linux/fs/f2fs/node.c
<<
>>
Prefs
   1/*
   2 * fs/f2fs/node.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/mpage.h>
  14#include <linux/backing-dev.h>
  15#include <linux/blkdev.h>
  16#include <linux/pagevec.h>
  17#include <linux/swap.h>
  18
  19#include "f2fs.h"
  20#include "node.h"
  21#include "segment.h"
  22#include "xattr.h"
  23#include "trace.h"
  24#include <trace/events/f2fs.h>
  25
  26#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
  27
  28static struct kmem_cache *nat_entry_slab;
  29static struct kmem_cache *free_nid_slab;
  30static struct kmem_cache *nat_entry_set_slab;
  31
  32/*
  33 * Check whether the given nid is within node id range.
  34 */
  35int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
  36{
  37        if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
  38                set_sbi_flag(sbi, SBI_NEED_FSCK);
  39                f2fs_msg(sbi->sb, KERN_WARNING,
  40                                "%s: out-of-range nid=%x, run fsck to fix.",
  41                                __func__, nid);
  42                return -EINVAL;
  43        }
  44        return 0;
  45}
  46
  47bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
  48{
  49        struct f2fs_nm_info *nm_i = NM_I(sbi);
  50        struct sysinfo val;
  51        unsigned long avail_ram;
  52        unsigned long mem_size = 0;
  53        bool res = false;
  54
  55        si_meminfo(&val);
  56
  57        /* only uses low memory */
  58        avail_ram = val.totalram - val.totalhigh;
  59
  60        /*
  61         * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  62         */
  63        if (type == FREE_NIDS) {
  64                mem_size = (nm_i->nid_cnt[FREE_NID] *
  65                                sizeof(struct free_nid)) >> PAGE_SHIFT;
  66                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  67        } else if (type == NAT_ENTRIES) {
  68                mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  69                                                        PAGE_SHIFT;
  70                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  71                if (excess_cached_nats(sbi))
  72                        res = false;
  73        } else if (type == DIRTY_DENTS) {
  74                if (sbi->sb->s_bdi->wb.dirty_exceeded)
  75                        return false;
  76                mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  77                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  78        } else if (type == INO_ENTRIES) {
  79                int i;
  80
  81                for (i = 0; i < MAX_INO_ENTRY; i++)
  82                        mem_size += sbi->im[i].ino_num *
  83                                                sizeof(struct ino_entry);
  84                mem_size >>= PAGE_SHIFT;
  85                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  86        } else if (type == EXTENT_CACHE) {
  87                mem_size = (atomic_read(&sbi->total_ext_tree) *
  88                                sizeof(struct extent_tree) +
  89                                atomic_read(&sbi->total_ext_node) *
  90                                sizeof(struct extent_node)) >> PAGE_SHIFT;
  91                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  92        } else if (type == INMEM_PAGES) {
  93                /* it allows 20% / total_ram for inmemory pages */
  94                mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
  95                res = mem_size < (val.totalram / 5);
  96        } else {
  97                if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  98                        return true;
  99        }
 100        return res;
 101}
 102
 103static void clear_node_page_dirty(struct page *page)
 104{
 105        if (PageDirty(page)) {
 106                f2fs_clear_radix_tree_dirty_tag(page);
 107                clear_page_dirty_for_io(page);
 108                dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
 109        }
 110        ClearPageUptodate(page);
 111}
 112
 113static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 114{
 115        pgoff_t index = current_nat_addr(sbi, nid);
 116        return f2fs_get_meta_page(sbi, index);
 117}
 118
 119static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 120{
 121        struct page *src_page;
 122        struct page *dst_page;
 123        pgoff_t src_off;
 124        pgoff_t dst_off;
 125        void *src_addr;
 126        void *dst_addr;
 127        struct f2fs_nm_info *nm_i = NM_I(sbi);
 128
 129        src_off = current_nat_addr(sbi, nid);
 130        dst_off = next_nat_addr(sbi, src_off);
 131
 132        /* get current nat block page with lock */
 133        src_page = f2fs_get_meta_page(sbi, src_off);
 134        dst_page = f2fs_grab_meta_page(sbi, dst_off);
 135        f2fs_bug_on(sbi, PageDirty(src_page));
 136
 137        src_addr = page_address(src_page);
 138        dst_addr = page_address(dst_page);
 139        memcpy(dst_addr, src_addr, PAGE_SIZE);
 140        set_page_dirty(dst_page);
 141        f2fs_put_page(src_page, 1);
 142
 143        set_to_next_nat(nm_i, nid);
 144
 145        return dst_page;
 146}
 147
 148static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
 149{
 150        struct nat_entry *new;
 151
 152        if (no_fail)
 153                new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
 154        else
 155                new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
 156        if (new) {
 157                nat_set_nid(new, nid);
 158                nat_reset_flag(new);
 159        }
 160        return new;
 161}
 162
 163static void __free_nat_entry(struct nat_entry *e)
 164{
 165        kmem_cache_free(nat_entry_slab, e);
 166}
 167
 168/* must be locked by nat_tree_lock */
 169static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
 170        struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
 171{
 172        if (no_fail)
 173                f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
 174        else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
 175                return NULL;
 176
 177        if (raw_ne)
 178                node_info_from_raw_nat(&ne->ni, raw_ne);
 179        list_add_tail(&ne->list, &nm_i->nat_entries);
 180        nm_i->nat_cnt++;
 181        return ne;
 182}
 183
 184static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 185{
 186        return radix_tree_lookup(&nm_i->nat_root, n);
 187}
 188
 189static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 190                nid_t start, unsigned int nr, struct nat_entry **ep)
 191{
 192        return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 193}
 194
 195static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 196{
 197        list_del(&e->list);
 198        radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 199        nm_i->nat_cnt--;
 200        __free_nat_entry(e);
 201}
 202
 203static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
 204                                                        struct nat_entry *ne)
 205{
 206        nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 207        struct nat_entry_set *head;
 208
 209        head = radix_tree_lookup(&nm_i->nat_set_root, set);
 210        if (!head) {
 211                head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
 212
 213                INIT_LIST_HEAD(&head->entry_list);
 214                INIT_LIST_HEAD(&head->set_list);
 215                head->set = set;
 216                head->entry_cnt = 0;
 217                f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 218        }
 219        return head;
 220}
 221
 222static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 223                                                struct nat_entry *ne)
 224{
 225        struct nat_entry_set *head;
 226        bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
 227
 228        if (!new_ne)
 229                head = __grab_nat_entry_set(nm_i, ne);
 230
 231        /*
 232         * update entry_cnt in below condition:
 233         * 1. update NEW_ADDR to valid block address;
 234         * 2. update old block address to new one;
 235         */
 236        if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
 237                                !get_nat_flag(ne, IS_DIRTY)))
 238                head->entry_cnt++;
 239
 240        set_nat_flag(ne, IS_PREALLOC, new_ne);
 241
 242        if (get_nat_flag(ne, IS_DIRTY))
 243                goto refresh_list;
 244
 245        nm_i->dirty_nat_cnt++;
 246        set_nat_flag(ne, IS_DIRTY, true);
 247refresh_list:
 248        if (new_ne)
 249                list_del_init(&ne->list);
 250        else
 251                list_move_tail(&ne->list, &head->entry_list);
 252}
 253
 254static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 255                struct nat_entry_set *set, struct nat_entry *ne)
 256{
 257        list_move_tail(&ne->list, &nm_i->nat_entries);
 258        set_nat_flag(ne, IS_DIRTY, false);
 259        set->entry_cnt--;
 260        nm_i->dirty_nat_cnt--;
 261}
 262
 263static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 264                nid_t start, unsigned int nr, struct nat_entry_set **ep)
 265{
 266        return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 267                                                        start, nr);
 268}
 269
 270int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 271{
 272        struct f2fs_nm_info *nm_i = NM_I(sbi);
 273        struct nat_entry *e;
 274        bool need = false;
 275
 276        down_read(&nm_i->nat_tree_lock);
 277        e = __lookup_nat_cache(nm_i, nid);
 278        if (e) {
 279                if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 280                                !get_nat_flag(e, HAS_FSYNCED_INODE))
 281                        need = true;
 282        }
 283        up_read(&nm_i->nat_tree_lock);
 284        return need;
 285}
 286
 287bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 288{
 289        struct f2fs_nm_info *nm_i = NM_I(sbi);
 290        struct nat_entry *e;
 291        bool is_cp = true;
 292
 293        down_read(&nm_i->nat_tree_lock);
 294        e = __lookup_nat_cache(nm_i, nid);
 295        if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 296                is_cp = false;
 297        up_read(&nm_i->nat_tree_lock);
 298        return is_cp;
 299}
 300
 301bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 302{
 303        struct f2fs_nm_info *nm_i = NM_I(sbi);
 304        struct nat_entry *e;
 305        bool need_update = true;
 306
 307        down_read(&nm_i->nat_tree_lock);
 308        e = __lookup_nat_cache(nm_i, ino);
 309        if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 310                        (get_nat_flag(e, IS_CHECKPOINTED) ||
 311                         get_nat_flag(e, HAS_FSYNCED_INODE)))
 312                need_update = false;
 313        up_read(&nm_i->nat_tree_lock);
 314        return need_update;
 315}
 316
 317/* must be locked by nat_tree_lock */
 318static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 319                                                struct f2fs_nat_entry *ne)
 320{
 321        struct f2fs_nm_info *nm_i = NM_I(sbi);
 322        struct nat_entry *new, *e;
 323
 324        new = __alloc_nat_entry(nid, false);
 325        if (!new)
 326                return;
 327
 328        down_write(&nm_i->nat_tree_lock);
 329        e = __lookup_nat_cache(nm_i, nid);
 330        if (!e)
 331                e = __init_nat_entry(nm_i, new, ne, false);
 332        else
 333                f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
 334                                nat_get_blkaddr(e) !=
 335                                        le32_to_cpu(ne->block_addr) ||
 336                                nat_get_version(e) != ne->version);
 337        up_write(&nm_i->nat_tree_lock);
 338        if (e != new)
 339                __free_nat_entry(new);
 340}
 341
 342static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 343                        block_t new_blkaddr, bool fsync_done)
 344{
 345        struct f2fs_nm_info *nm_i = NM_I(sbi);
 346        struct nat_entry *e;
 347        struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
 348
 349        down_write(&nm_i->nat_tree_lock);
 350        e = __lookup_nat_cache(nm_i, ni->nid);
 351        if (!e) {
 352                e = __init_nat_entry(nm_i, new, NULL, true);
 353                copy_node_info(&e->ni, ni);
 354                f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 355        } else if (new_blkaddr == NEW_ADDR) {
 356                /*
 357                 * when nid is reallocated,
 358                 * previous nat entry can be remained in nat cache.
 359                 * So, reinitialize it with new information.
