks and then we don't get unwritten
3477                 * extent so we have reserved enough credits, or the blocks
3478                 * are already allocated and unwritten and in that case
3479                 * extent conversion fits in the credits as well.
3480                 */
3481                handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3482                                            dio_credits);
3483                if (IS_ERR(handle))
3484                        return PTR_ERR(handle);
3485
3486                ret = ext4_map_blocks(handle, inode, &map,
3487                                      EXT4_GET_BLOCKS_CREATE_ZERO);
3488                if (ret < 0) {
3489                        ext4_journal_stop(handle);
3490                        if (ret == -ENOSPC &&
3491                            ext4_should_retry_alloc(inode->i_sb, &retries))
3492                                goto retry;
3493                        return ret;
3494                }
3495
3496                /*
3497                 * If we added blocks beyond i_size, we need to make sure they
3498                 * will get truncated if we crash before updating i_size in
3499                 * ext4_iomap_end(). For faults we don't need to do that (and
3500                 * even cannot because for orphan list operations inode_lock is
3501                 * required) - if we happen to instantiate block beyond i_size,
3502                 * it is because we race with truncate which has already added
3503                 * the inode to the orphan list.
3504                 */
3505                if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3506                    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3507                        int err;
3508
3509                        err = ext4_orphan_add(handle, inode);
3510                        if (err < 0) {
3511                                ext4_journal_stop(handle);
3512                                return err;
3513                        }
3514                }
3515                ext4_journal_stop(handle);
3516        } else {
3517                ret = ext4_map_blocks(NULL, inode, &map, 0);
3518                if (ret < 0)
3519                        return ret;
3520        }
3521
3522        iomap->flags = 0;
3523        if (ext4_inode_datasync_dirty(inode))
3524                iomap->flags |= IOMAP_F_DIRTY;
3525        iomap->bdev = inode->i_sb->s_bdev;
3526        iomap->dax_dev = sbi->s_daxdev;
3527        iomap->offset = (u64)first_block << blkbits;
3528        iomap->length = (u64)map.m_len << blkbits;
3529
3530        if (ret == 0) {
3531                iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3532                iomap->addr = IOMAP_NULL_ADDR;
3533        } else {
3534                if (map.m_flags & EXT4_MAP_MAPPED) {
3535                        iomap->type = IOMAP_MAPPED;
3536                } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3537                        iomap->type = IOMAP_UNWRITTEN;
3538                } else {
3539                        WARN_ON_ONCE(1);
3540                        return -EIO;
3541                }
3542                iomap->addr = (u64)map.m_pblk << blkbits;
3543        }
3544
3545        if (map.m_flags & EXT4_MAP_NEW)
3546                iomap->flags |= IOMAP_F_NEW;
3547
3548        return 0;
3549}
3550
3551static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3552                          ssize_t written, unsigned flags, struct iomap *iomap)
3553{
3554        int ret = 0;
3555        handle_t *handle;
3556        int blkbits = inode->i_blkbits;
3557        bool truncate = false;
3558
3559        if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3560                return 0;
3561
3562        handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3563        if (IS_ERR(handle)) {
3564                ret = PTR_ERR(handle);
3565                goto orphan_del;
3566        }
3567        if (ext4_update_inode_size(inode, offset + written))
3568                ext4_mark_inode_dirty(handle, inode);
3569        /*
3570         * We may need to truncate allocated but not written blocks beyond EOF.
3571         */
3572        if (iomap->offset + iomap->length > 
3573            ALIGN(inode->i_size, 1 << blkbits)) {
3574                ext4_lblk_t written_blk, end_blk;
3575
3576                written_blk = (offset + written) >> blkbits;
3577                end_blk = (offset + length) >> blkbits;
3578                if (written_blk < end_blk && ext4_can_truncate(inode))
3579                        truncate = true;
3580        }
3581        /*
3582         * Remove inode from orphan list if we were extending a inode and
3583         * everything went fine.
3584         */
3585        if (!truncate && inode->i_nlink &&
3586            !list_empty(&EXT4_I(inode)->i_orphan))
3587                ext4_orphan_del(handle, inode);
3588        ext4_journal_stop(handle);
3589        if (truncate) {
3590                ext4_truncate_failed_write(inode);
3591orphan_del:
3592                /*
3593                 * If truncate failed early the inode might still be on the
3594                 * orphan list; we need to make sure the inode is removed from
3595                 * the orphan list in that case.
3596                 */
3597                if (inode->i_nlink)
3598                        ext4_orphan_del(NULL, inode);
3599        }
3600        return ret;
3601}
3602
3603const struct iomap_ops ext4_iomap_ops = {
3604        .iomap_begin            = ext4_iomap_begin,
3605        .iomap_end              = ext4_iomap_end,
3606};
3607
3608static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3609                            ssize_t size, void *private)
3610{
3611        ext4_io_end_t *io_end = private;
3612
3613        /* if not async direct IO just return */
3614        if (!io_end)
3615                return 0;
3616
3617        ext_debug("ext4_end_io_dio(): io_end 0x%p "
3618                  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3619                  io_end, io_end->inode->i_ino, iocb, offset, size);
3620
3621        /*
3622         * Error during AIO DIO. We cannot convert unwritten extents as the
3623         * data was not written. Just clear the unwritten flag and drop io_end.
3624         */
3625        if (size <= 0) {
3626                ext4_clear_io_unwritten_flag(io_end);
3627                size = 0;
3628        }
3629        io_end->offset = offset;
3630        io_end->size = size;
3631        ext4_put_io_end(io_end);
3632
3633        return 0;
3634}
3635
3636/*
3637 * Handling of direct IO writes.
3638 *
3639 * For ext4 extent files, ext4 will do direct-io write even to holes,
3640 * preallocated extents, and those write extend the file, no need to
3641 * fall back to buffered IO.
3642 *
3643 * For holes, we fallocate those blocks, mark them as unwritten
3644 * If those blocks were preallocated, we mark sure they are split, but
3645 * still keep the range to write as unwritten.
3646 *
3647 * The unwritten extents will be converted to written when DIO is completed.
3648 * For async direct IO, since the IO may still pending when return, we
3649 * set up an end_io call back function, which will do the conversion
3650 * when async direct IO completed.
3651 *
3652 * If the O_DIRECT write will extend the file then add this inode to the
3653 * orphan list.  So recovery will truncate it back to the original size
3654 * if the machine crashes during the write.
3655 *
3656 */
3657static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3658{
3659        struct file *file = iocb->ki_filp;
3660        struct inode *inode = file->f_mapping->host;
3661        struct ext4_inode_info *ei = EXT4_I(inode);
3662        ssize_t ret;
3663        loff_t offset = iocb->ki_pos;
3664        size_t count = iov_iter_count(iter);
3665        int overwrite = 0;
3666        get_block_t *get_block_func = NULL;
3667        int dio_flags = 0;
3668        loff_t final_size = offset + count;
3669        int orphan = 0;
3670        handle_t *handle;
3671
3672        if (final_size > inode->i_size || final_size > ei->i_disksize) {
3673                /* Credits for sb + inode write */
3674                handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3675                if (IS_ERR(handle)) {
3676                        ret = PTR_ERR(handle);
3677                        goto out;
3678                }
3679                ret = ext4_orphan_add(handle, inode);
3680                if (ret) {
3681                        ext4_journal_stop(handle);
3682                        goto out;
3683                }
3684                orphan = 1;
3685                ext4_update_i_disksize(inode, inode->i_size);
3686                ext4_journal_stop(handle);
3687        }
3688
3689        BUG_ON(iocb->private == NULL);
3690
3691        /*
3692         * Make all waiters for direct IO properly wait also for extent
3693         * conversion. This also disallows race between truncate() and
3694         * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3695         */
3696        inode_dio_begin(inode);
3697
3698        /* If we do a overwrite dio, i_mutex locking can be released */
3699        overwrite = *((int *)iocb->private);
3700
3701        if (overwrite)
3702                inode_unlock(inode);
3703
3704        /*
3705         * For extent mapped files we could direct write to holes and fallocate.
3706         *
3707         * Allocated blocks to fill the hole are marked as unwritten to prevent
3708         * parallel buffered read to expose the stale data before DIO complete
3709         * the data IO.
3710         *
3711         * As to previously fallocated extents, ext4 get_block will just simply
3712         * mark the buffer mapped but still keep the extents unwritten.
3713         *
3714         * For non AIO case, we will convert those unwritten extents to written
3715         * after return back from blockdev_direct_IO. That way we save us from
3716         * allocating io_end structure and also the overhead of offloading
3717         * the extent convertion to a workqueue.
3718         *
3719         * For async DIO, the conversion needs to be deferred when the
3720         * IO is completed. The ext4 end_io callback function will be
3721         * called to take care of the conversion work.  Here for async
3722         * case, we allocate an io_end structure to hook to the iocb.
3723         */
3724        iocb->private = NULL;
3725        if (overwrite)
3726                get_block_func = ext4_dio_get_block_overwrite;
3727        else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3728                   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3729                get_block_func = ext4_dio_get_block;
3730                dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3731        } else if (is_sync_kiocb(iocb)) {
3732                get_block_func = ext4_dio_get_block_unwritten_sync;
3733                dio_flags = DIO_LOCKING;
3734        } else {
3735                get_block_func = ext4_dio_get_block_unwritten_async;
3736                dio_flags = DIO_LOCKING;
3737        }
3738        ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3739                                   get_block_func, ext4_end_io_dio, NULL,
3740                                   dio_flags);
3741
3742        if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3743                                                EXT4_STATE_DIO_UNWRITTEN)) {
3744                int err;
3745                /*
3746                 * for non AIO case, since the IO is already
3747                 * completed, we could do the conversion right here
3748                 */
3749                err = ext4_convert_unwritten_extents(NULL, inode,
3750                                                     offset, ret);
3751                if (err < 0)
3752                        ret = err;
3753                ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3754        }
3755
3756        inode_dio_end(inode);
3757        /* take i_mutex locking again if we do a ovewrite dio */
3758        if (overwrite)
3759                inode_lock(inode);
3760
3761        if (ret < 0 && final_size > inode->i_size)
3762                ext4_truncate_failed_write(inode);
3763
3764        /* Handle extending of i_size after direct IO write */
3765        if (orphan) {
3766                int err;
3767
3768                /* Credits for sb + inode write */
3769                handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3770                if (IS_ERR(handle)) {
3771                        /*
3772                         * We wrote the data but cannot extend
3773                         * i_size. Bail out. In async io case, we do
3774                         * not return error here because we have
3775                         * already submmitted the corresponding
3776                         * bio. Returning error here makes the caller
3777                         * think that this IO is done and failed
3778                         * resulting in race with bio's completion
3779                         * handler.
3780                         */
3781                        if (!ret)
3782                                ret = PTR_ERR(handle);
3783                        if (inode->i_nlink)
3784                                ext4_orphan_del(NULL, inode);
3785
3786                        goto out;
3787                }
3788                if (inode->i_nlink)
3789                        ext4_orphan_del(handle, inode);
3790                if (ret > 0) {
3791                        loff_t end = offset + ret;
3792                        if (end > inode->i_size || end > ei->i_disksize) {
3793                                ext4_update_i_disksize(inode, end);
3794                                if (end > inode->i_size)
3795                                        i_size_write(inode, end);
3796                                /*
3797                                 * We're going to return a positive `ret'
3798                                 * here due to non-zero-length I/O, so there's
3799                                 * no way of reporting error returns from
3800                                 * ext4_mark_inode_dirty() to userspace.  So
3801                                 * ignore it.
