linux/fs/gfs2/file.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
  10#include <linux/slab.h>
  11#include <linux/spinlock.h>
  12#include <linux/completion.h>
  13#include <linux/buffer_head.h>
  14#include <linux/pagemap.h>
  15#include <linux/uio.h>
  16#include <linux/blkdev.h>
  17#include <linux/mm.h>
  18#include <linux/mount.h>
  19#include <linux/fs.h>
  20#include <linux/gfs2_ondisk.h>
  21#include <linux/falloc.h>
  22#include <linux/swap.h>
  23#include <linux/crc32.h>
  24#include <linux/writeback.h>
  25#include <linux/uaccess.h>
  26#include <linux/dlm.h>
  27#include <linux/dlm_plock.h>
  28#include <linux/delay.h>
  29
  30#include "gfs2.h"
  31#include "incore.h"
  32#include "bmap.h"
  33#include "dir.h"
  34#include "glock.h"
  35#include "glops.h"
  36#include "inode.h"
  37#include "log.h"
  38#include "meta_io.h"
  39#include "quota.h"
  40#include "rgrp.h"
  41#include "trans.h"
  42#include "util.h"
  43
  44/**
  45 * gfs2_llseek - seek to a location in a file
  46 * @file: the file
  47 * @offset: the offset
  48 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
  49 *
  50 * SEEK_END requires the glock for the file because it references the
  51 * file's size.
  52 *
  53 * Returns: The new offset, or errno
  54 */
  55
  56static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
  57{
  58        struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
  59        struct gfs2_holder i_gh;
  60        loff_t error;
  61
  62        switch (whence) {
  63        case SEEK_END:
  64                error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
  65                                           &i_gh);
  66                if (!error) {
  67                        error = generic_file_llseek(file, offset, whence);
  68                        gfs2_glock_dq_uninit(&i_gh);
  69                }
  70                break;
  71
  72        case SEEK_DATA:
  73                error = gfs2_seek_data(file, offset);
  74                break;
  75
  76        case SEEK_HOLE:
  77                error = gfs2_seek_hole(file, offset);
  78                break;
  79
  80        case SEEK_CUR:
  81        case SEEK_SET:
  82                /*
  83                 * These don't reference inode->i_size and don't depend on the
  84                 * block mapping, so we don't need the glock.
  85                 */
  86                error = generic_file_llseek(file, offset, whence);
  87                break;
  88        default:
  89                error = -EINVAL;
  90        }
  91
  92        return error;
  93}
  94
  95/**
  96 * gfs2_readdir - Iterator for a directory
  97 * @file: The directory to read from
  98 * @ctx: What to feed directory entries to
  99 *
 100 * Returns: errno
 101 */
 102
 103static int gfs2_readdir(struct file *file, struct dir_context *ctx)
 104{
 105        struct inode *dir = file->f_mapping->host;
 106        struct gfs2_inode *dip = GFS2_I(dir);
 107        struct gfs2_holder d_gh;
 108        int error;
 109
 110        error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
 111        if (error)
 112                return error;
 113
 114        error = gfs2_dir_read(dir, ctx, &file->f_ra);
 115
 116        gfs2_glock_dq_uninit(&d_gh);
 117
 118        return error;
 119}
 120
 121/**
 122 * fsflag_gfs2flag
 123 *
 124 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
 125 * and to GFS2_DIF_JDATA for non-directories.
 126 */
 127static struct {
 128        u32 fsflag;
 129        u32 gfsflag;
 130} fsflag_gfs2flag[] = {
 131        {FS_SYNC_FL, GFS2_DIF_SYNC},
 132        {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
 133        {FS_APPEND_FL, GFS2_DIF_APPENDONLY},
 134        {FS_NOATIME_FL, GFS2_DIF_NOATIME},
 135        {FS_INDEX_FL, GFS2_DIF_EXHASH},
 136        {FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
 137        {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
 138};
 139
 140static int gfs2_get_flags(struct file *filp, u32 __user *ptr)
 141{
 142        struct inode *inode = file_inode(filp);
 143        struct gfs2_inode *ip = GFS2_I(inode);
 144        struct gfs2_holder gh;
 145        int i, error;
 146        u32 gfsflags, fsflags = 0;
 147
 148        gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 149        error = gfs2_glock_nq(&gh);
 150        if (error)
 151                goto out_uninit;
 152
 153        gfsflags = ip->i_diskflags;
 154        if (S_ISDIR(inode->i_mode))
 155                gfsflags &= ~GFS2_DIF_JDATA;
 156        else
 157                gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
 158        for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
 159                if (gfsflags & fsflag_gfs2flag[i].gfsflag)
 160                        fsflags |= fsflag_gfs2flag[i].fsflag;
 161
 162        if (put_user(fsflags, ptr))
 163                error = -EFAULT;
 164
 165        gfs2_glock_dq(&gh);
 166out_uninit:
 167        gfs2_holder_uninit(&gh);
 168        return error;
 169}
 170
 171void gfs2_set_inode_flags(struct inode *inode)
 172{
 173        struct gfs2_inode *ip = GFS2_I(inode);
 174        unsigned int flags = inode->i_flags;
 175
 176        flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
 177        if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
 178                flags |= S_NOSEC;
 179        if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
 180                flags |= S_IMMUTABLE;
 181        if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
 182                flags |= S_APPEND;
 183        if (ip->i_diskflags & GFS2_DIF_NOATIME)
 184                flags |= S_NOATIME;
 185        if (ip->i_diskflags & GFS2_DIF_SYNC)