 360                 */
 361                copy_node_info(&e->ni, ni);
 362                f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 363        }
 364        /* let's free early to reduce memory consumption */
 365        if (e != new)
 366                __free_nat_entry(new);
 367
 368        /* sanity check */
 369        f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 370        f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 371                        new_blkaddr == NULL_ADDR);
 372        f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 373                        new_blkaddr == NEW_ADDR);
 374        f2fs_bug_on(sbi, is_valid_blkaddr(nat_get_blkaddr(e)) &&
 375                        new_blkaddr == NEW_ADDR);
 376
 377        /* increment version no as node is removed */
 378        if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 379                unsigned char version = nat_get_version(e);
 380                nat_set_version(e, inc_node_version(version));
 381        }
 382
 383        /* change address */
 384        nat_set_blkaddr(e, new_blkaddr);
 385        if (!is_valid_blkaddr(new_blkaddr))
 386                set_nat_flag(e, IS_CHECKPOINTED, false);
 387        __set_nat_cache_dirty(nm_i, e);
 388
 389        /* update fsync_mark if its inode nat entry is still alive */
 390        if (ni->nid != ni->ino)
 391                e = __lookup_nat_cache(nm_i, ni->ino);
 392        if (e) {
 393                if (fsync_done && ni->nid == ni->ino)
 394                        set_nat_flag(e, HAS_FSYNCED_INODE, true);
 395                set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 396        }
 397        up_write(&nm_i->nat_tree_lock);
 398}
 399
 400int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 401{
 402        struct f2fs_nm_info *nm_i = NM_I(sbi);
 403        int nr = nr_shrink;
 404
 405        if (!down_write_trylock(&nm_i->nat_tree_lock))
 406                return 0;
 407
 408        while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
 409                struct nat_entry *ne;
 410                ne = list_first_entry(&nm_i->nat_entries,
 411                                        struct nat_entry, list);
 412                __del_from_nat_cache(nm_i, ne);
 413                nr_shrink--;
 414        }
 415        up_write(&nm_i->nat_tree_lock);
 416        return nr - nr_shrink;
 417}
 418
 419/*
 420 * This function always returns success
 421 */
 422void f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
 423                                                struct node_info *ni)
 424{
 425        struct f2fs_nm_info *nm_i = NM_I(sbi);
 426        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 427        struct f2fs_journal *journal = curseg->journal;
 428        nid_t start_nid = START_NID(nid);
 429        struct f2fs_nat_block *nat_blk;
 430        struct page *page = NULL;
 431        struct f2fs_nat_entry ne;
 432        struct nat_entry *e;
 433        pgoff_t index;
 434        int i;
 435
 436        ni->nid = nid;
 437
 438        /* Check nat cache */
 439        down_read(&nm_i->nat_tree_lock);
 440        e = __lookup_nat_cache(nm_i, nid);
 441        if (e) {
 442                ni->ino = nat_get_ino(e);
 443                ni->blk_addr = nat_get_blkaddr(e);
 444                ni->version = nat_get_version(e);
 445                up_read(&nm_i->nat_tree_lock);
 446                return;
 447        }
 448
 449        memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 450
 451        /* Check current segment summary */
 452        down_read(&curseg->journal_rwsem);
 453        i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 454        if (i >= 0) {
 455                ne = nat_in_journal(journal, i);
 456                node_info_from_raw_nat(ni, &ne);
 457        }
 458        up_read(&curseg->journal_rwsem);
 459        if (i >= 0) {
 460                up_read(&nm_i->nat_tree_lock);
 461                goto cache;
 462        }
 463
 464        /* Fill node_info from nat page */
 465        index = current_nat_addr(sbi, nid);
 466        up_read(&nm_i->nat_tree_lock);
 467
 468        page = f2fs_get_meta_page(sbi, index);
 469        nat_blk = (struct f2fs_nat_block *)page_address(page);
 470        ne = nat_blk->entries[nid - start_nid];
 471        node_info_from_raw_nat(ni, &ne);
 472        f2fs_put_page(page, 1);
 473cache:
 474        /* cache nat entry */
 475        cache_nat_entry(sbi, nid, &ne);
 476}
 477
 478/*
 479 * readahead MAX_RA_NODE number of node pages.
 480 */
 481static void f2fs_ra_node_pages(struct page *parent, int start, int n)
 482{
 483        struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 484        struct blk_plug plug;
 485        int i, end;
 486        nid_t nid;
 487
 488        blk_start_plug(&plug);
 489
 490        /* Then, try readahead for siblings of the desired node */
 491        end = start + n;
 492        end = min(end, NIDS_PER_BLOCK);
 493        for (i = start; i < end; i++) {
 494                nid = get_nid(parent, i, false);
 495                f2fs_ra_node_page(sbi, nid);
 496        }
 497
 498        blk_finish_plug(&plug);
 499}
 500
 501pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 502{
 503        const long direct_index = ADDRS_PER_INODE(dn->inode);
 504        const long direct_blks = ADDRS_PER_BLOCK;
 505        const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 506        unsigned int skipped_unit = ADDRS_PER_BLOCK;
 507        int cur_level = dn->cur_level;
 508        int max_level = dn->max_level;
 509        pgoff_t base = 0;
 510
 511        if (!dn->max_level)
 512                return pgofs + 1;
 513
 514        while (max_level-- > cur_level)
 515                skipped_unit *= NIDS_PER_BLOCK;
 516
 517        switch (dn->max_level) {
 518        case 3:
 519                base += 2 * indirect_blks;
 520        case 2:
 521                base += 2 * direct_blks;
 522        case 1:
 523                base += direct_index;
 524                break;
 525        default:
 526                f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 527        }
 528
 529        return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 530}
 531
 532/*
 533 * The maximum depth is four.
 534 * Offset[0] will have raw inode offset.
 535 */
 536static int get_node_path(struct inode *inode, long block,
 537                                int offset[4], unsigned int noffset[4])
 538{
 539        const long direct_index = ADDRS_PER_INODE(inode);
 540        const long direct_blks = ADDRS_PER_BLOCK;
 541        const long dptrs_per_blk = NIDS_PER_BLOCK;
 542        const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 543        const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 544        int n = 0;
 545        int level = 0;
 546
 547        noffset[0] = 0;
 548
 549        if (block < direct_index) {
 550                offset[n] = block;
 551                goto got;
 552        }
 553        block -= direct_index;
 554        if (block < direct_blks) {
 555                offset[n++] = NODE_DIR1_BLOCK;
 556                noffset[n] = 1;
 557                offset[n] = block;
 558                level = 1;
 559                goto got;
 560        }
 561        block -= direct_blks;
 562        if (block < direct_blks) {
 563                offset[n++] = NODE_DIR2_BLOCK;
 564                noffset[n] = 2;
 565                offset[n] = block;
 566                level = 1;
 567                goto got;
 568        }
 569        block -= direct_blks;
 570        if (block < indirect_blks) {
 571                offset[n++] = NODE_IND1_BLOCK;
 572                noffset[n] = 3;
 573                offset[n++] = block / direct_blks;
 574                noffset[n] = 4 + offset[n - 1];
 575                offset[n] = block % direct_blks;
 576                level = 2;
 577                goto got;
 578        }
 579        block -= indirect_blks;
 580        if (block < indirect_blks) {
 581                offset[n++] = NODE_IND2_BLOCK;
 582                noffset[n] = 4 + dptrs_per_blk;
 583                offset[n++] = block / direct_blks;
 584                noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 585                offset[n] = block % direct_blks;
 586                level = 2;
 587                goto got;
 588        }
 589        block -= indirect_blks;
 590        if (block < dindirect_blks) {
 591                offset[n++] = NODE_DIND_BLOCK;
 592                noffset[n] = 5 + (dptrs_per_blk * 2);
 593                offset[n++] = block / indirect_blks;
 594                noffset[n] = 6 + (dptrs_per_blk * 2) +
 595                              offset[n - 1] * (dptrs_per_blk + 1);
 596                offset[n++] = (block / direct_blks) % dptrs_per_blk;
 597                noffset[n] = 7 + (dptrs_per_blk * 2) +
 598                              offset[n - 2] * (dptrs_per_blk + 1) +
 599                              offset[n - 1];
 600                offset[n] = block % direct_blks;
 601                level = 3;
 602                goto got;
 603        } else {
 604                return -E2BIG;
 605        }
 606got:
 607        return level;
 608}
 609
 610/*
 611 * Caller should call f2fs_put_dnode(dn).
 612 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 613 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 614 * In the case of RDONLY_NODE, we don't need to care about mutex.
