linux/fs/f2fs/node.h
<<
>>
Prefs
   1/*
   2 * fs/f2fs/node.h
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11/* start node id of a node block dedicated to the given node id */
  12#define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
  13
  14/* node block offset on the NAT area dedicated to the given start node id */
  15#define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
  16
  17/* # of pages to perform synchronous readahead before building free nids */
  18#define FREE_NID_PAGES  8
  19#define MAX_FREE_NIDS   (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
  20
  21#define DEF_RA_NID_PAGES        0       /* # of nid pages to be readaheaded */
  22
  23/* maximum readahead size for node during getting data blocks */
  24#define MAX_RA_NODE             128
  25
  26/* control the memory footprint threshold (10MB per 1GB ram) */
  27#define DEF_RAM_THRESHOLD       1
  28
  29/* control dirty nats ratio threshold (default: 10% over max nid count) */
  30#define DEF_DIRTY_NAT_RATIO_THRESHOLD           10
  31/* control total # of nats */
  32#define DEF_NAT_CACHE_THRESHOLD                 100000
  33
  34/* vector size for gang look-up from nat cache that consists of radix tree */
  35#define NATVEC_SIZE     64
  36#define SETVEC_SIZE     32
  37
  38/* return value for read_node_page */
  39#define LOCKED_PAGE     1
  40
  41/* For flag in struct node_info */
  42enum {
  43        IS_CHECKPOINTED,        /* is it checkpointed before? */
  44        HAS_FSYNCED_INODE,      /* is the inode fsynced before? */
  45        HAS_LAST_FSYNC,         /* has the latest node fsync mark? */
  46        IS_DIRTY,               /* this nat entry is dirty? */
  47        IS_PREALLOC,            /* nat entry is preallocated */
  48};
  49
  50/*
  51 * For node information
  52 */
  53struct node_info {
  54        nid_t nid;              /* node id */
  55        nid_t ino;              /* inode number of the node's owner */
  56        block_t blk_addr;       /* block address of the node */
  57        unsigned char version;  /* version of the node */
  58        unsigned char flag;     /* for node information bits */
  59};
  60
  61struct nat_entry {
  62        struct list_head list;  /* for clean or dirty nat list */
  63        struct node_info ni;    /* in-memory node information */
  64};
  65
  66#define nat_get_nid(nat)                ((nat)->ni.nid)
  67#define nat_set_nid(nat, n)             ((nat)->ni.nid = (n))
  68#define nat_get_blkaddr(nat)            ((nat)->ni.blk_addr)
  69#define nat_set_blkaddr(nat, b)         ((nat)->ni.blk_addr = (b))
  70#define nat_get_ino(nat)                ((nat)->ni.ino)
  71#define nat_set_ino(nat, i)             ((nat)->ni.ino = (i))
  72#define nat_get_version(nat)            ((nat)->ni.version)
  73#define nat_set_version(nat, v)         ((nat)->ni.version = (v))
  74
  75#define inc_node_version(version)       (++(version))
  76
  77static inline void copy_node_info(struct node_info *dst,
  78                                                struct node_info *src)
  79{
  80        dst->nid = src->nid;
  81        dst->ino = src->ino;
  82        dst->blk_addr = src->blk_addr;
  83        dst->version = src->version;
  84        /* should not copy flag here */
  85}
  86
  87static inline void set_nat_flag(struct nat_entry *ne,
  88                                unsigned int type, bool set)
  89{
  90        unsigned char mask = 0x01 << type;
  91        if (set)
  92                ne->ni.flag |= mask;
  93        else
  94                ne->ni.flag &= ~mask;
  95}
  96
  97static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
  98{
  99        unsigned char mask = 0x01 << type;
 100        return ne->ni.flag & mask;
 101}
 102
 103static inline void nat_reset_flag(struct nat_entry *ne)
 104{
 105        /* these states can be set only after checkpoint was done */
 106        set_nat_flag(ne, IS_CHECKPOINTED, true);
 107        set_nat_flag(ne, HAS_FSYNCED_INODE, false);
 108        set_nat_flag(ne, HAS_LAST_FSYNC, true);