 186                flags |= S_SYNC;
 187        inode->i_flags = flags;
 188}
 189
 190/* Flags that can be set by user space */
 191#define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA|                    \
 192                             GFS2_DIF_IMMUTABLE|                \
 193                             GFS2_DIF_APPENDONLY|               \
 194                             GFS2_DIF_NOATIME|                  \
 195                             GFS2_DIF_SYNC|                     \
 196                             GFS2_DIF_TOPDIR|                   \
 197                             GFS2_DIF_INHERIT_JDATA)
 198
 199/**
 200 * do_gfs2_set_flags - set flags on an inode
 201 * @filp: file pointer
 202 * @reqflags: The flags to set
 203 * @mask: Indicates which flags are valid
 204 *
 205 */
 206static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask)
 207{
 208        struct inode *inode = file_inode(filp);
 209        struct gfs2_inode *ip = GFS2_I(inode);
 210        struct gfs2_sbd *sdp = GFS2_SB(inode);
 211        struct buffer_head *bh;
 212        struct gfs2_holder gh;
 213        int error;
 214        u32 new_flags, flags;
 215
 216        error = mnt_want_write_file(filp);
 217        if (error)
 218                return error;
 219
 220        error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
 221        if (error)
 222                goto out_drop_write;
 223
 224        error = -EACCES;
 225        if (!inode_owner_or_capable(inode))
 226                goto out;
 227
 228        error = 0;
 229        flags = ip->i_diskflags;
 230        new_flags = (flags & ~mask) | (reqflags & mask);
 231        if ((new_flags ^ flags) == 0)
 232                goto out;
 233
 234        error = -EPERM;
 235        if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE))
 236                goto out;
 237        if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY))
 238                goto out;
 239        if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) &&
 240            !capable(CAP_LINUX_IMMUTABLE))
 241                goto out;
 242        if (!IS_IMMUTABLE(inode)) {
 243                error = gfs2_permission(inode, MAY_WRITE);
 244                if (error)
 245                        goto out;
 246        }
 247        if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
 248                if (new_flags & GFS2_DIF_JDATA)
 249                        gfs2_log_flush(sdp, ip->i_gl,
 250                                       GFS2_LOG_HEAD_FLUSH_NORMAL |
 251                                       GFS2_LFC_SET_FLAGS);
 252                error = filemap_fdatawrite(inode->i_mapping);
 253                if (error)
 254                        goto out;
 255                error = filemap_fdatawait(inode->i_mapping);
 256                if (error)
 257                        goto out;
 258                if (new_flags & GFS2_DIF_JDATA)
 259                        gfs2_ordered_del_inode(ip);
 260        }
 261        error = gfs2_trans_begin(sdp, RES_DINODE, 0);
 262        if (error)
 263                goto out;
 264        error = gfs2_meta_inode_buffer(ip, &bh);
 265        if (error)
 266                goto out_trans_end;
 267        inode->i_ctime = current_time(inode);
 268        gfs2_trans_add_meta(ip->i_gl, bh);
 269        ip->i_diskflags = new_flags;
 270        gfs2_dinode_out(ip, bh->b_data);
 271        brelse(bh);
 272        gfs2_set_inode_flags(inode);
 273        gfs2_set_aops(inode);
 274out_trans_end:
 275        gfs2_trans_end(sdp);
 276out:
 277        gfs2_glock_dq_uninit(&gh);
 278out_drop_write:
 279        mnt_drop_write_file(filp);
 280        return error;
 281}
 282
 283static int gfs2_set_flags(struct file *filp, u32 __user *ptr)
 284{
 285        struct inode *inode = file_inode(filp);
 286        u32 fsflags, gfsflags = 0;
 287        u32 mask;
 288        int i;
 289
 290        if (get_user(fsflags, ptr))
 291                return -EFAULT;
 292
 293        for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
 294                if (fsflags & fsflag_gfs2flag[i].fsflag) {
 295                        fsflags &= ~fsflag_gfs2flag[i].fsflag;
 296                        gfsflags |= fsflag_gfs2flag[i].gfsflag;
 297                }
 298        }
 299        if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
 300                return -EINVAL;
 301
 302        mask = GFS2_FLAGS_USER_SET;
 303        if (S_ISDIR(inode->i_mode)) {
 304                mask &= ~GFS2_DIF_JDATA;
 305        } else {
 306                /* The GFS2_DIF_TOPDIR flag is only valid for directories. */
 307                if (gfsflags & GFS2_DIF_TOPDIR)
 308                        return -EINVAL;
 309                mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
 310        }
 311
 312        return do_gfs2_set_flags(filp, gfsflags, mask);
 313}
 314
 315static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
 316{
 317        switch(cmd) {
 318        case FS_IOC_GETFLAGS:
 319                return gfs2_get_flags(filp, (u32 __user *)arg);
 320        case FS_IOC_SETFLAGS:
 321                return gfs2_set_flags(filp, (u32 __user *)arg);
 322        case FITRIM:
 323                return gfs2_fitrim(filp, (void __user *)arg);
 324        }
 325        return -ENOTTY;
 326}
 327
 328/**
 329 * gfs2_size_hint - Give a hint to the size of a write request
 330 * @filep: The struct file
 331 * @offset: The file offset of the write
 332 * @size: The length of the write
 333 *
 334 * When we are about to do a write, this function records the total
 335 * write size in order to provide a suitable hint to the lower layers
 336 * about how many blocks will be required.