 615 */
 616int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 617{
 618        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 619        struct page *npage[4];
 620        struct page *parent = NULL;
 621        int offset[4];
 622        unsigned int noffset[4];
 623        nid_t nids[4];
 624        int level, i = 0;
 625        int err = 0;
 626
 627        level = get_node_path(dn->inode, index, offset, noffset);
 628        if (level < 0)
 629                return level;
 630
 631        nids[0] = dn->inode->i_ino;
 632        npage[0] = dn->inode_page;
 633
 634        if (!npage[0]) {
 635                npage[0] = f2fs_get_node_page(sbi, nids[0]);
 636                if (IS_ERR(npage[0]))
 637                        return PTR_ERR(npage[0]);
 638        }
 639
 640        /* if inline_data is set, should not report any block indices */
 641        if (f2fs_has_inline_data(dn->inode) && index) {
 642                err = -ENOENT;
 643                f2fs_put_page(npage[0], 1);
 644                goto release_out;
 645        }
 646
 647        parent = npage[0];
 648        if (level != 0)
 649                nids[1] = get_nid(parent, offset[0], true);
 650        dn->inode_page = npage[0];
 651        dn->inode_page_locked = true;
 652
 653        /* get indirect or direct nodes */
 654        for (i = 1; i <= level; i++) {
 655                bool done = false;
 656
 657                if (!nids[i] && mode == ALLOC_NODE) {
 658                        /* alloc new node */
 659                        if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
 660                                err = -ENOSPC;
 661                                goto release_pages;
 662                        }
 663
 664                        dn->nid = nids[i];
 665                        npage[i] = f2fs_new_node_page(dn, noffset[i]);
 666                        if (IS_ERR(npage[i])) {
 667                                f2fs_alloc_nid_failed(sbi, nids[i]);
 668                                err = PTR_ERR(npage[i]);
 669                                goto release_pages;
 670                        }
 671
 672                        set_nid(parent, offset[i - 1], nids[i], i == 1);
 673                        f2fs_alloc_nid_done(sbi, nids[i]);
 674                        done = true;
 675                } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 676                        npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
 677                        if (IS_ERR(npage[i])) {
 678                                err = PTR_ERR(npage[i]);
 679                                goto release_pages;
 680                        }
 681                        done = true;
 682                }
 683                if (i == 1) {
 684                        dn->inode_page_locked = false;
 685                        unlock_page(parent);
 686                } else {
 687                        f2fs_put_page(parent, 1);
 688                }
 689
 690                if (!done) {
 691                        npage[i] = f2fs_get_node_page(sbi, nids[i]);
 692                        if (IS_ERR(npage[i])) {
 693                                err = PTR_ERR(npage[i]);
 694                                f2fs_put_page(npage[0], 0);
 695                                goto release_out;
 696                        }
 697                }
 698                if (i < level) {
 699                        parent = npage[i];
 700                        nids[i + 1] = get_nid(parent, offset[i], false);
 701                }
 702        }
 703        dn->nid = nids[level];
 704        dn->ofs_in_node = offset[level];
 705        dn->node_page = npage[level];
 706        dn->data_blkaddr = datablock_addr(dn->inode,
 707                                dn->node_page, dn->ofs_in_node);
 708        return 0;
 709
 710release_pages:
 711        f2fs_put_page(parent, 1);
 712        if (i > 1)
 713                f2fs_put_page(npage[0], 0);
 714release_out:
 715        dn->inode_page = NULL;
 716        dn->node_page = NULL;
 717        if (err == -ENOENT) {
 718                dn->cur_level = i;
 719                dn->max_level = level;
 720                dn->ofs_in_node = offset[level];
 721        }
 722        return err;
 723}
 724
 725static void truncate_node(struct dnode_of_data *dn)
 726{
 727        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 728        struct node_info ni;
 729
 730        f2fs_get_node_info(sbi, dn->nid, &ni);
 731
 732        /* Deallocate node address */
 733        f2fs_invalidate_blocks(sbi, ni.blk_addr);
 734        dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
 735        set_node_addr(sbi, &ni, NULL_ADDR, false);
 736
 737        if (dn->nid == dn->inode->i_ino) {
 738                f2fs_remove_orphan_inode(sbi, dn->nid);
 739                dec_valid_inode_count(sbi);
 740                f2fs_inode_synced(dn->inode);
 741        }
 742
 743        clear_node_page_dirty(dn->node_page);
 744        set_sbi_flag(sbi, SBI_IS_DIRTY);
 745
 746        f2fs_put_page(dn->node_page, 1);
 747
 748        invalidate_mapping_pages(NODE_MAPPING(sbi),
 749                        dn->node_page->index, dn->node_page->index);
 750
 751        dn->node_page = NULL;
 752        trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 753}
 754
 755static int truncate_dnode(struct dnode_of_data *dn)
 756{
 757        struct page *page;
 758
 759        if (dn->nid == 0)
 760                return 1;
 761
 762        /* get direct node */
 763        page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 764        if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 765                return 1;
 766        else if (IS_ERR(page))
 767                return PTR_ERR(page);
 768
 769        /* Make dnode_of_data for parameter */
 770        dn->node_page = page;
 771        dn->ofs_in_node = 0;
 772        f2fs_truncate_data_blocks(dn);
 773        truncate_node(dn);
 774        return 1;
 775}
 776
 777static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 778                                                int ofs, int depth)
 779{
 780        struct dnode_of_data rdn = *dn;
 781        struct page *page;
 782        struct f2fs_node *rn;
 783        nid_t child_nid;
 784        unsigned int child_nofs;
 785        int freed = 0;
 786        int i, ret;
 787
 788        if (dn->nid == 0)
 789                return NIDS_PER_BLOCK + 1;
 790
 791        trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 792
 793        page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 794        if (IS_ERR(page)) {
 795                trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 796                return PTR_ERR(page);
 797        }
 798
 799        f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
 800
 801        rn = F2FS_NODE(page);
 802        if (depth < 3) {
 803                for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 804                        child_nid = le32_to_cpu(rn->in.nid[i]);
 805                        if (child_nid == 0)
 806                                continue;
 807                        rdn.nid = child_nid;
 808                        ret = truncate_dnode(&rdn);
 809                        if (ret < 0)
 810                                goto out_err;
 811                        if (set_nid(page, i, 0, false))
 812                                dn->node_changed = true;
 813                }
 814        } else {
 815                child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 816                for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 817                        child_nid = le32_to_cpu(rn->in.nid[i]);
 818                        if (child_nid == 0) {
 819                                child_nofs += NIDS_PER_BLOCK + 1;
 820                                continue;
 821                        }
 822                        rdn.nid = child_nid;
 823                        ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 824                        if (ret == (NIDS_PER_BLOCK + 1)) {
 825                                if (set_nid(page, i, 0, false))
 826                                        dn->node_changed = true;
 827                                child_nofs += ret;
 828                        } else if (ret < 0 && ret != -ENOENT) {
 829                                goto out_err;
 830                        }
 831                }
 832                freed = child_nofs;
 833        }
 834
 835        if (!ofs) {
 836                /* remove current indirect node */
 837                dn->node_page = page;
 838                truncate_node(dn);
 839                freed++;
 840        } else {
 841                f2fs_put_page(page, 1);
 842        }
 843        trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 844        return freed;
 845
 846out_err:
 847        f2fs_put_page(page, 1);
 848        trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 849        return ret;
 850}
 851
 852static int truncate_partial_nodes(struct dnode_of_data *dn,
 853                        struct f2fs_inode *ri, int *offset, int depth)
 854{
 855        struct page *pages[2];
 856        nid_t nid[3];
 857        nid_t child_nid;
 858        int err = 0;
 859        int i;
 860        int idx = depth - 2;
 861
 862        nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 863        if (!nid[0])
 864                return 0;
 865
 866        /* get indirect nodes in the path */
 867        for (i = 0; i < idx + 1; i++) {
 868                /* reference count'll be increased */
 869                pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
 870                if (IS_ERR(pages[i])) {
 871                        err = PTR_ERR(pages[i]);
 872                        idx = i - 1;
 873                        goto fail;
 874                }
 875                nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 876        }
 877
 878        f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
 879
 880        /* free direct nodes linked to a partial indirect node */
 881        for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
 882                child_nid = get_nid(pages[idx], i, false);
 883                if (!child_nid)
 884                        continue;
 885                dn->nid = child_nid;
 886                err = truncate_dnode(dn);
 887                if (err < 0)
 888                        goto fail;
 889                if (set_nid(pages[idx], i, 0, false))
 890                        dn->node_changed = true;
 891        }
 892
 893        if (offset[idx + 1] == 0) {
 894                dn->node_page = pages[idx];
 895                dn->nid = nid[idx];
 896                truncate_node(dn);
 897        } else {
 898                f2fs_put_page(pages[idx], 1);
 899        }
 900        offset[idx]++;
 901        offset[idx + 1] = 0;
 902        idx--;
 903fail:
 904        for (i = idx; i >= 0; i--)
 905                f2fs_put_page(pages[i], 1);
 906
 907        trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
 908
 909        return err;
 910}
 911
 912/*
 913 * All the block addresses of data and nodes should be nullified.
 914 */
 915int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
 916{
 917        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 918        int err = 0, cont = 1;
 919        int level, offset[4], noffset[4];
 920        unsigned int nofs = 0;
 921        struct f2fs_inode *ri;
 922        struct dnode_of_data dn;
 923        struct page *page;
 924
 925        trace_f2fs_truncate_inode_blocks_enter(inode, from);
 926
 927        level = get_node_path(inode, from, offset, noffset);
 928        if (level < 0)
 929                return level;
 930
 931        page = f2fs_get_node_page(sbi, inode->i_ino);
 932        if (IS_ERR(page)) {
 933                trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
 934                return PTR_ERR(page);
 935        }
 936
 937        set_new_dnode(&dn, inode, page, NULL, 0);
 938        unlock_page(page);
 939
 940        ri = F2FS_INODE(page);
 941        switch (level) {
 942        case 0:
 943        case 1:
 944                nofs = noffset[1];
 945                break;
 946        case 2:
 947                nofs = noffset[1];
 948                if (!offset[level - 1])
 949                        goto skip_partial;
 950                err = truncate_partial_nodes(&dn, ri, offset, level);
 951                if (err < 0 && err != -ENOENT)
 952                        goto fail;
 953                nofs += 1 + NIDS_PER_BLOCK;
 954                break;
 955        case 3:
 956                nofs = 5 + 2 * NIDS_PER_BLOCK;
 957                if (!offset[level - 1])
 958                        goto skip_partial;
 959                err = truncate_partial_nodes(&dn, ri, offset, level);
 960                if (err < 0 && err != -ENOENT)
 961                        goto fail;
 962                break;
 963        default:
 964                BUG();
 965        }
 966
 967skip_partial:
 968        while (cont) {
 969                dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 970                switch (offset[0]) {
 971                case NODE_DIR1_BLOCK:
 972                case NODE_DIR2_BLOCK:
 973                        err = truncate_dnode(&dn);
 974                        break;
 975
 976                case NODE_IND1_BLOCK:
 977                case NODE_IND2_BLOCK:
 978                        err = truncate_nodes(&dn, nofs, offset[1], 2);
 979                        break;
 980
 981                case NODE_DIND_BLOCK:
 982                        err = truncate_nodes(&dn, nofs, offset[1], 3);
 983                        cont = 0;
 984                        break;
 985
 986                default:
 987                        BUG();
 988                }
 989                if (err < 0 && err != -ENOENT)
 990                        goto fail;
 991                if (offset[1] == 0 &&
 992                                ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
 993                        lock_page(page);
 994                        BUG_ON(page->mapping != NODE_MAPPING(sbi));
 995                        f2fs_wait_on_page_writeback(page, NODE, true);
 996                        ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
 997                        set_page_dirty(page);
 998                        unlock_page(page);
 999                }
1000                offset[1] = 0;
1001                offset[0]++;
1002                nofs += err;
1003        }
1004fail:
1005        f2fs_put_page(page, 0);
1006        trace_f2fs_truncate_inode_blocks_exit(inode, err);
1007        return err > 0 ? 0 : err;
1008}
1009
1010/* caller must lock inode page */
1011int f2fs_truncate_xattr_node(struct inode *inode)
1012{
1013        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1014        nid_t nid = F2FS_I(inode)->i_xattr_nid;
1015        struct dnode_of_data dn;
1016        struct page *npage;
1017
1018        if (!nid)
1019                return 0;
1020
1021        npage = f2fs_get_node_page(sbi, nid);
1022        if (IS_ERR(npage))
1023                return PTR_ERR(npage);
1024
1025        f2fs_i_xnid_write(inode, 0);
1026
1027        set_new_dnode(&dn, inode, NULL, npage, nid);
1028        truncate_node(&dn);
1029        return 0;
1030}
1031
1032/*
1033 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1034 * f2fs_unlock_op().
1035 */
1036int f2fs_remove_inode_page(struct inode *inode)
1037{
1038        struct dnode_of_data dn;
1039        int err;
1040
1041        set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1042        err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1043        if (err)
1044                return err;
1045
1046        err = f2fs_truncate_xattr_node(inode);
1047        if (err) {
1048                f2fs_put_dnode(&dn);
1049                return err;
1050        }
1051
1052        /* remove potential inline_data blocks */
1053        if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1054                                S_ISLNK(inode->i_mode))
1055                f2fs_truncate_data_blocks_range(&dn, 1);
1056
1057        /* 0 is possible, after f2fs_new_inode() has failed */
1058        f2fs_bug_on(F2FS_I_SB(inode),
1059                        inode->i_blocks != 0 && inode->i_blocks != 8);
1060
1061        /* will put inode & node pages */
1062        truncate_node(&dn);
1063        return 0;
1064}
1065
1066struct page *f2fs_new_inode_page(struct inode *inode)
1067{
1068        struct dnode_of_data dn;
1069
1070        /* allocate inode page for new inode */
1071        set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1072
1073        /* caller should f2fs_put_page(page, 1); */
1074        return f2fs_new_node_page(&dn, 0);
1075}
1076
1077struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1078{
1079        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1080        struct node_info new_ni;
1081        struct page *page;
1082        int err;
1083
1084        if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1085                return ERR_PTR(-EPERM);
1086
1087        page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1088        if (!page)
1089                return ERR_PTR(-ENOMEM);
1090
1091        if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1092                goto fail;
1093
1094#ifdef CONFIG_F2FS_CHECK_FS
1095        f2fs_get_node_info(sbi, dn->nid, &new_ni);
1096        f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1097#endif
1098        new_ni.nid = dn->nid;
1099        new_ni.ino = dn->inode->i_ino;
1100        new_ni.blk_addr = NULL_ADDR;
1101        new_ni.flag = 0;
1102        new_ni.version = 0;
1103        set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1104
1105        f2fs_wait_on_page_writeback(page, NODE, true);
1106        fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1107        set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1108        if (!PageUptodate(page))
1109                SetPageUptodate(page);
1110        if (set_page_dirty(page))
1111                dn->node_changed = true;
1112
1113        if (f2fs_has_xattr_block(ofs))
1114                f2fs_i_xnid_write(dn->inode, dn->nid);
1115
1116        if (ofs == 0)
1117                inc_valid_inode_count(sbi);
1118        return page;
1119
1120fail:
1121        clear_node_page_dirty(page);
1122        f2fs_put_page(page, 1);
1123        return ERR_PTR(err);
1124}
1125
1126/*
1127 * Caller should do after getting the following values.
