linux/fs/namespace.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/namespace.c
   3 *
   4 * (C) Copyright Al Viro 2000, 2001
   5 *      Released under GPL v2.
   6 *
   7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
   8 * Heavily rewritten.
   9 */
  10
  11#include <linux/syscalls.h>
  12#include <linux/export.h>
  13#include <linux/capability.h>
  14#include <linux/mnt_namespace.h>
  15#include <linux/user_namespace.h>
  16#include <linux/namei.h>
  17#include <linux/security.h>
  18#include <linux/cred.h>
  19#include <linux/idr.h>
  20#include <linux/init.h>         /* init_rootfs */
  21#include <linux/fs_struct.h>    /* get_fs_root et.al. */
  22#include <linux/fsnotify.h>     /* fsnotify_vfsmount_delete */
  23#include <linux/uaccess.h>
  24#include <linux/proc_ns.h>
  25#include <linux/magic.h>
  26#include <linux/bootmem.h>
  27#include <linux/task_work.h>
  28#include <linux/sched/task.h>
  29
  30#include "pnode.h"
  31#include "internal.h"
  32
  33/* Maximum number of mounts in a mount namespace */
  34unsigned int sysctl_mount_max __read_mostly = 100000;
  35
  36static unsigned int m_hash_mask __read_mostly;
  37static unsigned int m_hash_shift __read_mostly;
  38static unsigned int mp_hash_mask __read_mostly;
  39static unsigned int mp_hash_shift __read_mostly;
  40
  41static __initdata unsigned long mhash_entries;
  42static int __init set_mhash_entries(char *str)
  43{
  44        if (!str)
  45                return 0;
  46        mhash_entries = simple_strtoul(str, &str, 0);
  47        return 1;
  48}
  49__setup("mhash_entries=", set_mhash_entries);
  50
  51static __initdata unsigned long mphash_entries;
  52static int __init set_mphash_entries(char *str)
  53{
  54        if (!str)
  55                return 0;
  56        mphash_entries = simple_strtoul(str, &str, 0);
  57        return 1;
  58}
  59__setup("mphash_entries=", set_mphash_entries);
  60
  61static u64 event;
  62static DEFINE_IDA(mnt_id_ida);
  63static DEFINE_IDA(mnt_group_ida);
  64static DEFINE_SPINLOCK(mnt_id_lock);
  65static int mnt_id_start = 0;
  66static int mnt_group_start = 1;
  67
  68static struct hlist_head *mount_hashtable __read_mostly;
  69static struct hlist_head *mountpoint_hashtable __read_mostly;
  70static struct kmem_cache *mnt_cache __read_mostly;
  71static DECLARE_RWSEM(namespace_sem);
  72
  73/* /sys/fs */
  74struct kobject *fs_kobj;
  75EXPORT_SYMBOL_GPL(fs_kobj);
  76
  77/*
  78 * vfsmount lock may be taken for read to prevent changes to the
  79 * vfsmount hash, ie. during mountpoint lookups or walking back
  80 * up the tree.
  81 *
  82 * It should be taken for write in all cases where the vfsmount
  83 * tree or hash is modified or when a vfsmount structure is modified.
  84 */
  85__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  86
  87static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  88{
  89        unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  90        tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  91        tmp = tmp + (tmp >> m_hash_shift);
  92        return &mount_hashtable[tmp & m_hash_mask];
  93}
  94
  95static inline struct hlist_head *mp_hash(struct dentry *dentry)
  96{
  97        unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  98        tmp = tmp + (tmp >> mp_hash_shift);
  99        return &mountpoint_hashtable[tmp & mp_hash_mask];
 100}
 101
 102static int mnt_alloc_id(struct mount *mnt)
 103{
 104        int res;
 105
 106retry:
 107        ida_pre_get(&mnt_id_ida, GFP_KERNEL);
 108        spin_lock(&mnt_id_lock);
 109        res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
 110        if (!res)
 111                mnt_id_start = mnt->mnt_id + 1;
 112        spin_unlock(&mnt_id_lock);
 113        if (res == -EAGAIN)
 114                goto retry;
 115
 116        return res;
 117}
 118
 119static void mnt_free_id(struct mount *mnt)
 120{
 121        int id = mnt->mnt_id;
 122        spin_lock(&mnt_id_lock);
 123        ida_remove(&mnt_id_ida, id);
 124        if (mnt_id_start > id)
 125                mnt_id_start = id;
 126        spin_unlock(&mnt_id_lock);
 127}
 128
 129/*
 130 * Allocate a new peer group ID
 131 *
 132 * mnt_group_ida is protected by namespace_sem
 133 */
 134static int mnt_alloc_group_id(struct mount *mnt)
 135{
 136        int res;
 137
 138        if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
 139                return -ENOMEM;
 140
 141        res = ida_get_new_above(&mnt_group_ida,
 142                                mnt_group_start,
 143                                &mnt->mnt_group_id);
 144        if (!res)
 145                mnt_group_start = mnt->mnt_group_id + 1;
 146
 147        return res;
 148}
 149
 150/*
 151 * Release a peer group ID
 152 */
 153void mnt_release_group_id(struct mount *mnt)
 154{
 155        int id = mnt->mnt_group_id;
 156        ida_remove(&mnt_group_ida, id);
 157        if (mnt_group_start > id)
 158                mnt_group_start = id;
 159        mnt->mnt_group_id = 0;
 160}
 161
 162/*
 163 * vfsmount lock must be held for read
 164 */
 165static inline void mnt_add_count(struct mount *mnt, int n)
 166{
 167#ifdef CONFIG_SMP
 168        this_cpu_add(mnt->mnt_pcp->mnt_count, n);
 169#else
 170        preempt_disable();
 171        mnt->mnt_count += n;
 172        preempt_enable();
 173#endif
 174}
 175
 176/*
 177 * vfsmount lock must be held for write
 178 */
 179unsigned int mnt_get_count(struct mount *mnt)
 180{
 181#ifdef CONFIG_SMP
 182        unsigned int count = 0;
 183        int cpu;
 184
 185        for_each_possible_cpu(cpu) {
 186                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
 187        }
 188
 189        return count;
 190#else
 191        return mnt->mnt_count;
 192#endif
 193}
 194
 195static void drop_mountpoint(struct fs_pin *p)
 196{
 197        struct mount *m = container_of(p, struct mount, mnt_umount);
 198        dput(m->mnt_ex_mountpoint);
 199        pin_remove(p);
 200        mntput(&m->mnt);
 201}
 202
 203static struct mount *alloc_vfsmnt(const char *name)
 204{