3802                                 */
3803                                ext4_mark_inode_dirty(handle, inode);
3804                        }
3805                }
3806                err = ext4_journal_stop(handle);
3807                if (ret == 0)
3808                        ret = err;
3809        }
3810out:
3811        return ret;
3812}
3813
3814static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3815{
3816        struct address_space *mapping = iocb->ki_filp->f_mapping;
3817        struct inode *inode = mapping->host;
3818        size_t count = iov_iter_count(iter);
3819        ssize_t ret;
3820
3821        /*
3822         * Shared inode_lock is enough for us - it protects against concurrent
3823         * writes & truncates and since we take care of writing back page cache,
3824         * we are protected against page writeback as well.
3825         */
3826        inode_lock_shared(inode);
3827        ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3828                                           iocb->ki_pos + count - 1);
3829        if (ret)
3830                goto out_unlock;
3831        ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3832                                   iter, ext4_dio_get_block, NULL, NULL, 0);
3833out_unlock:
3834        inode_unlock_shared(inode);
3835        return ret;
3836}
3837
3838static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3839{
3840        struct file *file = iocb->ki_filp;
3841        struct inode *inode = file->f_mapping->host;
3842        size_t count = iov_iter_count(iter);
3843        loff_t offset = iocb->ki_pos;
3844        ssize_t ret;
3845
3846#ifdef CONFIG_EXT4_FS_ENCRYPTION
3847        if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3848                return 0;
3849#endif
3850
3851        /*
3852         * If we are doing data journalling we don't support O_DIRECT
3853         */
3854        if (ext4_should_journal_data(inode))
3855                return 0;
3856
3857        /* Let buffer I/O handle the inline data case. */
3858        if (ext4_has_inline_data(inode))
3859                return 0;
3860
3861        trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3862        if (iov_iter_rw(iter) == READ)
3863                ret = ext4_direct_IO_read(iocb, iter);
3864        else
3865                ret = ext4_direct_IO_write(iocb, iter);
3866        trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3867        return ret;
3868}
3869
3870/*
3871 * Pages can be marked dirty completely asynchronously from ext4's journalling
3872 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3873 * much here because ->set_page_dirty is called under VFS locks.  The page is
3874 * not necessarily locked.
3875 *
3876 * We cannot just dirty the page and leave attached buffers clean, because the
3877 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3878 * or jbddirty because all the journalling code will explode.
3879 *
3880 * So what we do is to mark the page "pending dirty" and next time writepage
3881 * is called, propagate that into the buffers appropriately.
3882 */
3883static int ext4_journalled_set_page_dirty(struct page *page)
3884{
3885        SetPageChecked(page);
3886        return __set_page_dirty_nobuffers(page);
3887}
3888
3889static int ext4_set_page_dirty(struct page *page)
3890{
3891        WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3892        WARN_ON_ONCE(!page_has_buffers(page));
3893        return __set_page_dirty_buffers(page);
3894}
3895
3896static const struct address_space_operations ext4_aops = {
3897        .readpage               = ext4_readpage,
3898        .readpages              = ext4_readpages,
3899        .writepage              = ext4_writepage,
3900        .writepages             = ext4_writepages,
3901        .write_begin            = ext4_write_begin,
3902        .write_end              = ext4_write_end,
3903        .set_page_dirty         = ext4_set_page_dirty,
3904        .bmap                   = ext4_bmap,
3905        .invalidatepage         = ext4_invalidatepage,
3906        .releasepage            = ext4_releasepage,
3907        .direct_IO              = ext4_direct_IO,
3908        .migratepage            = buffer_migrate_page,
3909        .is_partially_uptodate  = block_is_partially_uptodate,
3910        .error_remove_page      = generic_error_remove_page,
3911};
3912
3913static const struct address_space_operations ext4_journalled_aops = {
3914        .readpage               = ext4_readpage,
3915        .readpages              = ext4_readpages,
3916        .writepage              = ext4_writepage,
3917        .writepages             = ext4_writepages,
3918        .write_begin            = ext4_write_begin,
3919        .write_end              = ext4_journalled_write_end,
3920        .set_page_dirty         = ext4_journalled_set_page_dirty,
3921        .bmap                   = ext4_bmap,
3922        .invalidatepage         = ext4_journalled_invalidatepage,
3923        .releasepage            = ext4_releasepage,
3924        .direct_IO              = ext4_direct_IO,
3925        .is_partially_uptodate  = block_is_partially_uptodate,
3926        .error_remove_page      = generic_error_remove_page,
3927};
3928
3929static const struct address_space_operations ext4_da_aops = {
3930        .readpage               = ext4_readpage,
3931        .readpages              = ext4_readpages,
3932        .writepage              = ext4_writepage,
3933        .writepages             = ext4_writepages,
3934        .write_begin            = ext4_da_write_begin,
3935        .write_end              = ext4_da_write_end,
3936        .set_page_dirty         = ext4_set_page_dirty,
3937        .bmap                   = ext4_bmap,
3938        .invalidatepage         = ext4_da_invalidatepage,
3939        .releasepage            = ext4_releasepage,
3940        .direct_IO              = ext4_direct_IO,
3941        .migratepage            = buffer_migrate_page,
3942        .is_partially_uptodate  = block_is_partially_uptodate,
3943        .error_remove_page      = generic_error_remove_page,
3944};
3945
3946static const struct address_space_operations ext4_dax_aops = {
3947        .writepages             = ext4_dax_writepages,
3948        .direct_IO              = noop_direct_IO,
3949        .set_page_dirty         = noop_set_page_dirty,
3950        .invalidatepage         = noop_invalidatepage,
3951};
3952
3953void ext4_set_aops(struct inode *inode)
3954{
3955        switch (ext4_inode_journal_mode(inode)) {
3956        case EXT4_INODE_ORDERED_DATA_MODE:
3957        case EXT4_INODE_WRITEBACK_DATA_MODE:
3958                break;
3959        case EXT4_INODE_JOURNAL_DATA_MODE:
3960                inode->i_mapping->a_ops = &ext4_journalled_aops;
3961                return;
3962        default:
3963                BUG();
3964        }
3965        if (IS_DAX(inode))
3966                inode->i_mapping->a_ops = &ext4_dax_aops;
3967        else if (test_opt(inode->i_sb, DELALLOC))
3968                inode->i_mapping->a_ops = &ext4_da_aops;
3969        else
3970                inode->i_mapping->a_ops = &ext4_aops;
3971}
3972
3973static int __ext4_block_zero_page_range(handle_t *handle,
3974                struct address_space *mapping, loff_t from, loff_t length)
3975{
3976        ext4_fsblk_t index = from >> PAGE_SHIFT;
3977        unsigned offset = from & (PAGE_SIZE-1);
3978        unsigned blocksize, pos;
3979        ext4_lblk_t iblock;
3980        struct inode *inode = mapping->host;
3981        struct buffer_head *bh;
3982        struct page *page;
3983        int err = 0;
3984
3985        page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3986                                   mapping_gfp_constraint(mapping, ~__GFP_FS));
3987        if (!page)
3988                return -ENOMEM;
3989
3990        blocksize = inode->i_sb->s_blocksize;
3991
3992        iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3993
3994        if (!page_has_buffers(page))
3995                create_empty_buffers(page, blocksize, 0);
3996
3997        /* Find the buffer that contains "offset" */
3998        bh = page_buffers(page);
3999        pos = blocksize;
4000        while (offset >= pos) {
4001                bh = bh->b_this_page;
4002                iblock++;
4003                pos += blocksize;
4004        }
4005        if (buffer_freed(bh)) {
4006                BUFFER_TRACE(bh, "freed: skip");
4007                goto unlock;
4008        }
4009        if (!buffer_mapped(bh)) {
4010                BUFFER_TRACE(bh, "unmapped");
4011                ext4_get_block(inode, iblock, bh, 0);
4012                /* unmapped? It's a hole - nothing to do */
4013                if (!buffer_mapped(bh)) {
4014                        BUFFER_TRACE(bh, "still unmapped");
4015                        goto unlock;
4016                }
4017        }
4018
4019        /* Ok, it's mapped. Make sure it's up-to-date */
4020        if (PageUptodate(page))
4021                set_buffer_uptodate(bh);
4022
4023        if (!buffer_uptodate(bh)) {
4024                err = -EIO;
4025                ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4026                wait_on_buffer(bh);
4027                /* Uhhuh. Read error. Complain and punt. */
4028                if (!buffer_uptodate(bh))
4029                        goto unlock;
4030                if (S_ISREG(inode->i_mode) &&
4031                    ext4_encrypted_inode(inode)) {
4032                        /* We expect the key to be set. */
4033                        BUG_ON(!fscrypt_has_encryption_key(inode));
4034                        BUG_ON(blocksize != PAGE_SIZE);
4035                        WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4036                                                page, PAGE_SIZE, 0, page->index));
4037                }
4038        }
4039        if (ext4_should_journal_data(inode)) {
4040                BUFFER_TRACE(bh, "get write access");
4041                err = ext4_journal_get_write_access(handle, bh);
4042                if (err)
4043                        goto unlock;
4044        }
4045        zero_user(page, offset, length);
4046        BUFFER_TRACE(bh, "zeroed end of block");
4047
4048        if (ext4_should_journal_data(inode)) {
4049                err = ext4_handle_dirty_metadata(handle, inode, bh);
4050        } else {
4051                err = 0;
4052                mark_buffer_dirty(bh);
4053                if (ext4_should_order_data(inode))
4054                        err = ext4_jbd2_inode_add_write(handle, inode);
4055        }
4056
4057unlock:
4058        unlock_page(page);
4059        put_page(page);
4060        return err;
4061}
4062
4063/*
4064 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4065 * starting from file offset 'from'.  The range to be zero'd must
4066 * be contained with in one block.  If the specified range exceeds
4067 * the end of the block it will be shortened to end of the block
4068 * that cooresponds to 'from'
4069 */
4070static int ext4_block_zero_page_range(handle_t *handle,
4071                struct address_space *mapping, loff_t from, loff_t length)
4072{
4073        struct inode *inode = mapping->host;
4074        unsigned offset = from & (PAGE_SIZE-1);
4075        unsigned blocksize = inode->i_sb->s_blocksize;
4076        unsigned max = blocksize - (offset & (blocksize - 1));
4077
4078        /*
4079         * correct length if it does not fall between
4080         * 'from' and the end of the block
4081         */
4082        if (length > max || length < 0)
4083                length = max;
4084
4085        if (IS_DAX(inode)) {
4086                return iomap_zero_range(inode, from, length, NULL,
4087                                        &ext4_iomap_ops);
4088        }
4089        return __ext4_block_zero_page_range(handle, mapping, from, length);
4090}
4091
4092/*
4093 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4094 * up to the end of the block which corresponds to `from'.
4095 * This required during truncate. We need to physically zero the tail end
4096 * of that block so it doesn't yield old data if the file is later grown.