1128 * 0: f2fs_put_page(page, 0)
1129 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1130 */
1131static int read_node_page(struct page *page, int op_flags)
1132{
1133        struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1134        struct node_info ni;
1135        struct f2fs_io_info fio = {
1136                .sbi = sbi,
1137                .type = NODE,
1138                .op = REQ_OP_READ,
1139                .op_flags = op_flags,
1140                .page = page,
1141                .encrypted_page = NULL,
1142        };
1143
1144        if (PageUptodate(page))
1145                return LOCKED_PAGE;
1146
1147        f2fs_get_node_info(sbi, page->index, &ni);
1148
1149        if (unlikely(ni.blk_addr == NULL_ADDR)) {
1150                ClearPageUptodate(page);
1151                return -ENOENT;
1152        }
1153
1154        fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1155        return f2fs_submit_page_bio(&fio);
1156}
1157
1158/*
1159 * Readahead a node page
1160 */
1161void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1162{
1163        struct page *apage;
1164        int err;
1165
1166        if (!nid)
1167                return;
1168        if (f2fs_check_nid_range(sbi, nid))
1169                return;
1170
1171        rcu_read_lock();
1172        apage = radix_tree_lookup(&NODE_MAPPING(sbi)->i_pages, nid);
1173        rcu_read_unlock();
1174        if (apage)
1175                return;
1176
1177        apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1178        if (!apage)
1179                return;
1180
1181        err = read_node_page(apage, REQ_RAHEAD);
1182        f2fs_put_page(apage, err ? 1 : 0);
1183}
1184
1185static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1186                                        struct page *parent, int start)
1187{
1188        struct page *page;
1189        int err;
1190
1191        if (!nid)
1192                return ERR_PTR(-ENOENT);
1193        if (f2fs_check_nid_range(sbi, nid))
1194                return ERR_PTR(-EINVAL);
1195repeat:
1196        page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1197        if (!page)
1198                return ERR_PTR(-ENOMEM);
1199
1200        err = read_node_page(page, 0);
1201        if (err < 0) {
1202                f2fs_put_page(page, 1);
1203                return ERR_PTR(err);
1204        } else if (err == LOCKED_PAGE) {
1205                err = 0;
1206                goto page_hit;
1207        }
1208
1209        if (parent)
1210                f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1211
1212        lock_page(page);
1213
1214        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1215                f2fs_put_page(page, 1);
1216                goto repeat;
1217        }
1218
1219        if (unlikely(!PageUptodate(page))) {
1220                err = -EIO;
1221                goto out_err;
1222        }
1223
1224        if (!f2fs_inode_chksum_verify(sbi, page)) {
1225                err = -EBADMSG;
1226                goto out_err;
1227        }
1228page_hit:
1229        if(unlikely(nid != nid_of_node(page))) {
1230                f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1231                        "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1232                        nid, nid_of_node(page), ino_of_node(page),
1233                        ofs_of_node(page), cpver_of_node(page),
1234                        next_blkaddr_of_node(page));
1235                err = -EINVAL;
1236out_err:
1237                ClearPageUptodate(page);
1238                f2fs_put_page(page, 1);
1239                return ERR_PTR(err);
1240        }
1241        return page;
1242}
1243
1244struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1245{
1246        return __get_node_page(sbi, nid, NULL, 0);
1247}
1248
1249struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1250{
1251        struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1252        nid_t nid = get_nid(parent, start, false);
1253
1254        return __get_node_page(sbi, nid, parent, start);
1255}
1256
1257static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1258{
1259        struct inode *inode;
1260        struct page *page;
1261        int ret;
1262
1263        /* should flush inline_data before evict_inode */
1264        inode = ilookup(sbi->sb, ino);
1265        if (!inode)
1266                return;
1267
1268        page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1269                                        FGP_LOCK|FGP_NOWAIT, 0);
1270        if (!page)
1271                goto iput_out;
1272
1273        if (!PageUptodate(page))
1274                goto page_out;
1275
1276        if (!PageDirty(page))
1277                goto page_out;
1278
1279        if (!clear_page_dirty_for_io(page))
1280                goto page_out;
1281
1282        ret = f2fs_write_inline_data(inode, page);
1283        inode_dec_dirty_pages(inode);
1284        f2fs_remove_dirty_inode(inode);
1285        if (ret)
1286                set_page_dirty(page);
1287page_out:
1288        f2fs_put_page(page, 1);
1289iput_out:
1290        iput(inode);
1291}
1292
1293static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1294{
1295        pgoff_t index;
1296        struct pagevec pvec;
1297        struct page *last_page = NULL;
1298        int nr_pages;
1299
1300        pagevec_init(&pvec);
1301        index = 0;
1302
1303        while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1304                                PAGECACHE_TAG_DIRTY))) {
1305                int i;
1306
1307                for (i = 0; i < nr_pages; i++) {
1308                        struct page *page = pvec.pages[i];
1309
1310                        if (unlikely(f2fs_cp_error(sbi))) {
1311                                f2fs_put_page(last_page, 0);
1312                                pagevec_release(&pvec);
1313                                return ERR_PTR(-EIO);
1314                        }
1315
1316                        if (!IS_DNODE(page) || !is_cold_node(page))
1317                                continue;
1318                        if (ino_of_node(page) != ino)
1319                                continue;
1320
1321                        lock_page(page);
1322
1323                        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1324continue_unlock:
1325                                unlock_page(page);
1326                                continue;
1327                        }
1328                        if (ino_of_node(page) != ino)
1329                                goto continue_unlock;
1330
1331                        if (!PageDirty(page)) {
1332                                /* someone wrote it for us */
1333                                goto continue_unlock;
1334                        }
1335
1336                        if (last_page)
1337                                f2fs_put_page(last_page, 0);
1338
1339                        get_page(page);
1340                        last_page = page;
1341                        unlock_page(page);
1342                }
1343                pagevec_release(&pvec);
1344                cond_resched();
1345        }
1346        return last_page;
1347}
1348
1349static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1350                                struct writeback_control *wbc, bool do_balance,
1351                                enum iostat_type io_type)
1352{
1353        struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1354        nid_t nid;
1355        struct node_info ni;
1356        struct f2fs_io_info fio = {
1357                .sbi = sbi,
1358                .ino = ino_of_node(page),
1359                .type = NODE,
1360                .op = REQ_OP_WRITE,
1361                .op_flags = wbc_to_write_flags(wbc),
1362                .page = page,
1363                .encrypted_page = NULL,
1364                .submitted = false,
1365                .io_type = io_type,
1366                .io_wbc = wbc,
1367        };
1368
1369        trace_f2fs_writepage(page, NODE);
1370
1371        if (unlikely(f2fs_cp_error(sbi)))
1372                goto redirty_out;
1373
1374        if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1375                goto redirty_out;
1376
1377        /* get old block addr of this node page */
1378        nid = nid_of_node(page);
1379        f2fs_bug_on(sbi, page->index != nid);
1380
1381        if (wbc->for_reclaim) {
1382                if (!down_read_trylock(&sbi->node_write))
1383                        goto redirty_out;
1384        } else {
1385                down_read(&sbi->node_write);
1386        }
1387
1388        f2fs_get_node_info(sbi, nid, &ni);
1389
1390        /* This page is already truncated */
1391        if (unlikely(ni.blk_addr == NULL_ADDR)) {
1392                ClearPageUptodate(page);
1393                dec_page_count(sbi, F2FS_DIRTY_NODES);
1394                up_read(&sbi->node_write);
1395                unlock_page(page);
1396                return 0;
1397        }
1398
1399        if (atomic && !test_opt(sbi, NOBARRIER))
1400                fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1401
1402        set_page_writeback(page);
1403        ClearPageError(page);
1404        fio.old_blkaddr = ni.blk_addr;
1405        f2fs_do_write_node_page(nid, &fio);
1406        set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1407        dec_page_count(sbi, F2FS_DIRTY_NODES);
1408        up_read(&sbi->node_write);
1409
1410        if (wbc->for_reclaim) {
1411                f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
1412                                                page->index, NODE);
1413                submitted = NULL;
1414        }
1415
1416        unlock_page(page);
1417
1418        if (unlikely(f2fs_cp_error(sbi))) {
1419                f2fs_submit_merged_write(sbi, NODE);
1420                submitted = NULL;
1421        }
1422        if (submitted)
1423                *submitted = fio.submitted;
1424
1425        if (do_balance)
1426                f2fs_balance_fs(sbi, false);
1427        return 0;
1428
1429redirty_out:
1430        redirty_page_for_writepage(wbc, page);
1431        return AOP_WRITEPAGE_ACTIVATE;
1432}
1433
1434void f2fs_move_node_page(struct page *node_page, int gc_type)
1435{
1436        if (gc_type == FG_GC) {
1437                struct writeback_control wbc = {
1438                        .sync_mode = WB_SYNC_ALL,
1439                        .nr_to_write = 1,
1440                        .for_reclaim = 0,
1441                };
1442
1443                set_page_dirty(node_page);
1444                f2fs_wait_on_page_writeback(node_page, NODE, true);
1445
1446                f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
1447                if (!clear_page_dirty_for_io(node_page))
1448                        goto out_page;
1449
1450                if (__write_node_page(node_page, false, NULL,
1451                                        &wbc, false, FS_GC_NODE_IO))
1452                        unlock_page(node_page);
1453                goto release_page;
1454        } else {
1455                /* set page dirty and write it */
1456                if (!PageWriteback(node_page))
1457                        set_page_dirty(node_page);
1458        }
1459out_page:
1460        unlock_page(node_page);
1461release_page:
1462        f2fs_put_page(node_page, 0);
1463}
1464
1465static int f2fs_write_node_page(struct page *page,
1466                                struct writeback_control *wbc)
1467{
1468        return __write_node_page(page, false, NULL, wbc, false, FS_NODE_IO);
1469}
1470
1471int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1472                        struct writeback_control *wbc, bool atomic)
1473{
1474        pgoff_t index;
1475        pgoff_t last_idx = ULONG_MAX;
1476        struct pagevec pvec;
1477        int ret = 0;
1478        struct page *last_page = NULL;
1479        bool marked = false;
1480        nid_t ino = inode->i_ino;
1481        int nr_pages;
1482
1483        if (atomic) {
1484                last_page = last_fsync_dnode(sbi, ino);
1485                if (IS_ERR_OR_NULL(last_page))
1486                        return PTR_ERR_OR_ZERO(last_page);
1487        }
1488retry:
1489        pagevec_init(&pvec);
1490        index = 0;
1491
1492        while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1493                                PAGECACHE_TAG_DIRTY))) {
1494                int i;
1495
1496                for (i = 0; i < nr_pages; i++) {
1497                        struct page *page = pvec.pages[i];
1498                        bool submitted = false;
1499
1500                        if (unlikely(f2fs_cp_error(sbi))) {
1501                                f2fs_put_page(last_page, 0);
1502                                pagevec_release(&pvec);
1503                                ret = -EIO;
1504                                goto out;
1505                        }