 337 *
 338 */
 339
 340static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
 341{
 342        struct inode *inode = file_inode(filep);
 343        struct gfs2_sbd *sdp = GFS2_SB(inode);
 344        struct gfs2_inode *ip = GFS2_I(inode);
 345        size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
 346        int hint = min_t(size_t, INT_MAX, blks);
 347
 348        if (hint > atomic_read(&ip->i_res.rs_sizehint))
 349                atomic_set(&ip->i_res.rs_sizehint, hint);
 350}
 351
 352/**
 353 * gfs2_allocate_page_backing - Use bmap to allocate blocks
 354 * @page: The (locked) page to allocate backing for
 355 *
 356 * We try to allocate all the blocks required for the page in
 357 * one go. This might fail for various reasons, so we keep
 358 * trying until all the blocks to back this page are allocated.
 359 * If some of the blocks are already allocated, thats ok too.
 360 */
 361
 362static int gfs2_allocate_page_backing(struct page *page)
 363{
 364        struct inode *inode = page->mapping->host;
 365        struct buffer_head bh;
 366        unsigned long size = PAGE_SIZE;
 367        u64 lblock = page->index << (PAGE_SHIFT - inode->i_blkbits);
 368
 369        do {
 370                bh.b_state = 0;
 371                bh.b_size = size;
 372                gfs2_block_map(inode, lblock, &bh, 1);
 373                if (!buffer_mapped(&bh))
 374                        return -EIO;
 375                size -= bh.b_size;
 376                lblock += (bh.b_size >> inode->i_blkbits);
 377        } while(size > 0);
 378        return 0;
 379}
 380
 381/**
 382 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
 383 * @vma: The virtual memory area
 384 * @vmf: The virtual memory fault containing the page to become writable
 385 *
 386 * When the page becomes writable, we need to ensure that we have
 387 * blocks allocated on disk to back that page.
 388 */
 389
 390static int gfs2_page_mkwrite(struct vm_fault *vmf)
 391{
 392        struct page *page = vmf->page;
 393        struct inode *inode = file_inode(vmf->vma->vm_file);
 394        struct gfs2_inode *ip = GFS2_I(inode);
 395        struct gfs2_sbd *sdp = GFS2_SB(inode);
 396        struct gfs2_alloc_parms ap = { .aflags = 0, };
 397        unsigned long last_index;
 398        u64 pos = page->index << PAGE_SHIFT;
 399        unsigned int data_blocks, ind_blocks, rblocks;
 400        struct gfs2_holder gh;
 401        loff_t size;
 402        int ret;
 403
 404        sb_start_pagefault(inode->i_sb);
 405
 406        ret = gfs2_rsqa_alloc(ip);
 407        if (ret)
 408                goto out;
 409
 410        gfs2_size_hint(vmf->vma->vm_file, pos, PAGE_SIZE);
 411
 412        gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
 413        ret = gfs2_glock_nq(&gh);
 414        if (ret)
 415                goto out_uninit;
 416
 417        /* Update file times before taking page lock */
 418        file_update_time(vmf->vma->vm_file);
 419
 420        set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
 421        set_bit(GIF_SW_PAGED, &ip->i_flags);
 422
 423        if (!gfs2_write_alloc_required(ip, pos, PAGE_SIZE)) {
 424                lock_page(page);
 425                if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
 426                        ret = -EAGAIN;
 427                        unlock_page(page);
 428                }
 429                goto out_unlock;
 430        }
 431
 432        ret = gfs2_rindex_update(sdp);
 433        if (ret)
 434                goto out_unlock;
 435
 436        gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
 437        ap.target = data_blocks + ind_blocks;
 438        ret = gfs2_quota_lock_check(ip, &ap);
 439        if (ret)
 440                goto out_unlock;
 441        ret = gfs2_inplace_reserve(ip, &ap);
 442        if (ret)
 443                goto out_quota_unlock;
 444
 445        rblocks = RES_DINODE + ind_blocks;
 446        if (gfs2_is_jdata(ip))
 447                rblocks += data_blocks ? data_blocks : 1;
 448        if (ind_blocks || data_blocks) {
 449                rblocks += RES_STATFS + RES_QUOTA;
 450                rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
 451        }
 452        ret = gfs2_trans_begin(sdp, rblocks, 0);
 453        if (ret)
 454                goto out_trans_fail;
 455
 456        lock_page(page);
 457        ret = -EINVAL;
 458        size = i_size_read(inode);
 459        last_index = (size - 1) >> PAGE_SHIFT;
 460        /* Check page index against inode size */
 461        if (size == 0 || (page->index > last_index))
 462                goto out_trans_end;
 463
 464        ret = -EAGAIN;
 465        /* If truncated, we must retry the operation, we may have raced
 466         * with the glock demotion code.
