linux/fs/hugetlbfs/inode.c
<<
>>
Prefs
   1/*
   2 * hugetlbpage-backed filesystem.  Based on ramfs.
   3 *
   4 * Nadia Yvette Chambers, 2002
   5 *
   6 * Copyright (C) 2002 Linus Torvalds.
   7 * License: GPL
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/thread_info.h>
  13#include <asm/current.h>
  14#include <linux/sched/signal.h>         /* remove ASAP */
  15#include <linux/falloc.h>
  16#include <linux/fs.h>
  17#include <linux/mount.h>
  18#include <linux/file.h>
  19#include <linux/kernel.h>
  20#include <linux/writeback.h>
  21#include <linux/pagemap.h>
  22#include <linux/highmem.h>
  23#include <linux/init.h>
  24#include <linux/string.h>
  25#include <linux/capability.h>
  26#include <linux/ctype.h>
  27#include <linux/backing-dev.h>
  28#include <linux/hugetlb.h>
  29#include <linux/pagevec.h>
  30#include <linux/parser.h>
  31#include <linux/mman.h>
  32#include <linux/slab.h>
  33#include <linux/dnotify.h>
  34#include <linux/statfs.h>
  35#include <linux/security.h>
  36#include <linux/magic.h>
  37#include <linux/migrate.h>
  38#include <linux/uio.h>
  39
  40#include <linux/uaccess.h>
  41
  42static const struct super_operations hugetlbfs_ops;
  43static const struct address_space_operations hugetlbfs_aops;
  44const struct file_operations hugetlbfs_file_operations;
  45static const struct inode_operations hugetlbfs_dir_inode_operations;
  46static const struct inode_operations hugetlbfs_inode_operations;
  47
  48struct hugetlbfs_config {
  49        struct hstate           *hstate;
  50        long                    max_hpages;
  51        long                    nr_inodes;
  52        long                    min_hpages;
  53        kuid_t                  uid;
  54        kgid_t                  gid;
  55        umode_t                 mode;
  56};
  57
  58int sysctl_hugetlb_shm_group;
  59
  60enum {
  61        Opt_size, Opt_nr_inodes,
  62        Opt_mode, Opt_uid, Opt_gid,
  63        Opt_pagesize, Opt_min_size,
  64        Opt_err,
  65};
  66
  67static const match_table_t tokens = {
  68        {Opt_size,      "size=%s"},
  69        {Opt_nr_inodes, "nr_inodes=%s"},
  70        {Opt_mode,      "mode=%o"},
  71        {Opt_uid,       "uid=%u"},
  72        {Opt_gid,       "gid=%u"},
  73        {Opt_pagesize,  "pagesize=%s"},
  74        {Opt_min_size,  "min_size=%s"},
  75        {Opt_err,       NULL},
  76};
  77
  78#ifdef CONFIG_NUMA
  79static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
  80                                        struct inode *inode, pgoff_t index)
  81{
  82        vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
  83                                                        index);
  84}
  85
  86static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
  87{
  88        mpol_cond_put(vma->vm_policy);
  89}
  90#else
  91static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
  92                                        struct inode *inode, pgoff_t index)
  93{
  94}
  95
  96static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
  97{
  98}
  99#endif
 100
 101static void huge_pagevec_release(struct pagevec *pvec)
 102{
 103        int i;
 104
 105        for (i = 0; i < pagevec_count(pvec); ++i)
 106                put_page(pvec->pages[i]);
 107
 108        pagevec_reinit(pvec);
 109}
 110
 111/*
 112 * Mask used when checking the page offset value passed in via system
 113 * calls.  This value will be converted to a loff_t which is signed.
 114 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
 115 * value.  The extra bit (- 1 in the shift value) is to take the sign
 116 * bit into account.
 117 */
 118#define PGOFF_LOFFT_MAX \
 119        (((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
 120
 121static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
 122{
 123        struct inode *inode = file_inode(file);
 124        loff_t len, vma_len;
 125        int ret;
 126        struct hstate *h = hstate_file(file);
 127
 128        /*
 129         * vma address alignment (but not the pgoff alignment) has
 130         * already been checked by prepare_hugepage_range.  If you add
 131         * any error returns here, do so after setting VM_HUGETLB, so
 132         * is_vm_hugetlb_page tests below unmap_region go the right
 133         * way when do_mmap_pgoff unwinds (may be important on powerpc
 134         * and ia64).
 135         */
 136        vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
 137        vma->vm_ops = &hugetlb_vm_ops;
 138
 139        /*
 140         * page based offset in vm_pgoff could be sufficiently large to
 141         * overflow a loff_t when converted to byte offset.  This can
 142         * only happen on architectures where sizeof(loff_t) ==
 143         * sizeof(unsigned long).  So, only check in those instances.
 144         */
 145        if (sizeof(unsigned long) == sizeof(loff_t)) {
 146                if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
 147                        return -EINVAL;
 148        }
 149
 150        /* must be huge page aligned */
 151        if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
 152                return -EINVAL;
 153
 154        vma_len = (loff_t)(vma->vm_end - vma->vm_start);
 155        len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 156        /* check for overflow */
 157        if (len < vma_len)
 158                return -EINVAL;
 159
 160        inode_lock(inode);
 161        file_accessed(file);
 162
 163        ret = -ENOMEM;
 164        if (hugetlb_reserve_pages(inode,
 165                                vma->vm_pgoff >> huge_page_order(h),
 166                                len >> huge_page_shift(h), vma,
 167                                vma->vm_flags))
 168                goto out;
 169
 170        ret = 0;
 171        if (vma->vm_flags & VM_WRITE && inode->i_size < len)
 172                i_size_write(inode, len);
 173out:
 174        inode_unlock(inode);
 175
 176        return ret;
 177}
 178
 179/*
 180 * Called under down_write(mmap_sem).