1506
1507                        if (!IS_DNODE(page) || !is_cold_node(page))
1508                                continue;
1509                        if (ino_of_node(page) != ino)
1510                                continue;
1511
1512                        lock_page(page);
1513
1514                        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1515continue_unlock:
1516                                unlock_page(page);
1517                                continue;
1518                        }
1519                        if (ino_of_node(page) != ino)
1520                                goto continue_unlock;
1521
1522                        if (!PageDirty(page) && page != last_page) {
1523                                /* someone wrote it for us */
1524                                goto continue_unlock;
1525                        }
1526
1527                        f2fs_wait_on_page_writeback(page, NODE, true);
1528                        BUG_ON(PageWriteback(page));
1529
1530                        set_fsync_mark(page, 0);
1531                        set_dentry_mark(page, 0);
1532
1533                        if (!atomic || page == last_page) {
1534                                set_fsync_mark(page, 1);
1535                                if (IS_INODE(page)) {
1536                                        if (is_inode_flag_set(inode,
1537                                                                FI_DIRTY_INODE))
1538                                                f2fs_update_inode(inode, page);
1539                                        set_dentry_mark(page,
1540                                                f2fs_need_dentry_mark(sbi, ino));
1541                                }
1542                                /*  may be written by other thread */
1543                                if (!PageDirty(page))
1544                                        set_page_dirty(page);
1545                        }
1546
1547                        if (!clear_page_dirty_for_io(page))
1548                                goto continue_unlock;
1549
1550                        ret = __write_node_page(page, atomic &&
1551                                                page == last_page,
1552                                                &submitted, wbc, true,
1553                                                FS_NODE_IO);
1554                        if (ret) {
1555                                unlock_page(page);
1556                                f2fs_put_page(last_page, 0);
1557                                break;
1558                        } else if (submitted) {
1559                                last_idx = page->index;
1560                        }
1561
1562                        if (page == last_page) {
1563                                f2fs_put_page(page, 0);
1564                                marked = true;
1565                                break;
1566                        }
1567                }
1568                pagevec_release(&pvec);
1569                cond_resched();
1570
1571                if (ret || marked)
1572                        break;
1573        }
1574        if (!ret && atomic && !marked) {
1575                f2fs_msg(sbi->sb, KERN_DEBUG,
1576                        "Retry to write fsync mark: ino=%u, idx=%lx",
1577                                        ino, last_page->index);
1578                lock_page(last_page);
1579                f2fs_wait_on_page_writeback(last_page, NODE, true);
1580                set_page_dirty(last_page);
1581                unlock_page(last_page);
1582                goto retry;
1583        }
1584out:
1585        if (last_idx != ULONG_MAX)
1586                f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
1587        return ret ? -EIO: 0;
1588}
1589
1590int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1591                                struct writeback_control *wbc,
1592                                bool do_balance, enum iostat_type io_type)
1593{
1594        pgoff_t index;
1595        struct pagevec pvec;
1596        int step = 0;
1597        int nwritten = 0;
1598        int ret = 0;
1599        int nr_pages, done = 0;
1600
1601        pagevec_init(&pvec);
1602
1603next_step:
1604        index = 0;
1605
1606        while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1607                        NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1608                int i;
1609
1610                for (i = 0; i < nr_pages; i++) {
1611                        struct page *page = pvec.pages[i];
1612                        bool submitted = false;
1613
1614                        /* give a priority to WB_SYNC threads */
1615                        if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1616                                        wbc->sync_mode == WB_SYNC_NONE) {
1617                                done = 1;
1618                                break;
1619                        }
1620
1621                        /*
1622                         * flushing sequence with step:
1623                         * 0. indirect nodes
1624                         * 1. dentry dnodes
1625                         * 2. file dnodes
1626                         */
1627                        if (step == 0 && IS_DNODE(page))
1628                                continue;
1629                        if (step == 1 && (!IS_DNODE(page) ||
1630                                                is_cold_node(page)))
1631                                continue;
1632                        if (step == 2 && (!IS_DNODE(page) ||
1633                                                !is_cold_node(page)))
1634                                continue;
1635lock_node:
1636                        if (!trylock_page(page))
1637                                continue;
1638
1639                        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1640continue_unlock:
1641                                unlock_page(page);
1642                                continue;
1643                        }
1644
1645                        if (!PageDirty(page)) {
1646                                /* someone wrote it for us */
1647                                goto continue_unlock;
1648                        }
1649
1650                        /* flush inline_data */
1651                        if (is_inline_node(page)) {
1652                                clear_inline_node(page);
1653                                unlock_page(page);
1654                                flush_inline_data(sbi, ino_of_node(page));
1655                                goto lock_node;
1656                        }
1657
1658                        f2fs_wait_on_page_writeback(page, NODE, true);
1659
1660                        BUG_ON(PageWriteback(page));
1661                        if (!clear_page_dirty_for_io(page))
1662                                goto continue_unlock;
1663
1664                        set_fsync_mark(page, 0);
1665                        set_dentry_mark(page, 0);
1666
1667                        ret = __write_node_page(page, false, &submitted,
1668                                                wbc, do_balance, io_type);
1669                        if (ret)
1670                                unlock_page(page);
1671                        else if (submitted)
1672                                nwritten++;
1673
1674                        if (--wbc->nr_to_write == 0)
1675                                break;
1676                }
1677                pagevec_release(&pvec);
1678                cond_resched();
1679
1680                if (wbc->nr_to_write == 0) {
1681                        step = 2;
1682                        break;
1683                }
1684        }
1685
1686        if (step < 2) {
1687                step++;
1688                goto next_step;
1689        }
1690
1691        if (nwritten)
1692                f2fs_submit_merged_write(sbi, NODE);
1693
1694        if (unlikely(f2fs_cp_error(sbi)))
1695                return -EIO;
1696        return ret;
1697}
1698
1699int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1700{
1701        pgoff_t index = 0;
1702        struct pagevec pvec;
1703        int ret2, ret = 0;
1704        int nr_pages;
1705
1706        pagevec_init(&pvec);
1707
1708        while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1709                                PAGECACHE_TAG_WRITEBACK))) {
1710                int i;
1711
1712                for (i = 0; i < nr_pages; i++) {
1713                        struct page *page = pvec.pages[i];
1714
1715                        if (ino && ino_of_node(page) == ino) {
1716                                f2fs_wait_on_page_writeback(page, NODE, true);
1717                                if (TestClearPageError(page))
1718                                        ret = -EIO;
1719                        }
1720                }
1721                pagevec_release(&pvec);
1722                cond_resched();
1723        }
1724
1725        ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1726        if (!ret)
1727                ret = ret2;
1728        return ret;
1729}
1730
1731static int f2fs_write_node_pages(struct address_space *mapping,
1732                            struct writeback_control *wbc)
1733{
1734        struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1735        struct blk_plug plug;
1736        long diff;
1737
1738        if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1739                goto skip_write;
1740
1741        /* balancing f2fs's metadata in background */
1742        f2fs_balance_fs_bg(sbi);
1743
1744        /* collect a number of dirty node pages and write together */
1745        if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1746                goto skip_write;
1747
1748        if (wbc->sync_mode == WB_SYNC_ALL)
1749                atomic_inc(&sbi->wb_sync_req[NODE]);
1750        else if (atomic_read(&sbi->wb_sync_req[NODE]))
1751                goto skip_write;
1752
1753        trace_f2fs_writepages(mapping->host, wbc, NODE);
1754
1755        diff = nr_pages_to_write(sbi, NODE, wbc);
1756        blk_start_plug(&plug);
1757        f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1758        blk_finish_plug(&plug);
1759        wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1760
1761        if (wbc->sync_mode == WB_SYNC_ALL)
1762                atomic_dec(&sbi->wb_sync_req[NODE]);
1763        return 0;
1764
1765skip_write:
1766        wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1767        trace_f2fs_writepages(mapping->host, wbc, NODE);
1768        return 0;
1769}
1770
1771static int f2fs_set_node_page_dirty(struct page *page)
1772{
1773        trace_f2fs_set_page_dirty(page, NODE);
1774
1775        if (!PageUptodate(page))
1776                SetPageUptodate(page);
1777        if (!PageDirty(page)) {
1778                __set_page_dirty_nobuffers(page);
1779                inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1780                SetPagePrivate(page);
1781                f2fs_trace_pid(page);
1782                return 1;
1783        }
1784        return 0;
1785}
1786
1787/*
1788 * Structure of the f2fs node operations
1789 */
1790const struct address_space_operations f2fs_node_aops = {
1791        .writepage      = f2fs_write_node_page,
1792        .writepages     = f2fs_write_node_pages,
1793        .set_page_dirty = f2fs_set_node_page_dirty,
1794        .invalidatepage = f2fs_invalidate_page,
1795        .releasepage    = f2fs_release_page,
1796#ifdef CONFIG_MIGRATION
1797        .migratepage    = f2fs_migrate_page,
1798#endif
1799};
1800
1801static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1802                                                nid_t n)
1803{
1804        return radix_tree_lookup(&nm_i->free_nid_root, n);
1805}
1806
1807static int __insert_free_nid(struct f2fs_sb_info *sbi,
1808                        struct free_nid *i, enum nid_state state)
1809{
1810        struct f2fs_nm_info *nm_i = NM_I(sbi);
1811
1812        int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1813        if (err)
1814                return err;
1815
1816        f2fs_bug_on(sbi, state != i->state);
1817        nm_i->nid_cnt[state]++;
1818        if (state == FREE_NID)
1819                list_add_tail(&i->list, &nm_i->free_nid_list);
1820        return 0;
1821}
1822
1823static void __remove_free_nid(struct f2fs_sb_info *sbi,
1824                        struct free_nid *i, enum nid_state state)
1825{
1826        struct f2fs_nm_info *nm_i = NM_I(sbi);
1827
1828        f2fs_bug_on(sbi, state != i->state);
1829        nm_i->nid_cnt[state]--;
1830        if (state == FREE_NID)
1831                list_del(&i->list);
1832        radix_tree_delete(&nm_i->free_nid_root, i->nid);
1833}
1834
1835static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
1836                        enum nid_state org_state, enum nid_state dst_state)
1837{