 467         */
 468        if (!PageUptodate(page) || page->mapping != inode->i_mapping)
 469                goto out_trans_end;
 470
 471        /* Unstuff, if required, and allocate backing blocks for page */
 472        ret = 0;
 473        if (gfs2_is_stuffed(ip))
 474                ret = gfs2_unstuff_dinode(ip, page);
 475        if (ret == 0)
 476                ret = gfs2_allocate_page_backing(page);
 477
 478out_trans_end:
 479        if (ret)
 480                unlock_page(page);
 481        gfs2_trans_end(sdp);
 482out_trans_fail:
 483        gfs2_inplace_release(ip);
 484out_quota_unlock:
 485        gfs2_quota_unlock(ip);
 486out_unlock:
 487        gfs2_glock_dq(&gh);
 488out_uninit:
 489        gfs2_holder_uninit(&gh);
 490        if (ret == 0) {
 491                set_page_dirty(page);
 492                wait_for_stable_page(page);
 493        }
 494out:
 495        sb_end_pagefault(inode->i_sb);
 496        return block_page_mkwrite_return(ret);
 497}
 498
 499static const struct vm_operations_struct gfs2_vm_ops = {
 500        .fault = filemap_fault,
 501        .map_pages = filemap_map_pages,
 502        .page_mkwrite = gfs2_page_mkwrite,
 503};
 504
 505/**
 506 * gfs2_mmap -
 507 * @file: The file to map
 508 * @vma: The VMA which described the mapping
 509 *
 510 * There is no need to get a lock here unless we should be updating
 511 * atime. We ignore any locking errors since the only consequence is
 512 * a missed atime update (which will just be deferred until later).
 513 *
 514 * Returns: 0
 515 */
 516
 517static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
 518{
 519        struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
 520
 521        if (!(file->f_flags & O_NOATIME) &&
 522            !IS_NOATIME(&ip->i_inode)) {
 523                struct gfs2_holder i_gh;
 524                int error;
 525
 526                error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
 527                                           &i_gh);
 528                if (error)
 529                        return error;
 530                /* grab lock to update inode */
 531                gfs2_glock_dq_uninit(&i_gh);
 532                file_accessed(file);
 533        }
 534        vma->vm_ops = &gfs2_vm_ops;
 535
 536        return 0;
 537}
 538
 539/**
 540 * gfs2_open_common - This is common to open and atomic_open
 541 * @inode: The inode being opened
 542 * @file: The file being opened
 543 *
 544 * This maybe called under a glock or not depending upon how it has
 545 * been called. We must always be called under a glock for regular
 546 * files, however. For other file types, it does not matter whether
 547 * we hold the glock or not.
 548 *
 549 * Returns: Error code or 0 for success
 550 */
 551
 552int gfs2_open_common(struct inode *inode, struct file *file)
 553{
 554        struct gfs2_file *fp;
 555        int ret;
 556
 557        if (S_ISREG(inode->i_mode)) {
 558                ret = generic_file_open(inode, file);
 559                if (ret)
 560                        return ret;
 561        }
 562
 563        fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
 564        if (!fp)
 565                return -ENOMEM;
 566
 567        mutex_init(&fp->f_fl_mutex);
 568
 569        gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
 570        file->private_data = fp;
 571        return 0;
 572}
 573
 574/**
 575 * gfs2_open - open a file
 576 * @inode: the inode to open
 577 * @file: the struct file for this opening
 578 *
 579 * After atomic_open, this function is only used for opening files
 580 * which are already cached. We must still get the glock for regular
 581 * files to ensure that we have the file size uptodate for the large
 582 * file check which is in the common code. That is only an issue for
 583 * regular files though.