 205        struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 206        if (mnt) {
 207                int err;
 208
 209                err = mnt_alloc_id(mnt);
 210                if (err)
 211                        goto out_free_cache;
 212
 213                if (name) {
 214                        mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
 215                        if (!mnt->mnt_devname)
 216                                goto out_free_id;
 217                }
 218
 219#ifdef CONFIG_SMP
 220                mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
 221                if (!mnt->mnt_pcp)
 222                        goto out_free_devname;
 223
 224                this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
 225#else
 226                mnt->mnt_count = 1;
 227                mnt->mnt_writers = 0;
 228#endif
 229
 230                INIT_HLIST_NODE(&mnt->mnt_hash);
 231                INIT_LIST_HEAD(&mnt->mnt_child);
 232                INIT_LIST_HEAD(&mnt->mnt_mounts);
 233                INIT_LIST_HEAD(&mnt->mnt_list);
 234                INIT_LIST_HEAD(&mnt->mnt_expire);
 235                INIT_LIST_HEAD(&mnt->mnt_share);
 236                INIT_LIST_HEAD(&mnt->mnt_slave_list);
 237                INIT_LIST_HEAD(&mnt->mnt_slave);
 238                INIT_HLIST_NODE(&mnt->mnt_mp_list);
 239                INIT_LIST_HEAD(&mnt->mnt_umounting);
 240                init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
 241        }
 242        return mnt;
 243
 244#ifdef CONFIG_SMP
 245out_free_devname:
 246        kfree_const(mnt->mnt_devname);
 247#endif
 248out_free_id:
 249        mnt_free_id(mnt);
 250out_free_cache:
 251        kmem_cache_free(mnt_cache, mnt);
 252        return NULL;
 253}
 254
 255/*
 256 * Most r/o checks on a fs are for operations that take
 257 * discrete amounts of time, like a write() or unlink().
 258 * We must keep track of when those operations start
 259 * (for permission checks) and when they end, so that
 260 * we can determine when writes are able to occur to
 261 * a filesystem.
 262 */
 263/*
 264 * __mnt_is_readonly: check whether a mount is read-only
 265 * @mnt: the mount to check for its write status
 266 *
 267 * This shouldn't be used directly ouside of the VFS.
 268 * It does not guarantee that the filesystem will stay
 269 * r/w, just that it is right *now*.  This can not and
 270 * should not be used in place of IS_RDONLY(inode).
 271 * mnt_want/drop_write() will _keep_ the filesystem
 272 * r/w.
 273 */
 274int __mnt_is_readonly(struct vfsmount *mnt)
 275{
 276        if (mnt->mnt_flags & MNT_READONLY)
 277                return 1;
 278        if (sb_rdonly(mnt->mnt_sb))
 279                return 1;
 280        return 0;
 281}
 282EXPORT_SYMBOL_GPL(__mnt_is_readonly);
 283
 284static inline void mnt_inc_writers(struct mount *mnt)
 285{
 286#ifdef CONFIG_SMP
 287        this_cpu_inc(mnt->mnt_pcp->mnt_writers);
 288#else
 289        mnt->mnt_writers++;
 290#endif
 291}
 292
 293static inline void mnt_dec_writers(struct mount *mnt)
 294{
 295#ifdef CONFIG_SMP
 296        this_cpu_dec(mnt->mnt_pcp->mnt_writers);
 297#else
 298        mnt->mnt_writers--;
 299#endif
 300}
 301
 302static unsigned int mnt_get_writers(struct mount *mnt)
 303{
 304#ifdef CONFIG_SMP
 305        unsigned int count = 0;
 306        int cpu;
 307
 308        for_each_possible_cpu(cpu) {
 309                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
 310        }
 311
 312        return count;
 313#else
 314        return mnt->mnt_writers;
 315#endif
 316}
 317
 318static int mnt_is_readonly(struct vfsmount *mnt)
 319{
 320        if (mnt->mnt_sb->s_readonly_remount)
 321                return 1;
 322        /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
 323        smp_rmb();
 324        return __mnt_is_readonly(mnt);
 325}
 326
 327/*
 328 * Most r/o & frozen checks on a fs are for operations that take discrete
 329 * amounts of time, like a write() or unlink().  We must keep track of when
 330 * those operations start (for permission checks) and when they end, so that we
 331 * can determine when writes are able to occur to a filesystem.
 332 */
 333/**
 334 * __mnt_want_write - get write access to a mount without freeze protection
 335 * @m: the mount on which to take a write
 336 *
 337 * This tells the low-level filesystem that a write is about to be performed to
 338 * it, and makes sure that writes are allowed (mnt it read-write) before
 339 * returning success. This operation does not protect against filesystem being
 340 * frozen. When the write operation is finished, __mnt_drop_write() must be
 341 * called. This is effectively a refcount.
 342 */
 343int __mnt_want_write(struct vfsmount *m)
 344{
 345        struct mount *mnt = real_mount(m);
 346        int ret = 0;
 347
 348        preempt_disable();
 349        mnt_inc_writers(mnt);
 350        /*
 351         * The store to mnt_inc_writers must be visible before we pass
 352         * MNT_WRITE_HOLD loop below, so that the slowpath can see our
 353         * incremented count after it has set MNT_WRITE_HOLD.
 354         */
 355        smp_mb();
 356        while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
 357                cpu_relax();
 358        /*
 359         * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
 360         * be set to match its requirements. So we must not load that until
 361         * MNT_WRITE_HOLD is cleared.
 362         */
 363        smp_rmb();
 364        if (mnt_is_readonly(m)) {
 365                mnt_dec_writers(mnt);
 366                ret = -EROFS;
 367        }
 368        preempt_enable();
 369
 370        return ret;
 371}
 372
 373/**
 374 * mnt_want_write - get write access to a mount
 375 * @m: the mount on which to take a write
 376 *
 377 * This tells the low-level filesystem that a write is about to be performed to
 378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
 379 * is not frozen) before returning success.  When the write operation is
 380 * finished, mnt_drop_write() must be called.  This is effectively a refcount.