4097 */
4098static int ext4_block_truncate_page(handle_t *handle,
4099                struct address_space *mapping, loff_t from)
4100{
4101        unsigned offset = from & (PAGE_SIZE-1);
4102        unsigned length;
4103        unsigned blocksize;
4104        struct inode *inode = mapping->host;
4105
4106        /* If we are processing an encrypted inode during orphan list handling */
4107        if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4108                return 0;
4109
4110        blocksize = inode->i_sb->s_blocksize;
4111        length = blocksize - (offset & (blocksize - 1));
4112
4113        return ext4_block_zero_page_range(handle, mapping, from, length);
4114}
4115
4116int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4117                             loff_t lstart, loff_t length)
4118{
4119        struct super_block *sb = inode->i_sb;
4120        struct address_space *mapping = inode->i_mapping;
4121        unsigned partial_start, partial_end;
4122        ext4_fsblk_t start, end;
4123        loff_t byte_end = (lstart + length - 1);
4124        int err = 0;
4125
4126        partial_start = lstart & (sb->s_blocksize - 1);
4127        partial_end = byte_end & (sb->s_blocksize - 1);
4128
4129        start = lstart >> sb->s_blocksize_bits;
4130        end = byte_end >> sb->s_blocksize_bits;
4131
4132        /* Handle partial zero within the single block */
4133        if (start == end &&
4134            (partial_start || (partial_end != sb->s_blocksize - 1))) {
4135                err = ext4_block_zero_page_range(handle, mapping,
4136                                                 lstart, length);
4137                return err;
4138        }
4139        /* Handle partial zero out on the start of the range */
4140        if (partial_start) {
4141                err = ext4_block_zero_page_range(handle, mapping,
4142                                                 lstart, sb->s_blocksize);
4143                if (err)
4144                        return err;
4145        }
4146        /* Handle partial zero out on the end of the range */
4147        if (partial_end != sb->s_blocksize - 1)
4148                err = ext4_block_zero_page_range(handle, mapping,
4149                                                 byte_end - partial_end,
4150                                                 partial_end + 1);
4151        return err;
4152}
4153
4154int ext4_can_truncate(struct inode *inode)
4155{
4156        if (S_ISREG(inode->i_mode))
4157                return 1;
4158        if (S_ISDIR(inode->i_mode))
4159                return 1;
4160        if (S_ISLNK(inode->i_mode))
4161                return !ext4_inode_is_fast_symlink(inode);
4162        return 0;
4163}
4164
4165/*
4166 * We have to make sure i_disksize gets properly updated before we truncate
4167 * page cache due to hole punching or zero range. Otherwise i_disksize update
4168 * can get lost as it may have been postponed to submission of writeback but
4169 * that will never happen after we truncate page cache.
4170 */
4171int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4172                                      loff_t len)
4173{
4174        handle_t *handle;
4175        loff_t size = i_size_read(inode);
4176
4177        WARN_ON(!inode_is_locked(inode));
4178        if (offset > size || offset + len < size)
4179                return 0;
4180
4181        if (EXT4_I(inode)->i_disksize >= size)
4182                return 0;
4183
4184        handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4185        if (IS_ERR(handle))
4186                return PTR_ERR(handle);
4187        ext4_update_i_disksize(inode, size);
4188        ext4_mark_inode_dirty(handle, inode);
4189        ext4_journal_stop(handle);
4190
4191        return 0;
4192}
4193
4194/*
4195 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4196 * associated with the given offset and length
4197 *
4198 * @inode:  File inode
4199 * @offset: The offset where the hole will begin
4200 * @len:    The length of the hole
4201 *
4202 * Returns: 0 on success or negative on failure
4203 */
4204
4205int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4206{
4207        struct super_block *sb = inode->i_sb;
4208        ext4_lblk_t first_block, stop_block;
4209        struct address_space *mapping = inode->i_mapping;
4210        loff_t first_block_offset, last_block_offset;
4211        handle_t *handle;
4212        unsigned int credits;
4213        int ret = 0;
4214
4215        if (!S_ISREG(inode->i_mode))
4216                return -EOPNOTSUPP;
4217
4218        trace_ext4_punch_hole(inode, offset, length, 0);
4219
4220        /*
4221         * Write out all dirty pages to avoid race conditions
4222         * Then release them.
4223         */
4224        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4225                ret = filemap_write_and_wait_range(mapping, offset,
4226                                                   offset + length - 1);
4227                if (ret)
4228                        return ret;
4229        }
4230
4231        inode_lock(inode);
4232
4233        /* No need to punch hole beyond i_size */
4234        if (offset >= inode->i_size)
4235                goto out_mutex;
4236
4237        /*
4238         * If the hole extends beyond i_size, set the hole
4239         * to end after the page that contains i_size
4240         */
4241        if (offset + length > inode->i_size) {
4242                length = inode->i_size +
4243                   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4244                   offset;
4245        }
4246
4247        if (offset & (sb->s_blocksize - 1) ||
4248            (offset + length) & (sb->s_blocksize - 1)) {
4249                /*
4250                 * Attach jinode to inode for jbd2 if we do any zeroing of
4251                 * partial block
4252                 */
4253                ret = ext4_inode_attach_jinode(inode);
4254                if (ret < 0)
4255                        goto out_mutex;
4256
4257        }
4258
4259        /* Wait all existing dio workers, newcomers will block on i_mutex */
4260        inode_dio_wait(inode);
4261
4262        /*
4263         * Prevent page faults from reinstantiating pages we have released from
4264         * page cache.
4265         */
4266        down_write(&EXT4_I(inode)->i_mmap_sem);
4267        first_block_offset = round_up(offset, sb->s_blocksize);
4268        last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4269
4270        /* Now release the pages and zero block aligned part of pages*/
4271        if (last_block_offset > first_block_offset) {
4272                ret = ext4_update_disksize_before_punch(inode, offset, length);
4273                if (ret)
4274                        goto out_dio;
4275                truncate_pagecache_range(inode, first_block_offset,
4276                                         last_block_offset);
4277        }
4278
4279        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4280                credits = ext4_writepage_trans_blocks(inode);
4281        else
4282                credits = ext4_blocks_for_truncate(inode);
4283        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4284        if (IS_ERR(handle)) {
4285                ret = PTR_ERR(handle);
4286                ext4_std_error(sb, ret);
4287                goto out_dio;
4288        }
4289
4290        ret = ext4_zero_partial_blocks(handle, inode, offset,
4291                                       length);
4292        if (ret)
4293                goto out_stop;
4294
4295        first_block = (offset + sb->s_blocksize - 1) >>
4296                EXT4_BLOCK_SIZE_BITS(sb);
4297        stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4298
4299        /* If there are blocks to remove, do it */
4300        if (stop_block > first_block) {
4301
4302                down_write(&EXT4_I(inode)->i_data_sem);
4303                ext4_discard_preallocations(inode);
4304
4305                ret = ext4_es_remove_extent(inode, first_block,
4306                                            stop_block - first_block);
4307                if (ret) {
4308                        up_write(&EXT4_I(inode)->i_data_sem);
4309                        goto out_stop;
4310                }
4311
4312                if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4313                        ret = ext4_ext_remove_space(inode, first_block,
4314                                                    stop_block - 1);
4315                else
4316                        ret = ext4_ind_remove_space(handle, inode, first_block,
4317                                                    stop_block);
4318
4319                up_write(&EXT4_I(inode)->i_data_sem);
4320        }
4321        if (IS_SYNC(inode))
4322                ext4_handle_sync(handle);
4323
4324        inode->i_mtime = inode->i_ctime = current_time(inode);
4325        ext4_mark_inode_dirty(handle, inode);
4326        if (ret >= 0)
4327                ext4_update_inode_fsync_trans(handle, inode, 1);
4328out_stop:
4329        ext4_journal_stop(handle);
4330out_dio:
4331        up_write(&EXT4_I(inode)->i_mmap_sem);
4332out_mutex:
4333        inode_unlock(inode);
4334        return ret;
4335}
4336
4337int ext4_inode_attach_jinode(struct inode *inode)
4338{
4339        struct ext4_inode_info *ei = EXT4_I(inode);
4340        struct jbd2_inode *jinode;
4341
4342        if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4343                return 0;
4344
4345        jinode = jbd2_alloc_inode(GFP_KERNEL);
4346        spin_lock(&inode->i_lock);
4347        if (!ei->jinode) {
4348                if (!jinode) {
4349                        spin_unlock(&inode->i_lock);
4350                        return -ENOMEM;
4351                }
4352                ei->jinode = jinode;
4353                jbd2_journal_init_jbd_inode(ei->jinode, inode);
4354                jinode = NULL;
4355        }
4356        spin_unlock(&inode->i_lock);
4357        if (unlikely(jinode != NULL))
4358                jbd2_free_inode(jinode);
4359        return 0;
4360}
4361
4362/*
4363 * ext4_truncate()
4364 *
4365 * We block out ext4_get_block() block instantiations across the entire
4366 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4367 * simultaneously on behalf of the same inode.
4368 *
4369 * As we work through the truncate and commit bits of it to the journal there
4370 * is one core, guiding principle: the file's tree must always be consistent on
4371 * disk.  We must be able to restart the truncate after a crash.
4372 *
4373 * The file's tree may be transiently inconsistent in memory (although it
4374 * probably isn't), but whenever we close off and commit a journal transaction,
4375 * the contents of (the filesystem + the journal) must be consistent and
4376 * restartable.  It's pretty simple, really: bottom up, right to left (although
4377 * left-to-right works OK too).
4378 *
4379 * Note that at recovery time, journal replay occurs *before* the restart of
4380 * truncate against the orphan inode list.
4381 *
4382 * The committed inode has the new, desired i_size (which is the same as
4383 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4384 * that this inode's truncate did not complete and it will again call
4385 * ext4_truncate() to have another go.  So there will be instantiated blocks
4386 * to the right of the truncation point in a crashed ext4 filesystem.  But
4387 * that's fine - as long as they are linked from the inode, the post-crash
4388 * ext4_truncate() run will find them and release them.
4389 */
4390int ext4_truncate(struct inode *inode)
4391{
4392        struct ext4_inode_info *ei = EXT4_I(inode);
4393        unsigned int credits;
4394        int err = 0;
4395        handle_t *handle;
4396        struct address_space *mapping = inode->i_mapping;
4397
4398        /*
4399         * There is a possibility that we're either freeing the inode
4400         * or it's a completely new inode. In those cases we might not
4401         * have i_mutex locked because it's not necessary.
4402         */
4403        if (!(inode->i_state & (I_NEW|I_FREEING)))
4404                WARN_ON(!inode_is_locked(inode));
4405        trace_ext4_truncate_enter(inode);
4406
4407        if (!ext4_can_truncate(inode))
4408                return 0;
4409
4410        ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4411
4412        if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4413                ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4414
4415        if (ext4_has_inline_data(inode)) {
4416                int has_inline = 1;
4417
4418                err = ext4_inline_data_truncate(inode, &has_inline);
4419                if (err)
4420                        return err;
4421                if (has_inline)
4422                        return 0;
4423        }
4424
4425        /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4426        if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4427                if (ext4_inode_attach_jinode(inode) < 0)
4428                        return 0;
4429        }
4430
4431        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4432                credits = ext4_writepage_trans_blocks(inode);
4433        else
4434                credits = ext4_blocks_for_truncate(inode);
4435
4436        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4437        if (IS_ERR(handle))
4438                return PTR_ERR(handle);
4439
4440        if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4441                ext4_block_truncate_page(handle, mapping, inode->i_size);
4442
4443        /*
4444         * We add the inode to the orphan list, so that if this
4445         * truncate spans multiple transactions, and we crash, we will
4446         * resume the truncate when the filesystem recovers.  It also
4447         * marks the inode dirty, to catch the new size.
4448         *
4449         * Implication: the file must always be in a sane, consistent
4450         * truncatable state while each transaction commits.