 181 */
 182
 183#ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
 184static unsigned long
 185hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 186                unsigned long len, unsigned long pgoff, unsigned long flags)
 187{
 188        struct mm_struct *mm = current->mm;
 189        struct vm_area_struct *vma;
 190        struct hstate *h = hstate_file(file);
 191        struct vm_unmapped_area_info info;
 192
 193        if (len & ~huge_page_mask(h))
 194                return -EINVAL;
 195        if (len > TASK_SIZE)
 196                return -ENOMEM;
 197
 198        if (flags & MAP_FIXED) {
 199                if (prepare_hugepage_range(file, addr, len))
 200                        return -EINVAL;
 201                return addr;
 202        }
 203
 204        if (addr) {
 205                addr = ALIGN(addr, huge_page_size(h));
 206                vma = find_vma(mm, addr);
 207                if (TASK_SIZE - len >= addr &&
 208                    (!vma || addr + len <= vm_start_gap(vma)))
 209                        return addr;
 210        }
 211
 212        info.flags = 0;
 213        info.length = len;
 214        info.low_limit = TASK_UNMAPPED_BASE;
 215        info.high_limit = TASK_SIZE;
 216        info.align_mask = PAGE_MASK & ~huge_page_mask(h);
 217        info.align_offset = 0;
 218        return vm_unmapped_area(&info);
 219}
 220#endif
 221
 222static size_t
 223hugetlbfs_read_actor(struct page *page, unsigned long offset,
 224                        struct iov_iter *to, unsigned long size)
 225{
 226        size_t copied = 0;
 227        int i, chunksize;
 228
 229        /* Find which 4k chunk and offset with in that chunk */
 230        i = offset >> PAGE_SHIFT;
 231        offset = offset & ~PAGE_MASK;
 232
 233        while (size) {
 234                size_t n;
 235                chunksize = PAGE_SIZE;
 236                if (offset)
 237                        chunksize -= offset;
 238                if (chunksize > size)
 239                        chunksize = size;
 240                n = copy_page_to_iter(&page[i], offset, chunksize, to);
 241                copied += n;
 242                if (n != chunksize)
 243                        return copied;
 244                offset = 0;
 245                size -= chunksize;
 246                i++;
 247        }
 248        return copied;
 249}
 250
 251/*
 252 * Support for read() - Find the page attached to f_mapping and copy out the
 253 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
 254 * since it has PAGE_SIZE assumptions.
 255 */
 256static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
 257{
 258        struct file *file = iocb->ki_filp;
 259        struct hstate *h = hstate_file(file);
 260        struct address_space *mapping = file->f_mapping;
 261        struct inode *inode = mapping->host;
 262        unsigned long index = iocb->ki_pos >> huge_page_shift(h);
 263        unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
 264        unsigned long end_index;
 265        loff_t isize;
 266        ssize_t retval = 0;
 267
 268        while (iov_iter_count(to)) {
 269                struct page *page;
 270                size_t nr, copied;
 271
 272                /* nr is the maximum number of bytes to copy from this page */
 273                nr = huge_page_size(h);
 274                isize = i_size_read(inode);
 275                if (!isize)
 276                        break;
 277                end_index = (isize - 1) >> huge_page_shift(h);
 278                if (index > end_index)
 279                        break;
 280                if (index == end_index) {
 281                        nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
 282                        if (nr <= offset)
 283                                break;
 284                }
 285                nr = nr - offset;
 286
 287                /* Find the page */
 288                page = find_lock_page(mapping, index);
 289                if (unlikely(page == NULL)) {
 290                        /*
 291                         * We have a HOLE, zero out the user-buffer for the
 292                         * length of the hole or request.
 293                         */
 294                        copied = iov_iter_zero(nr, to);
 295                } else {
 296                        unlock_page(page);
 297
 298                        /*
 299                         * We have the page, copy it to user space buffer.
 300                         */
 301                        copied = hugetlbfs_read_actor(page, offset, to, nr);
 302                        put_page(page);
 303                }
 304                offset += copied;
 305                retval += copied;
 306                if (copied != nr && iov_iter_count(to)) {
 307                        if (!retval)
 308                                retval = -EFAULT;
 309                        break;
 310                }
 311                index += offset >> huge_page_shift(h);
 312                offset &= ~huge_page_mask(h);
 313        }
 314        iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
 315        return retval;
 316}
 317
 318static int hugetlbfs_write_begin(struct file *file,
 319                        struct address_space *mapping,
 320                        loff_t pos, unsigned len, unsigned flags,
 321                        struct page **pagep, void **fsdata)
 322{
 323        return -EINVAL;
 324}
 325
 326static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
 327                        loff_t pos, unsigned len, unsigned copied,
 328                        struct page *page, void *fsdata)
 329{
 330        BUG();
 331        return -EINVAL;
 332}
 333
 334static void remove_huge_page(struct page *page)
 335{
 336        ClearPageDirty(page);
 337        ClearPageUptodate(page);
 338        delete_from_page_cache(page);
 339}
 340
 341static void
 342hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
 343{
 344        struct vm_area_struct *vma;
 345
 346        /*
 347         * end == 0 indicates that the entire range after
 348         * start should be unmapped.
 349         */
 350        vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
 351                unsigned long v_offset;
 352                unsigned long v_end;
 353
 354                /*
 355                 * Can the expression below overflow on 32-bit arches?
 356                 * No, because the interval tree returns us only those vmas
 357                 * which overlap the truncated area starting at pgoff,
 358                 * and no vma on a 32-bit arch can span beyond the 4GB.
 359                 */
 360                if (vma->vm_pgoff < start)
 361                        v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
 362                else
 363                        v_offset = 0;
 364
 365                if (!end)
 366                        v_end = vma->vm_end;
 367                else {
 368                        v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
 369                                                        + vma->vm_start;
 370                        if (v_end > vma->vm_end)
 371                                v_end = vma->vm_end;
 372                }
 373
 374                unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
 375                                                                        NULL);
 376        }
 377}
 378
 379/*
 380 * remove_inode_hugepages handles two distinct cases: truncation and hole
 381 * punch.  There are subtle differences in operation for each case.