 381 */
 382int mnt_want_write(struct vfsmount *m)
 383{
 384        int ret;
 385
 386        sb_start_write(m->mnt_sb);
 387        ret = __mnt_want_write(m);
 388        if (ret)
 389                sb_end_write(m->mnt_sb);
 390        return ret;
 391}
 392EXPORT_SYMBOL_GPL(mnt_want_write);
 393
 394/**
 395 * mnt_clone_write - get write access to a mount
 396 * @mnt: the mount on which to take a write
 397 *
 398 * This is effectively like mnt_want_write, except
 399 * it must only be used to take an extra write reference
 400 * on a mountpoint that we already know has a write reference
 401 * on it. This allows some optimisation.
 402 *
 403 * After finished, mnt_drop_write must be called as usual to
 404 * drop the reference.
 405 */
 406int mnt_clone_write(struct vfsmount *mnt)
 407{
 408        /* superblock may be r/o */
 409        if (__mnt_is_readonly(mnt))
 410                return -EROFS;
 411        preempt_disable();
 412        mnt_inc_writers(real_mount(mnt));
 413        preempt_enable();
 414        return 0;
 415}
 416EXPORT_SYMBOL_GPL(mnt_clone_write);
 417
 418/**
 419 * __mnt_want_write_file - get write access to a file's mount
 420 * @file: the file who's mount on which to take a write
 421 *
 422 * This is like __mnt_want_write, but it takes a file and can
 423 * do some optimisations if the file is open for write already
 424 */
 425int __mnt_want_write_file(struct file *file)
 426{
 427        if (!(file->f_mode & FMODE_WRITER))
 428                return __mnt_want_write(file->f_path.mnt);
 429        else
 430                return mnt_clone_write(file->f_path.mnt);
 431}
 432
 433/**
 434 * mnt_want_write_file_path - get write access to a file's mount
 435 * @file: the file who's mount on which to take a write
 436 *
 437 * This is like mnt_want_write, but it takes a file and can
 438 * do some optimisations if the file is open for write already
 439 *
 440 * Called by the vfs for cases when we have an open file at hand, but will do an
 441 * inode operation on it (important distinction for files opened on overlayfs,
 442 * since the file operations will come from the real underlying file, while
 443 * inode operations come from the overlay).
 444 */
 445int mnt_want_write_file_path(struct file *file)
 446{
 447        int ret;
 448
 449        sb_start_write(file->f_path.mnt->mnt_sb);
 450        ret = __mnt_want_write_file(file);
 451        if (ret)
 452                sb_end_write(file->f_path.mnt->mnt_sb);
 453        return ret;
 454}
 455
 456static inline int may_write_real(struct file *file)
 457{
 458        struct dentry *dentry = file->f_path.dentry;
 459        struct dentry *upperdentry;
 460
 461        /* Writable file? */
 462        if (file->f_mode & FMODE_WRITER)
 463                return 0;
 464
 465        /* Not overlayfs? */
 466        if (likely(!(dentry->d_flags & DCACHE_OP_REAL)))
 467                return 0;
 468
 469        /* File refers to upper, writable layer? */
 470        upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
 471        if (upperdentry &&
 472            (file_inode(file) == d_inode(upperdentry) ||
 473             file_inode(file) == d_inode(dentry)))
 474                return 0;
 475
 476        /* Lower layer: can't write to real file, sorry... */
 477        return -EPERM;
 478}
 479
 480/**
 481 * mnt_want_write_file - get write access to a file's mount
 482 * @file: the file who's mount on which to take a write
 483 *
 484 * This is like mnt_want_write, but it takes a file and can
 485 * do some optimisations if the file is open for write already
 486 *
 487 * Mostly called by filesystems from their ioctl operation before performing
 488 * modification.  On overlayfs this needs to check if the file is on a read-only
 489 * lower layer and deny access in that case.
 490 */
 491int mnt_want_write_file(struct file *file)
 492{
 493        int ret;
 494
 495        ret = may_write_real(file);
 496        if (!ret) {
 497                sb_start_write(file_inode(file)->i_sb);
 498                ret = __mnt_want_write_file(file);
 499                if (ret)
 500                        sb_end_write(file_inode(file)->i_sb);
 501        }
 502        return ret;
 503}
 504EXPORT_SYMBOL_GPL(mnt_want_write_file);
 505
 506/**
 507 * __mnt_drop_write - give up write access to a mount
 508 * @mnt: the mount on which to give up write access
 509 *
 510 * Tells the low-level filesystem that we are done
 511 * performing writes to it.  Must be matched with
 512 * __mnt_want_write() call above.
 513 */
 514void __mnt_drop_write(struct vfsmount *mnt)
 515{
 516        preempt_disable();
 517        mnt_dec_writers(real_mount(mnt));
 518        preempt_enable();
 519}
 520
 521/**
 522 * mnt_drop_write - give up write access to a mount
 523 * @mnt: the mount on which to give up write access
 524 *
 525 * Tells the low-level filesystem that we are done performing writes to it and
 526 * also allows filesystem to be frozen again.  Must be matched with
 527 * mnt_want_write() call above.
 528 */
 529void mnt_drop_write(struct vfsmount *mnt)
 530{
 531        __mnt_drop_write(mnt);
 532        sb_end_write(mnt->mnt_sb);
 533}
 534EXPORT_SYMBOL_GPL(mnt_drop_write);
 535
 536void __mnt_drop_write_file(struct file *file)
 537{
 538        __mnt_drop_write(file->f_path.mnt);
 539}
 540
 541void mnt_drop_write_file_path(struct file *file)
 542{
 543        mnt_drop_write(file->f_path.mnt);
 544}
 545
 546void mnt_drop_write_file(struct file *file)
 547{
 548        __mnt_drop_write(file->f_path.mnt);
 549        sb_end_write(file_inode(file)->i_sb);
 550}
 551EXPORT_SYMBOL(mnt_drop_write_file);
 552
 553static int mnt_make_readonly(struct mount *mnt)
 554{
 555        int ret = 0;
 556
 557        lock_mount_hash();
 558        mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 559        /*
 560         * After storing MNT_WRITE_HOLD, we'll read the counters. This store
 561         * should be visible before we do.
 562         */
 563        smp_mb();
 564
 565        /*
 566         * With writers on hold, if this value is zero, then there are
 567         * definitely no active writers (although held writers may subsequently
 568         * increment the count, they'll have to wait, and decrement it after
 569         * seeing MNT_READONLY).
