linux/fs/f2fs/file.c
<<
>>
Prefs
   1/*
   2 * fs/f2fs/file.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/stat.h>
  14#include <linux/buffer_head.h>
  15#include <linux/writeback.h>
  16#include <linux/blkdev.h>
  17#include <linux/falloc.h>
  18#include <linux/types.h>
  19#include <linux/compat.h>
  20#include <linux/uaccess.h>
  21#include <linux/mount.h>
  22#include <linux/pagevec.h>
  23#include <linux/uio.h>
  24#include <linux/uuid.h>
  25#include <linux/file.h>
  26
  27#include "f2fs.h"
  28#include "node.h"
  29#include "segment.h"
  30#include "xattr.h"
  31#include "acl.h"
  32#include "gc.h"
  33#include "trace.h"
  34#include <trace/events/f2fs.h>
  35
  36static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
  37{
  38        struct inode *inode = file_inode(vmf->vma->vm_file);
  39        vm_fault_t ret;
  40
  41        down_read(&F2FS_I(inode)->i_mmap_sem);
  42        ret = filemap_fault(vmf);
  43        up_read(&F2FS_I(inode)->i_mmap_sem);
  44
  45        return ret;
  46}
  47
  48static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
  49{
  50        struct page *page = vmf->page;
  51        struct inode *inode = file_inode(vmf->vma->vm_file);
  52        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  53        struct dnode_of_data dn;
  54        int err;
  55
  56        if (unlikely(f2fs_cp_error(sbi))) {
  57                err = -EIO;
  58                goto err;
  59        }
  60
  61        sb_start_pagefault(inode->i_sb);
  62
  63        f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  64
  65        /* block allocation */
  66        f2fs_lock_op(sbi);
  67        set_new_dnode(&dn, inode, NULL, NULL, 0);
  68        err = f2fs_reserve_block(&dn, page->index);
  69        if (err) {
  70                f2fs_unlock_op(sbi);
  71                goto out;
  72        }
  73        f2fs_put_dnode(&dn);
  74        f2fs_unlock_op(sbi);
  75
  76        f2fs_balance_fs(sbi, dn.node_changed);
  77
  78        file_update_time(vmf->vma->vm_file);
  79        down_read(&F2FS_I(inode)->i_mmap_sem);
  80        lock_page(page);
  81        if (unlikely(page->mapping != inode->i_mapping ||
  82                        page_offset(page) > i_size_read(inode) ||
  83                        !PageUptodate(page))) {
  84                unlock_page(page);
  85                err = -EFAULT;
  86                goto out_sem;
  87        }
  88
  89        /*
  90         * check to see if the page is mapped already (no holes)
  91         */
  92        if (PageMappedToDisk(page))
  93                goto mapped;
  94
  95        /* page is wholly or partially inside EOF */
  96        if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
  97                                                i_size_read(inode)) {
  98                loff_t offset;
  99
 100                offset = i_size_read(inode) & ~PAGE_MASK;
 101                zero_user_segment(page, offset, PAGE_SIZE);
 102        }
 103        set_page_dirty(page);
 104        if (!PageUptodate(page))
 105                SetPageUptodate(page);
 106
 107        f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
 108
 109        trace_f2fs_vm_page_mkwrite(page, DATA);
 110mapped:
 111        /* fill the page */
 112        f2fs_wait_on_page_writeback(page, DATA, false);
 113
 114        /* wait for GCed page writeback via META_MAPPING */
 115        if (f2fs_post_read_required(inode))
 116                f2fs_wait_on_block_writeback(sbi, dn.data_blkaddr);
 117
 118out_sem:
 119        up_read(&F2FS_I(inode)->i_mmap_sem);
 120out:
 121        sb_end_pagefault(inode->i_sb);
 122        f2fs_update_time(sbi, REQ_TIME);
 123err:
 124        return block_page_mkwrite_return(err);
 125}
 126
 127static const struct vm_operations_struct f2fs_file_vm_ops = {
 128        .fault          = f2fs_filemap_fault,
 129        .map_pages      = filemap_map_pages,
 130        .page_mkwrite   = f2fs_vm_page_mkwrite,
 131};
 132
 133static int get_parent_ino(struct inode *inode, nid_t *pino)
 134{
 135        struct dentry *dentry;
 136
 137        inode = igrab(inode);
 138        dentry = d_find_any_alias(inode);
 139        iput(inode);
 140        if (!dentry)
 141                return 0;
 142
 143        *pino = parent_ino(dentry);
 144        dput(dentry);
 145        return 1;
 146}
 147
 148static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
 149{
 150        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 151        enum cp_reason_type cp_reason = CP_NO_NEEDED;
 152
 153        if (!S_ISREG(inode->i_mode))
 154                cp_reason = CP_NON_REGULAR;
 155        else if (inode->i_nlink != 1)
 156                cp_reason = CP_HARDLINK;
 157        else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
 158                cp_reason = CP_SB_NEED_CP;
 159        else if (file_wrong_pino(inode))
 160                cp_reason = CP_WRONG_PINO;
 161        else if (!f2fs_space_for_roll_forward(sbi))
 162                cp_reason = CP_NO_SPC_ROLL;
 163        else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
 164                cp_reason = CP_NODE_NEED_CP;
 165        else if (test_opt(sbi, FASTBOOT))
 166                cp_reason = CP_FASTBOOT_MODE;
 167        else if (F2FS_OPTION(sbi).active_logs == 2)
 168                cp_reason = CP_SPEC_LOG_NUM;
 169        else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
 170                f2fs_need_dentry_mark(sbi, inode->i_ino) &&
 171                f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
 172                                                        TRANS_DIR_INO))
 173                cp_reason = CP_RECOVER_DIR;
 174
 175        return cp_reason;
 176}
 177
 178static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
 179{
 180        struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
 181        bool ret = false;
 182        /* But we need to avoid that there are some inode updates */
 183        if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
 184                ret = true;
 185        f2fs_put_page(i, 0);
 186        return ret;
 187}
 188
 189static void try_to_fix_pino(struct inode *inode)
 190{
 191        struct f2fs_inode_info *fi = F2FS_I(inode);
 192        nid_t pino;
 193
 194        down_write(&fi->i_sem);
 195        if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
 196                        get_parent_ino(inode, &pino)) {
 197                f2fs_i_pino_write(inode, pino);
 198                file_got_pino(inode);
 199        }
 200        up_write(&fi->i_sem);
 201}
 202
 203static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
 204                                                int datasync, bool atomic)
 205{
 206        struct inode *inode = file->f_mapping->host;
 207        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 208        nid_t ino = inode->i_ino;
 209        int ret = 0;
 210        enum cp_reason_type cp_reason = 0;
 211        struct writeback_control wbc = {
 212                .sync_mode = WB_SYNC_ALL,
 213                .nr_to_write = LONG_MAX,
 214                .for_reclaim = 0,
 215        };
 216
 217        if (unlikely(f2fs_readonly(inode->i_sb)))
 218                return 0;
 219
 220        trace_f2fs_sync_file_enter(inode);
 221
 222        /* if fdatasync is triggered, let's do in-place-update */
 223        if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
 224                set_inode_flag(inode, FI_NEED_IPU);
 225        ret = file_write_and_wait_range(file, start, end);
 226        clear_inode_flag(inode, FI_NEED_IPU);
 227
 228        if (ret) {
 229                trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
 230                return ret;
 231        }
 232
 233        /* if the inode is dirty, let's recover all the time */
 234        if (!f2fs_skip_inode_update(inode, datasync)) {
 235                f2fs_write_inode(inode, NULL);
 236                goto go_write;
 237        }
 238
 239        /*
 240         * if there is no written data, don't waste time to write recovery info.
 241         */
 242        if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
 243                        !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
 244
 245                /* it may call write_inode just prior to fsync */
 246                if (need_inode_page_update(sbi, ino))
 247                        goto go_write;
 248
 249                if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
 250                                f2fs_exist_written_data(sbi, ino, UPDATE_INO))
 251                        goto flush_out;
 252                goto out;
 253        }
 254go_write:
 255        /*
 256         * Both of fdatasync() and fsync() are able to be recovered from
 257         * sudden-power-off.
 258         */
 259        down_read(&F2FS_I(inode)->i_sem);
 260        cp_reason = need_do_checkpoint(inode);
 261        up_read(&F2FS_I(inode)->i_sem);
 262
 263        if (cp_reason) {
 264                /* all the dirty node pages should be flushed for POR */
 265                ret = f2fs_sync_fs(inode->i_sb, 1);
 266
 267                /*
 268                 * We've secured consistency through sync_fs. Following pino
 269                 * will be used only for fsynced inodes after checkpoint.
 270                 */
 271                try_to_fix_pino(inode);
 272                clear_inode_flag(inode, FI_APPEND_WRITE);
 273                clear_inode_flag(inode, FI_UPDATE_WRITE);
 274                goto out;
 275        }
 276sync_nodes:
 277        atomic_inc(&sbi->wb_sync_req[NODE]);
 278        ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic);
 279        atomic_dec(&sbi->wb_sync_req[NODE]);
 280        if (ret)
 281                goto out;
 282
 283        /* if cp_error was enabled, we should avoid infinite loop */
 284        if (unlikely(f2fs_cp_error(sbi))) {
 285                ret = -EIO;
 286                goto out;
 287        }
 288
 289        if (f2fs_need_inode_block_update(sbi, ino)) {
 290                f2fs_mark_inode_dirty_sync(inode, true);
 291                f2fs_write_inode(inode, NULL);
 292                goto sync_nodes;
 293        }
 294
 295        /*
 296         * If it's atomic_write, it's just fine to keep write ordering. So
 297         * here we don't need to wait for node write completion, since we use
 298         * node chain which serializes node blocks. If one of node writes are
 299         * reordered, we can see simply broken chain, resulting in stopping
 300         * roll-forward recovery. It means we'll recover all or none node blocks
 301         * given fsync mark.