1838        struct f2fs_nm_info *nm_i = NM_I(sbi);
1839
1840        f2fs_bug_on(sbi, org_state != i->state);
1841        i->state = dst_state;
1842        nm_i->nid_cnt[org_state]--;
1843        nm_i->nid_cnt[dst_state]++;
1844
1845        switch (dst_state) {
1846        case PREALLOC_NID:
1847                list_del(&i->list);
1848                break;
1849        case FREE_NID:
1850                list_add_tail(&i->list, &nm_i->free_nid_list);
1851                break;
1852        default:
1853                BUG_ON(1);
1854        }
1855}
1856
1857static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
1858                                                        bool set, bool build)
1859{
1860        struct f2fs_nm_info *nm_i = NM_I(sbi);
1861        unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
1862        unsigned int nid_ofs = nid - START_NID(nid);
1863
1864        if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1865                return;
1866
1867        if (set) {
1868                if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1869                        return;
1870                __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1871                nm_i->free_nid_count[nat_ofs]++;
1872        } else {
1873                if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1874                        return;
1875                __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1876                if (!build)
1877                        nm_i->free_nid_count[nat_ofs]--;
1878        }
1879}
1880
1881/* return if the nid is recognized as free */
1882static bool add_free_nid(struct f2fs_sb_info *sbi,
1883                                nid_t nid, bool build, bool update)
1884{
1885        struct f2fs_nm_info *nm_i = NM_I(sbi);
1886        struct free_nid *i, *e;
1887        struct nat_entry *ne;
1888        int err = -EINVAL;
1889        bool ret = false;
1890
1891        /* 0 nid should not be used */
1892        if (unlikely(nid == 0))
1893                return false;
1894
1895        i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1896        i->nid = nid;
1897        i->state = FREE_NID;
1898
1899        radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
1900
1901        spin_lock(&nm_i->nid_list_lock);
1902
1903        if (build) {
1904                /*
1905                 *   Thread A             Thread B
1906                 *  - f2fs_create
1907                 *   - f2fs_new_inode
1908                 *    - f2fs_alloc_nid
1909                 *     - __insert_nid_to_list(PREALLOC_NID)
1910                 *                     - f2fs_balance_fs_bg
1911                 *                      - f2fs_build_free_nids
1912                 *                       - __f2fs_build_free_nids
1913                 *                        - scan_nat_page
1914                 *                         - add_free_nid
1915                 *                          - __lookup_nat_cache
1916                 *  - f2fs_add_link
1917                 *   - f2fs_init_inode_metadata
1918                 *    - f2fs_new_inode_page
1919                 *     - f2fs_new_node_page
1920                 *      - set_node_addr
1921                 *  - f2fs_alloc_nid_done
1922                 *   - __remove_nid_from_list(PREALLOC_NID)
1923                 *                         - __insert_nid_to_list(FREE_NID)
1924                 */
1925                ne = __lookup_nat_cache(nm_i, nid);
1926                if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1927                                nat_get_blkaddr(ne) != NULL_ADDR))
1928                        goto err_out;
1929
1930                e = __lookup_free_nid_list(nm_i, nid);
1931                if (e) {
1932                        if (e->state == FREE_NID)
1933                                ret = true;
1934                        goto err_out;
1935                }
1936        }
1937        ret = true;
1938        err = __insert_free_nid(sbi, i, FREE_NID);
1939err_out:
1940        if (update) {
1941                update_free_nid_bitmap(sbi, nid, ret, build);
1942                if (!build)
1943                        nm_i->available_nids++;
1944        }
1945        spin_unlock(&nm_i->nid_list_lock);
1946        radix_tree_preload_end();
1947
1948        if (err)
1949                kmem_cache_free(free_nid_slab, i);
1950        return ret;
1951}
1952
1953static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1954{
1955        struct f2fs_nm_info *nm_i = NM_I(sbi);
1956        struct free_nid *i;
1957        bool need_free = false;
1958
1959        spin_lock(&nm_i->nid_list_lock);
1960        i = __lookup_free_nid_list(nm_i, nid);
1961        if (i && i->state == FREE_NID) {
1962                __remove_free_nid(sbi, i, FREE_NID);
1963                need_free = true;
1964        }
1965        spin_unlock(&nm_i->nid_list_lock);
1966
1967        if (need_free)
1968                kmem_cache_free(free_nid_slab, i);
1969}
1970
1971static void scan_nat_page(struct f2fs_sb_info *sbi,
1972                        struct page *nat_page, nid_t start_nid)
1973{
1974        struct f2fs_nm_info *nm_i = NM_I(sbi);
1975        struct f2fs_nat_block *nat_blk = page_address(nat_page);
1976        block_t blk_addr;
1977        unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
1978        int i;
1979
1980        __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
1981
1982        i = start_nid % NAT_ENTRY_PER_BLOCK;
1983
1984        for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1985                if (unlikely(start_nid >= nm_i->max_nid))
1986                        break;
1987
1988                blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1989                f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1990                if (blk_addr == NULL_ADDR) {
1991                        add_free_nid(sbi, start_nid, true, true);
1992                } else {
1993                        spin_lock(&NM_I(sbi)->nid_list_lock);
1994                        update_free_nid_bitmap(sbi, start_nid, false, true);
1995                        spin_unlock(&NM_I(sbi)->nid_list_lock);
1996                }
1997        }
1998}
1999
2000static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2001{
2002        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2003        struct f2fs_journal *journal = curseg->journal;
2004        int i;
2005
2006        down_read(&curseg->journal_rwsem);
2007        for (i = 0; i < nats_in_cursum(journal); i++) {
2008                block_t addr;
2009                nid_t nid;
2010
2011                addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2012                nid = le32_to_cpu(nid_in_journal(journal, i));
2013                if (addr == NULL_ADDR)
2014                        add_free_nid(sbi, nid, true, false);
2015                else
2016                        remove_free_nid(sbi, nid);
2017        }
2018        up_read(&curseg->journal_rwsem);
2019}
2020
2021static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2022{
2023        struct f2fs_nm_info *nm_i = NM_I(sbi);
2024        unsigned int i, idx;
2025        nid_t nid;
2026
2027        down_read(&nm_i->nat_tree_lock);
2028
2029        for (i = 0; i < nm_i->nat_blocks; i++) {
2030                if (!test_bit_le(i, nm_i->nat_block_bitmap))
2031                        continue;
2032                if (!nm_i->free_nid_count[i])
2033                        continue;
2034                for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2035                        idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2036                                                NAT_ENTRY_PER_BLOCK, idx);
2037                        if (idx >= NAT_ENTRY_PER_BLOCK)
2038                                break;
2039
2040                        nid = i * NAT_ENTRY_PER_BLOCK + idx;
2041                        add_free_nid(sbi, nid, true, false);
2042
2043                        if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2044                                goto out;
2045                }
2046        }
2047out:
2048        scan_curseg_cache(sbi);
2049
2050        up_read(&nm_i->nat_tree_lock);
2051}
2052
2053static void __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2054                                                bool sync, bool mount)
2055{
2056        struct f2fs_nm_info *nm_i = NM_I(sbi);
2057        int i = 0;
2058        nid_t nid = nm_i->next_scan_nid;
2059
2060        if (unlikely(nid >= nm_i->max_nid))
2061                nid = 0;
2062
2063        /* Enough entries */
2064        if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2065                return;
2066
2067        if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2068                return;
2069
2070        if (!mount) {
2071                /* try to find free nids in free_nid_bitmap */
2072                scan_free_nid_bits(sbi);
2073
2074                if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2075                        return;
2076        }
2077
2078        /* readahead nat pages to be scanned */
2079        f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2080                                                        META_NAT, true);
2081
2082        down_read(&nm_i->nat_tree_lock);
2083
2084        while (1) {
2085                if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2086                                                nm_i->nat_block_bitmap)) {
2087                        struct page *page = get_current_nat_page(sbi, nid);
2088
2089                        scan_nat_page(sbi, page, nid);
2090                        f2fs_put_page(page, 1);
2091                }
2092
2093                nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2094                if (unlikely(nid >= nm_i->max_nid))
2095                        nid = 0;
2096
2097                if (++i >= FREE_NID_PAGES)
2098                        break;
2099        }
2100
2101        /* go to the next free nat pages to find free nids abundantly */
2102        nm_i->next_scan_nid = nid;
2103
2104        /* find free nids from current sum_pages */
2105        scan_curseg_cache(sbi);
2106
2107        up_read(&nm_i->nat_tree_lock);
2108
2109        f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2110                                        nm_i->ra_nid_pages, META_NAT, false);
2111}
2112
2113void f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2114{
2115        mutex_lock(&NM_I(sbi)->build_lock);
2116        __f2fs_build_free_nids(sbi, sync, mount);
2117        mutex_unlock(&NM_I(sbi)->build_lock);
2118}
2119
2120/*
2121 * If this function returns success, caller can obtain a new nid
2122 * from second parameter of this function.
2123 * The returned nid could be used ino as well as nid when inode is created.
2124 */
2125bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2126{
2127        struct f2fs_nm_info *nm_i = NM_I(sbi);
2128        struct free_nid *i = NULL;
2129retry:
2130#ifdef CONFIG_F2FS_FAULT_INJECTION
2131        if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2132                f2fs_show_injection_info(FAULT_ALLOC_NID);
2133                return false;
2134        }
2135#endif
2136        spin_lock(&nm_i->nid_list_lock);
2137
2138        if (unlikely(nm_i->available_nids == 0)) {
2139                spin_unlock(&nm_i->nid_list_lock);
2140                return false;
2141        }
2142
2143        /* We should not use stale free nids created by f2fs_build_free_nids */
2144        if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2145                f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2146                i = list_first_entry(&nm_i->free_nid_list,
2147                                        struct free_nid, list);
2148                *nid = i->nid;
2149
2150                __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2151                nm_i->available_nids--;
2152
2153                update_free_nid_bitmap(sbi, *nid, false, false);
2154
2155                spin_unlock(&nm_i->nid_list_lock);
2156                return true;
2157        }
2158        spin_unlock(&nm_i->nid_list_lock);
2159
2160        /* Let's scan nat pages and its caches to get free nids */
2161        f2fs_build_free_nids(sbi, true, false);
2162        goto retry;
2163}
2164
2165/*
2166 * f2fs_alloc_nid() should be called prior to this function.
2167 */
2168void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2169{
2170        struct f2fs_nm_info *nm_i = NM_I(sbi);
2171        struct free_nid *i;
2172
2173        spin_lock(&nm_i->nid_list_lock);
2174        i = __lookup_free_nid_list(nm_i, nid);
2175        f2fs_bug_on(sbi, !i);
2176        __remove_free_nid(sbi, i, PREALLOC_NID);
2177        spin_unlock(&nm_i->nid_list_lock);
2178
2179        kmem_cache_free(free_nid_slab, i);
2180}
2181
2182/*
2183 * f2fs_alloc_nid() should be called prior to this function.