 570         *
 571         * It is OK to have counter incremented on one CPU and decremented on
 572         * another: the sum will add up correctly. The danger would be when we
 573         * sum up each counter, if we read a counter before it is incremented,
 574         * but then read another CPU's count which it has been subsequently
 575         * decremented from -- we would see more decrements than we should.
 576         * MNT_WRITE_HOLD protects against this scenario, because
 577         * mnt_want_write first increments count, then smp_mb, then spins on
 578         * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
 579         * we're counting up here.
 580         */
 581        if (mnt_get_writers(mnt) > 0)
 582                ret = -EBUSY;
 583        else
 584                mnt->mnt.mnt_flags |= MNT_READONLY;
 585        /*
 586         * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
 587         * that become unheld will see MNT_READONLY.
 588         */
 589        smp_wmb();
 590        mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 591        unlock_mount_hash();
 592        return ret;
 593}
 594
 595static void __mnt_unmake_readonly(struct mount *mnt)
 596{
 597        lock_mount_hash();
 598        mnt->mnt.mnt_flags &= ~MNT_READONLY;
 599        unlock_mount_hash();
 600}
 601
 602int sb_prepare_remount_readonly(struct super_block *sb)
 603{
 604        struct mount *mnt;
 605        int err = 0;
 606
 607        /* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
 608        if (atomic_long_read(&sb->s_remove_count))
 609                return -EBUSY;
 610
 611        lock_mount_hash();
 612        list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 613                if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
 614                        mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 615                        smp_mb();
 616                        if (mnt_get_writers(mnt) > 0) {
 617                                err = -EBUSY;
 618                                break;
 619                        }
 620                }
 621        }
 622        if (!err && atomic_long_read(&sb->s_remove_count))
 623                err = -EBUSY;
 624
 625        if (!err) {
 626                sb->s_readonly_remount = 1;
 627                smp_wmb();
 628        }
 629        list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 630                if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
 631                        mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 632        }
 633        unlock_mount_hash();
 634
 635        return err;
 636}
 637
 638static void free_vfsmnt(struct mount *mnt)
 639{
 640        kfree_const(mnt->mnt_devname);
 641#ifdef CONFIG_SMP
 642        free_percpu(mnt->mnt_pcp);
 643#endif
 644        kmem_cache_free(mnt_cache, mnt);
 645}
 646
 647static void delayed_free_vfsmnt(struct rcu_head *head)
 648{
 649        free_vfsmnt(container_of(head, struct mount, mnt_rcu));
 650}
 651
 652/* call under rcu_read_lock */
 653int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 654{
 655        struct mount *mnt;
 656        if (read_seqretry(&mount_lock, seq))
 657                return 1;
 658        if (bastard == NULL)
 659                return 0;
 660        mnt = real_mount(bastard);
 661        mnt_add_count(mnt, 1);
 662        smp_mb();                       // see mntput_no_expire()
 663        if (likely(!read_seqretry(&mount_lock, seq)))
 664                return 0;
 665        if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
 666                mnt_add_count(mnt, -1);
 667                return 1;
 668        }
 669        lock_mount_hash();
 670        if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
 671                mnt_add_count(mnt, -1);
 672                unlock_mount_hash();
 673                return 1;
 674        }
 675        unlock_mount_hash();
 676        /* caller will mntput() */
 677        return -1;
 678}
 679
 680/* call under rcu_read_lock */
 681bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 682{
 683        int res = __legitimize_mnt(bastard, seq);
 684        if (likely(!res))
 685                return true;
 686        if (unlikely(res < 0)) {
 687                rcu_read_unlock();
 688                mntput(bastard);
 689                rcu_read_lock();
 690        }
 691        return false;
 692}
 693
 694/*
 695 * find the first mount at @dentry on vfsmount @mnt.
 696 * call under rcu_read_lock()
 697 */
 698struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
 699{
 700        struct hlist_head *head = m_hash(mnt, dentry);
 701        struct mount *p;
 702
 703        hlist_for_each_entry_rcu(p, head, mnt_hash)
 704                if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
 705                        return p;
 706        return NULL;
 707}
 708
 709/*
 710 * lookup_mnt - Return the first child mount mounted at path
 711 *
 712 * "First" means first mounted chronologically.  If you create the
 713 * following mounts:
 714 *
 715 * mount /dev/sda1 /mnt
 716 * mount /dev/sda2 /mnt
 717 * mount /dev/sda3 /mnt
 718 *
 719 * Then lookup_mnt() on the base /mnt dentry in the root mount will
 720 * return successively the root dentry and vfsmount of /dev/sda1, then
 721 * /dev/sda2, then /dev/sda3, then NULL.
 722 *
 723 * lookup_mnt takes a reference to the found vfsmount.
 724 */
 725struct vfsmount *lookup_mnt(const struct path *path)
 726{
 727        struct mount *child_mnt;
 728        struct vfsmount *m;
 729        unsigned seq;
 730
 731        rcu_read_lock();
 732        do {
 733                seq = read_seqbegin(&mount_lock);
 734                child_mnt = __lookup_mnt(path->mnt, path->dentry);
 735                m = child_mnt ? &child_mnt->mnt : NULL;
 736        } while (!legitimize_mnt(m, seq));
 737        rcu_read_unlock();
 738        return m;
 739}
 740
 741/*
 742 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
 743 *                         current mount namespace.
 744 *
 745 * The common case is dentries are not mountpoints at all and that
 746 * test is handled inline.  For the slow case when we are actually
 747 * dealing with a mountpoint of some kind, walk through all of the
 748 * mounts in the current mount namespace and test to see if the dentry
 749 * is a mountpoint.
 750 *
 751 * The mount_hashtable is not usable in the context because we
 752 * need to identify all mounts that may be in the current mount
 753 * namespace not just a mount that happens to have some specified
 754 * parent mount.