4451         */
4452        err = ext4_orphan_add(handle, inode);
4453        if (err)
4454                goto out_stop;
4455
4456        down_write(&EXT4_I(inode)->i_data_sem);
4457
4458        ext4_discard_preallocations(inode);
4459
4460        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4461                err = ext4_ext_truncate(handle, inode);
4462        else
4463                ext4_ind_truncate(handle, inode);
4464
4465        up_write(&ei->i_data_sem);
4466        if (err)
4467                goto out_stop;
4468
4469        if (IS_SYNC(inode))
4470                ext4_handle_sync(handle);
4471
4472out_stop:
4473        /*
4474         * If this was a simple ftruncate() and the file will remain alive,
4475         * then we need to clear up the orphan record which we created above.
4476         * However, if this was a real unlink then we were called by
4477         * ext4_evict_inode(), and we allow that function to clean up the
4478         * orphan info for us.
4479         */
4480        if (inode->i_nlink)
4481                ext4_orphan_del(handle, inode);
4482
4483        inode->i_mtime = inode->i_ctime = current_time(inode);
4484        ext4_mark_inode_dirty(handle, inode);
4485        ext4_journal_stop(handle);
4486
4487        trace_ext4_truncate_exit(inode);
4488        return err;
4489}
4490
4491/*
4492 * ext4_get_inode_loc returns with an extra refcount against the inode's
4493 * underlying buffer_head on success. If 'in_mem' is true, we have all
4494 * data in memory that is needed to recreate the on-disk version of this
4495 * inode.
4496 */
4497static int __ext4_get_inode_loc(struct inode *inode,
4498                                struct ext4_iloc *iloc, int in_mem)
4499{
4500        struct ext4_group_desc  *gdp;
4501        struct buffer_head      *bh;
4502        struct super_block      *sb = inode->i_sb;
4503        ext4_fsblk_t            block;
4504        int                     inodes_per_block, inode_offset;
4505
4506        iloc->bh = NULL;
4507        if (inode->i_ino < EXT4_ROOT_INO ||
4508            inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4509                return -EFSCORRUPTED;
4510
4511        iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4512        gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4513        if (!gdp)
4514                return -EIO;
4515
4516        /*
4517         * Figure out the offset within the block group inode table
4518         */
4519        inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4520        inode_offset = ((inode->i_ino - 1) %
4521                        EXT4_INODES_PER_GROUP(sb));
4522        block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4523        iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4524
4525        bh = sb_getblk(sb, block);
4526        if (unlikely(!bh))
4527                return -ENOMEM;
4528        if (!buffer_uptodate(bh)) {
4529                lock_buffer(bh);
4530
4531                /*
4532                 * If the buffer has the write error flag, we have failed
4533                 * to write out another inode in the same block.  In this
4534                 * case, we don't have to read the block because we may
4535                 * read the old inode data successfully.
4536                 */
4537                if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4538                        set_buffer_uptodate(bh);
4539
4540                if (buffer_uptodate(bh)) {
4541                        /* someone brought it uptodate while we waited */
4542                        unlock_buffer(bh);
4543                        goto has_buffer;
4544                }
4545
4546                /*
4547                 * If we have all information of the inode in memory and this
4548                 * is the only valid inode in the block, we need not read the
4549                 * block.
4550                 */
4551                if (in_mem) {
4552                        struct buffer_head *bitmap_bh;
4553                        int i, start;
4554
4555                        start = inode_offset & ~(inodes_per_block - 1);
4556
4557                        /* Is the inode bitmap in cache? */
4558                        bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4559                        if (unlikely(!bitmap_bh))
4560                                goto make_io;
4561
4562                        /*
4563                         * If the inode bitmap isn't in cache then the
4564                         * optimisation may end up performing two reads instead
4565                         * of one, so skip it.
4566                         */
4567                        if (!buffer_uptodate(bitmap_bh)) {
4568                                brelse(bitmap_bh);
4569                                goto make_io;
4570                        }
4571                        for (i = start; i < start + inodes_per_block; i++) {
4572                                if (i == inode_offset)
4573                                        continue;
4574                                if (ext4_test_bit(i, bitmap_bh->b_data))
4575                                        break;
4576                        }
4577                        brelse(bitmap_bh);
4578                        if (i == start + inodes_per_block) {
4579                                /* all other inodes are free, so skip I/O */
4580                                memset(bh->b_data, 0, bh->b_size);
4581                                set_buffer_uptodate(bh);
4582                                unlock_buffer(bh);
4583                                goto has_buffer;
4584                        }
4585                }
4586
4587make_io:
4588                /*
4589                 * If we need to do any I/O, try to pre-readahead extra
4590                 * blocks from the inode table.
4591                 */
4592                if (EXT4_SB(sb)->s_inode_readahead_blks) {
4593                        ext4_fsblk_t b, end, table;
4594                        unsigned num;
4595                        __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4596
4597                        table = ext4_inode_table(sb, gdp);
4598                        /* s_inode_readahead_blks is always a power of 2 */
4599                        b = block & ~((ext4_fsblk_t) ra_blks - 1);
4600                        if (table > b)
4601                                b = table;
4602                        end = b + ra_blks;
4603                        num = EXT4_INODES_PER_GROUP(sb);
4604                        if (ext4_has_group_desc_csum(sb))
4605                                num -= ext4_itable_unused_count(sb, gdp);
4606                        table += num / inodes_per_block;
4607                        if (end > table)
4608                                end = table;
4609                        while (b <= end)
4610                                sb_breadahead(sb, b++);
4611                }
4612
4613                /*
4614                 * There are other valid inodes in the buffer, this inode
4615                 * has in-inode xattrs, or we don't have this inode in memory.
4616                 * Read the block from disk.
4617                 */
4618                trace_ext4_load_inode(inode);
4619                get_bh(bh);
4620                bh->b_end_io = end_buffer_read_sync;
4621                submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4622                wait_on_buffer(bh);
4623                if (!buffer_uptodate(bh)) {
4624                        EXT4_ERROR_INODE_BLOCK(inode, block,
4625                                               "unable to read itable block");
4626                        brelse(bh);
4627                        return -EIO;
4628                }
4629        }
4630has_buffer:
4631        iloc->bh = bh;
4632        return 0;
4633}
4634
4635int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4636{
4637        /* We have all inode data except xattrs in memory here. */
4638        return __ext4_get_inode_loc(inode, iloc,
4639                !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4640}
4641
4642static bool ext4_should_use_dax(struct inode *inode)
4643{
4644        if (!test_opt(inode->i_sb, DAX))
4645                return false;
4646        if (!S_ISREG(inode->i_mode))
4647                return false;
4648        if (ext4_should_journal_data(inode))
4649                return false;
4650        if (ext4_has_inline_data(inode))
4651                return false;
4652        if (ext4_encrypted_inode(inode))
4653                return false;
4654        return true;
4655}
4656
4657void ext4_set_inode_flags(struct inode *inode)
4658{
4659        unsigned int flags = EXT4_I(inode)->i_flags;
4660        unsigned int new_fl = 0;
4661
4662        if (flags & EXT4_SYNC_FL)
4663                new_fl |= S_SYNC;
4664        if (flags & EXT4_APPEND_FL)
4665                new_fl |= S_APPEND;
4666        if (flags & EXT4_IMMUTABLE_FL)
4667                new_fl |= S_IMMUTABLE;
4668        if (flags & EXT4_NOATIME_FL)
4669                new_fl |= S_NOATIME;
4670        if (flags & EXT4_DIRSYNC_FL)
4671                new_fl |= S_DIRSYNC;
4672        if (ext4_should_use_dax(inode))
4673                new_fl |= S_DAX;
4674        if (flags & EXT4_ENCRYPT_FL)
4675                new_fl |= S_ENCRYPTED;
4676        inode_set_flags(inode, new_fl,
4677                        S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4678                        S_ENCRYPTED);
4679}
4680
4681static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4682                                  struct ext4_inode_info *ei)
4683{
4684        blkcnt_t i_blocks ;
4685        struct inode *inode = &(ei->vfs_inode);
4686        struct super_block *sb = inode->i_sb;
4687
4688        if (ext4_has_feature_huge_file(sb)) {
4689                /* we are using combined 48 bit field */
4690                i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4691                                        le32_to_cpu(raw_inode->i_blocks_lo);
4692                if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4693                        /* i_blocks represent file system block size */
4694                        return i_blocks  << (inode->i_blkbits - 9);
4695                } else {
4696                        return i_blocks;
4697                }
4698        } else {
4699                return le32_to_cpu(raw_inode->i_blocks_lo);
4700        }
4701}
4702
4703static inline int ext4_iget_extra_inode(struct inode *inode,
4704                                         struct ext4_inode *raw_inode,
4705                                         struct ext4_inode_info *ei)
4706{
4707        __le32 *magic = (void *)raw_inode +
4708                        EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4709
4710        if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4711            EXT4_INODE_SIZE(inode->i_sb) &&
4712            *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4713                ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4714                return ext4_find_inline_data_nolock(inode);
4715        } else
4716                EXT4_I(inode)->i_inline_off = 0;
4717        return 0;
4718}
4719
4720int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4721{
4722        if (!ext4_has_feature_project(inode->i_sb))
4723                return -EOPNOTSUPP;
4724        *projid = EXT4_I(inode)->i_projid;
4725        return 0;
4726}
4727
4728/*
4729 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4730 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4731 * set.
4732 */
4733static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4734{
4735        if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4736                inode_set_iversion_raw(inode, val);
4737        else
4738                inode_set_iversion_queried(inode, val);
4739}
4740static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4741{
4742        if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4743                return inode_peek_iversion_raw(inode);
4744        else
4745                return inode_peek_iversion(inode);
4746}
4747
4748struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4749{
4750        struct ext4_iloc iloc;
4751        struct ext4_inode *raw_inode;
4752        struct ext4_inode_info *ei;
4753        struct inode *inode;
4754        journal_t *journal = EXT4_SB(sb)->s_journal;
4755        long ret;
4756        loff_t size;
4757        int block;
4758        uid_t i_uid;
4759        gid_t i_gid;
4760        projid_t i_projid;
4761
4762        inode = iget_locked(sb, ino);
4763        if (!inode)
4764                return ERR_PTR(-ENOMEM);
4765        if (!(inode->i_state & I_NEW))
4766                return inode;
4767
4768        ei = EXT4_I(inode);
4769        iloc.bh = NULL;
4770
4771        ret = __ext4_get_inode_loc(inode, &iloc, 0);
4772        if (ret < 0)
4773                goto bad_inode;
4774        raw_inode = ext4_raw_inode(&iloc);
4775
4776        if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4777                EXT4_ERROR_INODE(inode, "root inode unallocated");
4778                ret = -EFSCORRUPTED;
4779                goto bad_inode;
4780        }
4781
4782        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4783                ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4784                if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4785                        EXT4_INODE_SIZE(inode->i_sb) ||
4786                    (ei->i_extra_isize & 3)) {
4787                        EXT4_ERROR_INODE(inode,
4788                                         "bad extra_isize %u (inode size %u)",
4789                                         ei->i_extra_isize,
4790                                         EXT4_INODE_SIZE(inode->i_sb));
4791                        ret = -EFSCORRUPTED;
4792                        goto bad_inode;
4793                }
4794        } else
4795                ei->i_extra_isize = 0;
4796
4797        /* Precompute checksum seed for inode metadata */
4798        if (ext4_has_metadata_csum(sb)) {
4799                struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4800                __u32 csum;
4801                __le32 inum = cpu_to_le32(inode->i_ino);
4802                __le32 gen = raw_inode->i_generation;
4803                csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4804                                   sizeof(inum));
4805                ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4806                                              sizeof(gen));
4807        }
4808
4809        if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4810                EXT4_ERROR_INODE(inode, "checksum invalid");
4811                ret = -EFSBADCRC;
4812                goto bad_inode;
4813        }
4814
4815        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4816        i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4817        i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4818        if (ext4_has_feature_project(sb) &&
4819            EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4820            EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4821                i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4822        else
4823                i_projid = EXT4_DEF_PROJID;
4824
4825        if (!(test_opt(inode->i_sb, NO_UID32))) {
4826                i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4827                i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4828        }
4829        i_uid_write(inode, i_uid);
4830        i_gid_write(inode, i_gid);
4831        ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4832        set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4833
4834        ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4835        ei->i_inline_off = 0;
4836        ei->i_dir_start_lookup = 0;
4837        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4838        /* We now have enough fields to check if the inode was active or not.