 584 *
 585 * Returns: errno
 586 */
 587
 588static int gfs2_open(struct inode *inode, struct file *file)
 589{
 590        struct gfs2_inode *ip = GFS2_I(inode);
 591        struct gfs2_holder i_gh;
 592        int error;
 593        bool need_unlock = false;
 594
 595        if (S_ISREG(ip->i_inode.i_mode)) {
 596                error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
 597                                           &i_gh);
 598                if (error)
 599                        return error;
 600                need_unlock = true;
 601        }
 602
 603        error = gfs2_open_common(inode, file);
 604
 605        if (need_unlock)
 606                gfs2_glock_dq_uninit(&i_gh);
 607
 608        return error;
 609}
 610
 611/**
 612 * gfs2_release - called to close a struct file
 613 * @inode: the inode the struct file belongs to
 614 * @file: the struct file being closed
 615 *
 616 * Returns: errno
 617 */
 618
 619static int gfs2_release(struct inode *inode, struct file *file)
 620{
 621        struct gfs2_inode *ip = GFS2_I(inode);
 622
 623        kfree(file->private_data);
 624        file->private_data = NULL;
 625
 626        if (!(file->f_mode & FMODE_WRITE))
 627                return 0;
 628
 629        gfs2_rsqa_delete(ip, &inode->i_writecount);
 630        return 0;
 631}
 632
 633/**
 634 * gfs2_fsync - sync the dirty data for a file (across the cluster)
 635 * @file: the file that points to the dentry
 636 * @start: the start position in the file to sync
 637 * @end: the end position in the file to sync
 638 * @datasync: set if we can ignore timestamp changes
 639 *
 640 * We split the data flushing here so that we don't wait for the data
 641 * until after we've also sent the metadata to disk. Note that for
 642 * data=ordered, we will write & wait for the data at the log flush
 643 * stage anyway, so this is unlikely to make much of a difference
 644 * except in the data=writeback case.
 645 *
 646 * If the fdatawrite fails due to any reason except -EIO, we will
 647 * continue the remainder of the fsync, although we'll still report
 648 * the error at the end. This is to match filemap_write_and_wait_range()
 649 * behaviour.
 650 *
 651 * Returns: errno
 652 */
 653
 654static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
 655                      int datasync)
 656{
 657        struct address_space *mapping = file->f_mapping;
 658        struct inode *inode = mapping->host;
 659        int sync_state = inode->i_state & I_DIRTY_ALL;
 660        struct gfs2_inode *ip = GFS2_I(inode);
 661        int ret = 0, ret1 = 0;
 662
 663        if (mapping->nrpages) {
 664                ret1 = filemap_fdatawrite_range(mapping, start, end);
 665                if (ret1 == -EIO)
 666                        return ret1;
 667        }
 668
 669        if (!gfs2_is_jdata(ip))
 670                sync_state &= ~I_DIRTY_PAGES;
 671        if (datasync)
 672                sync_state &= ~(I_DIRTY_SYNC | I_DIRTY_TIME);
 673
 674        if (sync_state) {
 675                ret = sync_inode_metadata(inode, 1);
 676                if (ret)
 677                        return ret;
 678                if (gfs2_is_jdata(ip))
 679                        ret = file_write_and_wait(file);
 680                if (ret)
 681                        return ret;
 682                gfs2_ail_flush(ip->i_gl, 1);
 683        }
 684
 685        if (mapping->nrpages)
 686                ret = file_fdatawait_range(file, start, end);
 687
 688        return ret ? ret : ret1;
 689}
 690
 691/**
 692 * gfs2_file_write_iter - Perform a write to a file
 693 * @iocb: The io context
 694 * @iov: The data to write
 695 * @nr_segs: Number of @iov segments
 696 * @pos: The file position
 697 *
 698 * We have to do a lock/unlock here to refresh the inode size for
 699 * O_APPEND writes, otherwise we can land up writing at the wrong
 700 * offset. There is still a race, but provided the app is using its
 701 * own file locking, this will make O_APPEND work as expected.