 302         */
 303        if (!atomic) {
 304                ret = f2fs_wait_on_node_pages_writeback(sbi, ino);
 305                if (ret)
 306                        goto out;
 307        }
 308
 309        /* once recovery info is written, don't need to tack this */
 310        f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
 311        clear_inode_flag(inode, FI_APPEND_WRITE);
 312flush_out:
 313        if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
 314                ret = f2fs_issue_flush(sbi, inode->i_ino);
 315        if (!ret) {
 316                f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
 317                clear_inode_flag(inode, FI_UPDATE_WRITE);
 318                f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
 319        }
 320        f2fs_update_time(sbi, REQ_TIME);
 321out:
 322        trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
 323        f2fs_trace_ios(NULL, 1);
 324        return ret;
 325}
 326
 327int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
 328{
 329        if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
 330                return -EIO;
 331        return f2fs_do_sync_file(file, start, end, datasync, false);
 332}
 333
 334static pgoff_t __get_first_dirty_index(struct address_space *mapping,
 335                                                pgoff_t pgofs, int whence)
 336{
 337        struct page *page;
 338        int nr_pages;
 339
 340        if (whence != SEEK_DATA)
 341                return 0;
 342
 343        /* find first dirty page index */
 344        nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
 345                                      1, &page);
 346        if (!nr_pages)
 347                return ULONG_MAX;
 348        pgofs = page->index;
 349        put_page(page);
 350        return pgofs;
 351}
 352
 353static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
 354                                                        int whence)
 355{
 356        switch (whence) {
 357        case SEEK_DATA:
 358                if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
 359                        is_valid_blkaddr(blkaddr))
 360                        return true;
 361                break;
 362        case SEEK_HOLE:
 363                if (blkaddr == NULL_ADDR)
 364                        return true;
 365                break;
 366        }
 367        return false;
 368}
 369
 370static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
 371{
 372        struct inode *inode = file->f_mapping->host;
 373        loff_t maxbytes = inode->i_sb->s_maxbytes;
 374        struct dnode_of_data dn;
 375        pgoff_t pgofs, end_offset, dirty;
 376        loff_t data_ofs = offset;
 377        loff_t isize;
 378        int err = 0;
 379
 380        inode_lock(inode);
 381
 382        isize = i_size_read(inode);
 383        if (offset >= isize)
 384                goto fail;
 385
 386        /* handle inline data case */
 387        if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
 388                if (whence == SEEK_HOLE)
 389                        data_ofs = isize;
 390                goto found;
 391        }
 392
 393        pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
 394
 395        dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
 396
 397        for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
 398                set_new_dnode(&dn, inode, NULL, NULL, 0);
 399                err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
 400                if (err && err != -ENOENT) {
 401                        goto fail;
 402                } else if (err == -ENOENT) {
 403                        /* direct node does not exists */
 404                        if (whence == SEEK_DATA) {
 405                                pgofs = f2fs_get_next_page_offset(&dn, pgofs);
 406                                continue;
 407                        } else {
 408                                goto found;
 409                        }
 410                }
 411
 412                end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
 413
 414                /* find data/hole in dnode block */
 415                for (; dn.ofs_in_node < end_offset;
 416                                dn.ofs_in_node++, pgofs++,
 417                                data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
 418                        block_t blkaddr;
 419
 420                        blkaddr = datablock_addr(dn.inode,
 421                                        dn.node_page, dn.ofs_in_node);
 422
 423                        if (__found_offset(blkaddr, dirty, pgofs, whence)) {
 424                                f2fs_put_dnode(&dn);
 425                                goto found;
 426                        }
 427                }
 428                f2fs_put_dnode(&dn);
 429        }
 430
 431        if (whence == SEEK_DATA)
 432                goto fail;
 433found:
 434        if (whence == SEEK_HOLE && data_ofs > isize)
 435                data_ofs = isize;
 436        inode_unlock(inode);
 437        return vfs_setpos(file, data_ofs, maxbytes);
 438fail:
 439        inode_unlock(inode);
 440        return -ENXIO;
 441}
 442
 443static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
 444{
 445        struct inode *inode = file->f_mapping->host;
 446        loff_t maxbytes = inode->i_sb->s_maxbytes;
 447
 448        switch (whence) {
 449        case SEEK_SET:
 450        case SEEK_CUR:
 451        case SEEK_END:
 452                return generic_file_llseek_size(file, offset, whence,
 453                                                maxbytes, i_size_read(inode));
 454        case SEEK_DATA:
 455        case SEEK_HOLE:
 456                if (offset < 0)
 457                        return -ENXIO;
 458                return f2fs_seek_block(file, offset, whence);
 459        }
 460
 461        return -EINVAL;
 462}
 463
 464static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
 465{
 466        struct inode *inode = file_inode(file);
 467        int err;
 468
 469        if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
 470                return -EIO;
 471
 472        /* we don't need to use inline_data strictly */
 473        err = f2fs_convert_inline_inode(inode);
 474        if (err)
 475                return err;
 476
 477        file_accessed(file);
 478        vma->vm_ops = &f2fs_file_vm_ops;
 479        return 0;
 480}
 481
 482static int f2fs_file_open(struct inode *inode, struct file *filp)
 483{
 484        int err = fscrypt_file_open(inode, filp);
 485
 486        if (err)
 487                return err;
 488
 489        filp->f_mode |= FMODE_NOWAIT;
 490
 491        return dquot_file_open(inode, filp);
 492}
 493
 494void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
 495{
 496        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 497        struct f2fs_node *raw_node;
 498        int nr_free = 0, ofs = dn->ofs_in_node, len = count;
 499        __le32 *addr;
 500        int base = 0;
 501
 502        if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
 503                base = get_extra_isize(dn->inode);
 504
 505        raw_node = F2FS_NODE(dn->node_page);
 506        addr = blkaddr_in_node(raw_node) + base + ofs;
 507
 508        for (; count > 0; count--, addr++, dn->ofs_in_node++) {
 509                block_t blkaddr = le32_to_cpu(*addr);
 510
 511                if (blkaddr == NULL_ADDR)
 512                        continue;
 513
 514                dn->data_blkaddr = NULL_ADDR;
 515                f2fs_set_data_blkaddr(dn);
 516                f2fs_invalidate_blocks(sbi, blkaddr);
 517                if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
 518                        clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
 519                nr_free++;
 520        }
 521
 522        if (nr_free) {
 523                pgoff_t fofs;
 524                /*
 525                 * once we invalidate valid blkaddr in range [ofs, ofs + count],
 526                 * we will invalidate all blkaddr in the whole range.
 527                 */
 528                fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
 529                                                        dn->inode) + ofs;
 530                f2fs_update_extent_cache_range(dn, fofs, 0, len);
 531                dec_valid_block_count(sbi, dn->inode, nr_free);
 532        }
 533        dn->ofs_in_node = ofs;
 534
 535        f2fs_update_time(sbi, REQ_TIME);
 536        trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
 537                                         dn->ofs_in_node, nr_free);
 538}
 539
 540void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
 541{
 542        f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
 543}
 544
 545static int truncate_partial_data_page(struct inode *inode, u64 from,
 546                                                                bool cache_only)
 547{
 548        loff_t offset = from & (PAGE_SIZE - 1);
 549        pgoff_t index = from >> PAGE_SHIFT;
 550        struct address_space *mapping = inode->i_mapping;
 551        struct page *page;
 552
 553        if (!offset && !cache_only)
 554                return 0;
 555
 556        if (cache_only) {
 557                page = find_lock_page(mapping, index);
 558                if (page && PageUptodate(page))
 559                        goto truncate_out;
 560                f2fs_put_page(page, 1);
 561                return 0;
 562        }
 563
 564        page = f2fs_get_lock_data_page(inode, index, true);
 565        if (IS_ERR(page))
 566                return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
 567truncate_out:
 568        f2fs_wait_on_page_writeback(page, DATA, true);
 569        zero_user(page, offset, PAGE_SIZE - offset);
 570
 571        /* An encrypted inode should have a key and truncate the last page. */
 572        f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
 573        if (!cache_only)
 574                set_page_dirty(page);
 575        f2fs_put_page(page, 1);
 576        return 0;
 577}
 578
 579int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
 580{
 581        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 582        struct dnode_of_data dn;
 583        pgoff_t free_from;
 584        int count = 0, err = 0;
 585        struct page *ipage;
 586        bool truncate_page = false;
 587
 588        trace_f2fs_truncate_blocks_enter(inode, from);
 589
 590        free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
 591
 592        if (free_from >= sbi->max_file_blocks)
 593                goto free_partial;
 594
 595        if (lock)
 596                f2fs_lock_op(sbi);
 597
 598        ipage = f2fs_get_node_page(sbi, inode->i_ino);
 599        if (IS_ERR(ipage)) {
 600                err = PTR_ERR(ipage);
 601                goto out;
 602        }
 603
 604        if (f2fs_has_inline_data(inode)) {
 605                f2fs_truncate_inline_inode(inode, ipage, from);
 606                f2fs_put_page(ipage, 1);
 607                truncate_page = true;
 608                goto out;
 609        }
 610
 611        set_new_dnode(&dn, inode, ipage, NULL, 0);
 612        err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
 613        if (err) {
 614                if (err == -ENOENT)
 615                        goto free_next;
 616                goto out;
 617        }
 618
 619        count = ADDRS_PER_PAGE(dn.node_page, inode);
 620
 621        count -= dn.ofs_in_node;
 622        f2fs_bug_on(sbi, count < 0);
 623
 624        if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
 625                f2fs_truncate_data_blocks_range(&dn, count);
 626                free_from += count;
 627        }
 628
 629        f2fs_put_dnode(&dn);
 630free_next:
 631        err = f2fs_truncate_inode_blocks(inode, free_from);
 632out:
 633        if (lock)
 634                f2fs_unlock_op(sbi);
 635free_partial:
 636        /* lastly zero out the first data page */
 637        if (!err)
 638                err = truncate_partial_data_page(inode, from, truncate_page);
 639
 640        trace_f2fs_truncate_blocks_exit(inode, err);
 641        return err;
 642}
 643
 644int f2fs_truncate(struct inode *inode)
 645{
 646        int err;
 647
 648        if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
 649                return -EIO;
 650
 651        if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
 652                                S_ISLNK(inode->i_mode)))
 653                return 0;
 654
 655        trace_f2fs_truncate(inode);
 656
 657#ifdef CONFIG_F2FS_FAULT_INJECTION
 658        if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
 659                f2fs_show_injection_info(FAULT_TRUNCATE);
 660                return -EIO;
 661        }
 662#endif
 663        /* we should check inline_data size */
 664        if (!f2fs_may_inline_data(inode)) {
 665                err = f2fs_convert_inline_inode(inode);
 666                if (err)
 667                        return err;
 668        }
 669
 670        err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
 671        if (err)
 672                return err;
 673
 674        inode->i_mtime = inode->i_ctime = current_time(inode);
 675        f2fs_mark_inode_dirty_sync(inode, false);
 676        return 0;
 677}
 678
 679int f2fs_getattr(const struct path *path, struct kstat *stat,
 680                 u32 request_mask, unsigned int query_flags)
 681{
 682        struct inode *inode = d_inode(path->dentry);
 683        struct f2fs_inode_info *fi = F2FS_I(inode);
 684        struct f2fs_inode *ri;
 685        unsigned int flags;
 686
 687        if (f2fs_has_extra_attr(inode) &&
 688                        f2fs_sb_has_inode_crtime(inode->i_sb) &&
 689                        F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
 690                stat->result_mask |= STATX_BTIME;
 691                stat->btime.tv_sec = fi->i_crtime.tv_sec;
 692                stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
 693        }
 694
 695        flags = fi->i_flags & F2FS_FL_USER_VISIBLE;
 696        if (flags & F2FS_APPEND_FL)
 697                stat->attributes |= STATX_ATTR_APPEND;
 698        if (flags & F2FS_COMPR_FL)
 699                stat->attributes |= STATX_ATTR_COMPRESSED;
 700        if (f2fs_encrypted_inode(inode))
 701                stat->attributes |= STATX_ATTR_ENCRYPTED;
 702        if (flags & F2FS_IMMUTABLE_FL)
 703                stat->attributes |= STATX_ATTR_IMMUTABLE;
 704        if (flags & F2FS_NODUMP_FL)
 705                stat->attributes |= STATX_ATTR_NODUMP;
 706
 707        stat->attributes_mask |= (STATX_ATTR_APPEND |
 708                                  STATX_ATTR_COMPRESSED |
 709                                  STATX_ATTR_ENCRYPTED |
 710                                  STATX_ATTR_IMMUTABLE |
 711                                  STATX_ATTR_NODUMP);
 712
 713        generic_fillattr(inode, stat);
 714
 715        /* we need to show initial sectors used for inline_data/dentries */
 716        if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
 717                                        f2fs_has_inline_dentry(inode))
 718                stat->blocks += (stat->size + 511) >> 9;
 719
 720        return 0;
 721}
 722
 723#ifdef CONFIG_F2FS_FS_POSIX_ACL
 724static void __setattr_copy(struct inode *inode, const struct iattr *attr)
 725{
 726        unsigned int ia_valid = attr->ia_valid;
 727
 728        if (ia_valid & ATTR_UID)
 729                inode->i_uid = attr->ia_uid;
 730        if (ia_valid & ATTR_GID)
 731                inode->i_gid = attr->ia_gid;
 732        if (ia_valid & ATTR_ATIME)
 733                inode->i_atime = timespec64_trunc(attr->ia_atime,
 734                                                  inode->i_sb->s_time_gran);
 735        if (ia_valid & ATTR_MTIME)
 736                inode->i_mtime = timespec64_trunc(attr->ia_mtime,
 737                                                  inode->i_sb->s_time_gran);
 738        if (ia_valid & ATTR_CTIME)
 739                inode->i_ctime = timespec64_trunc(attr->ia_ctime,
 740                                                  inode->i_sb->s_time_gran);
 741        if (ia_valid & ATTR_MODE) {
 742                umode_t mode = attr->ia_mode;
 743
 744                if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
 745                        mode &= ~S_ISGID;
 746                set_acl_inode(inode, mode);
 747        }
 748}
 749#else
 750#define __setattr_copy setattr_copy
 751#endif
 752
 753int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
 754{
 755        struct inode *inode = d_inode(dentry);
 756        int err;
 757        bool size_changed = false;
 758
 759        if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
 760                return -EIO;
 761
 762        err = setattr_prepare(dentry, attr);
 763        if (err)
 764                return err;
 765
 766        err = fscrypt_prepare_setattr(dentry, attr);
 767        if (err)
 768                return err;
 769
 770        if (is_quota_modification(inode, attr)) {
 771                err = dquot_initialize(inode);
 772                if (err)
 773                        return err;
 774        }
 775        if ((attr->ia_valid & ATTR_UID &&
 776                !uid_eq(attr->ia_uid, inode->i_uid)) ||
 777                (attr->ia_valid & ATTR_GID &&
 778                !gid_eq(attr->ia_gid, inode->i_gid))) {
 779                err = dquot_transfer(inode, attr);
 780                if (err)
 781                        return err;
 782        }
 783
 784        if (attr->ia_valid & ATTR_SIZE) {
 785                if (attr->ia_size <= i_size_read(inode)) {
 786                        down_write(&F2FS_I(inode)->i_mmap_sem);
 787                        truncate_setsize(inode, attr->ia_size);
 788                        err = f2fs_truncate(inode);
 789                        up_write(&F2FS_I(inode)->i_mmap_sem);
 790                        if (err)
 791                                return err;
 792                } else {
 793                        /*
 794                         * do not trim all blocks after i_size if target size is
 795                         * larger than i_size.