4839         * This is needed because nfsd might try to access dead inodes
4840         * the test is that same one that e2fsck uses
4841         * NeilBrown 1999oct15
4842         */
4843        if (inode->i_nlink == 0) {
4844                if ((inode->i_mode == 0 ||
4845                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4846                    ino != EXT4_BOOT_LOADER_INO) {
4847                        /* this inode is deleted */
4848                        ret = -ESTALE;
4849                        goto bad_inode;
4850                }
4851                /* The only unlinked inodes we let through here have
4852                 * valid i_mode and are being read by the orphan
4853                 * recovery code: that's fine, we're about to complete
4854                 * the process of deleting those.
4855                 * OR it is the EXT4_BOOT_LOADER_INO which is
4856                 * not initialized on a new filesystem. */
4857        }
4858        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4859        inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4860        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4861        if (ext4_has_feature_64bit(sb))
4862                ei->i_file_acl |=
4863                        ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4864        inode->i_size = ext4_isize(sb, raw_inode);
4865        if ((size = i_size_read(inode)) < 0) {
4866                EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4867                ret = -EFSCORRUPTED;
4868                goto bad_inode;
4869        }
4870        ei->i_disksize = inode->i_size;
4871#ifdef CONFIG_QUOTA
4872        ei->i_reserved_quota = 0;
4873#endif
4874        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4875        ei->i_block_group = iloc.block_group;
4876        ei->i_last_alloc_group = ~0;
4877        /*
4878         * NOTE! The in-memory inode i_data array is in little-endian order
4879         * even on big-endian machines: we do NOT byteswap the block numbers!
4880         */
4881        for (block = 0; block < EXT4_N_BLOCKS; block++)
4882                ei->i_data[block] = raw_inode->i_block[block];
4883        INIT_LIST_HEAD(&ei->i_orphan);
4884
4885        /*
4886         * Set transaction id's of transactions that have to be committed
4887         * to finish f[data]sync. We set them to currently running transaction
4888         * as we cannot be sure that the inode or some of its metadata isn't
4889         * part of the transaction - the inode could have been reclaimed and
4890         * now it is reread from disk.
4891         */
4892        if (journal) {
4893                transaction_t *transaction;
4894                tid_t tid;
4895
4896                read_lock(&journal->j_state_lock);
4897                if (journal->j_running_transaction)
4898                        transaction = journal->j_running_transaction;
4899                else
4900                        transaction = journal->j_committing_transaction;
4901                if (transaction)
4902                        tid = transaction->t_tid;
4903                else
4904                        tid = journal->j_commit_sequence;
4905                read_unlock(&journal->j_state_lock);
4906                ei->i_sync_tid = tid;
4907                ei->i_datasync_tid = tid;
4908        }
4909
4910        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4911                if (ei->i_extra_isize == 0) {
4912                        /* The extra space is currently unused. Use it. */
4913                        BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4914                        ei->i_extra_isize = sizeof(struct ext4_inode) -
4915                                            EXT4_GOOD_OLD_INODE_SIZE;
4916                } else {
4917                        ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4918                        if (ret)
4919                                goto bad_inode;
4920                }
4921        }
4922
4923        EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4924        EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4925        EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4926        EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4927
4928        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4929                u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4930
4931                if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4932                        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4933                                ivers |=
4934                    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4935                }
4936                ext4_inode_set_iversion_queried(inode, ivers);
4937        }
4938
4939        ret = 0;
4940        if (ei->i_file_acl &&
4941            !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4942                EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4943                                 ei->i_file_acl);
4944                ret = -EFSCORRUPTED;
4945                goto bad_inode;
4946        } else if (!ext4_has_inline_data(inode)) {
4947                if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4948                        if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4949                            (S_ISLNK(inode->i_mode) &&
4950                             !ext4_inode_is_fast_symlink(inode))))
4951                                /* Validate extent which is part of inode */
4952                                ret = ext4_ext_check_inode(inode);
4953                } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4954                           (S_ISLNK(inode->i_mode) &&
4955                            !ext4_inode_is_fast_symlink(inode))) {
4956                        /* Validate block references which are part of inode */
4957                        ret = ext4_ind_check_inode(inode);
4958                }
4959        }
4960        if (ret)
4961                goto bad_inode;
4962
4963        if (S_ISREG(inode->i_mode)) {
4964                inode->i_op = &ext4_file_inode_operations;
4965                inode->i_fop = &ext4_file_operations;
4966                ext4_set_aops(inode);
4967        } else if (S_ISDIR(inode->i_mode)) {
4968                inode->i_op = &ext4_dir_inode_operations;
4969                inode->i_fop = &ext4_dir_operations;
4970        } else if (S_ISLNK(inode->i_mode)) {
4971                /* VFS does not allow setting these so must be corruption */
4972                if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4973                        EXT4_ERROR_INODE(inode,
4974                          "immutable or append flags not allowed on symlinks");
4975                        ret = -EFSCORRUPTED;
4976                        goto bad_inode;
4977                }
4978                if (ext4_encrypted_inode(inode)) {
4979                        inode->i_op = &ext4_encrypted_symlink_inode_operations;
4980                        ext4_set_aops(inode);
4981                } else if (ext4_inode_is_fast_symlink(inode)) {
4982                        inode->i_link = (char *)ei->i_data;
4983                        inode->i_op = &ext4_fast_symlink_inode_operations;
4984                        nd_terminate_link(ei->i_data, inode->i_size,
4985                                sizeof(ei->i_data) - 1);
4986                } else {
4987                        inode->i_op = &ext4_symlink_inode_operations;
4988                        ext4_set_aops(inode);
4989                }
4990                inode_nohighmem(inode);
4991        } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4992              S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4993                inode->i_op = &ext4_special_inode_operations;
4994                if (raw_inode->i_block[0])
4995                        init_special_inode(inode, inode->i_mode,
4996                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4997                else
4998                        init_special_inode(inode, inode->i_mode,
4999                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5000        } else if (ino == EXT4_BOOT_LOADER_INO) {
5001                make_bad_inode(inode);
5002        } else {
5003                ret = -EFSCORRUPTED;
5004                EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5005                goto bad_inode;
5006        }
5007        brelse(iloc.bh);
5008        ext4_set_inode_flags(inode);
5009
5010        unlock_new_inode(inode);
5011        return inode;
5012
5013bad_inode:
5014        brelse(iloc.bh);
5015        iget_failed(inode);
5016        return ERR_PTR(ret);
5017}
5018
5019struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
5020{
5021        if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
5022                return ERR_PTR(-EFSCORRUPTED);
5023        return ext4_iget(sb, ino);
5024}
5025
5026static int ext4_inode_blocks_set(handle_t *handle,
5027                                struct ext4_inode *raw_inode,
5028                                struct ext4_inode_info *ei)
5029{
5030        struct inode *inode = &(ei->vfs_inode);
5031        u64 i_blocks = inode->i_blocks;
5032        struct super_block *sb = inode->i_sb;
5033
5034        if (i_blocks <= ~0U) {
5035                /*
5036                 * i_blocks can be represented in a 32 bit variable
5037                 * as multiple of 512 bytes
5038                 */
5039                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5040                raw_inode->i_blocks_high = 0;
5041                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5042                return 0;
5043        }
5044        if (!ext4_has_feature_huge_file(sb))
5045                return -EFBIG;
5046
5047        if (i_blocks <= 0xffffffffffffULL) {
5048                /*
5049                 * i_blocks can be represented in a 48 bit variable
5050                 * as multiple of 512 bytes
5051                 */
5052                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5053                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5054                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5055        } else {
5056                ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5057                /* i_block is stored in file system block size */
5058                i_blocks = i_blocks >> (inode->i_blkbits - 9);
5059                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5060                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5061        }
5062        return 0;
5063}
5064
5065struct other_inode {
5066        unsigned long           orig_ino;
5067        struct ext4_inode       *raw_inode;
5068};
5069
5070static int other_inode_match(struct inode * inode, unsigned long ino,
5071                             void *data)
5072{
5073        struct other_inode *oi = (struct other_inode *) data;
5074
5075        if ((inode->i_ino != ino) ||
5076            (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5077                               I_DIRTY_INODE)) ||
5078            ((inode->i_state & I_DIRTY_TIME) == 0))
5079                return 0;
5080        spin_lock(&inode->i_lock);
5081        if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5082                                I_DIRTY_INODE)) == 0) &&
5083            (inode->i_state & I_DIRTY_TIME)) {
5084                struct ext4_inode_info  *ei = EXT4_I(inode);
5085
5086                inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5087                spin_unlock(&inode->i_lock);
5088
5089                spin_lock(&ei->i_raw_lock);
5090                EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5091                EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5092                EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5093                ext4_inode_csum_set(inode, oi->raw_inode, ei);
5094                spin_unlock(&ei->i_raw_lock);
5095                trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5096                return -1;
5097        }
5098        spin_unlock(&inode->i_lock);
5099        return -1;
5100}
5101
5102/*
5103 * Opportunistically update the other time fields for other inodes in
5104 * the same inode table block.
5105 */
5106static void ext4_update_other_inodes_time(struct super_block *sb,
5107                                          unsigned long orig_ino, char *buf)
5108{
5109        struct other_inode oi;
5110        unsigned long ino;
5111        int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5112        int inode_size = EXT4_INODE_SIZE(sb);
5113
5114        oi.orig_ino = orig_ino;
5115        /*
5116         * Calculate the first inode in the inode table block.  Inode
5117         * numbers are one-based.  That is, the first inode in a block
5118         * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5119         */
5120        ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5121        for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5122                if (ino == orig_ino)
5123                        continue;
5124                oi.raw_inode = (struct ext4_inode *) buf;
5125                (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5126        }
5127}
5128
5129/*
5130 * Post the struct inode info into an on-disk inode location in the
5131 * buffer-cache.  This gobbles the caller's reference to the
5132 * buffer_head in the inode location struct.
5133 *
5134 * The caller must have write access to iloc->bh.