2184 */
2185void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2186{
2187        struct f2fs_nm_info *nm_i = NM_I(sbi);
2188        struct free_nid *i;
2189        bool need_free = false;
2190
2191        if (!nid)
2192                return;
2193
2194        spin_lock(&nm_i->nid_list_lock);
2195        i = __lookup_free_nid_list(nm_i, nid);
2196        f2fs_bug_on(sbi, !i);
2197
2198        if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2199                __remove_free_nid(sbi, i, PREALLOC_NID);
2200                need_free = true;
2201        } else {
2202                __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2203        }
2204
2205        nm_i->available_nids++;
2206
2207        update_free_nid_bitmap(sbi, nid, true, false);
2208
2209        spin_unlock(&nm_i->nid_list_lock);
2210
2211        if (need_free)
2212                kmem_cache_free(free_nid_slab, i);
2213}
2214
2215int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2216{
2217        struct f2fs_nm_info *nm_i = NM_I(sbi);
2218        struct free_nid *i, *next;
2219        int nr = nr_shrink;
2220
2221        if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2222                return 0;
2223
2224        if (!mutex_trylock(&nm_i->build_lock))
2225                return 0;
2226
2227        spin_lock(&nm_i->nid_list_lock);
2228        list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2229                if (nr_shrink <= 0 ||
2230                                nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2231                        break;
2232
2233                __remove_free_nid(sbi, i, FREE_NID);
2234                kmem_cache_free(free_nid_slab, i);
2235                nr_shrink--;
2236        }
2237        spin_unlock(&nm_i->nid_list_lock);
2238        mutex_unlock(&nm_i->build_lock);
2239
2240        return nr - nr_shrink;
2241}
2242
2243void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2244{
2245        void *src_addr, *dst_addr;
2246        size_t inline_size;
2247        struct page *ipage;
2248        struct f2fs_inode *ri;
2249
2250        ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2251        f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2252
2253        ri = F2FS_INODE(page);
2254        if (ri->i_inline & F2FS_INLINE_XATTR) {
2255                set_inode_flag(inode, FI_INLINE_XATTR);
2256        } else {
2257                clear_inode_flag(inode, FI_INLINE_XATTR);
2258                goto update_inode;
2259        }
2260
2261        dst_addr = inline_xattr_addr(inode, ipage);
2262        src_addr = inline_xattr_addr(inode, page);
2263        inline_size = inline_xattr_size(inode);
2264
2265        f2fs_wait_on_page_writeback(ipage, NODE, true);
2266        memcpy(dst_addr, src_addr, inline_size);
2267update_inode:
2268        f2fs_update_inode(inode, ipage);
2269        f2fs_put_page(ipage, 1);
2270}
2271
2272int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2273{
2274        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2275        nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2276        nid_t new_xnid;
2277        struct dnode_of_data dn;
2278        struct node_info ni;
2279        struct page *xpage;
2280
2281        if (!prev_xnid)
2282                goto recover_xnid;
2283
2284        /* 1: invalidate the previous xattr nid */
2285        f2fs_get_node_info(sbi, prev_xnid, &ni);
2286        f2fs_invalidate_blocks(sbi, ni.blk_addr);
2287        dec_valid_node_count(sbi, inode, false);
2288        set_node_addr(sbi, &ni, NULL_ADDR, false);
2289
2290recover_xnid:
2291        /* 2: update xattr nid in inode */
2292        if (!f2fs_alloc_nid(sbi, &new_xnid))
2293                return -ENOSPC;
2294
2295        set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2296        xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2297        if (IS_ERR(xpage)) {
2298                f2fs_alloc_nid_failed(sbi, new_xnid);
2299                return PTR_ERR(xpage);
2300        }
2301
2302        f2fs_alloc_nid_done(sbi, new_xnid);
2303        f2fs_update_inode_page(inode);
2304
2305        /* 3: update and set xattr node page dirty */
2306        memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2307
2308        set_page_dirty(xpage);
2309        f2fs_put_page(xpage, 1);
2310
2311        return 0;
2312}
2313
2314int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2315{
2316        struct f2fs_inode *src, *dst;
2317        nid_t ino = ino_of_node(page);
2318        struct node_info old_ni, new_ni;
2319        struct page *ipage;
2320
2321        f2fs_get_node_info(sbi, ino, &old_ni);
2322
2323        if (unlikely(old_ni.blk_addr != NULL_ADDR))
2324                return -EINVAL;
2325retry:
2326        ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2327        if (!ipage) {
2328                congestion_wait(BLK_RW_ASYNC, HZ/50);
2329                goto retry;
2330        }
2331
2332        /* Should not use this inode from free nid list */
2333        remove_free_nid(sbi, ino);
2334
2335        if (!PageUptodate(ipage))
2336                SetPageUptodate(ipage);
2337        fill_node_footer(ipage, ino, ino, 0, true);
2338        set_cold_node(page, false);
2339
2340        src = F2FS_INODE(page);
2341        dst = F2FS_INODE(ipage);
2342
2343        memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2344        dst->i_size = 0;
2345        dst->i_blocks = cpu_to_le64(1);
2346        dst->i_links = cpu_to_le32(1);
2347        dst->i_xattr_nid = 0;
2348        dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2349        if (dst->i_inline & F2FS_EXTRA_ATTR) {
2350                dst->i_extra_isize = src->i_extra_isize;
2351
2352                if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
2353                        F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2354                                                        i_inline_xattr_size))
2355                        dst->i_inline_xattr_size = src->i_inline_xattr_size;
2356
2357                if (f2fs_sb_has_project_quota(sbi->sb) &&
2358                        F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2359                                                                i_projid))
2360                        dst->i_projid = src->i_projid;
2361        }
2362
2363        new_ni = old_ni;
2364        new_ni.ino = ino;
2365
2366        if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2367                WARN_ON(1);
2368        set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2369        inc_valid_inode_count(sbi);
2370        set_page_dirty(ipage);
2371        f2fs_put_page(ipage, 1);
2372        return 0;
2373}
2374
2375void f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2376                        unsigned int segno, struct f2fs_summary_block *sum)
2377{
2378        struct f2fs_node *rn;
2379        struct f2fs_summary *sum_entry;
2380        block_t addr;
2381        int i, idx, last_offset, nrpages;
2382
2383        /* scan the node segment */
2384        last_offset = sbi->blocks_per_seg;
2385        addr = START_BLOCK(sbi, segno);
2386        sum_entry = &sum->entries[0];
2387
2388        for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2389                nrpages = min(last_offset - i, BIO_MAX_PAGES);
2390
2391                /* readahead node pages */
2392                f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2393
2394                for (idx = addr; idx < addr + nrpages; idx++) {
2395                        struct page *page = f2fs_get_tmp_page(sbi, idx);
2396
2397                        rn = F2FS_NODE(page);
2398                        sum_entry->nid = rn->footer.nid;
2399                        sum_entry->version = 0;
2400                        sum_entry->ofs_in_node = 0;
2401                        sum_entry++;
2402                        f2fs_put_page(page, 1);
2403                }
2404
2405                invalidate_mapping_pages(META_MAPPING(sbi), addr,
2406                                                        addr + nrpages);
2407        }
2408}
2409
2410static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2411{
2412        struct f2fs_nm_info *nm_i = NM_I(sbi);
2413        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2414        struct f2fs_journal *journal = curseg->journal;
2415        int i;
2416
2417        down_write(&curseg->journal_rwsem);
2418        for (i = 0; i < nats_in_cursum(journal); i++) {
2419                struct nat_entry *ne;
2420                struct f2fs_nat_entry raw_ne;
2421                nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2422
2423                raw_ne = nat_in_journal(journal, i);
2424
2425                ne = __lookup_nat_cache(nm_i, nid);
2426                if (!ne) {
2427                        ne = __alloc_nat_entry(nid, true);
2428                        __init_nat_entry(nm_i, ne, &raw_ne, true);
2429                }
2430
2431                /*
2432                 * if a free nat in journal has not been used after last
2433                 * checkpoint, we should remove it from available nids,
2434                 * since later we will add it again.
2435                 */
2436                if (!get_nat_flag(ne, IS_DIRTY) &&
2437                                le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2438                        spin_lock(&nm_i->nid_list_lock);
2439                        nm_i->available_nids--;
2440                        spin_unlock(&nm_i->nid_list_lock);
2441                }
2442
2443                __set_nat_cache_dirty(nm_i, ne);
2444        }
2445        update_nats_in_cursum(journal, -i);
2446        up_write(&curseg->journal_rwsem);
2447}
2448
2449static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2450                                                struct list_head *head, int max)
2451{
2452        struct nat_entry_set *cur;
2453
2454        if (nes->entry_cnt >= max)
2455                goto add_out;
2456
2457        list_for_each_entry(cur, head, set_list) {
2458                if (cur->entry_cnt >= nes->entry_cnt) {
2459                        list_add(&nes->set_list, cur->set_list.prev);
2460                        return;
2461                }
2462        }
2463add_out:
2464        list_add_tail(&nes->set_list, head);
2465}
2466
2467static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2468                                                struct page *page)
2469{
2470        struct f2fs_nm_info *nm_i = NM_I(sbi);
2471        unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2472        struct f2fs_nat_block *nat_blk = page_address(page);
2473        int valid = 0;
2474        int i = 0;
2475
2476        if (!enabled_nat_bits(sbi, NULL))
2477                return;
2478
2479        if (nat_index == 0) {
2480                valid = 1;
2481                i = 1;
2482        }
2483        for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2484                if (nat_blk->entries[i].block_addr != NULL_ADDR)
2485                        valid++;
2486        }
2487        if (valid == 0) {
2488                __set_bit_le(nat_index, nm_i->empty_nat_bits);
2489                __clear_bit_le(nat_index, nm_i->full_nat_bits);
2490                return;
2491        }
2492
2493        __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2494        if (valid == NAT_ENTRY_PER_BLOCK)
2495                __set_bit_le(nat_index, nm_i->full_nat_bits);
2496        else
2497                __clear_bit_le(nat_index, nm_i->full_nat_bits);
2498}
2499
2500static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2501                struct nat_entry_set *set, struct cp_control *cpc)
2502{
2503        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2504        struct f2fs_journal *journal = curseg->journal;
2505        nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2506        bool to_journal = true;
2507        struct f2fs_nat_block *nat_blk;
2508        struct nat_entry *ne, *cur;
2509        struct page *page = NULL;
2510
2511        /*
2512         * there are two steps to flush nat entries:
2513         * #1, flush nat entries to journal in current hot data summary block.
2514         * #2, flush nat entries to nat page.
2515         */
2516        if (enabled_nat_bits(sbi, cpc) ||
2517                !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2518                to_journal = false;
2519
2520        if (to_journal) {
2521                down_write(&curseg->journal_rwsem);
2522        } else {
2523                page = get_next_nat_page(sbi, start_nid);
2524                nat_blk = page_address(page);
2525                f2fs_bug_on(sbi, !nat_blk);
2526        }
2527
2528        /* flush dirty nats in nat entry set */
2529        list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2530                struct f2fs_nat_entry *raw_ne;
2531                nid_t nid = nat_get_nid(ne);
2532                int offset;
2533
2534                f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2535
2536                if (to_journal) {
2537                        offset = f2fs_lookup_journal_in_cursum(journal,
2538                                                        NAT_JOURNAL, nid, 1);
2539                        f2fs_bug_on(sbi, offset < 0);
2540                        raw_ne = &nat_in_journal(journal, offset);
2541                        nid_in_journal(journal, offset) = cpu_to_le32(nid);
2542                } else {
2543                        raw_ne = &nat_blk->entries[nid - start_nid];
2544                }
2545                raw_nat_from_node_info(raw_ne, &ne->ni);
2546                nat_reset_flag(ne);
2547                __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2548                if (nat_get_blkaddr(ne) == NULL_ADDR) {
2549                        add_free_nid(sbi, nid, false, true);
2550                } else {
2551                        spin_lock(&NM_I(sbi)->nid_list_lock);
2552                        update_free_nid_bitmap(sbi, nid, false, false);
2553                        spin_unlock(&NM_I(sbi)->nid_list_lock);
2554                }
2555        }
2556
2557        if (to_journal) {
2558                up_write(&curseg->journal_rwsem);
2559        } else {
2560                __update_nat_bits(sbi, start_nid, page);
2561                f2fs_put_page(page, 1);
2562        }
2563
2564        /* Allow dirty nats by node block allocation in write_begin */
2565        if (!set->entry_cnt) {
2566                radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2567                kmem_cache_free(nat_entry_set_slab, set);
2568        }
2569}
2570
2571/*
2572 * This function is called during the checkpointing process.