 755 */
 756bool __is_local_mountpoint(struct dentry *dentry)
 757{
 758        struct mnt_namespace *ns = current->nsproxy->mnt_ns;
 759        struct mount *mnt;
 760        bool is_covered = false;
 761
 762        if (!d_mountpoint(dentry))
 763                goto out;
 764
 765        down_read(&namespace_sem);
 766        list_for_each_entry(mnt, &ns->list, mnt_list) {
 767                is_covered = (mnt->mnt_mountpoint == dentry);
 768                if (is_covered)
 769                        break;
 770        }
 771        up_read(&namespace_sem);
 772out:
 773        return is_covered;
 774}
 775
 776static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
 777{
 778        struct hlist_head *chain = mp_hash(dentry);
 779        struct mountpoint *mp;
 780
 781        hlist_for_each_entry(mp, chain, m_hash) {
 782                if (mp->m_dentry == dentry) {
 783                        /* might be worth a WARN_ON() */
 784                        if (d_unlinked(dentry))
 785                                return ERR_PTR(-ENOENT);
 786                        mp->m_count++;
 787                        return mp;
 788                }
 789        }
 790        return NULL;
 791}
 792
 793static struct mountpoint *get_mountpoint(struct dentry *dentry)
 794{
 795        struct mountpoint *mp, *new = NULL;
 796        int ret;
 797
 798        if (d_mountpoint(dentry)) {
 799mountpoint:
 800                read_seqlock_excl(&mount_lock);
 801                mp = lookup_mountpoint(dentry);
 802                read_sequnlock_excl(&mount_lock);
 803                if (mp)
 804                        goto done;
 805        }
 806
 807        if (!new)
 808                new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
 809        if (!new)
 810                return ERR_PTR(-ENOMEM);
 811
 812
 813        /* Exactly one processes may set d_mounted */
 814        ret = d_set_mounted(dentry);
 815
 816        /* Someone else set d_mounted? */
 817        if (ret == -EBUSY)
 818                goto mountpoint;
 819
 820        /* The dentry is not available as a mountpoint? */
 821        mp = ERR_PTR(ret);
 822        if (ret)
 823                goto done;
 824
 825        /* Add the new mountpoint to the hash table */
 826        read_seqlock_excl(&mount_lock);
 827        new->m_dentry = dentry;
 828        new->m_count = 1;
 829        hlist_add_head(&new->m_hash, mp_hash(dentry));
 830        INIT_HLIST_HEAD(&new->m_list);
 831        read_sequnlock_excl(&mount_lock);
 832
 833        mp = new;
 834        new = NULL;
 835done:
 836        kfree(new);
 837        return mp;
 838}
 839
 840static void put_mountpoint(struct mountpoint *mp)
 841{
 842        if (!--mp->m_count) {
 843                struct dentry *dentry = mp->m_dentry;
 844                BUG_ON(!hlist_empty(&mp->m_list));
 845                spin_lock(&dentry->d_lock);
 846                dentry->d_flags &= ~DCACHE_MOUNTED;
 847                spin_unlock(&dentry->d_lock);
 848                hlist_del(&mp->m_hash);
 849                kfree(mp);
 850        }
 851}
 852
 853static inline int check_mnt(struct mount *mnt)
 854{
 855        return mnt->mnt_ns == current->nsproxy->mnt_ns;
 856}
 857
 858/*
 859 * vfsmount lock must be held for write
 860 */
 861static void touch_mnt_namespace(struct mnt_namespace *ns)
 862{
 863        if (ns) {
 864                ns->event = ++event;
 865                wake_up_interruptible(&ns->poll);
 866        }
 867}
 868
 869/*
 870 * vfsmount lock must be held for write
 871 */
 872static void __touch_mnt_namespace(struct mnt_namespace *ns)
 873{
 874        if (ns && ns->event != event) {
 875                ns->event = event;
 876                wake_up_interruptible(&ns->poll);
 877        }
 878}
 879
 880/*
 881 * vfsmount lock must be held for write
 882 */
 883static void unhash_mnt(struct mount *mnt)
 884{
 885        mnt->mnt_parent = mnt;
 886        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 887        list_del_init(&mnt->mnt_child);
 888        hlist_del_init_rcu(&mnt->mnt_hash);
 889        hlist_del_init(&mnt->mnt_mp_list);
 890        put_mountpoint(mnt->mnt_mp);
 891        mnt->mnt_mp = NULL;
 892}
 893
 894/*
 895 * vfsmount lock must be held for write
 896 */
 897static void detach_mnt(struct mount *mnt, struct path *old_path)
 898{
 899        old_path->dentry = mnt->mnt_mountpoint;
 900        old_path->mnt = &mnt->mnt_parent->mnt;
 901        unhash_mnt(mnt);
 902}
 903
 904/*
 905 * vfsmount lock must be held for write
 906 */
 907static void umount_mnt(struct mount *mnt)
 908{
 909        /* old mountpoint will be dropped when we can do that */
 910        mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
 911        unhash_mnt(mnt);
 912}
 913
 914/*
 915 * vfsmount lock must be held for write
 916 */
 917void mnt_set_mountpoint(struct mount *mnt,
 918                        struct mountpoint *mp,
 919                        struct mount *child_mnt)
 920{
 921        mp->m_count++;
 922        mnt_add_count(mnt, 1);  /* essentially, that's mntget */
 923        child_mnt->mnt_mountpoint = dget(mp->m_dentry);
 924        child_mnt->mnt_parent = mnt;
 925        child_mnt->mnt_mp = mp;
 926        hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
 927}
 928
 929static void __attach_mnt(struct mount *mnt, struct mount *parent)
 930{
 931        hlist_add_head_rcu(&mnt->mnt_hash,
 932                           m_hash(&parent->mnt, mnt->mnt_mountpoint));
 933        list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 934}
 935
 936/*
 937 * vfsmount lock must be held for write
 938 */
 939static void attach_mnt(struct mount *mnt,
 940                        struct mount *parent,
 941                        struct mountpoint *mp)
 942{
 943        mnt_set_mountpoint(parent, mp, mnt);
 944        __attach_mnt(mnt, parent);
 945}
 946
 947void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
 948{
 949        struct mountpoint *old_mp = mnt->mnt_mp;
 950        struct dentry *old_mountpoint = mnt->mnt_mountpoint;
 951        struct mount *old_parent = mnt->mnt_parent;
 952
 953        list_del_init(&mnt->mnt_child);
 954        hlist_del_init(&mnt->mnt_mp_list);
 955        hlist_del_init_rcu(&mnt->mnt_hash);
 956
 957        attach_mnt(mnt, parent, mp);
 958
 959        put_mountpoint(old_mp);
 960
 961        /*
 962         * Safely avoid even the suggestion this code might sleep or
 963         * lock the mount hash by taking advantage of the knowledge that
 964         * mnt_change_mountpoint will not release the final reference
 965         * to a mountpoint.