 382 *
 383 * truncation is indicated by end of range being LLONG_MAX
 384 *      In this case, we first scan the range and release found pages.
 385 *      After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
 386 *      maps and global counts.  Page faults can not race with truncation
 387 *      in this routine.  hugetlb_no_page() prevents page faults in the
 388 *      truncated range.  It checks i_size before allocation, and again after
 389 *      with the page table lock for the page held.  The same lock must be
 390 *      acquired to unmap a page.
 391 * hole punch is indicated if end is not LLONG_MAX
 392 *      In the hole punch case we scan the range and release found pages.
 393 *      Only when releasing a page is the associated region/reserv map
 394 *      deleted.  The region/reserv map for ranges without associated
 395 *      pages are not modified.  Page faults can race with hole punch.
 396 *      This is indicated if we find a mapped page.
 397 * Note: If the passed end of range value is beyond the end of file, but
 398 * not LLONG_MAX this routine still performs a hole punch operation.
 399 */
 400static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
 401                                   loff_t lend)
 402{
 403        struct hstate *h = hstate_inode(inode);
 404        struct address_space *mapping = &inode->i_data;
 405        const pgoff_t start = lstart >> huge_page_shift(h);
 406        const pgoff_t end = lend >> huge_page_shift(h);
 407        struct vm_area_struct pseudo_vma;
 408        struct pagevec pvec;
 409        pgoff_t next, index;
 410        int i, freed = 0;
 411        bool truncate_op = (lend == LLONG_MAX);
 412
 413        memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
 414        vma_init(&pseudo_vma, current->mm);
 415        pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
 416        pagevec_init(&pvec);
 417        next = start;
 418        while (next < end) {
 419                /*
 420                 * When no more pages are found, we are done.
 421                 */
 422                if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
 423                        break;
 424
 425                for (i = 0; i < pagevec_count(&pvec); ++i) {
 426                        struct page *page = pvec.pages[i];
 427                        u32 hash;
 428
 429                        index = page->index;
 430                        hash = hugetlb_fault_mutex_hash(h, current->mm,
 431                                                        &pseudo_vma,
 432                                                        mapping, index, 0);
 433                        mutex_lock(&hugetlb_fault_mutex_table[hash]);
 434
 435                        /*
 436                         * If page is mapped, it was faulted in after being
 437                         * unmapped in caller.  Unmap (again) now after taking
 438                         * the fault mutex.  The mutex will prevent faults
 439                         * until we finish removing the page.
 440                         *
 441                         * This race can only happen in the hole punch case.
 442                         * Getting here in a truncate operation is a bug.
 443                         */
 444                        if (unlikely(page_mapped(page))) {
 445                                BUG_ON(truncate_op);
 446
 447                                i_mmap_lock_write(mapping);
 448                                hugetlb_vmdelete_list(&mapping->i_mmap,
 449                                        index * pages_per_huge_page(h),
 450                                        (index + 1) * pages_per_huge_page(h));
 451                                i_mmap_unlock_write(mapping);
 452                        }
 453
 454                        lock_page(page);
 455                        /*
 456                         * We must free the huge page and remove from page
 457                         * cache (remove_huge_page) BEFORE removing the
 458                         * region/reserve map (hugetlb_unreserve_pages).  In
 459                         * rare out of memory conditions, removal of the
 460                         * region/reserve map could fail. Correspondingly,
 461                         * the subpool and global reserve usage count can need
 462                         * to be adjusted.
 463                         */
 464                        VM_BUG_ON(PagePrivate(page));
 465                        remove_huge_page(page);
 466                        freed++;
 467                        if (!truncate_op) {
 468                                if (unlikely(hugetlb_unreserve_pages(inode,
 469                                                        index, index + 1, 1)))
 470                                        hugetlb_fix_reserve_counts(inode);
 471                        }
 472
 473                        unlock_page(page);
 474                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 475                }
 476                huge_pagevec_release(&pvec);
 477                cond_resched();
 478        }
 479
 480        if (truncate_op)
 481                (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
 482}
 483
 484static void hugetlbfs_evict_inode(struct inode *inode)
 485{
 486        struct resv_map *resv_map;
 487
 488        remove_inode_hugepages(inode, 0, LLONG_MAX);
 489        resv_map = (struct resv_map *)inode->i_mapping->private_data;
 490        /* root inode doesn't have the resv_map, so we should check it */
 491        if (resv_map)
 492                resv_map_release(&resv_map->refs);
 493        clear_inode(inode);
 494}
 495
 496static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
 497{
 498        pgoff_t pgoff;
 499        struct address_space *mapping = inode->i_mapping;
 500        struct hstate *h = hstate_inode(inode);
 501
 502        BUG_ON(offset & ~huge_page_mask(h));
 503        pgoff = offset >> PAGE_SHIFT;
 504
 505        i_size_write(inode, offset);
 506        i_mmap_lock_write(mapping);
 507        if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
 508                hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
 509        i_mmap_unlock_write(mapping);
 510        remove_inode_hugepages(inode, offset, LLONG_MAX);
 511        return 0;
 512}
 513
 514static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
 515{
 516        struct hstate *h = hstate_inode(inode);
 517        loff_t hpage_size = huge_page_size(h);
 518        loff_t hole_start, hole_end;
 519
 520        /*
 521         * For hole punch round up the beginning offset of the hole and
 522         * round down the end.