 702 *
 703 */
 704
 705static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 706{
 707        struct file *file = iocb->ki_filp;
 708        struct gfs2_inode *ip = GFS2_I(file_inode(file));
 709        int ret;
 710
 711        ret = gfs2_rsqa_alloc(ip);
 712        if (ret)
 713                return ret;
 714
 715        gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
 716
 717        if (iocb->ki_flags & IOCB_APPEND) {
 718                struct gfs2_holder gh;
 719
 720                ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 721                if (ret)
 722                        return ret;
 723                gfs2_glock_dq_uninit(&gh);
 724        }
 725
 726        return generic_file_write_iter(iocb, from);
 727}
 728
 729static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
 730                           int mode)
 731{
 732        struct super_block *sb = inode->i_sb;
 733        struct gfs2_inode *ip = GFS2_I(inode);
 734        loff_t end = offset + len;
 735        struct buffer_head *dibh;
 736        struct iomap iomap = { };
 737        int error;
 738
 739        error = gfs2_meta_inode_buffer(ip, &dibh);
 740        if (unlikely(error))
 741                return error;
 742
 743        gfs2_trans_add_meta(ip->i_gl, dibh);
 744
 745        if (gfs2_is_stuffed(ip)) {
 746                error = gfs2_unstuff_dinode(ip, NULL);
 747                if (unlikely(error))
 748                        goto out;
 749        }
 750
 751        while (offset < end) {
 752                error = gfs2_iomap_get_alloc(inode, offset, end - offset,
 753                                             &iomap);
 754                if (error)
 755                        goto out;
 756                offset = iomap.offset + iomap.length;
 757                if (iomap.type != IOMAP_HOLE)
 758                        continue;
 759                error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
 760                                         iomap.length >> inode->i_blkbits,
 761                                         GFP_NOFS);
 762                if (error) {
 763                        fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
 764                        goto out;
 765                }
 766        }
 767out:
 768        brelse(dibh);
 769        return error;
 770}
 771/**
 772 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
 773 *                     blocks, determine how many bytes can be written.
 774 * @ip:          The inode in question.
 775 * @len:         Max cap of bytes. What we return in *len must be <= this.
 776 * @data_blocks: Compute and return the number of data blocks needed
 777 * @ind_blocks:  Compute and return the number of indirect blocks needed
 778 * @max_blocks:  The total blocks available to work with.
 779 *
 780 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
 781 */
 782static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
 783                            unsigned int *data_blocks, unsigned int *ind_blocks,
 784                            unsigned int max_blocks)
 785{
 786        loff_t max = *len;
 787        const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 788        unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
 789
 790        for (tmp = max_data; tmp > sdp->sd_diptrs;) {
 791                tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
 792                max_data -= tmp;
 793        }
 794
 795        *data_blocks = max_data;
 796        *ind_blocks = max_blocks - max_data;
 797        *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
 798        if (*len > max) {
 799                *len = max;
 800                gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
 801        }
 802}
 803
 804static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
 805{
 806        struct inode *inode = file_inode(file);
 807        struct gfs2_sbd *sdp = GFS2_SB(inode);
 808        struct gfs2_inode *ip = GFS2_I(inode);
 809        struct gfs2_alloc_parms ap = { .aflags = 0, };
 810        unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
 811        loff_t bytes, max_bytes, max_blks;
 812        int error;
 813        const loff_t pos = offset;
 814        const loff_t count = len;
 815        loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
 816        loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
 817        loff_t max_chunk_size = UINT_MAX & bsize_mask;
 818
 819        next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
 820
 821        offset &= bsize_mask;
 822
 823        len = next - offset;
 824        bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
 825        if (!bytes)
 826                bytes = UINT_MAX;
 827        bytes &= bsize_mask;
 828        if (bytes == 0)
 829                bytes = sdp->sd_sb.sb_bsize;
 830
 831        gfs2_size_hint(file, offset, len);
 832
 833        gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
 834        ap.min_target = data_blocks + ind_blocks;
 835
 836        while (len > 0) {
 837                if (len < bytes)
 838                        bytes = len;
 839                if (!gfs2_write_alloc_required(ip, offset, bytes)) {
 840                        len -= bytes;
 841                        offset += bytes;
 842                        continue;
 843                }
 844
 845                /* We need to determine how many bytes we can actually
 846                 * fallocate without exceeding quota or going over the
 847                 * end of the fs. We start off optimistically by assuming
 848                 * we can write max_bytes */
 849                max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
 850
 851                /* Since max_bytes is most likely a theoretical max, we
 852                 * calculate a more realistic 'bytes' to serve as a good
 853                 * starting point for the number of bytes we may be able
 854                 * to write */
 855                gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