 796                         */
 797                        down_write(&F2FS_I(inode)->i_mmap_sem);
 798                        truncate_setsize(inode, attr->ia_size);
 799                        up_write(&F2FS_I(inode)->i_mmap_sem);
 800
 801                        /* should convert inline inode here */
 802                        if (!f2fs_may_inline_data(inode)) {
 803                                err = f2fs_convert_inline_inode(inode);
 804                                if (err)
 805                                        return err;
 806                        }
 807                        inode->i_mtime = inode->i_ctime = current_time(inode);
 808                }
 809
 810                down_write(&F2FS_I(inode)->i_sem);
 811                F2FS_I(inode)->last_disk_size = i_size_read(inode);
 812                up_write(&F2FS_I(inode)->i_sem);
 813
 814                size_changed = true;
 815        }
 816
 817        __setattr_copy(inode, attr);
 818
 819        if (attr->ia_valid & ATTR_MODE) {
 820                err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
 821                if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
 822                        inode->i_mode = F2FS_I(inode)->i_acl_mode;
 823                        clear_inode_flag(inode, FI_ACL_MODE);
 824                }
 825        }
 826
 827        /* file size may changed here */
 828        f2fs_mark_inode_dirty_sync(inode, size_changed);
 829
 830        /* inode change will produce dirty node pages flushed by checkpoint */
 831        f2fs_balance_fs(F2FS_I_SB(inode), true);
 832
 833        return err;
 834}
 835
 836const struct inode_operations f2fs_file_inode_operations = {
 837        .getattr        = f2fs_getattr,
 838        .setattr        = f2fs_setattr,
 839        .get_acl        = f2fs_get_acl,
 840        .set_acl        = f2fs_set_acl,
 841#ifdef CONFIG_F2FS_FS_XATTR
 842        .listxattr      = f2fs_listxattr,
 843#endif
 844        .fiemap         = f2fs_fiemap,
 845};
 846
 847static int fill_zero(struct inode *inode, pgoff_t index,
 848                                        loff_t start, loff_t len)
 849{
 850        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 851        struct page *page;
 852
 853        if (!len)
 854                return 0;
 855
 856        f2fs_balance_fs(sbi, true);
 857
 858        f2fs_lock_op(sbi);
 859        page = f2fs_get_new_data_page(inode, NULL, index, false);
 860        f2fs_unlock_op(sbi);
 861
 862        if (IS_ERR(page))
 863                return PTR_ERR(page);
 864
 865        f2fs_wait_on_page_writeback(page, DATA, true);
 866        zero_user(page, start, len);
 867        set_page_dirty(page);
 868        f2fs_put_page(page, 1);
 869        return 0;
 870}
 871
 872int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
 873{
 874        int err;
 875
 876        while (pg_start < pg_end) {
 877                struct dnode_of_data dn;
 878                pgoff_t end_offset, count;
 879
 880                set_new_dnode(&dn, inode, NULL, NULL, 0);
 881                err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
 882                if (err) {
 883                        if (err == -ENOENT) {
 884                                pg_start = f2fs_get_next_page_offset(&dn,
 885                                                                pg_start);
 886                                continue;
 887                        }
 888                        return err;
 889                }
 890
 891                end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
 892                count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
 893
 894                f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
 895
 896                f2fs_truncate_data_blocks_range(&dn, count);
 897                f2fs_put_dnode(&dn);
 898
 899                pg_start += count;
 900        }
 901        return 0;
 902}
 903
 904static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
 905{
 906        pgoff_t pg_start, pg_end;
 907        loff_t off_start, off_end;
 908        int ret;
 909
 910        ret = f2fs_convert_inline_inode(inode);
 911        if (ret)
 912                return ret;
 913
 914        pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
 915        pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
 916
 917        off_start = offset & (PAGE_SIZE - 1);
 918        off_end = (offset + len) & (PAGE_SIZE - 1);
 919
 920        if (pg_start == pg_end) {
 921                ret = fill_zero(inode, pg_start, off_start,
 922                                                off_end - off_start);
 923                if (ret)
 924                        return ret;
 925        } else {
 926                if (off_start) {
 927                        ret = fill_zero(inode, pg_start++, off_start,
 928                                                PAGE_SIZE - off_start);
 929                        if (ret)
 930                                return ret;
 931                }
 932                if (off_end) {
 933                        ret = fill_zero(inode, pg_end, 0, off_end);
 934                        if (ret)
 935                                return ret;
 936                }
 937
 938                if (pg_start < pg_end) {
 939                        struct address_space *mapping = inode->i_mapping;
 940                        loff_t blk_start, blk_end;
 941                        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 942
 943                        f2fs_balance_fs(sbi, true);
 944
 945                        blk_start = (loff_t)pg_start << PAGE_SHIFT;
 946                        blk_end = (loff_t)pg_end << PAGE_SHIFT;
 947                        down_write(&F2FS_I(inode)->i_mmap_sem);
 948                        truncate_inode_pages_range(mapping, blk_start,
 949                                        blk_end - 1);
 950
 951                        f2fs_lock_op(sbi);
 952                        ret = f2fs_truncate_hole(inode, pg_start, pg_end);
 953                        f2fs_unlock_op(sbi);
 954                        up_write(&F2FS_I(inode)->i_mmap_sem);
 955                }
 956        }
 957
 958        return ret;
 959}
 960
 961static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
 962                                int *do_replace, pgoff_t off, pgoff_t len)
 963{
 964        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 965        struct dnode_of_data dn;
 966        int ret, done, i;
 967
 968next_dnode:
 969        set_new_dnode(&dn, inode, NULL, NULL, 0);
 970        ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
 971        if (ret && ret != -ENOENT) {
 972                return ret;
 973        } else if (ret == -ENOENT) {
 974                if (dn.max_level == 0)
 975                        return -ENOENT;
 976                done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
 977                blkaddr += done;
 978                do_replace += done;
 979                goto next;
 980        }
 981
 982        done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
 983                                                        dn.ofs_in_node, len);
 984        for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
 985                *blkaddr = datablock_addr(dn.inode,
 986                                        dn.node_page, dn.ofs_in_node);
 987                if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
 988
 989                        if (test_opt(sbi, LFS)) {
 990                                f2fs_put_dnode(&dn);
 991                                return -ENOTSUPP;
 992                        }
 993
 994                        /* do not invalidate this block address */
 995                        f2fs_update_data_blkaddr(&dn, NULL_ADDR);
 996                        *do_replace = 1;
 997                }
 998        }
 999        f2fs_put_dnode(&dn);
1000next:
1001        len -= done;
1002        off += done;
1003        if (len)
1004                goto next_dnode;
1005        return 0;
1006}
1007
1008static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1009                                int *do_replace, pgoff_t off, int len)
1010{
1011        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1012        struct dnode_of_data dn;
1013        int ret, i;
1014
1015        for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1016                if (*do_replace == 0)
1017                        continue;
1018
1019                set_new_dnode(&dn, inode, NULL, NULL, 0);
1020                ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1021                if (ret) {
1022                        dec_valid_block_count(sbi, inode, 1);
1023                        f2fs_invalidate_blocks(sbi, *blkaddr);
1024                } else {
1025                        f2fs_update_data_blkaddr(&dn, *blkaddr);
1026                }
1027                f2fs_put_dnode(&dn);
1028        }
1029        return 0;
1030}
1031
1032static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1033                        block_t *blkaddr, int *do_replace,
1034                        pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1035{
1036        struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1037        pgoff_t i = 0;
1038        int ret;
1039
1040        while (i < len) {
1041                if (blkaddr[i] == NULL_ADDR && !full) {
1042                        i++;
1043                        continue;
1044                }
1045
1046                if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1047                        struct dnode_of_data dn;
1048                        struct node_info ni;
1049                        size_t new_size;
1050                        pgoff_t ilen;
1051
1052                        set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1053                        ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1054                        if (ret)
1055                                return ret;
1056
1057                        f2fs_get_node_info(sbi, dn.nid, &ni);
1058                        ilen = min((pgoff_t)
1059                                ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1060                                                dn.ofs_in_node, len - i);
1061                        do {
1062                                dn.data_blkaddr = datablock_addr(dn.inode,
1063                                                dn.node_page, dn.ofs_in_node);
1064                                f2fs_truncate_data_blocks_range(&dn, 1);
1065
1066                                if (do_replace[i]) {
1067                                        f2fs_i_blocks_write(src_inode,
1068                                                        1, false, false);
1069                                        f2fs_i_blocks_write(dst_inode,
1070                                                        1, true, false);
1071                                        f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1072                                        blkaddr[i], ni.version, true, false);
1073
1074                                        do_replace[i] = 0;
1075                                }
1076                                dn.ofs_in_node++;
1077                                i++;
1078                                new_size = (dst + i) << PAGE_SHIFT;
1079                                if (dst_inode->i_size < new_size)
1080                                        f2fs_i_size_write(dst_inode, new_size);
1081                        } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1082
1083                        f2fs_put_dnode(&dn);
1084                } else {
1085                        struct page *psrc, *pdst;
1086
1087                        psrc = f2fs_get_lock_data_page(src_inode,
1088                                                        src + i, true);
1089                        if (IS_ERR(psrc))
1090                                return PTR_ERR(psrc);
1091                        pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1092                                                                true);
1093                        if (IS_ERR(pdst)) {
1094                                f2fs_put_page(psrc, 1);
1095                                return PTR_ERR(pdst);
1096                        }
1097                        f2fs_copy_page(psrc, pdst);
1098                        set_page_dirty(pdst);
1099                        f2fs_put_page(pdst, 1);
1100                        f2fs_put_page(psrc, 1);
1101
1102                        ret = f2fs_truncate_hole(src_inode,
1103                                                src + i, src + i + 1);
1104                        if (ret)
1105                                return ret;
1106                        i++;
1107                }
1108        }
1109        return 0;
1110}
1111
1112static int __exchange_data_block(struct inode *src_inode,
1113                        struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1114                        pgoff_t len, bool full)
1115{
1116        block_t *src_blkaddr;
1117        int *do_replace;
1118        pgoff_t olen;
1119        int ret;
1120
1121        while (len) {
1122                olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1123
1124                src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1125                                        array_size(olen, sizeof(block_t)),
1126                                        GFP_KERNEL);
1127                if (!src_blkaddr)
1128                        return -ENOMEM;
1129
1130                do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1131                                        array_size(olen, sizeof(int)),
1132                                        GFP_KERNEL);
1133                if (!do_replace) {
1134                        kvfree(src_blkaddr);
1135                        return -ENOMEM;
1136                }
1137
1138                ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1139                                        do_replace, src, olen);
1140                if (ret)
1141                        goto roll_back;
1142
1143                ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1144                                        do_replace, src, dst, olen, full);
1145                if (ret)
1146                        goto roll_back;
1147
1148                src += olen;
1149                dst += olen;
1150                len -= olen;
1151
1152                kvfree(src_blkaddr);
1153                kvfree(do_replace);
1154        }
1155        return 0;
1156
1157roll_back:
1158        __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1159        kvfree(src_blkaddr);
1160        kvfree(do_replace);
1161        return ret;
1162}
1163
1164static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1165{
1166        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1167        pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1168        int ret;
1169
1170        f2fs_balance_fs(sbi, true);
1171        f2fs_lock_op(sbi);
1172
1173        f2fs_drop_extent_tree(inode);
1174
1175        ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1176        f2fs_unlock_op(sbi);
1177        return ret;
1178}
1179
1180static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1181{
1182        pgoff_t pg_start, pg_end;
1183        loff_t new_size;
1184        int ret;
1185
1186        if (offset + len >= i_size_read(inode))
1187                return -EINVAL;
1188
1189        /* collapse range should be aligned to block size of f2fs. */
1190        if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1191                return -EINVAL;
1192
1193        ret = f2fs_convert_inline_inode(inode);
1194        if (ret)
1195                return ret;
1196
1197        pg_start = offset >> PAGE_SHIFT;
1198        pg_end = (offset + len) >> PAGE_SHIFT;
1199
1200        /* avoid gc operation during block exchange */
1201        down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1202
1203        down_write(&F2FS_I(inode)->i_mmap_sem);
1204        /* write out all dirty pages from offset */
1205        ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1206        if (ret)
1207                goto out_unlock;
1208
1209        truncate_pagecache(inode, offset);
1210
1211        ret = f2fs_do_collapse(inode, pg_start, pg_end);
1212        if (ret)
1213                goto out_unlock;
1214
1215        /* write out all moved pages, if possible */
1216        filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1217        truncate_pagecache(inode, offset);
1218
1219        new_size = i_size_read(inode) - len;
1220        truncate_pagecache(inode, new_size);
1221
1222        ret = f2fs_truncate_blocks(inode, new_size, true);
1223        if (!ret)
1224                f2fs_i_size_write(inode, new_size);
1225out_unlock:
1226        up_write(&F2FS_I(inode)->i_mmap_sem);
1227        up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1228        return ret;
1229}
1230
1231static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1232                                                                pgoff_t end)
1233{
1234        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1235        pgoff_t index = start;
1236        unsigned int ofs_in_node = dn->ofs_in_node;
1237        blkcnt_t count = 0;
1238        int ret;
1239
1240        for (; index < end; index++, dn->ofs_in_node++) {
1241                if (datablock_addr(dn->inode, dn->node_page,
1242                                        dn->ofs_in_node) == NULL_ADDR)
1243                        count++;
1244        }
1245
1246        dn->ofs_in_node = ofs_in_node;
1247        ret = f2fs_reserve_new_blocks(dn, count);
1248        if (ret)
1249                return ret;
1250
1251        dn->ofs_in_node = ofs_in_node;
1252        for (index = start; index < end; index++, dn->ofs_in_node++) {
1253                dn->data_blkaddr = datablock_addr(dn->inode,
1254                                        dn->node_page, dn->ofs_in_node);
1255                /*
1256                 * f2fs_reserve_new_blocks will not guarantee entire block
1257                 * allocation.
1258                 */
1259                if (dn->data_blkaddr == NULL_ADDR) {
1260                        ret = -ENOSPC;
1261                        break;
1262                }
1263                if (dn->data_blkaddr != NEW_ADDR) {
1264                        f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1265                        dn->data_blkaddr = NEW_ADDR;
1266                        f2fs_set_data_blkaddr(dn);
1267                }
1268        }
1269
1270        f2fs_update_extent_cache_range(dn, start, 0, index - start);
1271
1272        return ret;
1273}
1274
1275static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1276                                                                int mode)
1277{
1278        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1279        struct address_space *mapping = inode->i_mapping;
1280        pgoff_t index, pg_start, pg_end;
1281        loff_t new_size = i_size_read(inode);
1282        loff_t off_start, off_end;
1283        int ret = 0;
1284
1285        ret = inode_newsize_ok(inode, (len + offset));
1286        if (ret)
1287                return ret;
1288
1289        ret = f2fs_convert_inline_inode(inode);
1290        if (ret)
1291                return ret;
1292
1293        down_write(&F2FS_I(inode)->i_mmap_sem);
1294        ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1295        if (ret)
1296                goto out_sem;
1297
1298        truncate_pagecache_range(inode, offset, offset + len - 1);
1299
1300        pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1301        pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1302
1303        off_start = offset & (PAGE_SIZE - 1);
1304        off_end = (offset + len) & (PAGE_SIZE - 1);
1305
1306        if (pg_start == pg_end) {
1307                ret = fill_zero(inode, pg_start, off_start,
1308                                                off_end - off_start);
1309                if (ret)
1310                        goto out_sem;
1311
1312                new_size = max_t(loff_t, new_size, offset + len);
1313        } else {
1314                if (off_start) {
1315                        ret = fill_zero(inode, pg_start++, off_start,
1316                                                PAGE_SIZE - off_start);
1317                        if (ret)
1318                                goto out_sem;
1319
1320                        new_size = max_t(loff_t, new_size,
1321                                        (loff_t)pg_start << PAGE_SHIFT);
1322                }
1323
1324                for (index = pg_start; index < pg_end;) {
1325                        struct dnode_of_data dn;
1326                        unsigned int end_offset;
1327                        pgoff_t end;
1328
1329                        f2fs_lock_op(sbi);
1330
1331                        set_new_dnode(&dn, inode, NULL, NULL, 0);
1332                        ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1333                        if (ret) {
1334                                f2fs_unlock_op(sbi);
1335                                goto out;
1336                        }
1337
1338                        end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1339                        end = min(pg_end, end_offset - dn.ofs_in_node + index);
1340
1341                        ret = f2fs_do_zero_range(&dn, index, end);
1342                        f2fs_put_dnode(&dn);
1343                        f2fs_unlock_op(sbi);
1344
1345                        f2fs_balance_fs(sbi, dn.node_changed);
1346
1347                        if (ret)
1348                                goto out;
1349
1350                        index = end;
1351                        new_size = max_t(loff_t, new_size,
1352                                        (loff_t)index << PAGE_SHIFT);
1353                }
1354
1355                if (off_end) {
1356                        ret = fill_zero(inode, pg_end, 0, off_end);
1357                        if (ret)
1358                                goto out;
1359
1360                        new_size = max_t(loff_t, new_size, offset + len);
1361                }
1362        }
1363
1364out:
1365        if (new_size > i_size_read(inode)) {
1366                if (mode & FALLOC_FL_KEEP_SIZE)
1367                        file_set_keep_isize(inode);
1368                else
1369                        f2fs_i_size_write(inode, new_size);
1370        }
1371out_sem:
1372        up_write(&F2FS_I(inode)->i_mmap_sem);
1373
1374        return ret;
1375}
1376
1377static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1378{
1379        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1380        pgoff_t nr, pg_start, pg_end, delta, idx;
1381        loff_t new_size;
1382        int ret = 0;
1383
1384        new_size = i_size_read(inode) + len;
1385        ret = inode_newsize_ok(inode, new_size);
1386        if (ret)
1387                return ret;
1388
1389        if (offset >= i_size_read(inode))
1390                return -EINVAL;
1391
1392        /* insert range should be aligned to block size of f2fs. */
1393        if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1394                return -EINVAL;
1395
1396        ret = f2fs_convert_inline_inode(inode);
1397        if (ret)
1398                return ret;
1399
1400        f2fs_balance_fs(sbi, true);
1401
1402        /* avoid gc operation during block exchange */
1403        down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1404
1405        down_write(&F2FS_I(inode)->i_mmap_sem);
1406        ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1407        if (ret)
1408                goto out;
1409
1410        /* write out all dirty pages from offset */
1411        ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1412        if (ret)
1413                goto out;
1414
1415        truncate_pagecache(inode, offset);
1416
1417        pg_start = offset >> PAGE_SHIFT;
1418        pg_end = (offset + len) >> PAGE_SHIFT;
1419        delta = pg_end - pg_start;
1420        idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1421
1422        while (!ret && idx > pg_start) {
1423                nr = idx - pg_start;
1424                if (nr > delta)
1425                        nr = delta;
1426                idx -= nr;
1427
1428                f2fs_lock_op(sbi);
1429                f2fs_drop_extent_tree(inode);
1430
1431                ret = __exchange_data_block(inode, inode, idx,
1432                                        idx + delta, nr, false);
1433                f2fs_unlock_op(sbi);
1434        }
1435
1436        /* write out all moved pages, if possible */
1437        filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1438        truncate_pagecache(inode, offset);
1439
1440        if (!ret)
1441                f2fs_i_size_write(inode, new_size);
1442out:
1443        up_write(&F2FS_I(inode)->i_mmap_sem);
1444        up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1445        return ret;
1446}
1447
1448static int expand_inode_data(struct inode *inode, loff_t offset,
1449                                        loff_t len, int mode)
1450{
1451        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1452        struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1453                        .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE };
1454        pgoff_t pg_end;
1455        loff_t new_size = i_size_read(inode);
1456        loff_t off_end;
1457        int err;
1458
1459        err = inode_newsize_ok(inode, (len + offset));
1460        if (err)
1461                return err;
1462
1463        err = f2fs_convert_inline_inode(inode);
1464        if (err)
1465                return err;
1466
1467        f2fs_balance_fs(sbi, true);
1468
1469        pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1470        off_end = (offset + len) & (PAGE_SIZE - 1);
1471
1472        map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1473        map.m_len = pg_end - map.m_lblk;
1474        if (off_end)
1475                map.m_len++;
1476
1477        err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1478        if (err) {
1479                pgoff_t last_off;
1480
1481                if (!map.m_len)
1482                        return err;
1483
1484                last_off = map.m_lblk + map.m_len - 1;
1485
1486                /* update new size to the failed position */
1487                new_size = (last_off == pg_end) ? offset + len :
1488                                        (loff_t)(last_off + 1) << PAGE_SHIFT;
1489        } else {
1490                new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1491        }
1492
1493        if (new_size > i_size_read(inode)) {
1494                if (mode & FALLOC_FL_KEEP_SIZE)
1495                        file_set_keep_isize(inode);
1496                else
1497                        f2fs_i_size_write(inode, new_size);
1498        }
1499
1500        return err;
1501}
1502
1503static long f2fs_fallocate(struct file *file, int mode,
1504                                loff_t offset, loff_t len)
1505{
1506        struct inode *inode = file_inode(file);
1507        long ret = 0;
1508
1509        if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1510                return -EIO;
1511
1512        /* f2fs only support ->fallocate for regular file */
1513        if (!S_ISREG(inode->i_mode))
1514                return -EINVAL;
1515
1516        if (f2fs_encrypted_inode(inode) &&
1517                (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1518                return -EOPNOTSUPP;
1519
1520        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1521                        FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1522                        FALLOC_FL_INSERT_RANGE))
1523                return -EOPNOTSUPP;
1524
1525        inode_lock(inode);
1526
1527        if (mode & FALLOC_FL_PUNCH_HOLE) {
1528                if (offset >= inode->i_size)
1529                        goto out;
1530
1531                ret = punch_hole(inode, offset, len);
1532        } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1533                ret = f2fs_collapse_range(inode, offset, len);
1534        } else if (mode & FALLOC_FL_ZERO_RANGE) {
1535                ret = f2fs_zero_range(inode, offset, len, mode);
1536        } else if (mode & FALLOC_FL_INSERT_RANGE) {
1537                ret = f2fs_insert_range(inode, offset, len);
1538        } else {
1539                ret = expand_inode_data(inode, offset, len, mode);
1540        }
1541
1542        if (!ret) {
1543                inode->i_mtime = inode->i_ctime = current_time(inode);
1544                f2fs_mark_inode_dirty_sync(inode, false);
1545                f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1546        }
1547
1548out:
1549        inode_unlock(inode);
1550
1551        trace_f2fs_fallocate(inode, mode, offset, len, ret);
1552        return ret;
1553}
1554
1555static int f2fs_release_file(struct inode *inode, struct file *filp)
1556{
1557        /*
1558         * f2fs_relase_file is called at every close calls. So we should
1559         * not drop any inmemory pages by close called by other process.