 523         */
 524        hole_start = round_up(offset, hpage_size);
 525        hole_end = round_down(offset + len, hpage_size);
 526
 527        if (hole_end > hole_start) {
 528                struct address_space *mapping = inode->i_mapping;
 529                struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 530
 531                inode_lock(inode);
 532
 533                /* protected by i_mutex */
 534                if (info->seals & F_SEAL_WRITE) {
 535                        inode_unlock(inode);
 536                        return -EPERM;
 537                }
 538
 539                i_mmap_lock_write(mapping);
 540                if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
 541                        hugetlb_vmdelete_list(&mapping->i_mmap,
 542                                                hole_start >> PAGE_SHIFT,
 543                                                hole_end  >> PAGE_SHIFT);
 544                i_mmap_unlock_write(mapping);
 545                remove_inode_hugepages(inode, hole_start, hole_end);
 546                inode_unlock(inode);
 547        }
 548
 549        return 0;
 550}
 551
 552static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
 553                                loff_t len)
 554{
 555        struct inode *inode = file_inode(file);
 556        struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 557        struct address_space *mapping = inode->i_mapping;
 558        struct hstate *h = hstate_inode(inode);
 559        struct vm_area_struct pseudo_vma;
 560        struct mm_struct *mm = current->mm;
 561        loff_t hpage_size = huge_page_size(h);
 562        unsigned long hpage_shift = huge_page_shift(h);
 563        pgoff_t start, index, end;
 564        int error;
 565        u32 hash;
 566
 567        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 568                return -EOPNOTSUPP;
 569
 570        if (mode & FALLOC_FL_PUNCH_HOLE)
 571                return hugetlbfs_punch_hole(inode, offset, len);
 572
 573        /*
 574         * Default preallocate case.
 575         * For this range, start is rounded down and end is rounded up
 576         * as well as being converted to page offsets.
 577         */
 578        start = offset >> hpage_shift;
 579        end = (offset + len + hpage_size - 1) >> hpage_shift;
 580
 581        inode_lock(inode);
 582
 583        /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
 584        error = inode_newsize_ok(inode, offset + len);
 585        if (error)
 586                goto out;
 587
 588        if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
 589                error = -EPERM;
 590                goto out;
 591        }
 592
 593        /*
 594         * Initialize a pseudo vma as this is required by the huge page
 595         * allocation routines.  If NUMA is configured, use page index
 596         * as input to create an allocation policy.
 597         */
 598        memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
 599        vma_init(&pseudo_vma, mm);
 600        pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
 601        pseudo_vma.vm_file = file;
 602
 603        for (index = start; index < end; index++) {
 604                /*
 605                 * This is supposed to be the vaddr where the page is being
 606                 * faulted in, but we have no vaddr here.
 607                 */
 608                struct page *page;
 609                unsigned long addr;
 610                int avoid_reserve = 0;
 611
 612                cond_resched();
 613
 614                /*
 615                 * fallocate(2) manpage permits EINTR; we may have been
 616                 * interrupted because we are using up too much memory.
 617                 */
 618                if (signal_pending(current)) {
 619                        error = -EINTR;
 620                        break;
 621                }
 622
 623                /* Set numa allocation policy based on index */
 624                hugetlb_set_vma_policy(&pseudo_vma, inode, index);
 625
 626                /* addr is the offset within the file (zero based) */
 627                addr = index * hpage_size;
 628
 629                /* mutex taken here, fault path and hole punch */
 630                hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
 631                                                index, addr);
 632                mutex_lock(&hugetlb_fault_mutex_table[hash]);
 633
 634                /* See if already present in mapping to avoid alloc/free */
 635                page = find_get_page(mapping, index);
 636                if (page) {
 637                        put_page(page);
 638                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 639                        hugetlb_drop_vma_policy(&pseudo_vma);
 640                        continue;
 641                }
 642
 643                /* Allocate page and add to page cache */
 644                page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
 645                hugetlb_drop_vma_policy(&pseudo_vma);
 646                if (IS_ERR(page)) {
 647                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 648                        error = PTR_ERR(page);
 649                        goto out;
 650                }
 651                clear_huge_page(page, addr, pages_per_huge_page(h));
 652                __SetPageUptodate(page);
 653                error = huge_add_to_page_cache(page, mapping, index);
 654                if (unlikely(error)) {
 655                        put_page(page);
 656                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 657                        goto out;
 658                }
 659
 660                mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 661
 662                /*
 663                 * unlock_page because locked by add_to_page_cache()
 664                 * page_put due to reference from alloc_huge_page()
 665                 */
 666                unlock_page(page);
 667                put_page(page);
 668        }
 669
 670        if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
 671                i_size_write(inode, offset + len);
 672        inode->i_ctime = current_time(inode);
 673out:
 674        inode_unlock(inode);
 675        return error;
 676}
 677
 678static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
 679{
 680        struct inode *inode = d_inode(dentry);
 681        struct hstate *h = hstate_inode(inode);
 682        int error;
 683        unsigned int ia_valid = attr->ia_valid;
 684        struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 685
 686        BUG_ON(!inode);
 687
 688        error = setattr_prepare(dentry, attr);
 689        if (error)
 690                return error;
 691
 692        if (ia_valid & ATTR_SIZE) {
 693                loff_t oldsize = inode->i_size;
 694                loff_t newsize = attr->ia_size;
 695
 696                if (newsize & ~huge_page_mask(h))
 697                        return -EINVAL;
 698                /* protected by i_mutex */
 699                if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
 700                    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
 701                        return -EPERM;
 702                error = hugetlb_vmtruncate(inode, newsize);
 703                if (error)
 704                        return error;
 705        }
 706
 707        setattr_copy(inode, attr);
 708        mark_inode_dirty(inode);
 709        return 0;
 710}
 711
 712static struct inode *hugetlbfs_get_root(struct super_block *sb,
 713                                        struct hugetlbfs_config *config)
 714{
 715        struct inode *inode;
 716
 717        inode = new_inode(sb);
 718        if (inode) {
 719                inode->i_ino = get_next_ino();
 720                inode->i_mode = S_IFDIR | config->mode;
 721                inode->i_uid = config->uid;
 722                inode->i_gid = config->gid;
 723                inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 724                inode->i_op = &hugetlbfs_dir_inode_operations;
 725                inode->i_fop = &simple_dir_operations;
 726                /* directory inodes start off with i_nlink == 2 (for "." entry) */
 727                inc_nlink(inode);
 728                lockdep_annotate_inode_mutex_key(inode);
 729        }
 730        return inode;
 731}
 732
 733/*
 734 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
 735 * be taken from reclaim -- unlike regular filesystems. This needs an
 736 * annotation because huge_pmd_share() does an allocation under hugetlb's
 737 * i_mmap_rwsem.