 966         *
 967         * During mounting, the mount passed in as the parent mount will
 968         * continue to use the old mountpoint and during unmounting, the
 969         * old mountpoint will continue to exist until namespace_unlock,
 970         * which happens well after mnt_change_mountpoint.
 971         */
 972        spin_lock(&old_mountpoint->d_lock);
 973        old_mountpoint->d_lockref.count--;
 974        spin_unlock(&old_mountpoint->d_lock);
 975
 976        mnt_add_count(old_parent, -1);
 977}
 978
 979/*
 980 * vfsmount lock must be held for write
 981 */
 982static void commit_tree(struct mount *mnt)
 983{
 984        struct mount *parent = mnt->mnt_parent;
 985        struct mount *m;
 986        LIST_HEAD(head);
 987        struct mnt_namespace *n = parent->mnt_ns;
 988
 989        BUG_ON(parent == mnt);
 990
 991        list_add_tail(&head, &mnt->mnt_list);
 992        list_for_each_entry(m, &head, mnt_list)
 993                m->mnt_ns = n;
 994
 995        list_splice(&head, n->list.prev);
 996
 997        n->mounts += n->pending_mounts;
 998        n->pending_mounts = 0;
 999
1000        __attach_mnt(mnt, parent);
1001        touch_mnt_namespace(n);
1002}
1003
1004static struct mount *next_mnt(struct mount *p, struct mount *root)
1005{
1006        struct list_head *next = p->mnt_mounts.next;
1007        if (next == &p->mnt_mounts) {
1008                while (1) {
1009                        if (p == root)
1010                                return NULL;
1011                        next = p->mnt_child.next;
1012                        if (next != &p->mnt_parent->mnt_mounts)
1013                                break;
1014                        p = p->mnt_parent;
1015                }
1016        }
1017        return list_entry(next, struct mount, mnt_child);
1018}
1019
1020static struct mount *skip_mnt_tree(struct mount *p)
1021{
1022        struct list_head *prev = p->mnt_mounts.prev;
1023        while (prev != &p->mnt_mounts) {
1024                p = list_entry(prev, struct mount, mnt_child);
1025                prev = p->mnt_mounts.prev;
1026        }
1027        return p;
1028}
1029
1030struct vfsmount *
1031vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
1032{
1033        struct mount *mnt;
1034        struct dentry *root;
1035
1036        if (!type)
1037                return ERR_PTR(-ENODEV);
1038
1039        mnt = alloc_vfsmnt(name);
1040        if (!mnt)
1041                return ERR_PTR(-ENOMEM);
1042
1043        if (flags & SB_KERNMOUNT)
1044                mnt->mnt.mnt_flags = MNT_INTERNAL;
1045
1046        root = mount_fs(type, flags, name, data);
1047        if (IS_ERR(root)) {
1048                mnt_free_id(mnt);
1049                free_vfsmnt(mnt);
1050                return ERR_CAST(root);
1051        }
1052
1053        mnt->mnt.mnt_root = root;
1054        mnt->mnt.mnt_sb = root->d_sb;
1055        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1056        mnt->mnt_parent = mnt;
1057        lock_mount_hash();
1058        list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1059        unlock_mount_hash();
1060        return &mnt->mnt;
1061}
1062EXPORT_SYMBOL_GPL(vfs_kern_mount);
1063
1064struct vfsmount *
1065vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1066             const char *name, void *data)
1067{
1068        /* Until it is worked out how to pass the user namespace
1069         * through from the parent mount to the submount don't support
1070         * unprivileged mounts with submounts.
1071         */
1072        if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1073                return ERR_PTR(-EPERM);
1074
1075        return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1076}
1077EXPORT_SYMBOL_GPL(vfs_submount);
1078
1079static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1080                                        int flag)
1081{
1082        struct super_block *sb = old->mnt.mnt_sb;
1083        struct mount *mnt;
1084        int err;
1085
1086        mnt = alloc_vfsmnt(old->mnt_devname);
1087        if (!mnt)
1088                return ERR_PTR(-ENOMEM);
1089
1090        if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1091                mnt->mnt_group_id = 0; /* not a peer of original */
1092        else
1093                mnt->mnt_group_id = old->mnt_group_id;
1094
1095        if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1096                err = mnt_alloc_group_id(mnt);
1097                if (err)
1098                        goto out_free;
1099        }
1100
1101        mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1102        mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1103        /* Don't allow unprivileged users to change mount flags */
1104        if (flag & CL_UNPRIVILEGED) {
1105                mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1106
1107                if (mnt->mnt.mnt_flags & MNT_READONLY)
1108                        mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1109
1110                if (mnt->mnt.mnt_flags & MNT_NODEV)
1111                        mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1112
1113                if (mnt->mnt.mnt_flags & MNT_NOSUID)
1114                        mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1115
1116                if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1117                        mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1118        }
1119
1120        /* Don't allow unprivileged users to reveal what is under a mount */
1121        if ((flag & CL_UNPRIVILEGED) &&
1122            (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1123                mnt->mnt.mnt_flags |= MNT_LOCKED;
1124
1125        atomic_inc(&sb->s_active);
1126        mnt->mnt.mnt_sb = sb;
1127        mnt->mnt.mnt_root = dget(root);
1128        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1129        mnt->mnt_parent = mnt;
1130        lock_mount_hash();
1131        list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1132        unlock_mount_hash();
1133
1134        if ((flag & CL_SLAVE) ||
1135            ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1136                list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1137                mnt->mnt_master = old;
1138                CLEAR_MNT_SHARED(mnt);
1139        } else if (!(flag & CL_PRIVATE)) {
1140                if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1141                        list_add(&mnt->mnt_share, &old->mnt_share);
1142                if (IS_MNT_SLAVE(old))
1143                        list_add(&mnt->mnt_slave, &old->mnt_slave);
1144                mnt->mnt_master = old->mnt_master;
1145        } else {
1146                CLEAR_MNT_SHARED(mnt);
1147        }
1148        if (flag & CL_MAKE_SHARED)
1149                set_mnt_shared(mnt);
1150
1151        /* stick the duplicate mount on the same expiry list
1152         * as the original if that was on one */
1153        if (flag & CL_EXPIRE) {
1154                if (!list_empty(&old->mnt_expire))
1155                        list_add(&mnt->mnt_expire, &old->mnt_expire);
1156        }
1157
1158        return mnt;
1159
1160 out_free:
1161        mnt_free_id(mnt);
1162        free_vfsmnt(mnt);
1163        return ERR_PTR(err);
1164}
1165
1166static void cleanup_mnt(struct mount *mnt)
1167{
1168        /*
1169         * This probably indicates that somebody messed
1170         * up a mnt_want/drop_write() pair.  If this
1171         * happens, the filesystem was probably unable
1172         * to make r/w->r/o transitions.