 109}
 110
 111static inline void node_info_from_raw_nat(struct node_info *ni,
 112                                                struct f2fs_nat_entry *raw_ne)
 113{
 114        ni->ino = le32_to_cpu(raw_ne->ino);
 115        ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
 116        ni->version = raw_ne->version;
 117}
 118
 119static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
 120                                                struct node_info *ni)
 121{
 122        raw_ne->ino = cpu_to_le32(ni->ino);
 123        raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
 124        raw_ne->version = ni->version;
 125}
 126
 127static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
 128{
 129        return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
 130                                        NM_I(sbi)->dirty_nats_ratio / 100;
 131}
 132
 133static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
 134{
 135        return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
 136}
 137
 138enum mem_type {
 139        FREE_NIDS,      /* indicates the free nid list */
 140        NAT_ENTRIES,    /* indicates the cached nat entry */
 141        DIRTY_DENTS,    /* indicates dirty dentry pages */
 142        INO_ENTRIES,    /* indicates inode entries */
 143        EXTENT_CACHE,   /* indicates extent cache */
 144        INMEM_PAGES,    /* indicates inmemory pages */
 145        BASE_CHECK,     /* check kernel status */
 146};
 147
 148struct nat_entry_set {
 149        struct list_head set_list;      /* link with other nat sets */
 150        struct list_head entry_list;    /* link with dirty nat entries */
 151        nid_t set;                      /* set number*/
 152        unsigned int entry_cnt;         /* the # of nat entries in set */
 153};
 154
 155struct free_nid {
 156        struct list_head list;  /* for free node id list */
 157        nid_t nid;              /* node id */
 158        int state;              /* in use or not: FREE_NID or PREALLOC_NID */
 159};
 160
 161static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
 162{
 163        struct f2fs_nm_info *nm_i = NM_I(sbi);
 164        struct free_nid *fnid;
 165
 166        spin_lock(&nm_i->nid_list_lock);
 167        if (nm_i->nid_cnt[FREE_NID] <= 0) {
 168                spin_unlock(&nm_i->nid_list_lock);
 169                return;
 170        }
 171        fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
 172        *nid = fnid->nid;
 173        spin_unlock(&nm_i->nid_list_lock);
 174}
 175
 176/*
 177 * inline functions
 178 */
 179static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
 180{
 181        struct f2fs_nm_info *nm_i = NM_I(sbi);
 182
 183#ifdef CONFIG_F2FS_CHECK_FS
 184        if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
 185                                                nm_i->bitmap_size))
 186                f2fs_bug_on(sbi, 1);
 187#endif
 188        memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
 189}
 190
 191static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
 192{
 193        struct f2fs_nm_info *nm_i = NM_I(sbi);
 194        pgoff_t block_off;
 195        pgoff_t block_addr;
 196
 197        /*
 198         * block_off = segment_off * 512 + off_in_segment
 199         * OLD = (segment_off * 512) * 2 + off_in_segment
 200         * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
 201         */
 202        block_off = NAT_BLOCK_OFFSET(start);
 203
 204        block_addr = (pgoff_t)(nm_i->nat_blkaddr +
 205                (block_off << 1) -
 206                (block_off & (sbi->blocks_per_seg - 1)));
 207
 208        if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
 209                block_addr += sbi->blocks_per_seg;
 210
 211        return block_addr;
 212}
 213
 214static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
 215                                                pgoff_t block_addr)
 216{
 217        struct f2fs_nm_info *nm_i = NM_I(sbi);
 218
 219        block_addr -= nm_i->nat_blkaddr;