1560         */
1561        if (!(filp->f_mode & FMODE_WRITE) ||
1562                        atomic_read(&inode->i_writecount) != 1)
1563                return 0;
1564
1565        /* some remained atomic pages should discarded */
1566        if (f2fs_is_atomic_file(inode))
1567                f2fs_drop_inmem_pages(inode);
1568        if (f2fs_is_volatile_file(inode)) {
1569                set_inode_flag(inode, FI_DROP_CACHE);
1570                filemap_fdatawrite(inode->i_mapping);
1571                clear_inode_flag(inode, FI_DROP_CACHE);
1572                clear_inode_flag(inode, FI_VOLATILE_FILE);
1573                stat_dec_volatile_write(inode);
1574        }
1575        return 0;
1576}
1577
1578static int f2fs_file_flush(struct file *file, fl_owner_t id)
1579{
1580        struct inode *inode = file_inode(file);
1581
1582        /*
1583         * If the process doing a transaction is crashed, we should do
1584         * roll-back. Otherwise, other reader/write can see corrupted database
1585         * until all the writers close its file. Since this should be done
1586         * before dropping file lock, it needs to do in ->flush.
1587         */
1588        if (f2fs_is_atomic_file(inode) &&
1589                        F2FS_I(inode)->inmem_task == current)
1590                f2fs_drop_inmem_pages(inode);
1591        return 0;
1592}
1593
1594static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1595{
1596        struct inode *inode = file_inode(filp);
1597        struct f2fs_inode_info *fi = F2FS_I(inode);
1598        unsigned int flags = fi->i_flags;
1599
1600        if (file_is_encrypt(inode))
1601                flags |= F2FS_ENCRYPT_FL;
1602        if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
1603                flags |= F2FS_INLINE_DATA_FL;
1604
1605        flags &= F2FS_FL_USER_VISIBLE;
1606
1607        return put_user(flags, (int __user *)arg);
1608}
1609
1610static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
1611{
1612        struct f2fs_inode_info *fi = F2FS_I(inode);
1613        unsigned int oldflags;
1614
1615        /* Is it quota file? Do not allow user to mess with it */
1616        if (IS_NOQUOTA(inode))
1617                return -EPERM;
1618
1619        flags = f2fs_mask_flags(inode->i_mode, flags);
1620
1621        oldflags = fi->i_flags;
1622
1623        if ((flags ^ oldflags) & (F2FS_APPEND_FL | F2FS_IMMUTABLE_FL))
1624                if (!capable(CAP_LINUX_IMMUTABLE))
1625                        return -EPERM;
1626
1627        flags = flags & F2FS_FL_USER_MODIFIABLE;
1628        flags |= oldflags & ~F2FS_FL_USER_MODIFIABLE;
1629        fi->i_flags = flags;
1630
1631        if (fi->i_flags & F2FS_PROJINHERIT_FL)
1632                set_inode_flag(inode, FI_PROJ_INHERIT);
1633        else
1634                clear_inode_flag(inode, FI_PROJ_INHERIT);
1635
1636        inode->i_ctime = current_time(inode);
1637        f2fs_set_inode_flags(inode);
1638        f2fs_mark_inode_dirty_sync(inode, false);
1639        return 0;
1640}
1641
1642static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1643{
1644        struct inode *inode = file_inode(filp);
1645        unsigned int flags;
1646        int ret;
1647
1648        if (!inode_owner_or_capable(inode))
1649                return -EACCES;
1650
1651        if (get_user(flags, (int __user *)arg))
1652                return -EFAULT;
1653
1654        ret = mnt_want_write_file(filp);
1655        if (ret)
1656                return ret;
1657
1658        inode_lock(inode);
1659
1660        ret = __f2fs_ioc_setflags(inode, flags);
1661
1662        inode_unlock(inode);
1663        mnt_drop_write_file(filp);
1664        return ret;
1665}
1666
1667static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1668{
1669        struct inode *inode = file_inode(filp);
1670
1671        return put_user(inode->i_generation, (int __user *)arg);
1672}
1673
1674static int f2fs_ioc_start_atomic_write(struct file *filp)
1675{
1676        struct inode *inode = file_inode(filp);
1677        int ret;
1678
1679        if (!inode_owner_or_capable(inode))
1680                return -EACCES;
1681
1682        if (!S_ISREG(inode->i_mode))
1683                return -EINVAL;
1684
1685        ret = mnt_want_write_file(filp);
1686        if (ret)
1687                return ret;
1688
1689        inode_lock(inode);
1690
1691        down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1692
1693        if (f2fs_is_atomic_file(inode))
1694                goto out;
1695
1696        ret = f2fs_convert_inline_inode(inode);
1697        if (ret)
1698                goto out;
1699
1700        if (!get_dirty_pages(inode))
1701                goto skip_flush;
1702
1703        f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1704                "Unexpected flush for atomic writes: ino=%lu, npages=%u",
1705                                        inode->i_ino, get_dirty_pages(inode));
1706        ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1707        if (ret)
1708                goto out;
1709skip_flush:
1710        set_inode_flag(inode, FI_ATOMIC_FILE);
1711        clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1712        f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1713
1714        F2FS_I(inode)->inmem_task = current;
1715        stat_inc_atomic_write(inode);
1716        stat_update_max_atomic_write(inode);
1717out:
1718        up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1719        inode_unlock(inode);
1720        mnt_drop_write_file(filp);
1721        return ret;
1722}
1723
1724static int f2fs_ioc_commit_atomic_write(struct file *filp)
1725{
1726        struct inode *inode = file_inode(filp);
1727        int ret;
1728
1729        if (!inode_owner_or_capable(inode))
1730                return -EACCES;
1731
1732        ret = mnt_want_write_file(filp);
1733        if (ret)
1734                return ret;
1735
1736        inode_lock(inode);
1737
1738        down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1739
1740        if (f2fs_is_volatile_file(inode)) {
1741                ret = -EINVAL;
1742                goto err_out;
1743        }
1744
1745        if (f2fs_is_atomic_file(inode)) {
1746                ret = f2fs_commit_inmem_pages(inode);
1747                if (ret)
1748                        goto err_out;
1749
1750                ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1751                if (!ret) {
1752                        clear_inode_flag(inode, FI_ATOMIC_FILE);
1753                        F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
1754                        stat_dec_atomic_write(inode);
1755                }
1756        } else {
1757                ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
1758        }
1759err_out:
1760        if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
1761                clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1762                ret = -EINVAL;
1763        }
1764        up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1765        inode_unlock(inode);
1766        mnt_drop_write_file(filp);
1767        return ret;
1768}
1769
1770static int f2fs_ioc_start_volatile_write(struct file *filp)
1771{
1772        struct inode *inode = file_inode(filp);
1773        int ret;
1774
1775        if (!inode_owner_or_capable(inode))
1776                return -EACCES;
1777
1778        if (!S_ISREG(inode->i_mode))
1779                return -EINVAL;
1780
1781        ret = mnt_want_write_file(filp);
1782        if (ret)
1783                return ret;
1784
1785        inode_lock(inode);
1786
1787        if (f2fs_is_volatile_file(inode))
1788                goto out;
1789
1790        ret = f2fs_convert_inline_inode(inode);
1791        if (ret)
1792                goto out;
1793
1794        stat_inc_volatile_write(inode);
1795        stat_update_max_volatile_write(inode);
1796
1797        set_inode_flag(inode, FI_VOLATILE_FILE);
1798        f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1799out:
1800        inode_unlock(inode);
1801        mnt_drop_write_file(filp);
1802        return ret;
1803}
1804
1805static int f2fs_ioc_release_volatile_write(struct file *filp)
1806{
1807        struct inode *inode = file_inode(filp);
1808        int ret;
1809
1810        if (!inode_owner_or_capable(inode))
1811                return -EACCES;
1812
1813        ret = mnt_want_write_file(filp);
1814        if (ret)
1815                return ret;
1816
1817        inode_lock(inode);
1818
1819        if (!f2fs_is_volatile_file(inode))
1820                goto out;
1821
1822        if (!f2fs_is_first_block_written(inode)) {
1823                ret = truncate_partial_data_page(inode, 0, true);
1824                goto out;
1825        }
1826
1827        ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1828out:
1829        inode_unlock(inode);
1830        mnt_drop_write_file(filp);
1831        return ret;
1832}
1833
1834static int f2fs_ioc_abort_volatile_write(struct file *filp)
1835{
1836        struct inode *inode = file_inode(filp);
1837        int ret;
1838
1839        if (!inode_owner_or_capable(inode))
1840                return -EACCES;
1841
1842        ret = mnt_want_write_file(filp);
1843        if (ret)
1844                return ret;
1845
1846        inode_lock(inode);
1847
1848        if (f2fs_is_atomic_file(inode))
1849                f2fs_drop_inmem_pages(inode);
1850        if (f2fs_is_volatile_file(inode)) {
1851                clear_inode_flag(inode, FI_VOLATILE_FILE);
1852                stat_dec_volatile_write(inode);
1853                ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1854        }
1855
1856        inode_unlock(inode);
1857
1858        mnt_drop_write_file(filp);
1859        f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1860        return ret;
1861}
1862
1863static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1864{
1865        struct inode *inode = file_inode(filp);
1866        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1867        struct super_block *sb = sbi->sb;
1868        __u32 in;
1869        int ret;
1870
1871        if (!capable(CAP_SYS_ADMIN))
1872                return -EPERM;
1873
1874        if (get_user(in, (__u32 __user *)arg))
1875                return -EFAULT;
1876
1877        if (in != F2FS_GOING_DOWN_FULLSYNC) {
1878                ret = mnt_want_write_file(filp);
1879                if (ret)
1880                        return ret;
1881        }
1882
1883        switch (in) {
1884        case F2FS_GOING_DOWN_FULLSYNC:
1885                sb = freeze_bdev(sb->s_bdev);
1886                if (IS_ERR(sb)) {
1887                        ret = PTR_ERR(sb);
1888                        goto out;
1889                }
1890                if (sb) {
1891                        f2fs_stop_checkpoint(sbi, false);
1892                        thaw_bdev(sb->s_bdev, sb);
1893                }
1894                break;
1895        case F2FS_GOING_DOWN_METASYNC:
1896                /* do checkpoint only */
1897                ret = f2fs_sync_fs(sb, 1);
1898                if (ret)
1899                        goto out;
1900                f2fs_stop_checkpoint(sbi, false);
1901                break;
1902        case F2FS_GOING_DOWN_NOSYNC:
1903                f2fs_stop_checkpoint(sbi, false);
1904                break;
1905        case F2FS_GOING_DOWN_METAFLUSH:
1906                f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
1907                f2fs_stop_checkpoint(sbi, false);
1908                break;
1909        default:
1910                ret = -EINVAL;
1911                goto out;
1912        }
1913
1914        f2fs_stop_gc_thread(sbi);
1915        f2fs_stop_discard_thread(sbi);
1916
1917        f2fs_drop_discard_cmd(sbi);
1918        clear_opt(sbi, DISCARD);
1919
1920        f2fs_update_time(sbi, REQ_TIME);
1921out:
1922        if (in != F2FS_GOING_DOWN_FULLSYNC)
1923                mnt_drop_write_file(filp);
1924        return ret;
1925}
1926
1927static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1928{
1929        struct inode *inode = file_inode(filp);
1930        struct super_block *sb = inode->i_sb;
1931        struct request_queue *q = bdev_get_queue(sb->s_bdev);
1932        struct fstrim_range range;
1933        int ret;
1934
1935        if (!capable(CAP_SYS_ADMIN))
1936                return -EPERM;
1937
1938        if (!blk_queue_discard(q))
1939                return -EOPNOTSUPP;
1940
1941        if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1942                                sizeof(range)))
1943                return -EFAULT;
1944
1945        ret = mnt_want_write_file(filp);
1946        if (ret)
1947                return ret;
1948
1949        range.minlen = max((unsigned int)range.minlen,
1950                                q->limits.discard_granularity);
1951        ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1952        mnt_drop_write_file(filp);
1953        if (ret < 0)
1954                return ret;
1955