 856                ap.target = data_blocks + ind_blocks;
 857
 858                error = gfs2_quota_lock_check(ip, &ap);
 859                if (error)
 860                        return error;
 861                /* ap.allowed tells us how many blocks quota will allow
 862                 * us to write. Check if this reduces max_blks */
 863                max_blks = UINT_MAX;
 864                if (ap.allowed)
 865                        max_blks = ap.allowed;
 866
 867                error = gfs2_inplace_reserve(ip, &ap);
 868                if (error)
 869                        goto out_qunlock;
 870
 871                /* check if the selected rgrp limits our max_blks further */
 872                if (ap.allowed && ap.allowed < max_blks)
 873                        max_blks = ap.allowed;
 874
 875                /* Almost done. Calculate bytes that can be written using
 876                 * max_blks. We also recompute max_bytes, data_blocks and
 877                 * ind_blocks */
 878                calc_max_reserv(ip, &max_bytes, &data_blocks,
 879                                &ind_blocks, max_blks);
 880
 881                rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
 882                          RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
 883                if (gfs2_is_jdata(ip))
 884                        rblocks += data_blocks ? data_blocks : 1;
 885
 886                error = gfs2_trans_begin(sdp, rblocks,
 887                                         PAGE_SIZE/sdp->sd_sb.sb_bsize);
 888                if (error)
 889                        goto out_trans_fail;
 890
 891                error = fallocate_chunk(inode, offset, max_bytes, mode);
 892                gfs2_trans_end(sdp);
 893
 894                if (error)
 895                        goto out_trans_fail;
 896
 897                len -= max_bytes;
 898                offset += max_bytes;
 899                gfs2_inplace_release(ip);
 900                gfs2_quota_unlock(ip);
 901        }
 902
 903        if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size) {
 904                i_size_write(inode, pos + count);
 905                file_update_time(file);
 906                mark_inode_dirty(inode);
 907        }
 908
 909        if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
 910                return vfs_fsync_range(file, pos, pos + count - 1,
 911                               (file->f_flags & __O_SYNC) ? 0 : 1);
 912        return 0;
 913
 914out_trans_fail:
 915        gfs2_inplace_release(ip);
 916out_qunlock:
 917        gfs2_quota_unlock(ip);
 918        return error;
 919}
 920
 921static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
 922{
 923        struct inode *inode = file_inode(file);
 924        struct gfs2_sbd *sdp = GFS2_SB(inode);
 925        struct gfs2_inode *ip = GFS2_I(inode);
 926        struct gfs2_holder gh;
 927        int ret;
 928
 929        if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
 930                return -EOPNOTSUPP;
 931        /* fallocate is needed by gfs2_grow to reserve space in the rindex */
 932        if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
 933                return -EOPNOTSUPP;
 934
 935        inode_lock(inode);
 936
 937        gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
 938        ret = gfs2_glock_nq(&gh);
 939        if (ret)
 940                goto out_uninit;
 941
 942        if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 943            (offset + len) > inode->i_size) {
 944                ret = inode_newsize_ok(inode, offset + len);
 945                if (ret)
 946                        goto out_unlock;
 947        }
 948
 949        ret = get_write_access(inode);
 950        if (ret)
 951                goto out_unlock;
 952
 953        if (mode & FALLOC_FL_PUNCH_HOLE) {
 954                ret = __gfs2_punch_hole(file, offset, len);
 955        } else {
 956                ret = gfs2_rsqa_alloc(ip);
 957                if (ret)
 958                        goto out_putw;
 959
 960                ret = __gfs2_fallocate(file, mode, offset, len);
 961
 962                if (ret)
 963                        gfs2_rs_deltree(&ip->i_res);
 964        }
 965
 966out_putw:
 967        put_write_access(inode);
 968out_unlock:
 969        gfs2_glock_dq(&gh);
 970out_uninit:
 971        gfs2_holder_uninit(&gh);
 972        inode_unlock(inode);
 973        return ret;
 974}
 975
 976static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
 977                                      struct file *out, loff_t *ppos,
 978                                      size_t len, unsigned int flags)
 979{
 980        int error;
 981        struct gfs2_inode *ip = GFS2_I(out->f_mapping->host);
 982
 983        error = gfs2_rsqa_alloc(ip);
 984        if (error)
 985                return (ssize_t)error;
 986
 987        gfs2_size_hint(out, *ppos, len);
 988
 989        return iter_file_splice_write(pipe, out, ppos, len, flags);
 990}
 991
 992#ifdef CONFIG_GFS2_FS_LOCKING_DLM
 993
 994/**
 995 * gfs2_lock - acquire/release a posix lock on a file
 996 * @file: the file pointer
 997 * @cmd: either modify or retrieve lock state, possibly wait
 998 * @fl: type and range of lock
 999 *
1000 * Returns: errno
1001 */
1002
1003static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1004{
1005        struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1006        struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1007        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1008
1009        if (!(fl->fl_flags & FL_POSIX))
1010                return -ENOLCK;
1011        if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK)
1012                return -ENOLCK;
1013
1014        if (cmd == F_CANCELLK) {
1015                /* Hack: */
1016                cmd = F_SETLK;
1017                fl->fl_type = F_UNLCK;
1018        }
1019        if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) {
1020                if (fl->fl_type == F_UNLCK)