1173         */
1174        /*
1175         * The locking used to deal with mnt_count decrement provides barriers,
1176         * so mnt_get_writers() below is safe.
1177         */
1178        WARN_ON(mnt_get_writers(mnt));
1179        if (unlikely(mnt->mnt_pins.first))
1180                mnt_pin_kill(mnt);
1181        fsnotify_vfsmount_delete(&mnt->mnt);
1182        dput(mnt->mnt.mnt_root);
1183        deactivate_super(mnt->mnt.mnt_sb);
1184        mnt_free_id(mnt);
1185        call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1186}
1187
1188static void __cleanup_mnt(struct rcu_head *head)
1189{
1190        cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1191}
1192
1193static LLIST_HEAD(delayed_mntput_list);
1194static void delayed_mntput(struct work_struct *unused)
1195{
1196        struct llist_node *node = llist_del_all(&delayed_mntput_list);
1197        struct mount *m, *t;
1198
1199        llist_for_each_entry_safe(m, t, node, mnt_llist)
1200                cleanup_mnt(m);
1201}
1202static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1203
1204static void mntput_no_expire(struct mount *mnt)
1205{
1206        rcu_read_lock();
1207        if (likely(READ_ONCE(mnt->mnt_ns))) {
1208                /*
1209                 * Since we don't do lock_mount_hash() here,
1210                 * ->mnt_ns can change under us.  However, if it's
1211                 * non-NULL, then there's a reference that won't
1212                 * be dropped until after an RCU delay done after
1213                 * turning ->mnt_ns NULL.  So if we observe it
1214                 * non-NULL under rcu_read_lock(), the reference
1215                 * we are dropping is not the final one.
1216                 */
1217                mnt_add_count(mnt, -1);
1218                rcu_read_unlock();
1219                return;
1220        }
1221        lock_mount_hash();
1222        /*
1223         * make sure that if __legitimize_mnt() has not seen us grab
1224         * mount_lock, we'll see their refcount increment here.
1225         */
1226        smp_mb();
1227        mnt_add_count(mnt, -1);
1228        if (mnt_get_count(mnt)) {
1229                rcu_read_unlock();
1230                unlock_mount_hash();
1231                return;
1232        }
1233        if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1234                rcu_read_unlock();
1235                unlock_mount_hash();
1236                return;
1237        }
1238        mnt->mnt.mnt_flags |= MNT_DOOMED;
1239        rcu_read_unlock();
1240
1241        list_del(&mnt->mnt_instance);
1242
1243        if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1244                struct mount *p, *tmp;
1245                list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1246                        umount_mnt(p);
1247                }
1248        }
1249        unlock_mount_hash();
1250
1251        if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1252                struct task_struct *task = current;
1253                if (likely(!(task->flags & PF_KTHREAD))) {
1254                        init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1255                        if (!task_work_add(task, &mnt->mnt_rcu, true))
1256                                return;
1257                }
1258                if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1259                        schedule_delayed_work(&delayed_mntput_work, 1);
1260                return;
1261        }
1262        cleanup_mnt(mnt);
1263}
1264
1265void mntput(struct vfsmount *mnt)
1266{
1267        if (mnt) {
1268                struct mount *m = real_mount(mnt);
1269                /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1270                if (unlikely(m->mnt_expiry_mark))
1271                        m->mnt_expiry_mark = 0;
1272                mntput_no_expire(m);
1273        }
1274}
1275EXPORT_SYMBOL(mntput);
1276
1277struct vfsmount *mntget(struct vfsmount *mnt)
1278{
1279        if (mnt)
1280                mnt_add_count(real_mount(mnt), 1);
1281        return mnt;
1282}
1283EXPORT_SYMBOL(mntget);
1284
1285/* path_is_mountpoint() - Check if path is a mount in the current
1286 *                          namespace.
1287 *
1288 *  d_mountpoint() can only be used reliably to establish if a dentry is
1289 *  not mounted in any namespace and that common case is handled inline.
1290 *  d_mountpoint() isn't aware of the possibility there may be multiple
1291 *  mounts using a given dentry in a different namespace. This function
1292 *  checks if the passed in path is a mountpoint rather than the dentry
1293 *  alone.
1294 */
1295bool path_is_mountpoint(const struct path *path)
1296{
1297        unsigned seq;
1298        bool res;
1299
1300        if (!d_mountpoint(path->dentry))
1301                return false;
1302
1303        rcu_read_lock();
1304        do {
1305                seq = read_seqbegin(&mount_lock);
1306                res = __path_is_mountpoint(path);
1307        } while (read_seqretry(&mount_lock, seq));
1308        rcu_read_unlock();
1309
1310        return res;
1311}
1312EXPORT_SYMBOL(path_is_mountpoint);
1313
1314struct vfsmount *mnt_clone_internal(const struct path *path)
1315{
1316        struct mount *p;
1317        p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1318        if (IS_ERR(p))
1319                return ERR_CAST(p);
1320        p->mnt.mnt_flags |= MNT_INTERNAL;
1321        return &p->mnt;
1322}
1323
1324#ifdef CONFIG_PROC_FS
1325/* iterator; we want it to have access to namespace_sem, thus here... */
1326static void *m_start(struct seq_file *m, loff_t *pos)
1327{
1328        struct proc_mounts *p = m->private;
1329
1330        down_read(&namespace_sem);
1331        if (p->cached_event == p->ns->event) {
1332                void *v = p->cached_mount;
1333                if (*pos == p->cached_index)
1334                        return v;
1335                if (*pos == p->cached_index + 1) {
1336                        v = seq_list_next(v, &p->ns->list, &p->cached_index);
1337                        return p->cached_mount = v;
1338                }
1339        }
1340
1341        p->cached_event = p->ns->event;
1342        p->cached_mount = seq_list_start(&p->ns->list, *pos);
1343        p->cached_index = *pos;
1344        return p->cached_mount;
1345}
1346
1347static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1348{
1349        struct proc_mounts *p = m->private;
1350
1351        p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1352        p->cached_index = *pos;
1353        return p->cached_mount;
1354}
1355
1356static void m_stop(struct seq_file *m, void *v)
1357{
1358        up_read(&namespace_sem);
1359}
1360
1361static int m_show(struct seq_file *m, void *v)
1362{
1363        struct proc_mounts *p = m->private;
1364        struct mount *r = list_entry(v, struct mount, mnt_list);
1365        return p->show(m, &r->mnt);
1366}
1367
1368const struct seq_operations mounts_op = {
1369        .start  = m_start,
1370        .next   = m_next,
1371        .stop   = m_stop,
1372        .show   = m_show,
1373};
1374#endif  /* CONFIG_PROC_FS */
1375
1376/**
1377 * may_umount_tree - check if a mount tree is busy
1378 * @mnt: root of mount tree
1379 *
1380 * This is called to check if a tree of mounts has any
1381 * open files, pwds, chroots or sub mounts that are
1382 * busy.