1956        if (copy_to_user((struct fstrim_range __user *)arg, &range,
1957                                sizeof(range)))
1958                return -EFAULT;
1959        f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1960        return 0;
1961}
1962
1963static bool uuid_is_nonzero(__u8 u[16])
1964{
1965        int i;
1966
1967        for (i = 0; i < 16; i++)
1968                if (u[i])
1969                        return true;
1970        return false;
1971}
1972
1973static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1974{
1975        struct inode *inode = file_inode(filp);
1976
1977        if (!f2fs_sb_has_encrypt(inode->i_sb))
1978                return -EOPNOTSUPP;
1979
1980        f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1981
1982        return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
1983}
1984
1985static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1986{
1987        if (!f2fs_sb_has_encrypt(file_inode(filp)->i_sb))
1988                return -EOPNOTSUPP;
1989        return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
1990}
1991
1992static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1993{
1994        struct inode *inode = file_inode(filp);
1995        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1996        int err;
1997
1998        if (!f2fs_sb_has_encrypt(inode->i_sb))
1999                return -EOPNOTSUPP;
2000
2001        err = mnt_want_write_file(filp);
2002        if (err)
2003                return err;
2004
2005        down_write(&sbi->sb_lock);
2006
2007        if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2008                goto got_it;
2009
2010        /* update superblock with uuid */
2011        generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2012
2013        err = f2fs_commit_super(sbi, false);
2014        if (err) {
2015                /* undo new data */
2016                memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2017                goto out_err;
2018        }
2019got_it:
2020        if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2021                                                                        16))
2022                err = -EFAULT;
2023out_err:
2024        up_write(&sbi->sb_lock);
2025        mnt_drop_write_file(filp);
2026        return err;
2027}
2028
2029static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2030{
2031        struct inode *inode = file_inode(filp);
2032        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2033        __u32 sync;
2034        int ret;
2035
2036        if (!capable(CAP_SYS_ADMIN))
2037                return -EPERM;
2038
2039        if (get_user(sync, (__u32 __user *)arg))
2040                return -EFAULT;
2041
2042        if (f2fs_readonly(sbi->sb))
2043                return -EROFS;
2044
2045        ret = mnt_want_write_file(filp);
2046        if (ret)
2047                return ret;
2048
2049        if (!sync) {
2050                if (!mutex_trylock(&sbi->gc_mutex)) {
2051                        ret = -EBUSY;
2052                        goto out;
2053                }
2054        } else {
2055                mutex_lock(&sbi->gc_mutex);
2056        }
2057
2058        ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
2059out:
2060        mnt_drop_write_file(filp);
2061        return ret;
2062}
2063
2064static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2065{
2066        struct inode *inode = file_inode(filp);
2067        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2068        struct f2fs_gc_range range;
2069        u64 end;
2070        int ret;
2071
2072        if (!capable(CAP_SYS_ADMIN))
2073                return -EPERM;
2074
2075        if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2076                                                        sizeof(range)))
2077                return -EFAULT;
2078
2079        if (f2fs_readonly(sbi->sb))
2080                return -EROFS;
2081
2082        end = range.start + range.len;
2083        if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi)) {
2084                return -EINVAL;
2085        }
2086
2087        ret = mnt_want_write_file(filp);
2088        if (ret)
2089                return ret;
2090
2091do_more:
2092        if (!range.sync) {
2093                if (!mutex_trylock(&sbi->gc_mutex)) {
2094                        ret = -EBUSY;
2095                        goto out;
2096                }
2097        } else {
2098                mutex_lock(&sbi->gc_mutex);
2099        }
2100
2101        ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2102        range.start += sbi->blocks_per_seg;
2103        if (range.start <= end)
2104                goto do_more;
2105out:
2106        mnt_drop_write_file(filp);
2107        return ret;
2108}
2109
2110static int f2fs_ioc_f2fs_write_checkpoint(struct file *filp, unsigned long arg)
2111{
2112        struct inode *inode = file_inode(filp);
2113        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2114        int ret;
2115
2116        if (!capable(CAP_SYS_ADMIN))
2117                return -EPERM;
2118
2119        if (f2fs_readonly(sbi->sb))
2120                return -EROFS;
2121
2122        ret = mnt_want_write_file(filp);
2123        if (ret)
2124                return ret;
2125
2126        ret = f2fs_sync_fs(sbi->sb, 1);
2127
2128        mnt_drop_write_file(filp);
2129        return ret;
2130}
2131
2132static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2133                                        struct file *filp,
2134                                        struct f2fs_defragment *range)
2135{
2136        struct inode *inode = file_inode(filp);
2137        struct f2fs_map_blocks map = { .m_next_extent = NULL,
2138                                        .m_seg_type = NO_CHECK_TYPE };
2139        struct extent_info ei = {0, 0, 0};
2140        pgoff_t pg_start, pg_end, next_pgofs;
2141        unsigned int blk_per_seg = sbi->blocks_per_seg;
2142        unsigned int total = 0, sec_num;
2143        block_t blk_end = 0;
2144        bool fragmented = false;
2145        int err;
2146
2147        /* if in-place-update policy is enabled, don't waste time here */
2148        if (f2fs_should_update_inplace(inode, NULL))
2149                return -EINVAL;
2150
2151        pg_start = range->start >> PAGE_SHIFT;
2152        pg_end = (range->start + range->len) >> PAGE_SHIFT;
2153
2154        f2fs_balance_fs(sbi, true);
2155
2156        inode_lock(inode);
2157
2158        /* writeback all dirty pages in the range */
2159        err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2160                                                range->start + range->len - 1);
2161        if (err)
2162                goto out;
2163
2164        /*
2165         * lookup mapping info in extent cache, skip defragmenting if physical
2166         * block addresses are continuous.
2167         */
2168        if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2169                if (ei.fofs + ei.len >= pg_end)
2170                        goto out;
2171        }
2172
2173        map.m_lblk = pg_start;
2174        map.m_next_pgofs = &next_pgofs;
2175
2176        /*
2177         * lookup mapping info in dnode page cache, skip defragmenting if all
2178         * physical block addresses are continuous even if there are hole(s)
2179         * in logical blocks.
2180         */
2181        while (map.m_lblk < pg_end) {
2182                map.m_len = pg_end - map.m_lblk;
2183                err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2184                if (err)
2185                        goto out;
2186
2187                if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2188                        map.m_lblk = next_pgofs;
2189                        continue;
2190                }
2191
2192                if (blk_end && blk_end != map.m_pblk)
2193                        fragmented = true;
2194
2195                /* record total count of block that we're going to move */
2196                total += map.m_len;
2197
2198                blk_end = map.m_pblk + map.m_len;
2199
2200                map.m_lblk += map.m_len;
2201        }
2202
2203        if (!fragmented)
2204                goto out;
2205
2206        sec_num = (total + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
2207
2208        /*
2209         * make sure there are enough free section for LFS allocation, this can
2210         * avoid defragment running in SSR mode when free section are allocated
2211         * intensively
2212         */
2213        if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2214                err = -EAGAIN;
2215                goto out;
2216        }
2217
2218        map.m_lblk = pg_start;
2219        map.m_len = pg_end - pg_start;
2220        total = 0;
2221
2222        while (map.m_lblk < pg_end) {
2223                pgoff_t idx;
2224                int cnt = 0;
2225
2226do_map:
2227                map.m_len = pg_end - map.m_lblk;
2228                err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2229                if (err)
2230                        goto clear_out;
2231
2232                if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2233                        map.m_lblk = next_pgofs;
2234                        continue;
2235                }
2236
2237                set_inode_flag(inode, FI_DO_DEFRAG);
2238
2239                idx = map.m_lblk;
2240                while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2241                        struct page *page;
2242
2243                        page = f2fs_get_lock_data_page(inode, idx, true);
2244                        if (IS_ERR(page)) {
2245                                err = PTR_ERR(page);
2246                                goto clear_out;
2247                        }
2248
2249                        set_page_dirty(page);
2250                        f2fs_put_page(page, 1);
2251
2252                        idx++;
2253                        cnt++;
2254                        total++;
2255                }
2256
2257                map.m_lblk = idx;
2258
2259                if (idx < pg_end && cnt < blk_per_seg)
2260                        goto do_map;
2261
2262                clear_inode_flag(inode, FI_DO_DEFRAG);
2263
2264                err = filemap_fdatawrite(inode->i_mapping);
2265                if (err)
2266                        goto out;
2267        }
2268clear_out:
2269        clear_inode_flag(inode, FI_DO_DEFRAG);
2270out:
2271        inode_unlock(inode);
2272        if (!err)
2273                range->len = (u64)total << PAGE_SHIFT;
2274        return err;
2275}
2276
2277static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2278{
2279        struct inode *inode = file_inode(filp);
2280        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2281        struct f2fs_defragment range;
2282        int err;
2283
2284        if (!capable(CAP_SYS_ADMIN))
2285                return -EPERM;
2286
2287        if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2288                return -EINVAL;
2289
2290        if (f2fs_readonly(sbi->sb))
2291                return -EROFS;
2292
2293        if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2294                                                        sizeof(range)))
2295                return -EFAULT;
2296
2297        /* verify alignment of offset & size */
2298        if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2299                return -EINVAL;
2300
2301        if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2302                                        sbi->max_file_blocks))
2303                return -EINVAL;
2304
2305        err = mnt_want_write_file(filp);
2306        if (err)
2307                return err;
2308
2309        err = f2fs_defragment_range(sbi, filp, &range);
2310        mnt_drop_write_file(filp);
2311
2312        f2fs_update_time(sbi, REQ_TIME);
2313        if (err < 0)
2314                return err;
2315
2316        if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2317                                                        sizeof(range)))
2318                return -EFAULT;
2319
2320        return 0;
2321}
2322
2323static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2324                        struct file *file_out, loff_t pos_out, size_t len)
2325{
2326        struct inode *src = file_inode(file_in);
2327        struct inode *dst = file_inode(file_out);
2328        struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2329        size_t olen = len, dst_max_i_size = 0;
2330        size_t dst_osize;
2331        int ret;
2332
2333        if (file_in->f_path.mnt != file_out->f_path.mnt ||
2334                                src->i_sb != dst->i_sb)
2335                return -EXDEV;
2336
2337        if (unlikely(f2fs_readonly(src->i_sb)))
2338                return -EROFS;
2339
2340        if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2341                return -EINVAL;
2342