5135 */
5136static int ext4_do_update_inode(handle_t *handle,
5137                                struct inode *inode,
5138                                struct ext4_iloc *iloc)
5139{
5140        struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5141        struct ext4_inode_info *ei = EXT4_I(inode);
5142        struct buffer_head *bh = iloc->bh;
5143        struct super_block *sb = inode->i_sb;
5144        int err = 0, rc, block;
5145        int need_datasync = 0, set_large_file = 0;
5146        uid_t i_uid;
5147        gid_t i_gid;
5148        projid_t i_projid;
5149
5150        spin_lock(&ei->i_raw_lock);
5151
5152        /* For fields not tracked in the in-memory inode,
5153         * initialise them to zero for new inodes. */
5154        if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5155                memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5156
5157        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5158        i_uid = i_uid_read(inode);
5159        i_gid = i_gid_read(inode);
5160        i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5161        if (!(test_opt(inode->i_sb, NO_UID32))) {
5162                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5163                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5164/*
5165 * Fix up interoperability with old kernels. Otherwise, old inodes get
5166 * re-used with the upper 16 bits of the uid/gid intact
5167 */
5168                if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5169                        raw_inode->i_uid_high = 0;
5170                        raw_inode->i_gid_high = 0;
5171                } else {
5172                        raw_inode->i_uid_high =
5173                                cpu_to_le16(high_16_bits(i_uid));
5174                        raw_inode->i_gid_high =
5175                                cpu_to_le16(high_16_bits(i_gid));
5176                }
5177        } else {
5178                raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5179                raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5180                raw_inode->i_uid_high = 0;
5181                raw_inode->i_gid_high = 0;
5182        }
5183        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5184
5185        EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5186        EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5187        EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5188        EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5189
5190        err = ext4_inode_blocks_set(handle, raw_inode, ei);
5191        if (err) {
5192                spin_unlock(&ei->i_raw_lock);
5193                goto out_brelse;
5194        }
5195        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5196        raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5197        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5198                raw_inode->i_file_acl_high =
5199                        cpu_to_le16(ei->i_file_acl >> 32);
5200        raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5201        if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5202                ext4_isize_set(raw_inode, ei->i_disksize);
5203                need_datasync = 1;
5204        }
5205        if (ei->i_disksize > 0x7fffffffULL) {
5206                if (!ext4_has_feature_large_file(sb) ||
5207                                EXT4_SB(sb)->s_es->s_rev_level ==
5208                    cpu_to_le32(EXT4_GOOD_OLD_REV))
5209                        set_large_file = 1;
5210        }
5211        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5212        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5213                if (old_valid_dev(inode->i_rdev)) {
5214                        raw_inode->i_block[0] =
5215                                cpu_to_le32(old_encode_dev(inode->i_rdev));
5216                        raw_inode->i_block[1] = 0;
5217                } else {
5218                        raw_inode->i_block[0] = 0;
5219                        raw_inode->i_block[1] =
5220                                cpu_to_le32(new_encode_dev(inode->i_rdev));
5221                        raw_inode->i_block[2] = 0;
5222                }
5223        } else if (!ext4_has_inline_data(inode)) {
5224                for (block = 0; block < EXT4_N_BLOCKS; block++)
5225                        raw_inode->i_block[block] = ei->i_data[block];
5226        }
5227
5228        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5229                u64 ivers = ext4_inode_peek_iversion(inode);
5230
5231                raw_inode->i_disk_version = cpu_to_le32(ivers);
5232                if (ei->i_extra_isize) {
5233                        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5234                                raw_inode->i_version_hi =
5235                                        cpu_to_le32(ivers >> 32);
5236                        raw_inode->i_extra_isize =
5237                                cpu_to_le16(ei->i_extra_isize);
5238                }
5239        }
5240
5241        BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5242               i_projid != EXT4_DEF_PROJID);
5243
5244        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5245            EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5246                raw_inode->i_projid = cpu_to_le32(i_projid);
5247
5248        ext4_inode_csum_set(inode, raw_inode, ei);
5249        spin_unlock(&ei->i_raw_lock);
5250        if (inode->i_sb->s_flags & SB_LAZYTIME)
5251                ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5252                                              bh->b_data);
5253
5254        BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5255        rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5256        if (!err)
5257                err = rc;
5258        ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5259        if (set_large_file) {
5260                BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5261                err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5262                if (err)
5263                        goto out_brelse;
5264                ext4_update_dynamic_rev(sb);
5265                ext4_set_feature_large_file(sb);
5266                ext4_handle_sync(handle);
5267                err = ext4_handle_dirty_super(handle, sb);
5268        }
5269        ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5270out_brelse:
5271        brelse(bh);
5272        ext4_std_error(inode->i_sb, err);
5273        return err;
5274}
5275
5276/*
5277 * ext4_write_inode()
5278 *
5279 * We are called from a few places:
5280 *
5281 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5282 *   Here, there will be no transaction running. We wait for any running
5283 *   transaction to commit.
5284 *
5285 * - Within flush work (sys_sync(), kupdate and such).
5286 *   We wait on commit, if told to.
5287 *
5288 * - Within iput_final() -> write_inode_now()
5289 *   We wait on commit, if told to.
5290 *
5291 * In all cases it is actually safe for us to return without doing anything,
5292 * because the inode has been copied into a raw inode buffer in
5293 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5294 * writeback.
5295 *
5296 * Note that we are absolutely dependent upon all inode dirtiers doing the
5297 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5298 * which we are interested.
5299 *
5300 * It would be a bug for them to not do this.  The code:
5301 *
5302 *      mark_inode_dirty(inode)
5303 *      stuff();
5304 *      inode->i_size = expr;
5305 *
5306 * is in error because write_inode() could occur while `stuff()' is running,
5307 * and the new i_size will be lost.  Plus the inode will no longer be on the
5308 * superblock's dirty inode list.
5309 */
5310int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5311{
5312        int err;
5313
5314        if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5315                return 0;
5316
5317        if (EXT4_SB(inode->i_sb)->s_journal) {
5318                if (ext4_journal_current_handle()) {
5319                        jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5320                        dump_stack();
5321                        return -EIO;
5322                }
5323
5324                /*
5325                 * No need to force transaction in WB_SYNC_NONE mode. Also
5326                 * ext4_sync_fs() will force the commit after everything is
5327                 * written.
5328                 */
5329                if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5330                        return 0;
5331
5332                err = ext4_force_commit(inode->i_sb);
5333        } else {
5334                struct ext4_iloc iloc;
5335
5336                err = __ext4_get_inode_loc(inode, &iloc, 0);
5337                if (err)
5338                        return err;
5339                /*
5340                 * sync(2) will flush the whole buffer cache. No need to do
5341                 * it here separately for each inode.
5342                 */
5343                if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5344                        sync_dirty_buffer(iloc.bh);
5345                if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5346                        EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5347                                         "IO error syncing inode");
5348                        err = -EIO;
5349                }
5350                brelse(iloc.bh);
5351        }
5352        return err;
5353}
5354
5355/*
5356 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5357 * buffers that are attached to a page stradding i_size and are undergoing
5358 * commit. In that case we have to wait for commit to finish and try again.
5359 */
5360static void ext4_wait_for_tail_page_commit(struct inode *inode)
5361{
5362        struct page *page;
5363        unsigned offset;
5364        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5365        tid_t commit_tid = 0;
5366        int ret;
5367
5368        offset = inode->i_size & (PAGE_SIZE - 1);
5369        /*
5370         * All buffers in the last page remain valid? Then there's nothing to
5371         * do. We do the check mainly to optimize the common PAGE_SIZE ==
5372         * blocksize case
5373         */
5374        if (offset > PAGE_SIZE - i_blocksize(inode))
5375                return;
5376        while (1) {
5377                page = find_lock_page(inode->i_mapping,
5378                                      inode->i_size >> PAGE_SHIFT);
5379                if (!page)
5380                        return;
5381                ret = __ext4_journalled_invalidatepage(page, offset,
5382                                                PAGE_SIZE - offset);
5383                unlock_page(page);
5384                put_page(page);
5385                if (ret != -EBUSY)
5386                        return;
5387                commit_tid = 0;
5388                read_lock(&journal->j_state_lock);
5389                if (journal->j_committing_transaction)
5390                        commit_tid = journal->j_committing_transaction->t_tid;
5391                read_unlock(&journal->j_state_lock);
5392                if (commit_tid)
5393                        jbd2_log_wait_commit(journal, commit_tid);
5394        }
5395}
5396
5397/*
5398 * ext4_setattr()
5399 *
5400 * Called from notify_change.
5401 *
5402 * We want to trap VFS attempts to truncate the file as soon as
5403 * possible.  In particular, we want to make sure that when the VFS
5404 * shrinks i_size, we put the inode on the orphan list and modify
5405 * i_disksize immediately, so that during the subsequent flushing of
5406 * dirty pages and freeing of disk blocks, we can guarantee that any
5407 * commit will leave the blocks being flushed in an unused state on
5408 * disk.  (On recovery, the inode will get truncated and the blocks will
5409 * be freed, so we have a strong guarantee that no future commit will
5410 * leave these blocks visible to the user.)
5411 *
5412 * Another thing we have to assure is that if we are in ordered mode
5413 * and inode is still attached to the committing transaction, we must
5414 * we start writeout of all the dirty pages which are being truncated.
5415 * This way we are sure that all the data written in the previous
5416 * transaction are already on disk (truncate waits for pages under
5417 * writeback).
5418 *
5419 * Called with inode->i_mutex down.
5420 */
5421int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5422{
5423        struct inode *inode = d_inode(dentry);
5424        int error, rc = 0;
5425        int orphan = 0;
5426        const unsigned int ia_valid = attr->ia_valid;
5427
5428        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5429                return -EIO;
5430
5431        error = setattr_prepare(dentry, attr);
5432        if (error)
5433                return error;
5434
5435        error = fscrypt_prepare_setattr(dentry, attr);
5436        if (error)
5437                return error;
5438
5439        if (is_quota_modification(inode, attr)) {
5440                error = dquot_initialize(inode);
5441                if (error)
5442                        return error;
5443        }
5444        if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5445            (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5446                handle_t *handle;
5447
5448                /* (user+group)*(old+new) structure, inode write (sb,
5449                 * inode block, ? - but truncate inode update has it) */
5450                handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5451                        (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5452                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5453                if (IS_ERR(handle)) {
5454                        error = PTR_ERR(handle);
5455                        goto err_out;
5456                }
5457
5458                /* dquot_transfer() calls back ext4_get_inode_usage() which
5459                 * counts xattr inode references.
5460                 */
5461                down_read(&EXT4_I(inode)->xattr_sem);
5462                error = dquot_transfer(inode, attr);
5463                up_read(&EXT4_I(inode)->xattr_sem);
5464
5465                if (error) {
5466                        ext4_journal_stop(handle);
5467                        return error;
5468                }
5469                /* Update corresponding info in inode so that everything is in
5470                 * one transaction */
5471                if (attr->ia_valid & ATTR_UID)
5472                        inode->i_uid = attr->ia_uid;
5473                if (attr->ia_valid & ATTR_GID)
5474                        inode->i_gid = attr->ia_gid;
5475                error = ext4_mark_inode_dirty(handle, inode);
5476                ext4_journal_stop(handle);
5477        }
5478
5479        if (attr->ia_valid & ATTR_SIZE) {
5480                handle_t *handle;
5481                loff_t oldsize = inode->i_size;
5482                int shrink = (attr->ia_size <= inode->i_size);
5483
5484                if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5485                        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5486
5487                        if (attr->ia_size > sbi->s_bitmap_maxbytes)
5488                                return -EFBIG;
5489                }
5490                if (!S_ISREG(inode->i_mode))
5491                        return -EINVAL;
5492
5493                if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5494                        inode_inc_iversion(inode);
5495
5496                if (ext4_should_order_data(inode) &&
5497                    (attr->ia_size < inode->i_size)) {
5498                        error = ext4_begin_ordered_truncate(inode,
5499                                                            attr->ia_size);
5500                        if (error)
5501                                goto err_out;
5502                }
5503                if (attr->ia_size != inode->i_size) {
5504                        handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5505                        if (IS_ERR(handle)) {
5506                                error = PTR_ERR(handle);
5507                                goto err_out;
5508                        }
5509                        if (ext4_handle_valid(handle) && shrink) {
5510                                error = ext4_orphan_add(handle, inode);
5511                                orphan = 1;
5512                        }
5513                        /*
5514                         * Update c/mtime on truncate up, ext4_truncate() will
5515                         * update c/mtime in shrink case below
5516                         */
5517                        if (!shrink) {
5518                                inode->i_mtime = current_time(inode);
5519                                inode->i_ctime = inode->i_mtime;
5520                        }
5521                        down_write(&EXT4_I(inode)->i_data_sem);
5522                        EXT4_I(inode)->i_disksize = attr->ia_size;
5523                        rc = ext4_mark_inode_dirty(handle, inode);
5524                        if (!error)
5525                                error = rc;
5526                        /*
5527                         * We have to update i_size under i_data_sem together
5528                         * with i_disksize to avoid races with writeback code
5529                         * running ext4_wb_update_i_disksize().