1021                        locks_lock_file_wait(file, fl);
1022                return -EIO;
1023        }
1024        if (IS_GETLK(cmd))
1025                return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1026        else if (fl->fl_type == F_UNLCK)
1027                return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1028        else
1029                return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1030}
1031
1032static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1033{
1034        struct gfs2_file *fp = file->private_data;
1035        struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1036        struct gfs2_inode *ip = GFS2_I(file_inode(file));
1037        struct gfs2_glock *gl;
1038        unsigned int state;
1039        u16 flags;
1040        int error = 0;
1041        int sleeptime;
1042
1043        state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1044        flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
1045
1046        mutex_lock(&fp->f_fl_mutex);
1047
1048        if (gfs2_holder_initialized(fl_gh)) {
1049                if (fl_gh->gh_state == state)
1050                        goto out;
1051                locks_lock_file_wait(file,
1052                                     &(struct file_lock) {
1053                                             .fl_type = F_UNLCK,
1054                                             .fl_flags = FL_FLOCK
1055                                     });
1056                gfs2_glock_dq(fl_gh);
1057                gfs2_holder_reinit(state, flags, fl_gh);
1058        } else {
1059                error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1060                                       &gfs2_flock_glops, CREATE, &gl);
1061                if (error)
1062                        goto out;
1063                gfs2_holder_init(gl, state, flags, fl_gh);
1064                gfs2_glock_put(gl);
1065        }
1066        for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1067                error = gfs2_glock_nq(fl_gh);
1068                if (error != GLR_TRYFAILED)
1069                        break;
1070                fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
1071                fl_gh->gh_error = 0;
1072                msleep(sleeptime);
1073        }
1074        if (error) {
1075                gfs2_holder_uninit(fl_gh);
1076                if (error == GLR_TRYFAILED)
1077                        error = -EAGAIN;
1078        } else {
1079                error = locks_lock_file_wait(file, fl);
1080                gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1081        }
1082
1083out:
1084        mutex_unlock(&fp->f_fl_mutex);
1085        return error;
1086}
1087
1088static void do_unflock(struct file *file, struct file_lock *fl)
1089{
1090        struct gfs2_file *fp = file->private_data;
1091        struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1092
1093        mutex_lock(&fp->f_fl_mutex);
1094        locks_lock_file_wait(file, fl);
1095        if (gfs2_holder_initialized(fl_gh)) {
1096                gfs2_glock_dq(fl_gh);
1097                gfs2_holder_uninit(fl_gh);
1098        }
1099        mutex_unlock(&fp->f_fl_mutex);
1100}
1101
1102/**
1103 * gfs2_flock - acquire/release a flock lock on a file
1104 * @file: the file pointer
1105 * @cmd: either modify or retrieve lock state, possibly wait
1106 * @fl: type and range of lock
1107 *
1108 * Returns: errno
1109 */
1110
1111static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1112{
1113        if (!(fl->fl_flags & FL_FLOCK))
1114                return -ENOLCK;
1115        if (fl->fl_type & LOCK_MAND)
1116                return -EOPNOTSUPP;
1117
1118        if (fl->fl_type == F_UNLCK) {
1119                do_unflock(file, fl);
1120                return 0;
1121        } else {
1122                return do_flock(file, cmd, fl);
1123        }
1124}
1125
1126const struct file_operations gfs2_file_fops = {
1127        .llseek         = gfs2_llseek,
1128        .read_iter      = generic_file_read_iter,
1129        .write_iter     = gfs2_file_write_iter,
1130        .unlocked_ioctl = gfs2_ioctl,
1131        .mmap           = gfs2_mmap,
1132        .open           = gfs2_open,
1133        .release        = gfs2_release,
1134        .fsync          = gfs2_fsync,
1135        .lock           = gfs2_lock,
1136        .flock          = gfs2_flock,
1137        .splice_read    = generic_file_splice_read,
1138        .splice_write   = gfs2_file_splice_write,
1139        .setlease       = simple_nosetlease,
1140        .fallocate      = gfs2_fallocate,
1141};
1142
1143const struct file_operations gfs2_dir_fops = {
1144        .iterate_shared = gfs2_readdir,
1145        .unlocked_ioctl = gfs2_ioctl,
1146        .open           = gfs2_open,
1147        .release        = gfs2_release,
1148        .fsync          = gfs2_fsync,
1149        .lock           = gfs2_lock,
1150        .flock          = gfs2_flock,
1151        .llseek         = default_llseek,
1152};
1153
1154#endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1155
1156const struct file_operations gfs2_file_fops_nolock = {
1157        .llseek         = gfs2_llseek,
1158        .read_iter      = generic_file_read_iter,
1159        .write_iter     = gfs2_file_write_iter,
1160        .unlocked_ioctl = gfs2_ioctl,
1161        .mmap           = gfs2_mmap,
1162        .open           = gfs2_open,
1163        .release        = gfs2_release,
1164        .fsync          = gfs2_fsync,
1165        .splice_read    = generic_file_splice_read,
1166        .splice_write   = gfs2_file_splice_write,
1167        .setlease       = generic_setlease,
1168        .fallocate      = gfs2_fallocate,
1169};
1170
1171const struct file_operations gfs2_dir_fops_nolock = {
1172        .iterate_shared = gfs2_readdir,
1173        .unlocked_ioctl = gfs2_ioctl,
1174        .open           = gfs2_open,
1175        .release        = gfs2_release,
1176        .fsync          = gfs2_fsync,
1177        .llseek         = default_llseek,
1178};
1179
1180