2343        if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2344                return -EOPNOTSUPP;
2345
2346        if (src == dst) {
2347                if (pos_in == pos_out)
2348                        return 0;
2349                if (pos_out > pos_in && pos_out < pos_in + len)
2350                        return -EINVAL;
2351        }
2352
2353        inode_lock(src);
2354        down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2355        if (src != dst) {
2356                ret = -EBUSY;
2357                if (!inode_trylock(dst))
2358                        goto out;
2359                if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) {
2360                        inode_unlock(dst);
2361                        goto out;
2362                }
2363        }
2364
2365        ret = -EINVAL;
2366        if (pos_in + len > src->i_size || pos_in + len < pos_in)
2367                goto out_unlock;
2368        if (len == 0)
2369                olen = len = src->i_size - pos_in;
2370        if (pos_in + len == src->i_size)
2371                len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2372        if (len == 0) {
2373                ret = 0;
2374                goto out_unlock;
2375        }
2376
2377        dst_osize = dst->i_size;
2378        if (pos_out + olen > dst->i_size)
2379                dst_max_i_size = pos_out + olen;
2380
2381        /* verify the end result is block aligned */
2382        if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2383                        !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2384                        !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2385                goto out_unlock;
2386
2387        ret = f2fs_convert_inline_inode(src);
2388        if (ret)
2389                goto out_unlock;
2390
2391        ret = f2fs_convert_inline_inode(dst);
2392        if (ret)
2393                goto out_unlock;
2394
2395        /* write out all dirty pages from offset */
2396        ret = filemap_write_and_wait_range(src->i_mapping,
2397                                        pos_in, pos_in + len);
2398        if (ret)
2399                goto out_unlock;
2400
2401        ret = filemap_write_and_wait_range(dst->i_mapping,
2402                                        pos_out, pos_out + len);
2403        if (ret)
2404                goto out_unlock;
2405
2406        f2fs_balance_fs(sbi, true);
2407        f2fs_lock_op(sbi);
2408        ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2409                                pos_out >> F2FS_BLKSIZE_BITS,
2410                                len >> F2FS_BLKSIZE_BITS, false);
2411
2412        if (!ret) {
2413                if (dst_max_i_size)
2414                        f2fs_i_size_write(dst, dst_max_i_size);
2415                else if (dst_osize != dst->i_size)
2416                        f2fs_i_size_write(dst, dst_osize);
2417        }
2418        f2fs_unlock_op(sbi);
2419out_unlock:
2420        if (src != dst) {
2421                up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2422                inode_unlock(dst);
2423        }
2424out:
2425        up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2426        inode_unlock(src);
2427        return ret;
2428}
2429
2430static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2431{
2432        struct f2fs_move_range range;
2433        struct fd dst;
2434        int err;
2435
2436        if (!(filp->f_mode & FMODE_READ) ||
2437                        !(filp->f_mode & FMODE_WRITE))
2438                return -EBADF;
2439
2440        if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2441                                                        sizeof(range)))
2442                return -EFAULT;
2443
2444        dst = fdget(range.dst_fd);
2445        if (!dst.file)
2446                return -EBADF;
2447
2448        if (!(dst.file->f_mode & FMODE_WRITE)) {
2449                err = -EBADF;
2450                goto err_out;
2451        }
2452
2453        err = mnt_want_write_file(filp);
2454        if (err)
2455                goto err_out;
2456
2457        err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2458                                        range.pos_out, range.len);
2459
2460        mnt_drop_write_file(filp);
2461        if (err)
2462                goto err_out;
2463
2464        if (copy_to_user((struct f2fs_move_range __user *)arg,
2465                                                &range, sizeof(range)))
2466                err = -EFAULT;
2467err_out:
2468        fdput(dst);
2469        return err;
2470}
2471
2472static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2473{
2474        struct inode *inode = file_inode(filp);
2475        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2476        struct sit_info *sm = SIT_I(sbi);
2477        unsigned int start_segno = 0, end_segno = 0;
2478        unsigned int dev_start_segno = 0, dev_end_segno = 0;
2479        struct f2fs_flush_device range;
2480        int ret;
2481
2482        if (!capable(CAP_SYS_ADMIN))
2483                return -EPERM;
2484
2485        if (f2fs_readonly(sbi->sb))
2486                return -EROFS;
2487
2488        if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2489                                                        sizeof(range)))
2490                return -EFAULT;
2491
2492        if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
2493                        sbi->segs_per_sec != 1) {
2494                f2fs_msg(sbi->sb, KERN_WARNING,
2495                        "Can't flush %u in %d for segs_per_sec %u != 1\n",
2496                                range.dev_num, sbi->s_ndevs,
2497                                sbi->segs_per_sec);
2498                return -EINVAL;
2499        }
2500
2501        ret = mnt_want_write_file(filp);
2502        if (ret)
2503                return ret;
2504
2505        if (range.dev_num != 0)
2506                dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2507        dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2508
2509        start_segno = sm->last_victim[FLUSH_DEVICE];
2510        if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2511                start_segno = dev_start_segno;
2512        end_segno = min(start_segno + range.segments, dev_end_segno);
2513
2514        while (start_segno < end_segno) {
2515                if (!mutex_trylock(&sbi->gc_mutex)) {
2516                        ret = -EBUSY;
2517                        goto out;
2518                }
2519                sm->last_victim[GC_CB] = end_segno + 1;
2520                sm->last_victim[GC_GREEDY] = end_segno + 1;
2521                sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2522                ret = f2fs_gc(sbi, true, true, start_segno);
2523                if (ret == -EAGAIN)
2524                        ret = 0;
2525                else if (ret < 0)
2526                        break;
2527                start_segno++;
2528        }
2529out:
2530        mnt_drop_write_file(filp);
2531        return ret;
2532}
2533
2534static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2535{
2536        struct inode *inode = file_inode(filp);
2537        u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2538
2539        /* Must validate to set it with SQLite behavior in Android. */
2540        sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2541
2542        return put_user(sb_feature, (u32 __user *)arg);
2543}
2544
2545#ifdef CONFIG_QUOTA
2546static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2547{
2548        struct inode *inode = file_inode(filp);
2549        struct f2fs_inode_info *fi = F2FS_I(inode);
2550        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2551        struct super_block *sb = sbi->sb;
2552        struct dquot *transfer_to[MAXQUOTAS] = {};
2553        struct page *ipage;
2554        kprojid_t kprojid;
2555        int err;
2556
2557        if (!f2fs_sb_has_project_quota(sb)) {
2558                if (projid != F2FS_DEF_PROJID)
2559                        return -EOPNOTSUPP;
2560                else
2561                        return 0;
2562        }
2563
2564        if (!f2fs_has_extra_attr(inode))
2565                return -EOPNOTSUPP;
2566
2567        kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2568
2569        if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2570                return 0;
2571
2572        err = mnt_want_write_file(filp);
2573        if (err)
2574                return err;
2575
2576        err = -EPERM;
2577        inode_lock(inode);
2578
2579        /* Is it quota file? Do not allow user to mess with it */
2580        if (IS_NOQUOTA(inode))
2581                goto out_unlock;
2582
2583        ipage = f2fs_get_node_page(sbi, inode->i_ino);
2584        if (IS_ERR(ipage)) {
2585                err = PTR_ERR(ipage);
2586                goto out_unlock;
2587        }
2588
2589        if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
2590                                                                i_projid)) {
2591                err = -EOVERFLOW;
2592                f2fs_put_page(ipage, 1);
2593                goto out_unlock;
2594        }
2595        f2fs_put_page(ipage, 1);
2596
2597        err = dquot_initialize(inode);
2598        if (err)
2599                goto out_unlock;
2600
2601        transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2602        if (!IS_ERR(transfer_to[PRJQUOTA])) {
2603                err = __dquot_transfer(inode, transfer_to);
2604                dqput(transfer_to[PRJQUOTA]);
2605                if (err)
2606                        goto out_dirty;
2607        }
2608
2609        F2FS_I(inode)->i_projid = kprojid;
2610        inode->i_ctime = current_time(inode);
2611out_dirty:
2612        f2fs_mark_inode_dirty_sync(inode, true);
2613out_unlock:
2614        inode_unlock(inode);
2615        mnt_drop_write_file(filp);
2616        return err;
2617}
2618#else
2619static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2620{
2621        if (projid != F2FS_DEF_PROJID)
2622                return -EOPNOTSUPP;
2623        return 0;
2624}
2625#endif
2626
2627/* Transfer internal flags to xflags */
2628static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
2629{
2630        __u32 xflags = 0;
2631
2632        if (iflags & F2FS_SYNC_FL)
2633                xflags |= FS_XFLAG_SYNC;
2634        if (iflags & F2FS_IMMUTABLE_FL)
2635                xflags |= FS_XFLAG_IMMUTABLE;
2636        if (iflags & F2FS_APPEND_FL)
2637                xflags |= FS_XFLAG_APPEND;
2638        if (iflags & F2FS_NODUMP_FL)
2639                xflags |= FS_XFLAG_NODUMP;
2640        if (iflags & F2FS_NOATIME_FL)
2641                xflags |= FS_XFLAG_NOATIME;
2642        if (iflags & F2FS_PROJINHERIT_FL)
2643                xflags |= FS_XFLAG_PROJINHERIT;
2644        return xflags;
2645}
2646
2647#define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
2648                                  FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
2649                                  FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
2650
2651/* Transfer xflags flags to internal */
2652static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
2653{
2654        unsigned long iflags = 0;
2655
2656        if (xflags & FS_XFLAG_SYNC)
2657                iflags |= F2FS_SYNC_FL;
2658        if (xflags & FS_XFLAG_IMMUTABLE)
2659                iflags |= F2FS_IMMUTABLE_FL;
2660        if (xflags & FS_XFLAG_APPEND)
2661                iflags |= F2FS_APPEND_FL;
2662        if (xflags & FS_XFLAG_NODUMP)
2663                iflags |= F2FS_NODUMP_FL;
2664        if (xflags & FS_XFLAG_NOATIME)
2665                iflags |= F2FS_NOATIME_FL;
2666        if (xflags & FS_XFLAG_PROJINHERIT)
2667                iflags |= F2FS_PROJINHERIT_FL;
2668
2669        return iflags;
2670}
2671
2672static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
2673{
2674        struct inode *inode = file_inode(filp);
2675        struct f2fs_inode_info *fi = F2FS_I(inode);
2676        struct fsxattr fa;
2677
2678        memset(&fa, 0, sizeof(struct fsxattr));
2679        fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
2680                                F2FS_FL_USER_VISIBLE);
2681
2682        if (f2fs_sb_has_project_quota(inode->i_sb))
2683                fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
2684                                                        fi->i_projid);
2685
2686        if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
2687                return -EFAULT;
2688        return 0;
2689}
2690
2691static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
2692{
2693        struct inode *inode = file_inode(filp);
2694        struct f2fs_inode_info *fi = F2FS_I(inode);
2695        struct fsxattr fa;
2696        unsigned int flags;
2697        int err;
2698
2699        if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
2700                return -EFAULT;
2701
2702        /* Make sure caller has proper permission */