 738 */
 739static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
 740
 741static struct inode *hugetlbfs_get_inode(struct super_block *sb,
 742                                        struct inode *dir,
 743                                        umode_t mode, dev_t dev)
 744{
 745        struct inode *inode;
 746        struct resv_map *resv_map;
 747
 748        resv_map = resv_map_alloc();
 749        if (!resv_map)
 750                return NULL;
 751
 752        inode = new_inode(sb);
 753        if (inode) {
 754                struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 755
 756                inode->i_ino = get_next_ino();
 757                inode_init_owner(inode, dir, mode);
 758                lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
 759                                &hugetlbfs_i_mmap_rwsem_key);
 760                inode->i_mapping->a_ops = &hugetlbfs_aops;
 761                inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 762                inode->i_mapping->private_data = resv_map;
 763                info->seals = F_SEAL_SEAL;
 764                switch (mode & S_IFMT) {
 765                default:
 766                        init_special_inode(inode, mode, dev);
 767                        break;
 768                case S_IFREG:
 769                        inode->i_op = &hugetlbfs_inode_operations;
 770                        inode->i_fop = &hugetlbfs_file_operations;
 771                        break;
 772                case S_IFDIR:
 773                        inode->i_op = &hugetlbfs_dir_inode_operations;
 774                        inode->i_fop = &simple_dir_operations;
 775
 776                        /* directory inodes start off with i_nlink == 2 (for "." entry) */
 777                        inc_nlink(inode);
 778                        break;
 779                case S_IFLNK:
 780                        inode->i_op = &page_symlink_inode_operations;
 781                        inode_nohighmem(inode);
 782                        break;
 783                }
 784                lockdep_annotate_inode_mutex_key(inode);
 785        } else
 786                kref_put(&resv_map->refs, resv_map_release);
 787
 788        return inode;
 789}
 790
 791/*
 792 * File creation. Allocate an inode, and we're done..
 793 */
 794static int hugetlbfs_mknod(struct inode *dir,
 795                        struct dentry *dentry, umode_t mode, dev_t dev)
 796{
 797        struct inode *inode;
 798        int error = -ENOSPC;
 799
 800        inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
 801        if (inode) {
 802                dir->i_ctime = dir->i_mtime = current_time(dir);
 803                d_instantiate(dentry, inode);
 804                dget(dentry);   /* Extra count - pin the dentry in core */
 805                error = 0;
 806        }
 807        return error;
 808}
 809
 810static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 811{
 812        int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
 813        if (!retval)
 814                inc_nlink(dir);
 815        return retval;
 816}
 817
 818static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
 819{
 820        return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
 821}
 822
 823static int hugetlbfs_symlink(struct inode *dir,
 824                        struct dentry *dentry, const char *symname)
 825{
 826        struct inode *inode;
 827        int error = -ENOSPC;
 828
 829        inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
 830        if (inode) {
 831                int l = strlen(symname)+1;
 832                error = page_symlink(inode, symname, l);
 833                if (!error) {
 834                        d_instantiate(dentry, inode);
 835                        dget(dentry);
 836                } else
 837                        iput(inode);
 838        }
 839        dir->i_ctime = dir->i_mtime = current_time(dir);
 840
 841        return error;
 842}
 843
 844/*
 845 * mark the head page dirty
 846 */
 847static int hugetlbfs_set_page_dirty(struct page *page)
 848{
 849        struct page *head = compound_head(page);
 850
 851        SetPageDirty(head);
 852        return 0;
 853}
 854
 855static int hugetlbfs_migrate_page(struct address_space *mapping,
 856                                struct page *newpage, struct page *page,
 857                                enum migrate_mode mode)
 858{
 859        int rc;
 860
 861        rc = migrate_huge_page_move_mapping(mapping, newpage, page);
 862        if (rc != MIGRATEPAGE_SUCCESS)
 863                return rc;
 864        if (mode != MIGRATE_SYNC_NO_COPY)
 865                migrate_page_copy(newpage, page);
 866        else
 867                migrate_page_states(newpage, page);
 868
 869        return MIGRATEPAGE_SUCCESS;
 870}
 871
 872static int hugetlbfs_error_remove_page(struct address_space *mapping,
 873                                struct page *page)
 874{
 875        struct inode *inode = mapping->host;
 876        pgoff_t index = page->index;
 877
 878        remove_huge_page(page);
 879        if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
 880                hugetlb_fix_reserve_counts(inode);
 881
 882        return 0;
 883}
 884
 885/*
 886 * Display the mount options in /proc/mounts.