2573 */
2574void f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2575{
2576        struct f2fs_nm_info *nm_i = NM_I(sbi);
2577        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2578        struct f2fs_journal *journal = curseg->journal;
2579        struct nat_entry_set *setvec[SETVEC_SIZE];
2580        struct nat_entry_set *set, *tmp;
2581        unsigned int found;
2582        nid_t set_idx = 0;
2583        LIST_HEAD(sets);
2584
2585        if (!nm_i->dirty_nat_cnt)
2586                return;
2587
2588        down_write(&nm_i->nat_tree_lock);
2589
2590        /*
2591         * if there are no enough space in journal to store dirty nat
2592         * entries, remove all entries from journal and merge them
2593         * into nat entry set.
2594         */
2595        if (enabled_nat_bits(sbi, cpc) ||
2596                !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2597                remove_nats_in_journal(sbi);
2598
2599        while ((found = __gang_lookup_nat_set(nm_i,
2600                                        set_idx, SETVEC_SIZE, setvec))) {
2601                unsigned idx;
2602                set_idx = setvec[found - 1]->set + 1;
2603                for (idx = 0; idx < found; idx++)
2604                        __adjust_nat_entry_set(setvec[idx], &sets,
2605                                                MAX_NAT_JENTRIES(journal));
2606        }
2607
2608        /* flush dirty nats in nat entry set */
2609        list_for_each_entry_safe(set, tmp, &sets, set_list)
2610                __flush_nat_entry_set(sbi, set, cpc);
2611
2612        up_write(&nm_i->nat_tree_lock);
2613        /* Allow dirty nats by node block allocation in write_begin */
2614}
2615
2616static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2617{
2618        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2619        struct f2fs_nm_info *nm_i = NM_I(sbi);
2620        unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2621        unsigned int i;
2622        __u64 cp_ver = cur_cp_version(ckpt);
2623        block_t nat_bits_addr;
2624
2625        if (!enabled_nat_bits(sbi, NULL))
2626                return 0;
2627
2628        nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2629        nm_i->nat_bits = f2fs_kzalloc(sbi,
2630                        nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2631        if (!nm_i->nat_bits)
2632                return -ENOMEM;
2633
2634        nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2635                                                nm_i->nat_bits_blocks;
2636        for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2637                struct page *page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2638
2639                memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2640                                        page_address(page), F2FS_BLKSIZE);
2641                f2fs_put_page(page, 1);
2642        }
2643
2644        cp_ver |= (cur_cp_crc(ckpt) << 32);
2645        if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2646                disable_nat_bits(sbi, true);
2647                return 0;
2648        }
2649
2650        nm_i->full_nat_bits = nm_i->nat_bits + 8;
2651        nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2652
2653        f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2654        return 0;
2655}
2656
2657static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2658{
2659        struct f2fs_nm_info *nm_i = NM_I(sbi);
2660        unsigned int i = 0;
2661        nid_t nid, last_nid;
2662
2663        if (!enabled_nat_bits(sbi, NULL))
2664                return;
2665
2666        for (i = 0; i < nm_i->nat_blocks; i++) {
2667                i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2668                if (i >= nm_i->nat_blocks)
2669                        break;
2670
2671                __set_bit_le(i, nm_i->nat_block_bitmap);
2672
2673                nid = i * NAT_ENTRY_PER_BLOCK;
2674                last_nid = nid + NAT_ENTRY_PER_BLOCK;
2675
2676                spin_lock(&NM_I(sbi)->nid_list_lock);
2677                for (; nid < last_nid; nid++)
2678                        update_free_nid_bitmap(sbi, nid, true, true);
2679                spin_unlock(&NM_I(sbi)->nid_list_lock);
2680        }
2681
2682        for (i = 0; i < nm_i->nat_blocks; i++) {
2683                i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2684                if (i >= nm_i->nat_blocks)
2685                        break;
2686
2687                __set_bit_le(i, nm_i->nat_block_bitmap);
2688        }
2689}
2690
2691static int init_node_manager(struct f2fs_sb_info *sbi)
2692{
2693        struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2694        struct f2fs_nm_info *nm_i = NM_I(sbi);
2695        unsigned char *version_bitmap;
2696        unsigned int nat_segs;
2697        int err;
2698
2699        nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2700
2701        /* segment_count_nat includes pair segment so divide to 2. */
2702        nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2703        nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2704        nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2705
2706        /* not used nids: 0, node, meta, (and root counted as valid node) */
2707        nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2708                                sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2709        nm_i->nid_cnt[FREE_NID] = 0;
2710        nm_i->nid_cnt[PREALLOC_NID] = 0;
2711        nm_i->nat_cnt = 0;
2712        nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2713        nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2714        nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2715
2716        INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2717        INIT_LIST_HEAD(&nm_i->free_nid_list);
2718        INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2719        INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2720        INIT_LIST_HEAD(&nm_i->nat_entries);
2721
2722        mutex_init(&nm_i->build_lock);
2723        spin_lock_init(&nm_i->nid_list_lock);
2724        init_rwsem(&nm_i->nat_tree_lock);
2725
2726        nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2727        nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2728        version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2729        if (!version_bitmap)
2730                return -EFAULT;
2731
2732        nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2733                                        GFP_KERNEL);
2734        if (!nm_i->nat_bitmap)
2735                return -ENOMEM;
2736
2737        err = __get_nat_bitmaps(sbi);
2738        if (err)
2739                return err;
2740
2741#ifdef CONFIG_F2FS_CHECK_FS
2742        nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2743                                        GFP_KERNEL);
2744        if (!nm_i->nat_bitmap_mir)
2745                return -ENOMEM;
2746#endif
2747
2748        return 0;
2749}
2750
2751static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2752{
2753        struct f2fs_nm_info *nm_i = NM_I(sbi);
2754        int i;
2755
2756        nm_i->free_nid_bitmap =
2757                f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
2758                                             nm_i->nat_blocks),
2759                             GFP_KERNEL);
2760        if (!nm_i->free_nid_bitmap)
2761                return -ENOMEM;
2762
2763        for (i = 0; i < nm_i->nat_blocks; i++) {
2764                nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
2765                                NAT_ENTRY_BITMAP_SIZE_ALIGNED, GFP_KERNEL);
2766                if (!nm_i->free_nid_bitmap)
2767                        return -ENOMEM;
2768        }
2769
2770        nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
2771                                                                GFP_KERNEL);
2772        if (!nm_i->nat_block_bitmap)
2773                return -ENOMEM;
2774
2775        nm_i->free_nid_count =
2776                f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
2777                                              nm_i->nat_blocks),
2778                              GFP_KERNEL);
2779        if (!nm_i->free_nid_count)
2780                return -ENOMEM;
2781        return 0;
2782}
2783
2784int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
2785{
2786        int err;
2787
2788        sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
2789                                                        GFP_KERNEL);
2790        if (!sbi->nm_info)
2791                return -ENOMEM;
2792
2793        err = init_node_manager(sbi);
2794        if (err)
2795                return err;
2796
2797        err = init_free_nid_cache(sbi);
2798        if (err)
2799                return err;
2800
2801        /* load free nid status from nat_bits table */
2802        load_free_nid_bitmap(sbi);
2803
2804        f2fs_build_free_nids(sbi, true, true);
2805        return 0;
2806}
2807
2808void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
2809{
2810        struct f2fs_nm_info *nm_i = NM_I(sbi);
2811        struct free_nid *i, *next_i;
2812        struct nat_entry *natvec[NATVEC_SIZE];
2813        struct nat_entry_set *setvec[SETVEC_SIZE];
2814        nid_t nid = 0;
2815        unsigned int found;
2816
2817        if (!nm_i)
2818                return;
2819
2820        /* destroy free nid list */
2821        spin_lock(&nm_i->nid_list_lock);
2822        list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2823                __remove_free_nid(sbi, i, FREE_NID);
2824                spin_unlock(&nm_i->nid_list_lock);
2825                kmem_cache_free(free_nid_slab, i);
2826                spin_lock(&nm_i->nid_list_lock);
2827        }
2828        f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
2829        f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
2830        f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
2831        spin_unlock(&nm_i->nid_list_lock);
2832
2833        /* destroy nat cache */
2834        down_write(&nm_i->nat_tree_lock);
2835        while ((found = __gang_lookup_nat_cache(nm_i,
2836                                        nid, NATVEC_SIZE, natvec))) {
2837                unsigned idx;
2838
2839                nid = nat_get_nid(natvec[found - 1]) + 1;
2840                for (idx = 0; idx < found; idx++)
2841                        __del_from_nat_cache(nm_i, natvec[idx]);
2842        }
2843        f2fs_bug_on(sbi, nm_i->nat_cnt);
2844
2845        /* destroy nat set cache */
2846        nid = 0;
2847        while ((found = __gang_lookup_nat_set(nm_i,
2848                                        nid, SETVEC_SIZE, setvec))) {
2849                unsigned idx;
2850
2851                nid = setvec[found - 1]->set + 1;
2852                for (idx = 0; idx < found; idx++) {
2853                        /* entry_cnt is not zero, when cp_error was occurred */
2854                        f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2855                        radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2856                        kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2857                }
2858        }
2859        up_write(&nm_i->nat_tree_lock);
2860
2861        kvfree(nm_i->nat_block_bitmap);
2862        if (nm_i->free_nid_bitmap) {
2863                int i;
2864
2865                for (i = 0; i < nm_i->nat_blocks; i++)
2866                        kvfree(nm_i->free_nid_bitmap[i]);
2867                kfree(nm_i->free_nid_bitmap);
2868        }
2869        kvfree(nm_i->free_nid_count);
2870
2871        kfree(nm_i->nat_bitmap);
2872        kfree(nm_i->nat_bits);
2873#ifdef CONFIG_F2FS_CHECK_FS
2874        kfree(nm_i->nat_bitmap_mir);
2875#endif
2876        sbi->nm_info = NULL;
2877        kfree(nm_i);
2878}
2879
2880int __init f2fs_create_node_manager_caches(void)
2881{
2882        nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2883                        sizeof(struct nat_entry));
2884        if (!nat_entry_slab)
2885                goto fail;
2886
2887        free_nid_slab = f2fs_kmem_cache_create("free_nid",
2888                        sizeof(struct free_nid));
2889        if (!free_nid_slab)
2890                goto destroy_nat_entry;
2891
2892        nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2893                        sizeof(struct nat_entry_set));
2894        if (!nat_entry_set_slab)
2895                goto destroy_free_nid;
2896        return 0;
2897
2898destroy_free_nid:
2899        kmem_cache_destroy(free_nid_slab);
2900destroy_nat_entry:
2901        kmem_cache_destroy(nat_entry_slab);
2902fail:
2903        return -ENOMEM;
2904}
2905
2906void f2fs_destroy_node_manager_caches(void)
2907{
2908        kmem_cache_destroy(nat_entry_set_slab);
2909        kmem_cache_destroy(free_nid_slab);
2910        kmem_cache_destroy(nat_entry_slab);
2911}
2912