 220        block_addr ^= 1 << sbi->log_blocks_per_seg;
 221        return block_addr + nm_i->nat_blkaddr;
 222}
 223
 224static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
 225{
 226        unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
 227
 228        f2fs_change_bit(block_off, nm_i->nat_bitmap);
 229#ifdef CONFIG_F2FS_CHECK_FS
 230        f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
 231#endif
 232}
 233
 234static inline nid_t ino_of_node(struct page *node_page)
 235{
 236        struct f2fs_node *rn = F2FS_NODE(node_page);
 237        return le32_to_cpu(rn->footer.ino);
 238}
 239
 240static inline nid_t nid_of_node(struct page *node_page)
 241{
 242        struct f2fs_node *rn = F2FS_NODE(node_page);
 243        return le32_to_cpu(rn->footer.nid);
 244}
 245
 246static inline unsigned int ofs_of_node(struct page *node_page)
 247{
 248        struct f2fs_node *rn = F2FS_NODE(node_page);
 249        unsigned flag = le32_to_cpu(rn->footer.flag);
 250        return flag >> OFFSET_BIT_SHIFT;
 251}
 252
 253static inline __u64 cpver_of_node(struct page *node_page)
 254{
 255        struct f2fs_node *rn = F2FS_NODE(node_page);
 256        return le64_to_cpu(rn->footer.cp_ver);
 257}
 258
 259static inline block_t next_blkaddr_of_node(struct page *node_page)
 260{
 261        struct f2fs_node *rn = F2FS_NODE(node_page);
 262        return le32_to_cpu(rn->footer.next_blkaddr);
 263}
 264
 265static inline void fill_node_footer(struct page *page, nid_t nid,
 266                                nid_t ino, unsigned int ofs, bool reset)
 267{
 268        struct f2fs_node *rn = F2FS_NODE(page);
 269        unsigned int old_flag = 0;
 270
 271        if (reset)
 272                memset(rn, 0, sizeof(*rn));
 273        else
 274                old_flag = le32_to_cpu(rn->footer.flag);
 275
 276        rn->footer.nid = cpu_to_le32(nid);
 277        rn->footer.ino = cpu_to_le32(ino);
 278
 279        /* should remain old flag bits such as COLD_BIT_SHIFT */
 280        rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
 281                                        (old_flag & OFFSET_BIT_MASK));
 282}
 283
 284static inline void copy_node_footer(struct page *dst, struct page *src)
 285{
 286        struct f2fs_node *src_rn = F2FS_NODE(src);
 287        struct f2fs_node *dst_rn = F2FS_NODE(dst);
 288        memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
 289}
 290
 291static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
 292{
 293        struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
 294        struct f2fs_node *rn = F2FS_NODE(page);
 295        __u64 cp_ver = cur_cp_version(ckpt);
 296
 297        if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
 298                cp_ver |= (cur_cp_crc(ckpt) << 32);
 299
 300        rn->footer.cp_ver = cpu_to_le64(cp_ver);
 301        rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
 302}
 303
 304static inline bool is_recoverable_dnode(struct page *page)
 305{
 306        struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
 307        __u64 cp_ver = cur_cp_version(ckpt);
 308
 309        /* Don't care crc part, if fsck.f2fs sets it. */
 310        if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
 311                return (cp_ver << 32) == (cpver_of_node(page) << 32);
 312
 313        if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
 314                cp_ver |= (cur_cp_crc(ckpt) << 32);
 315
 316        return cp_ver == cpver_of_node(page);
 317}
 318
 319/*
 320 * f2fs assigns the following node offsets described as (num).
 321 * N = NIDS_PER_BLOCK
 322 *
 323 *  Inode block (0)
 324 *    |- direct node (1)
 325 *    |- direct node (2)
 326 *    |- indirect node (3)
 327 *    |            `- direct node (4 => 4 + N - 1)
 328 *    |- indirect node (4 + N)
 329 *    |            `- direct node (5 + N => 5 + 2N - 1)
 330 *    `- double indirect node (5 + 2N)
 331 *                 `- indirect node (6 + 2N)
 332 *                       `- direct node
 333 *                 ......