 887 */
 888static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
 889{
 890        struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
 891        struct hugepage_subpool *spool = sbinfo->spool;
 892        unsigned long hpage_size = huge_page_size(sbinfo->hstate);
 893        unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
 894        char mod;
 895
 896        if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
 897                seq_printf(m, ",uid=%u",
 898                           from_kuid_munged(&init_user_ns, sbinfo->uid));
 899        if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
 900                seq_printf(m, ",gid=%u",
 901                           from_kgid_munged(&init_user_ns, sbinfo->gid));
 902        if (sbinfo->mode != 0755)
 903                seq_printf(m, ",mode=%o", sbinfo->mode);
 904        if (sbinfo->max_inodes != -1)
 905                seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
 906
 907        hpage_size /= 1024;
 908        mod = 'K';
 909        if (hpage_size >= 1024) {
 910                hpage_size /= 1024;
 911                mod = 'M';
 912        }
 913        seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
 914        if (spool) {
 915                if (spool->max_hpages != -1)
 916                        seq_printf(m, ",size=%llu",
 917                                   (unsigned long long)spool->max_hpages << hpage_shift);
 918                if (spool->min_hpages != -1)
 919                        seq_printf(m, ",min_size=%llu",
 920                                   (unsigned long long)spool->min_hpages << hpage_shift);
 921        }
 922        return 0;
 923}
 924
 925static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 926{
 927        struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
 928        struct hstate *h = hstate_inode(d_inode(dentry));
 929
 930        buf->f_type = HUGETLBFS_MAGIC;
 931        buf->f_bsize = huge_page_size(h);
 932        if (sbinfo) {
 933                spin_lock(&sbinfo->stat_lock);
 934                /* If no limits set, just report 0 for max/free/used
 935                 * blocks, like simple_statfs() */
 936                if (sbinfo->spool) {
 937                        long free_pages;
 938
 939                        spin_lock(&sbinfo->spool->lock);
 940                        buf->f_blocks = sbinfo->spool->max_hpages;
 941                        free_pages = sbinfo->spool->max_hpages
 942                                - sbinfo->spool->used_hpages;
 943                        buf->f_bavail = buf->f_bfree = free_pages;
 944                        spin_unlock(&sbinfo->spool->lock);
 945                        buf->f_files = sbinfo->max_inodes;
 946                        buf->f_ffree = sbinfo->free_inodes;
 947                }
 948                spin_unlock(&sbinfo->stat_lock);
 949        }
 950        buf->f_namelen = NAME_MAX;
 951        return 0;
 952}
 953
 954static void hugetlbfs_put_super(struct super_block *sb)
 955{
 956        struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
 957
 958        if (sbi) {
 959                sb->s_fs_info = NULL;
 960
 961                if (sbi->spool)
 962                        hugepage_put_subpool(sbi->spool);
 963
 964                kfree(sbi);
 965        }
 966}
 967
 968static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
 969{
 970        if (sbinfo->free_inodes >= 0) {
 971                spin_lock(&sbinfo->stat_lock);
 972                if (unlikely(!sbinfo->free_inodes)) {
 973                        spin_unlock(&sbinfo->stat_lock);
 974                        return 0;
 975                }
 976                sbinfo->free_inodes--;
 977                spin_unlock(&sbinfo->stat_lock);
 978        }
 979
 980        return 1;
 981}
 982
 983static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
 984{
 985        if (sbinfo->free_inodes >= 0) {
 986                spin_lock(&sbinfo->stat_lock);
 987                sbinfo->free_inodes++;
 988                spin_unlock(&sbinfo->stat_lock);
 989        }
 990}
 991
 992
 993static struct kmem_cache *hugetlbfs_inode_cachep;
 994
 995static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
 996{
 997        struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
 998        struct hugetlbfs_inode_info *p;
 999
1000        if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1001                return NULL;
1002        p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1003        if (unlikely(!p)) {
1004                hugetlbfs_inc_free_inodes(sbinfo);
1005                return NULL;
1006        }
1007
1008        /*
1009         * Any time after allocation, hugetlbfs_destroy_inode can be called
1010         * for the inode.  mpol_free_shared_policy is unconditionally called
1011         * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1012         * in case of a quick call to destroy.
1013         *
1014         * Note that the policy is initialized even if we are creating a
1015         * private inode.  This simplifies hugetlbfs_destroy_inode.
1016         */
1017        mpol_shared_policy_init(&p->policy, NULL);
1018
1019        return &p->vfs_inode;
1020}
1021
1022static void hugetlbfs_i_callback(struct rcu_head *head)
1023{
1024        struct inode *inode = container_of(head, struct inode, i_rcu);
1025        kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1026}
1027
1028static void hugetlbfs_destroy_inode(struct inode *inode)
1029{
1030        hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1031        mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1032        call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
1033}
1034
1035static const struct address_space_operations hugetlbfs_aops = {
1036        .write_begin    = hugetlbfs_write_begin,
1037        .write_end      = hugetlbfs_write_end,
1038        .set_page_dirty = hugetlbfs_set_page_dirty,
1039        .migratepage    = hugetlbfs_migrate_page,
1040        .error_remove_page      = hugetlbfs_error_remove_page,
1041};
1042
1043
1044static void init_once(void *foo)
1045{
1046        struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1047
1048        inode_init_once(&ei->vfs_inode);
1049}
1050
1051const struct file_operations hugetlbfs_file_operations = {
1052        .read_iter              = hugetlbfs_read_iter,
1053        .mmap                   = hugetlbfs_file_mmap,
1054        .fsync                  = noop_fsync,
1055        .get_unmapped_area      = hugetlb_get_unmapped_area,
1056        .llseek                 = default_llseek,
1057        .fallocate              = hugetlbfs_fallocate,
1058};
1059
1060static const struct inode_operations hugetlbfs_dir_inode_operations = {
1061        .create         = hugetlbfs_create,
1062        .lookup         = simple_lookup,
1063        .link           = simple_link,
1064        .unlink         = simple_unlink,
1065        .symlink        = hugetlbfs_symlink,
1066        .mkdir          = hugetlbfs_mkdir,
1067        .rmdir          = simple_rmdir,
1068        .mknod          = hugetlbfs_mknod,
1069        .rename         = simple_rename,
1070        .setattr        = hugetlbfs_setattr,
1071};
1072
1073static const struct inode_operations hugetlbfs_inode_operations = {
1074        .setattr        = hugetlbfs_setattr,