5530                         */
5531                        if (!error)
5532                                i_size_write(inode, attr->ia_size);
5533                        up_write(&EXT4_I(inode)->i_data_sem);
5534                        ext4_journal_stop(handle);
5535                        if (error) {
5536                                if (orphan)
5537                                        ext4_orphan_del(NULL, inode);
5538                                goto err_out;
5539                        }
5540                }
5541                if (!shrink)
5542                        pagecache_isize_extended(inode, oldsize, inode->i_size);
5543
5544                /*
5545                 * Blocks are going to be removed from the inode. Wait
5546                 * for dio in flight.  Temporarily disable
5547                 * dioread_nolock to prevent livelock.
5548                 */
5549                if (orphan) {
5550                        if (!ext4_should_journal_data(inode)) {
5551                                inode_dio_wait(inode);
5552                        } else
5553                                ext4_wait_for_tail_page_commit(inode);
5554                }
5555                down_write(&EXT4_I(inode)->i_mmap_sem);
5556                /*
5557                 * Truncate pagecache after we've waited for commit
5558                 * in data=journal mode to make pages freeable.
5559                 */
5560                truncate_pagecache(inode, inode->i_size);
5561                if (shrink) {
5562                        rc = ext4_truncate(inode);
5563                        if (rc)
5564                                error = rc;
5565                }
5566                up_write(&EXT4_I(inode)->i_mmap_sem);
5567        }
5568
5569        if (!error) {
5570                setattr_copy(inode, attr);
5571                mark_inode_dirty(inode);
5572        }
5573
5574        /*
5575         * If the call to ext4_truncate failed to get a transaction handle at
5576         * all, we need to clean up the in-core orphan list manually.
5577         */
5578        if (orphan && inode->i_nlink)
5579                ext4_orphan_del(NULL, inode);
5580
5581        if (!error && (ia_valid & ATTR_MODE))
5582                rc = posix_acl_chmod(inode, inode->i_mode);
5583
5584err_out:
5585        ext4_std_error(inode->i_sb, error);
5586        if (!error)
5587                error = rc;
5588        return error;
5589}
5590
5591int ext4_getattr(const struct path *path, struct kstat *stat,
5592                 u32 request_mask, unsigned int query_flags)
5593{
5594        struct inode *inode = d_inode(path->dentry);
5595        struct ext4_inode *raw_inode;
5596        struct ext4_inode_info *ei = EXT4_I(inode);
5597        unsigned int flags;
5598
5599        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5600                stat->result_mask |= STATX_BTIME;
5601                stat->btime.tv_sec = ei->i_crtime.tv_sec;
5602                stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5603        }
5604
5605        flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5606        if (flags & EXT4_APPEND_FL)
5607                stat->attributes |= STATX_ATTR_APPEND;
5608        if (flags & EXT4_COMPR_FL)
5609                stat->attributes |= STATX_ATTR_COMPRESSED;
5610        if (flags & EXT4_ENCRYPT_FL)
5611                stat->attributes |= STATX_ATTR_ENCRYPTED;
5612        if (flags & EXT4_IMMUTABLE_FL)
5613                stat->attributes |= STATX_ATTR_IMMUTABLE;
5614        if (flags & EXT4_NODUMP_FL)
5615                stat->attributes |= STATX_ATTR_NODUMP;
5616
5617        stat->attributes_mask |= (STATX_ATTR_APPEND |
5618                                  STATX_ATTR_COMPRESSED |
5619                                  STATX_ATTR_ENCRYPTED |
5620                                  STATX_ATTR_IMMUTABLE |
5621                                  STATX_ATTR_NODUMP);
5622
5623        generic_fillattr(inode, stat);
5624        return 0;
5625}
5626
5627int ext4_file_getattr(const struct path *path, struct kstat *stat,
5628                      u32 request_mask, unsigned int query_flags)
5629{
5630        struct inode *inode = d_inode(path->dentry);
5631        u64 delalloc_blocks;
5632
5633        ext4_getattr(path, stat, request_mask, query_flags);
5634
5635        /*
5636         * If there is inline data in the inode, the inode will normally not
5637         * have data blocks allocated (it may have an external xattr block).
5638         * Report at least one sector for such files, so tools like tar, rsync,
5639         * others don't incorrectly think the file is completely sparse.
5640         */
5641        if (unlikely(ext4_has_inline_data(inode)))
5642                stat->blocks += (stat->size + 511) >> 9;
5643
5644        /*
5645         * We can't update i_blocks if the block allocation is delayed
5646         * otherwise in the case of system crash before the real block
5647         * allocation is done, we will have i_blocks inconsistent with
5648         * on-disk file blocks.
5649         * We always keep i_blocks updated together with real
5650         * allocation. But to not confuse with user, stat
5651         * will return the blocks that include the delayed allocation
5652         * blocks for this file.
5653         */
5654        delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5655                                   EXT4_I(inode)->i_reserved_data_blocks);
5656        stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5657        return 0;
5658}
5659
5660static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5661                                   int pextents)
5662{
5663        if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5664                return ext4_ind_trans_blocks(inode, lblocks);
5665        return ext4_ext_index_trans_blocks(inode, pextents);
5666}
5667
5668/*
5669 * Account for index blocks, block groups bitmaps and block group
5670 * descriptor blocks if modify datablocks and index blocks
5671 * worse case, the indexs blocks spread over different block groups
5672 *
5673 * If datablocks are discontiguous, they are possible to spread over
5674 * different block groups too. If they are contiguous, with flexbg,
5675 * they could still across block group boundary.
5676 *
5677 * Also account for superblock, inode, quota and xattr blocks
5678 */
5679static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5680                                  int pextents)
5681{
5682        ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5683        int gdpblocks;
5684        int idxblocks;
5685        int ret = 0;
5686
5687        /*
5688         * How many index blocks need to touch to map @lblocks logical blocks
5689         * to @pextents physical extents?
5690         */
5691        idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5692
5693        ret = idxblocks;
5694
5695        /*
5696         * Now let's see how many group bitmaps and group descriptors need
5697         * to account
5698         */
5699        groups = idxblocks + pextents;
5700        gdpblocks = groups;
5701        if (groups > ngroups)
5702                groups = ngroups;
5703        if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5704                gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5705
5706        /* bitmaps and block group descriptor blocks */
5707        ret += groups + gdpblocks;
5708
5709        /* Blocks for super block, inode, quota and xattr blocks */
5710        ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5711
5712        return ret;
5713}
5714
5715/*
5716 * Calculate the total number of credits to reserve to fit
5717 * the modification of a single pages into a single transaction,
5718 * which may include multiple chunks of block allocations.
5719 *
5720 * This could be called via ext4_write_begin()
5721 *
5722 * We need to consider the worse case, when
5723 * one new block per extent.
5724 */
5725int ext4_writepage_trans_blocks(struct inode *inode)
5726{
5727        int bpp = ext4_journal_blocks_per_page(inode);
5728        int ret;
5729
5730        ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5731
5732        /* Account for data blocks for journalled mode */
5733        if (ext4_should_journal_data(inode))
5734                ret += bpp;
5735        return ret;
5736}
5737
5738/*
5739 * Calculate the journal credits for a chunk of data modification.
5740 *
5741 * This is called from DIO, fallocate or whoever calling
5742 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5743 *
5744 * journal buffers for data blocks are not included here, as DIO
5745 * and fallocate do no need to journal data buffers.
5746 */
5747int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5748{
5749        return ext4_meta_trans_blocks(inode, nrblocks, 1);
5750}
5751
5752/*
5753 * The caller must have previously called ext4_reserve_inode_write().
5754 * Give this, we know that the caller already has write access to iloc->bh.
5755 */
5756int ext4_mark_iloc_dirty(handle_t *handle,
5757                         struct inode *inode, struct ext4_iloc *iloc)
5758{
5759        int err = 0;
5760
5761        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5762                return -EIO;
5763
5764        if (IS_I_VERSION(inode))
5765                inode_inc_iversion(inode);
5766
5767        /* the do_update_inode consumes one bh->b_count */
5768        get_bh(iloc->bh);
5769
5770        /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5771        err = ext4_do_update_inode(handle, inode, iloc);
5772        put_bh(iloc->bh);
5773        return err;
5774}
5775
5776/*
5777 * On success, We end up with an outstanding reference count against
5778 * iloc->bh.  This _must_ be cleaned up later.
5779 */
5780
5781int
5782ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5783                         struct ext4_iloc *iloc)
5784{
5785        int err;
5786
5787        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5788                return -EIO;
5789
5790        err = ext4_get_inode_loc(inode, iloc);
5791        if (!err) {
5792                BUFFER_TRACE(iloc->bh, "get_write_access");
5793                err = ext4_journal_get_write_access(handle, iloc->bh);
5794                if (err) {
5795                        brelse(iloc->bh);
5796                        iloc->bh = NULL;
5797                }
5798        }
5799        ext4_std_error(inode->i_sb, err);
5800        return err;
5801}
5802
5803static int __ext4_expand_extra_isize(struct inode *inode,
5804                                     unsigned int new_extra_isize,
5805                                     struct ext4_iloc *iloc,
5806                                     handle_t *handle, int *no_expand)
5807{
5808        struct ext4_inode *raw_inode;
5809        struct ext4_xattr_ibody_header *header;
5810        int error;
5811
5812        raw_inode = ext4_raw_inode(iloc);
5813
5814        header = IHDR(inode, raw_inode);
5815
5816        /* No extended attributes present */
5817        if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5818            header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5819                memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5820                       EXT4_I(inode)->i_extra_isize, 0,
5821                       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5822                EXT4_I(inode)->i_extra_isize = new_extra_isize;
5823                return 0;
5824        }
5825
5826        /* try to expand with EAs present */
5827        error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5828                                           raw_inode, handle);
5829        if (error) {
5830                /*
5831                 * Inode size expansion failed; don't try again
5832                 */
5833                *no_expand = 1;
5834        }
5835
5836        return error;
5837}
5838
5839/*
5840 * Expand an inode by new_extra_isize bytes.
5841 * Returns 0 on success or negative error number on failure.
5842 */
5843static int ext4_try_to_expand_extra_isize(struct inode *inode,
5844                                          unsigned int new_extra_isize,
5845                                          struct ext4_iloc iloc,
5846                                          handle_t *handle)
5847{
5848        int no_expand;
5849        int error;
5850
5851        if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5852                return -EOVERFLOW;
5853
5854        /*
5855         * In nojournal mode, we can immediately attempt to expand
5856         * the inode.  When journaled, we first need to obtain extra
5857         * buffer credits since we may write into the EA block
5858         * with this same handle. If journal_extend fails, then it will
5859         * only result in a minor loss of functionality for that inode.
5860         * If this is felt to be critical, then e2fsck should be run to
5861         * force a large enough s_min_extra_isize.