 334 *                 `- indirect node ((6 + 2N) + x(N + 1))
 335 *                       `- direct node
 336 *                 ......
 337 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
 338 *                       `- direct node
 339 */
 340static inline bool IS_DNODE(struct page *node_page)
 341{
 342        unsigned int ofs = ofs_of_node(node_page);
 343
 344        if (f2fs_has_xattr_block(ofs))
 345                return true;
 346
 347        if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
 348                        ofs == 5 + 2 * NIDS_PER_BLOCK)
 349                return false;
 350        if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
 351                ofs -= 6 + 2 * NIDS_PER_BLOCK;
 352                if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
 353                        return false;
 354        }
 355        return true;
 356}
 357
 358static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
 359{
 360        struct f2fs_node *rn = F2FS_NODE(p);
 361
 362        f2fs_wait_on_page_writeback(p, NODE, true);
 363
 364        if (i)
 365                rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
 366        else
 367                rn->in.nid[off] = cpu_to_le32(nid);
 368        return set_page_dirty(p);
 369}
 370
 371static inline nid_t get_nid(struct page *p, int off, bool i)
 372{
 373        struct f2fs_node *rn = F2FS_NODE(p);
 374
 375        if (i)
 376                return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
 377        return le32_to_cpu(rn->in.nid[off]);
 378}
 379
 380/*
 381 * Coldness identification:
 382 *  - Mark cold files in f2fs_inode_info
 383 *  - Mark cold node blocks in their node footer
 384 *  - Mark cold data pages in page cache
 385 */
 386static inline int is_cold_data(struct page *page)
 387{
 388        return PageChecked(page);
 389}
 390
 391static inline void set_cold_data(struct page *page)
 392{
 393        SetPageChecked(page);
 394}
 395
 396static inline void clear_cold_data(struct page *page)
 397{
 398        ClearPageChecked(page);
 399}
 400
 401static inline int is_node(struct page *page, int type)
 402{
 403        struct f2fs_node *rn = F2FS_NODE(page);
 404        return le32_to_cpu(rn->footer.flag) & (1 << type);
 405}
 406
 407#define is_cold_node(page)      is_node(page, COLD_BIT_SHIFT)
 408#define is_fsync_dnode(page)    is_node(page, FSYNC_BIT_SHIFT)
 409#define is_dent_dnode(page)     is_node(page, DENT_BIT_SHIFT)
 410
 411static inline int is_inline_node(struct page *page)
 412{
 413        return PageChecked(page);
 414}
 415
 416static inline void set_inline_node(struct page *page)
 417{
 418        SetPageChecked(page);
 419}
 420
 421static inline void clear_inline_node(struct page *page)
 422{
 423        ClearPageChecked(page);
 424}
 425
 426static inline void set_cold_node(struct page *page, bool is_dir)
 427{
 428        struct f2fs_node *rn = F2FS_NODE(page);
 429        unsigned int flag = le32_to_cpu(rn->footer.flag);
 430
 431        if (is_dir)
 432                flag &= ~(0x1 << COLD_BIT_SHIFT);
 433        else
 434                flag |= (0x1 << COLD_BIT_SHIFT);
 435        rn->footer.flag = cpu_to_le32(flag);
 436}
 437
 438static inline void set_mark(struct page *page, int mark, int type)
 439{
 440        struct f2fs_node *rn = F2FS_NODE(page);
 441        unsigned int flag = le32_to_cpu(rn->footer.flag);
 442        if (mark)
 443                flag |= (0x1 << type);
 444        else
 445                flag &= ~(0x1 << type);
 446        rn->footer.flag = cpu_to_le32(flag);
 447}
 448#define set_dentry_mark(page, mark)     set_mark(page, mark, DENT_BIT_SHIFT)
 449#define set_fsync_mark(page, mark)      set_mark(page, mark, FSYNC_BIT_SHIFT)
 450