1075};
1076
1077static const struct super_operations hugetlbfs_ops = {
1078        .alloc_inode    = hugetlbfs_alloc_inode,
1079        .destroy_inode  = hugetlbfs_destroy_inode,
1080        .evict_inode    = hugetlbfs_evict_inode,
1081        .statfs         = hugetlbfs_statfs,
1082        .put_super      = hugetlbfs_put_super,
1083        .show_options   = hugetlbfs_show_options,
1084};
1085
1086enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1087
1088/*
1089 * Convert size option passed from command line to number of huge pages
1090 * in the pool specified by hstate.  Size option could be in bytes
1091 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1092 */
1093static long
1094hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1095                         enum hugetlbfs_size_type val_type)
1096{
1097        if (val_type == NO_SIZE)
1098                return -1;
1099
1100        if (val_type == SIZE_PERCENT) {
1101                size_opt <<= huge_page_shift(h);
1102                size_opt *= h->max_huge_pages;
1103                do_div(size_opt, 100);
1104        }
1105
1106        size_opt >>= huge_page_shift(h);
1107        return size_opt;
1108}
1109
1110static int
1111hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1112{
1113        char *p, *rest;
1114        substring_t args[MAX_OPT_ARGS];
1115        int option;
1116        unsigned long long max_size_opt = 0, min_size_opt = 0;
1117        enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1118
1119        if (!options)
1120                return 0;
1121
1122        while ((p = strsep(&options, ",")) != NULL) {
1123                int token;
1124                if (!*p)
1125                        continue;
1126
1127                token = match_token(p, tokens, args);
1128                switch (token) {
1129                case Opt_uid:
1130                        if (match_int(&args[0], &option))
1131                                goto bad_val;
1132                        pconfig->uid = make_kuid(current_user_ns(), option);
1133                        if (!uid_valid(pconfig->uid))
1134                                goto bad_val;
1135                        break;
1136
1137                case Opt_gid:
1138                        if (match_int(&args[0], &option))
1139                                goto bad_val;
1140                        pconfig->gid = make_kgid(current_user_ns(), option);
1141                        if (!gid_valid(pconfig->gid))
1142                                goto bad_val;
1143                        break;
1144
1145                case Opt_mode:
1146                        if (match_octal(&args[0], &option))
1147                                goto bad_val;
1148                        pconfig->mode = option & 01777U;
1149                        break;
1150
1151                case Opt_size: {
1152                        /* memparse() will accept a K/M/G without a digit */
1153                        if (!isdigit(*args[0].from))
1154                                goto bad_val;
1155                        max_size_opt = memparse(args[0].from, &rest);
1156                        max_val_type = SIZE_STD;
1157                        if (*rest == '%')
1158                                max_val_type = SIZE_PERCENT;
1159                        break;
1160                }
1161
1162                case Opt_nr_inodes:
1163                        /* memparse() will accept a K/M/G without a digit */
1164                        if (!isdigit(*args[0].from))
1165                                goto bad_val;
1166                        pconfig->nr_inodes = memparse(args[0].from, &rest);
1167                        break;
1168
1169                case Opt_pagesize: {
1170                        unsigned long ps;
1171                        ps = memparse(args[0].from, &rest);
1172                        pconfig->hstate = size_to_hstate(ps);
1173                        if (!pconfig->hstate) {
1174                                pr_err("Unsupported page size %lu MB\n",
1175                                        ps >> 20);
1176                                return -EINVAL;
1177                        }
1178                        break;
1179                }
1180
1181                case Opt_min_size: {
1182                        /* memparse() will accept a K/M/G without a digit */
1183                        if (!isdigit(*args[0].from))
1184                                goto bad_val;
1185                        min_size_opt = memparse(args[0].from, &rest);
1186                        min_val_type = SIZE_STD;
1187                        if (*rest == '%')
1188                                min_val_type = SIZE_PERCENT;
1189                        break;
1190                }
1191
1192                default:
1193                        pr_err("Bad mount option: \"%s\"\n", p);
1194                        return -EINVAL;
1195                        break;
1196                }
1197        }
1198
1199        /*
1200         * Use huge page pool size (in hstate) to convert the size
1201         * options to number of huge pages.  If NO_SIZE, -1 is returned.
1202         */
1203        pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1204                                                max_size_opt, max_val_type);
1205        pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1206                                                min_size_opt, min_val_type);
1207
1208        /*
1209         * If max_size was specified, then min_size must be smaller
1210         */
1211        if (max_val_type > NO_SIZE &&
1212            pconfig->min_hpages > pconfig->max_hpages) {
1213                pr_err("minimum size can not be greater than maximum size\n");
1214                return -EINVAL;
1215        }
1216
1217        return 0;
1218
1219bad_val:
1220        pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1221        return -EINVAL;
1222}
1223
1224static int
1225hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1226{
1227        int ret;
1228        struct hugetlbfs_config config;
1229        struct hugetlbfs_sb_info *sbinfo;
1230
1231        config.max_hpages = -1; /* No limit on size by default */
1232        config.nr_inodes = -1; /* No limit on number of inodes by default */
1233        config.uid = current_fsuid();
1234        config.gid = current_fsgid();
1235        config.mode = 0755;
1236        config.hstate = &default_hstate;
1237        config.min_hpages = -1; /* No default minimum size */
1238        ret = hugetlbfs_parse_options(data, &config);
1239        if (ret)
1240                return ret;
1241
1242        sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1243        if (!sbinfo)
1244                return -ENOMEM;
1245        sb->s_fs_info = sbinfo;
1246        sbinfo->hstate = config.hstate;
1247        spin_lock_init(&sbinfo->stat_lock);
1248        sbinfo->max_inodes = config.nr_inodes;
1249        sbinfo->free_inodes = config.nr_inodes;
1250        sbinfo->spool = NULL;
1251        sbinfo->uid = config.uid;
1252        sbinfo->gid = config.gid;
1253        sbinfo->mode = config.mode;
1254
1255        /*
1256         * Allocate and initialize subpool if maximum or minimum size is
1257         * specified.  Any needed reservations (for minimim size) are taken
1258         * taken when the subpool is created.