5862         */
5863        if (ext4_handle_valid(handle) &&
5864            jbd2_journal_extend(handle,
5865                                EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5866                return -ENOSPC;
5867
5868        if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5869                return -EBUSY;
5870
5871        error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5872                                          handle, &no_expand);
5873        ext4_write_unlock_xattr(inode, &no_expand);
5874
5875        return error;
5876}
5877
5878int ext4_expand_extra_isize(struct inode *inode,
5879                            unsigned int new_extra_isize,
5880                            struct ext4_iloc *iloc)
5881{
5882        handle_t *handle;
5883        int no_expand;
5884        int error, rc;
5885
5886        if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5887                brelse(iloc->bh);
5888                return -EOVERFLOW;
5889        }
5890
5891        handle = ext4_journal_start(inode, EXT4_HT_INODE,
5892                                    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5893        if (IS_ERR(handle)) {
5894                error = PTR_ERR(handle);
5895                brelse(iloc->bh);
5896                return error;
5897        }
5898
5899        ext4_write_lock_xattr(inode, &no_expand);
5900
5901        BUFFER_TRACE(iloc.bh, "get_write_access");
5902        error = ext4_journal_get_write_access(handle, iloc->bh);
5903        if (error) {
5904                brelse(iloc->bh);
5905                goto out_stop;
5906        }
5907
5908        error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5909                                          handle, &no_expand);
5910
5911        rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5912        if (!error)
5913                error = rc;
5914
5915        ext4_write_unlock_xattr(inode, &no_expand);
5916out_stop:
5917        ext4_journal_stop(handle);
5918        return error;
5919}
5920
5921/*
5922 * What we do here is to mark the in-core inode as clean with respect to inode
5923 * dirtiness (it may still be data-dirty).
5924 * This means that the in-core inode may be reaped by prune_icache
5925 * without having to perform any I/O.  This is a very good thing,
5926 * because *any* task may call prune_icache - even ones which
5927 * have a transaction open against a different journal.
5928 *
5929 * Is this cheating?  Not really.  Sure, we haven't written the
5930 * inode out, but prune_icache isn't a user-visible syncing function.
5931 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5932 * we start and wait on commits.
5933 */
5934int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5935{
5936        struct ext4_iloc iloc;
5937        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5938        int err;
5939
5940        might_sleep();
5941        trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5942        err = ext4_reserve_inode_write(handle, inode, &iloc);
5943        if (err)
5944                return err;
5945
5946        if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5947                ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5948                                               iloc, handle);
5949
5950        return ext4_mark_iloc_dirty(handle, inode, &iloc);
5951}
5952
5953/*
5954 * ext4_dirty_inode() is called from __mark_inode_dirty()
5955 *
5956 * We're really interested in the case where a file is being extended.
5957 * i_size has been changed by generic_commit_write() and we thus need
5958 * to include the updated inode in the current transaction.
5959 *
5960 * Also, dquot_alloc_block() will always dirty the inode when blocks
5961 * are allocated to the file.
5962 *
5963 * If the inode is marked synchronous, we don't honour that here - doing
5964 * so would cause a commit on atime updates, which we don't bother doing.
5965 * We handle synchronous inodes at the highest possible level.
5966 *
5967 * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5968 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5969 * to copy into the on-disk inode structure are the timestamp files.
5970 */
5971void ext4_dirty_inode(struct inode *inode, int flags)
5972{
5973        handle_t *handle;
5974
5975        if (flags == I_DIRTY_TIME)
5976                return;
5977        handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5978        if (IS_ERR(handle))
5979                goto out;
5980
5981        ext4_mark_inode_dirty(handle, inode);
5982
5983        ext4_journal_stop(handle);
5984out:
5985        return;
5986}
5987
5988#if 0
5989/*
5990 * Bind an inode's backing buffer_head into this transaction, to prevent
5991 * it from being flushed to disk early.  Unlike
5992 * ext4_reserve_inode_write, this leaves behind no bh reference and
5993 * returns no iloc structure, so the caller needs to repeat the iloc
5994 * lookup to mark the inode dirty later.
5995 */
5996static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5997{
5998        struct ext4_iloc iloc;
5999
6000        int err = 0;
6001        if (handle) {
6002                err = ext4_get_inode_loc(inode, &iloc);
6003                if (!err) {
6004                        BUFFER_TRACE(iloc.bh, "get_write_access");
6005                        err = jbd2_journal_get_write_access(handle, iloc.bh);
6006                        if (!err)
6007                                err = ext4_handle_dirty_metadata(handle,
6008                                                                 NULL,
6009                                                                 iloc.bh);
6010                        brelse(iloc.bh);
6011                }
6012        }
6013        ext4_std_error(inode->i_sb, err);
6014        return err;
6015}
6016#endif
6017
6018int ext4_change_inode_journal_flag(struct inode *inode, int val)
6019{
6020        journal_t *journal;
6021        handle_t *handle;
6022        int err;
6023        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6024
6025        /*
6026         * We have to be very careful here: changing a data block's
6027         * journaling status dynamically is dangerous.  If we write a
6028         * data block to the journal, change the status and then delete
6029         * that block, we risk forgetting to revoke the old log record
6030         * from the journal and so a subsequent replay can corrupt data.
6031         * So, first we make sure that the journal is empty and that
6032         * nobody is changing anything.
6033         */
6034
6035        journal = EXT4_JOURNAL(inode);
6036        if (!journal)
6037                return 0;
6038        if (is_journal_aborted(journal))
6039                return -EROFS;
6040
6041        /* Wait for all existing dio workers */
6042        inode_dio_wait(inode);
6043
6044        /*
6045         * Before flushing the journal and switching inode's aops, we have
6046         * to flush all dirty data the inode has. There can be outstanding
6047         * delayed allocations, there can be unwritten extents created by
6048         * fallocate or buffered writes in dioread_nolock mode covered by
6049         * dirty data which can be converted only after flushing the dirty
6050         * data (and journalled aops don't know how to handle these cases).
6051         */
6052        if (val) {
6053                down_write(&EXT4_I(inode)->i_mmap_sem);
6054                err = filemap_write_and_wait(inode->i_mapping);
6055                if (err < 0) {
6056                        up_write(&EXT4_I(inode)->i_mmap_sem);
6057                        return err;
6058                }
6059        }
6060
6061        percpu_down_write(&sbi->s_journal_flag_rwsem);
6062        jbd2_journal_lock_updates(journal);
6063
6064        /*
6065         * OK, there are no updates running now, and all cached data is
6066         * synced to disk.  We are now in a completely consistent state
6067         * which doesn't have anything in the journal, and we know that
6068         * no filesystem updates are running, so it is safe to modify
6069         * the inode's in-core data-journaling state flag now.
6070         */
6071
6072        if (val)
6073                ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6074        else {
6075                err = jbd2_journal_flush(journal);
6076                if (err < 0) {
6077                        jbd2_journal_unlock_updates(journal);
6078                        percpu_up_write(&sbi->s_journal_flag_rwsem);
6079                        return err;
6080                }
6081                ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6082        }
6083        ext4_set_aops(inode);
6084
6085        jbd2_journal_unlock_updates(journal);
6086        percpu_up_write(&sbi->s_journal_flag_rwsem);
6087
6088        if (val)
6089                up_write(&EXT4_I(inode)->i_mmap_sem);
6090
6091        /* Finally we can mark the inode as dirty. */
6092
6093        handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6094        if (IS_ERR(handle))
6095                return PTR_ERR(handle);
6096
6097        err = ext4_mark_inode_dirty(handle, inode);
6098        ext4_handle_sync(handle);
6099        ext4_journal_stop(handle);
6100        ext4_std_error(inode->i_sb, err);
6101
6102        return err;
6103}
6104
6105static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6106{
6107        return !buffer_mapped(bh);
6108}
6109
6110int ext4_page_mkwrite(struct vm_fault *vmf)
6111{
6112        struct vm_area_struct *vma = vmf->vma;
6113        struct page *page = vmf->page;
6114        loff_t size;
6115        unsigned long len;
6116        int ret;
6117        struct file *file = vma->vm_file;
6118        struct inode *inode = file_inode(file);
6119        struct address_space *mapping = inode->i_mapping;
6120        handle_t *handle;
6121        get_block_t *get_block;
6122        int retries = 0;
6123
6124        sb_start_pagefault(inode->i_sb);
6125        file_update_time(vma->vm_file);
6126
6127        down_read(&EXT4_I(inode)->i_mmap_sem);
6128
6129        ret = ext4_convert_inline_data(inode);
6130        if (ret)
6131                goto out_ret;
6132
6133        /* Delalloc case is easy... */
6134        if (test_opt(inode->i_sb, DELALLOC) &&
6135            !ext4_should_journal_data(inode) &&
6136            !ext4_nonda_switch(inode->i_sb)) {
6137                do {
6138                        ret = block_page_mkwrite(vma, vmf,
6139                                                   ext4_da_get_block_prep);
6140                } while (ret == -ENOSPC &&
6141                       ext4_should_retry_alloc(inode->i_sb, &retries));
6142                goto out_ret;
6143        }
6144
6145        lock_page(page);
6146        size = i_size_read(inode);
6147        /* Page got truncated from under us? */
6148        if (page->mapping != mapping || page_offset(page) > size) {
6149                unlock_page(page);
6150                ret = VM_FAULT_NOPAGE;
6151                goto out;
6152        }
6153
6154        if (page->index == size >> PAGE_SHIFT)
6155                len = size & ~PAGE_MASK;
6156        else
6157                len = PAGE_SIZE;
6158        /*
6159         * Return if we have all the buffers mapped. This avoids the need to do
6160         * journal_start/journal_stop which can block and take a long time
6161         */
6162        if (page_has_buffers(page)) {
6163                if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6164                                            0, len, NULL,
6165                                            ext4_bh_unmapped)) {
6166                        /* Wait so that we don't change page under IO */
6167                        wait_for_stable_page(page);
6168                        ret = VM_FAULT_LOCKED;
6169                        goto out;
6170                }
6171        }
6172        unlock_page(page);
6173        /* OK, we need to fill the hole... */
6174        if (ext4_should_dioread_nolock(inode))
6175                get_block = ext4_get_block_unwritten;
6176        else
6177                get_block = ext4_get_block;
6178retry_alloc:
6179        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6180                                    ext4_writepage_trans_blocks(inode));
6181        if (IS_ERR(handle)) {
6182                ret = VM_FAULT_SIGBUS;
6183                goto out;
6184        }
6185        ret = block_page_mkwrite(vma, vmf, get_block);
6186        if (!ret && ext4_should_journal_data(inode)) {
6187                if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6188                          PAGE_SIZE, NULL, do_journal_get_write_access)) {
6189                        unlock_page(page);
6190                        ret = VM_FAULT_SIGBUS;
6191                        ext4_journal_stop(handle);
6192                        goto out;
6193                }
6194                ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6195        }
6196        ext4_journal_stop(handle);
6197        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6198                goto retry_alloc;
6199out_ret:
6200        ret = block_page_mkwrite_return(ret);
6201out:
6202        up_read(&EXT4_I(inode)->i_mmap_sem);
6203        sb_end_pagefault(inode->i_sb);
6204        return ret;
6205}
6206
6207int ext4_filemap_fault(struct vm_fault *vmf)
6208{
6209        struct inode *inode = file_inode(vmf->vma->vm_file);
6210        int err;
6211
6212        down_read(&EXT4_I(inode)->i_mmap_sem);
6213        err = filemap_fault(vmf);
6214        up_read(&EXT4_I(inode)->i_mmap_sem);
6215
6216        return err;
6217}
6218