2703        if (!inode_owner_or_capable(inode))
2704                return -EACCES;
2705
2706        if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
2707                return -EOPNOTSUPP;
2708
2709        flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
2710        if (f2fs_mask_flags(inode->i_mode, flags) != flags)
2711                return -EOPNOTSUPP;
2712
2713        err = mnt_want_write_file(filp);
2714        if (err)
2715                return err;
2716
2717        inode_lock(inode);
2718        flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
2719                                (flags & F2FS_FL_XFLAG_VISIBLE);
2720        err = __f2fs_ioc_setflags(inode, flags);
2721        inode_unlock(inode);
2722        mnt_drop_write_file(filp);
2723        if (err)
2724                return err;
2725
2726        err = f2fs_ioc_setproject(filp, fa.fsx_projid);
2727        if (err)
2728                return err;
2729
2730        return 0;
2731}
2732
2733int f2fs_pin_file_control(struct inode *inode, bool inc)
2734{
2735        struct f2fs_inode_info *fi = F2FS_I(inode);
2736        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2737
2738        /* Use i_gc_failures for normal file as a risk signal. */
2739        if (inc)
2740                f2fs_i_gc_failures_write(inode,
2741                                fi->i_gc_failures[GC_FAILURE_PIN] + 1);
2742
2743        if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
2744                f2fs_msg(sbi->sb, KERN_WARNING,
2745                        "%s: Enable GC = ino %lx after %x GC trials\n",
2746                        __func__, inode->i_ino,
2747                        fi->i_gc_failures[GC_FAILURE_PIN]);
2748                clear_inode_flag(inode, FI_PIN_FILE);
2749                return -EAGAIN;
2750        }
2751        return 0;
2752}
2753
2754static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
2755{
2756        struct inode *inode = file_inode(filp);
2757        __u32 pin;
2758        int ret = 0;
2759
2760        if (!inode_owner_or_capable(inode))
2761                return -EACCES;
2762
2763        if (get_user(pin, (__u32 __user *)arg))
2764                return -EFAULT;
2765
2766        if (!S_ISREG(inode->i_mode))
2767                return -EINVAL;
2768
2769        if (f2fs_readonly(F2FS_I_SB(inode)->sb))
2770                return -EROFS;
2771
2772        ret = mnt_want_write_file(filp);
2773        if (ret)
2774                return ret;
2775
2776        inode_lock(inode);
2777
2778        if (f2fs_should_update_outplace(inode, NULL)) {
2779                ret = -EINVAL;
2780                goto out;
2781        }
2782
2783        if (!pin) {
2784                clear_inode_flag(inode, FI_PIN_FILE);
2785                F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = 1;
2786                goto done;
2787        }
2788
2789        if (f2fs_pin_file_control(inode, false)) {
2790                ret = -EAGAIN;
2791                goto out;
2792        }
2793        ret = f2fs_convert_inline_inode(inode);
2794        if (ret)
2795                goto out;
2796
2797        set_inode_flag(inode, FI_PIN_FILE);
2798        ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
2799done:
2800        f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2801out:
2802        inode_unlock(inode);
2803        mnt_drop_write_file(filp);
2804        return ret;
2805}
2806
2807static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
2808{
2809        struct inode *inode = file_inode(filp);
2810        __u32 pin = 0;
2811
2812        if (is_inode_flag_set(inode, FI_PIN_FILE))
2813                pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
2814        return put_user(pin, (u32 __user *)arg);
2815}
2816
2817int f2fs_precache_extents(struct inode *inode)
2818{
2819        struct f2fs_inode_info *fi = F2FS_I(inode);
2820        struct f2fs_map_blocks map;
2821        pgoff_t m_next_extent;
2822        loff_t end;
2823        int err;
2824
2825        if (is_inode_flag_set(inode, FI_NO_EXTENT))
2826                return -EOPNOTSUPP;
2827
2828        map.m_lblk = 0;
2829        map.m_next_pgofs = NULL;
2830        map.m_next_extent = &m_next_extent;
2831        map.m_seg_type = NO_CHECK_TYPE;
2832        end = F2FS_I_SB(inode)->max_file_blocks;
2833
2834        while (map.m_lblk < end) {
2835                map.m_len = end - map.m_lblk;
2836
2837                down_write(&fi->i_gc_rwsem[WRITE]);
2838                err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
2839                up_write(&fi->i_gc_rwsem[WRITE]);
2840                if (err)
2841                        return err;
2842
2843                map.m_lblk = m_next_extent;
2844        }
2845
2846        return err;
2847}
2848
2849static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
2850{
2851        return f2fs_precache_extents(file_inode(filp));
2852}
2853
2854long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2855{
2856        if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
2857                return -EIO;
2858
2859        switch (cmd) {
2860        case F2FS_IOC_GETFLAGS:
2861                return f2fs_ioc_getflags(filp, arg);
2862        case F2FS_IOC_SETFLAGS:
2863                return f2fs_ioc_setflags(filp, arg);
2864        case F2FS_IOC_GETVERSION:
2865                return f2fs_ioc_getversion(filp, arg);
2866        case F2FS_IOC_START_ATOMIC_WRITE:
2867                return f2fs_ioc_start_atomic_write(filp);
2868        case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2869                return f2fs_ioc_commit_atomic_write(filp);
2870        case F2FS_IOC_START_VOLATILE_WRITE:
2871                return f2fs_ioc_start_volatile_write(filp);
2872        case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2873                return f2fs_ioc_release_volatile_write(filp);
2874        case F2FS_IOC_ABORT_VOLATILE_WRITE:
2875                return f2fs_ioc_abort_volatile_write(filp);
2876        case F2FS_IOC_SHUTDOWN:
2877                return f2fs_ioc_shutdown(filp, arg);
2878        case FITRIM:
2879                return f2fs_ioc_fitrim(filp, arg);
2880        case F2FS_IOC_SET_ENCRYPTION_POLICY:
2881                return f2fs_ioc_set_encryption_policy(filp, arg);
2882        case F2FS_IOC_GET_ENCRYPTION_POLICY:
2883                return f2fs_ioc_get_encryption_policy(filp, arg);
2884        case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2885                return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2886        case F2FS_IOC_GARBAGE_COLLECT:
2887                return f2fs_ioc_gc(filp, arg);
2888        case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2889                return f2fs_ioc_gc_range(filp, arg);
2890        case F2FS_IOC_WRITE_CHECKPOINT:
2891                return f2fs_ioc_f2fs_write_checkpoint(filp, arg);
2892        case F2FS_IOC_DEFRAGMENT:
2893                return f2fs_ioc_defragment(filp, arg);
2894        case F2FS_IOC_MOVE_RANGE:
2895                return f2fs_ioc_move_range(filp, arg);
2896        case F2FS_IOC_FLUSH_DEVICE:
2897                return f2fs_ioc_flush_device(filp, arg);
2898        case F2FS_IOC_GET_FEATURES:
2899                return f2fs_ioc_get_features(filp, arg);
2900        case F2FS_IOC_FSGETXATTR:
2901                return f2fs_ioc_fsgetxattr(filp, arg);
2902        case F2FS_IOC_FSSETXATTR:
2903                return f2fs_ioc_fssetxattr(filp, arg);
2904        case F2FS_IOC_GET_PIN_FILE:
2905                return f2fs_ioc_get_pin_file(filp, arg);
2906        case F2FS_IOC_SET_PIN_FILE:
2907                return f2fs_ioc_set_pin_file(filp, arg);
2908        case F2FS_IOC_PRECACHE_EXTENTS:
2909                return f2fs_ioc_precache_extents(filp, arg);
2910        default:
2911                return -ENOTTY;
2912        }
2913}
2914
2915static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2916{
2917        struct file *file = iocb->ki_filp;
2918        struct inode *inode = file_inode(file);
2919        ssize_t ret;
2920
2921        if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2922                return -EIO;
2923
2924        if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2925                return -EINVAL;
2926
2927        if (!inode_trylock(inode)) {
2928                if (iocb->ki_flags & IOCB_NOWAIT)
2929                        return -EAGAIN;
2930                inode_lock(inode);
2931        }
2932
2933        ret = generic_write_checks(iocb, from);
2934        if (ret > 0) {
2935                bool preallocated = false;
2936                size_t target_size = 0;
2937                int err;
2938
2939                if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
2940                        set_inode_flag(inode, FI_NO_PREALLOC);
2941
2942                if ((iocb->ki_flags & IOCB_NOWAIT) &&
2943                        (iocb->ki_flags & IOCB_DIRECT)) {
2944                                if (!f2fs_overwrite_io(inode, iocb->ki_pos,
2945                                                iov_iter_count(from)) ||
2946                                        f2fs_has_inline_data(inode) ||
2947                                        f2fs_force_buffered_io(inode, WRITE)) {
2948                                                clear_inode_flag(inode,
2949                                                                FI_NO_PREALLOC);
2950                                                inode_unlock(inode);
2951                                                return -EAGAIN;
2952                                }
2953
2954                } else {
2955                        preallocated = true;
2956                        target_size = iocb->ki_pos + iov_iter_count(from);
2957
2958                        err = f2fs_preallocate_blocks(iocb, from);
2959                        if (err) {
2960                                clear_inode_flag(inode, FI_NO_PREALLOC);
2961                                inode_unlock(inode);
2962                                return err;
2963                        }
2964                }
2965                ret = __generic_file_write_iter(iocb, from);
2966                clear_inode_flag(inode, FI_NO_PREALLOC);
2967
2968                /* if we couldn't write data, we should deallocate blocks. */
2969                if (preallocated && i_size_read(inode) < target_size)
2970                        f2fs_truncate(inode);
2971
2972                if (ret > 0)
2973                        f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
2974        }
2975        inode_unlock(inode);
2976
2977        if (ret > 0)
2978                ret = generic_write_sync(iocb, ret);
2979        return ret;
2980}
2981
2982#ifdef CONFIG_COMPAT
2983long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2984{
2985        switch (cmd) {
2986        case F2FS_IOC32_GETFLAGS:
2987                cmd = F2FS_IOC_GETFLAGS;
2988                break;
2989        case F2FS_IOC32_SETFLAGS:
2990                cmd = F2FS_IOC_SETFLAGS;
2991                break;
2992        case F2FS_IOC32_GETVERSION:
2993                cmd = F2FS_IOC_GETVERSION;
2994                break;
2995        case F2FS_IOC_START_ATOMIC_WRITE:
2996        case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2997        case F2FS_IOC_START_VOLATILE_WRITE:
2998        case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2999        case F2FS_IOC_ABORT_VOLATILE_WRITE:
3000        case F2FS_IOC_SHUTDOWN:
3001        case F2FS_IOC_SET_ENCRYPTION_POLICY:
3002        case F2FS_IOC_GET_ENCRYPTION_PWSALT:
3003        case F2FS_IOC_GET_ENCRYPTION_POLICY:
3004        case F2FS_IOC_GARBAGE_COLLECT:
3005        case F2FS_IOC_GARBAGE_COLLECT_RANGE:
3006        case F2FS_IOC_WRITE_CHECKPOINT:
3007        case F2FS_IOC_DEFRAGMENT:
3008        case F2FS_IOC_MOVE_RANGE:
3009        case F2FS_IOC_FLUSH_DEVICE:
3010        case F2FS_IOC_GET_FEATURES:
3011        case F2FS_IOC_FSGETXATTR:
3012        case F2FS_IOC_FSSETXATTR:
3013        case F2FS_IOC_GET_PIN_FILE:
3014        case F2FS_IOC_SET_PIN_FILE:
3015        case F2FS_IOC_PRECACHE_EXTENTS:
3016                break;
3017        default:
3018                return -ENOIOCTLCMD;
3019        }
3020        return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
3021}
3022#endif
3023
3024const struct file_operations f2fs_file_operations = {
3025        .llseek         = f2fs_llseek,
3026        .read_iter      = generic_file_read_iter,
3027        .write_iter     = f2fs_file_write_iter,
3028        .open           = f2fs_file_open,
3029        .release        = f2fs_release_file,
3030        .mmap           = f2fs_file_mmap,
3031        .flush          = f2fs_file_flush,
3032        .fsync          = f2fs_sync_file,
3033        .fallocate      = f2fs_fallocate,
3034        .unlocked_ioctl = f2fs_ioctl,
3035#ifdef CONFIG_COMPAT
3036        .compat_ioctl   = f2fs_compat_ioctl,
3037#endif
3038        .splice_read    = generic_file_splice_read,
3039        .splice_write   = iter_file_splice_write,
3040};
3041