1259         */
1260        if (config.max_hpages != -1 || config.min_hpages != -1) {
1261                sbinfo->spool = hugepage_new_subpool(config.hstate,
1262                                                        config.max_hpages,
1263                                                        config.min_hpages);
1264                if (!sbinfo->spool)
1265                        goto out_free;
1266        }
1267        sb->s_maxbytes = MAX_LFS_FILESIZE;
1268        sb->s_blocksize = huge_page_size(config.hstate);
1269        sb->s_blocksize_bits = huge_page_shift(config.hstate);
1270        sb->s_magic = HUGETLBFS_MAGIC;
1271        sb->s_op = &hugetlbfs_ops;
1272        sb->s_time_gran = 1;
1273        sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1274        if (!sb->s_root)
1275                goto out_free;
1276        return 0;
1277out_free:
1278        kfree(sbinfo->spool);
1279        kfree(sbinfo);
1280        return -ENOMEM;
1281}
1282
1283static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1284        int flags, const char *dev_name, void *data)
1285{
1286        return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1287}
1288
1289static struct file_system_type hugetlbfs_fs_type = {
1290        .name           = "hugetlbfs",
1291        .mount          = hugetlbfs_mount,
1292        .kill_sb        = kill_litter_super,
1293};
1294
1295static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1296
1297static int can_do_hugetlb_shm(void)
1298{
1299        kgid_t shm_group;
1300        shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1301        return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1302}
1303
1304static int get_hstate_idx(int page_size_log)
1305{
1306        struct hstate *h = hstate_sizelog(page_size_log);
1307
1308        if (!h)
1309                return -1;
1310        return h - hstates;
1311}
1312
1313static const struct dentry_operations anon_ops = {
1314        .d_dname = simple_dname
1315};
1316
1317/*
1318 * Note that size should be aligned to proper hugepage size in caller side,
1319 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1320 */
1321struct file *hugetlb_file_setup(const char *name, size_t size,
1322                                vm_flags_t acctflag, struct user_struct **user,
1323                                int creat_flags, int page_size_log)
1324{
1325        struct file *file = ERR_PTR(-ENOMEM);
1326        struct inode *inode;
1327        struct path path;
1328        struct super_block *sb;
1329        struct qstr quick_string;
1330        int hstate_idx;
1331
1332        hstate_idx = get_hstate_idx(page_size_log);
1333        if (hstate_idx < 0)
1334                return ERR_PTR(-ENODEV);
1335
1336        *user = NULL;
1337        if (!hugetlbfs_vfsmount[hstate_idx])
1338                return ERR_PTR(-ENOENT);
1339
1340        if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1341                *user = current_user();
1342                if (user_shm_lock(size, *user)) {
1343                        task_lock(current);
1344                        pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1345                                current->comm, current->pid);
1346                        task_unlock(current);
1347                } else {
1348                        *user = NULL;
1349                        return ERR_PTR(-EPERM);
1350                }
1351        }
1352
1353        sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
1354        quick_string.name = name;
1355        quick_string.len = strlen(quick_string.name);
1356        quick_string.hash = 0;
1357        path.dentry = d_alloc_pseudo(sb, &quick_string);
1358        if (!path.dentry)
1359                goto out_shm_unlock;
1360
1361        d_set_d_op(path.dentry, &anon_ops);
1362        path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
1363        file = ERR_PTR(-ENOSPC);
1364        inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
1365        if (!inode)
1366                goto out_dentry;
1367        if (creat_flags == HUGETLB_SHMFS_INODE)
1368                inode->i_flags |= S_PRIVATE;
1369
1370        file = ERR_PTR(-ENOMEM);
1371        if (hugetlb_reserve_pages(inode, 0,
1372                        size >> huge_page_shift(hstate_inode(inode)), NULL,
1373                        acctflag))
1374                goto out_inode;
1375
1376        d_instantiate(path.dentry, inode);
1377        inode->i_size = size;
1378        clear_nlink(inode);
1379
1380        file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
1381                        &hugetlbfs_file_operations);
1382        if (IS_ERR(file))
1383                goto out_dentry; /* inode is already attached */
1384
1385        return file;
1386
1387out_inode:
1388        iput(inode);
1389out_dentry:
1390        path_put(&path);
1391out_shm_unlock:
1392        if (*user) {
1393                user_shm_unlock(size, *user);
1394                *user = NULL;
1395        }
1396        return file;
1397}
1398
1399static int __init init_hugetlbfs_fs(void)
1400{
1401        struct hstate *h;
1402        int error;
1403        int i;
1404
1405        if (!hugepages_supported()) {
1406                pr_info("disabling because there are no supported hugepage sizes\n");
1407                return -ENOTSUPP;
1408        }
1409
1410        error = -ENOMEM;
1411        hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1412                                        sizeof(struct hugetlbfs_inode_info),
1413                                        0, SLAB_ACCOUNT, init_once);
1414        if (hugetlbfs_inode_cachep == NULL)
1415                goto out2;
1416
1417        error = register_filesystem(&hugetlbfs_fs_type);
1418        if (error)
1419                goto out;
1420
1421        i = 0;
1422        for_each_hstate(h) {
1423                char buf[50];
1424                unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1425
1426                snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1427                hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1428                                                        buf);
1429
1430                if (IS_ERR(hugetlbfs_vfsmount[i])) {
1431                        pr_err("Cannot mount internal hugetlbfs for "
1432                                "page size %uK", ps_kb);
1433                        error = PTR_ERR(hugetlbfs_vfsmount[i]);
1434                        hugetlbfs_vfsmount[i] = NULL;
1435                }
1436                i++;
1437        }
1438        /* Non default hstates are optional */
1439        if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1440                return 0;
1441
1442 out:
1443        kmem_cache_destroy(hugetlbfs_inode_cachep);
1444 out2:
1445        return error;
1446}
1447fs_initcall(init_hugetlbfs_fs)
1448