1383 */
1384int may_umount_tree(struct vfsmount *m)
1385{
1386        struct mount *mnt = real_mount(m);
1387        int actual_refs = 0;
1388        int minimum_refs = 0;
1389        struct mount *p;
1390        BUG_ON(!m);
1391
1392        /* write lock needed for mnt_get_count */
1393        lock_mount_hash();
1394        for (p = mnt; p; p = next_mnt(p, mnt)) {
1395                actual_refs += mnt_get_count(p);
1396                minimum_refs += 2;
1397        }
1398        unlock_mount_hash();
1399
1400        if (actual_refs > minimum_refs)
1401                return 0;
1402
1403        return 1;
1404}
1405
1406EXPORT_SYMBOL(may_umount_tree);
1407
1408/**
1409 * may_umount - check if a mount point is busy
1410 * @mnt: root of mount
1411 *
1412 * This is called to check if a mount point has any
1413 * open files, pwds, chroots or sub mounts. If the
1414 * mount has sub mounts this will return busy
1415 * regardless of whether the sub mounts are busy.
1416 *
1417 * Doesn't take quota and stuff into account. IOW, in some cases it will
1418 * give false negatives. The main reason why it's here is that we need
1419 * a non-destructive way to look for easily umountable filesystems.
1420 */
1421int may_umount(struct vfsmount *mnt)
1422{
1423        int ret = 1;
1424        down_read(&namespace_sem);
1425        lock_mount_hash();
1426        if (propagate_mount_busy(real_mount(mnt), 2))
1427                ret = 0;
1428        unlock_mount_hash();
1429        up_read(&namespace_sem);
1430        return ret;
1431}
1432
1433EXPORT_SYMBOL(may_umount);
1434
1435static HLIST_HEAD(unmounted);   /* protected by namespace_sem */
1436
1437static void namespace_unlock(void)
1438{
1439        struct hlist_head head;
1440
1441        hlist_move_list(&unmounted, &head);
1442
1443        up_write(&namespace_sem);
1444
1445        if (likely(hlist_empty(&head)))
1446                return;
1447
1448        synchronize_rcu();
1449
1450        group_pin_kill(&head);
1451}
1452
1453static inline void namespace_lock(void)
1454{
1455        down_write(&namespace_sem);
1456}
1457
1458enum umount_tree_flags {
1459        UMOUNT_SYNC = 1,
1460        UMOUNT_PROPAGATE = 2,
1461        UMOUNT_CONNECTED = 4,
1462};
1463
1464static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1465{
1466        /* Leaving mounts connected is only valid for lazy umounts */
1467        if (how & UMOUNT_SYNC)
1468                return true;
1469
1470        /* A mount without a parent has nothing to be connected to */
1471        if (!mnt_has_parent(mnt))
1472                return true;
1473
1474        /* Because the reference counting rules change when mounts are
1475         * unmounted and connected, umounted mounts may not be
1476         * connected to mounted mounts.
1477         */
1478        if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1479                return true;
1480
1481        /* Has it been requested that the mount remain connected? */
1482        if (how & UMOUNT_CONNECTED)
1483                return false;
1484
1485        /* Is the mount locked such that it needs to remain connected? */
1486        if (IS_MNT_LOCKED(mnt))
1487                return false;
1488
1489        /* By default disconnect the mount */
1490        return true;
1491}
1492
1493/*
1494 * mount_lock must be held
1495 * namespace_sem must be held for write
1496 */
1497static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1498{
1499        LIST_HEAD(tmp_list);
1500        struct mount *p;
1501
1502        if (how & UMOUNT_PROPAGATE)
1503                propagate_mount_unlock(mnt);
1504
1505        /* Gather the mounts to umount */
1506        for (p = mnt; p; p = next_mnt(p, mnt)) {
1507                p->mnt.mnt_flags |= MNT_UMOUNT;
1508                list_move(&p->mnt_list, &tmp_list);
1509        }
1510
1511        /* Hide the mounts from mnt_mounts */
1512        list_for_each_entry(p, &tmp_list, mnt_list) {
1513                list_del_init(&p->mnt_child);
1514        }
1515
1516        /* Add propogated mounts to the tmp_list */
1517        if (how & UMOUNT_PROPAGATE)
1518                propagate_umount(&tmp_list);
1519
1520        while (!list_empty(&tmp_list)) {
1521                struct mnt_namespace *ns;
1522                bool disconnect;
1523                p = list_first_entry(&tmp_list, struct mount, mnt_list);
1524                list_del_init(&p->mnt_expire);
1525                list_del_init(&p->mnt_list);
1526                ns = p->mnt_ns;
1527                if (ns) {
1528                        ns->mounts--;
1529                        __touch_mnt_namespace(ns);
1530                }
1531                p->mnt_ns = NULL;
1532                if (how & UMOUNT_SYNC)
1533                        p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1534
1535                disconnect = disconnect_mount(p, how);
1536
1537                pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1538                                 disconnect ? &unmounted : NULL);
1539                if (mnt_has_parent(p)) {
1540                        mnt_add_count(p->mnt_parent, -1);
1541                        if (!disconnect) {
1542                                /* Don't forget about p */
1543                                list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1544                        } else {
1545                                umount_mnt(p);
1546                        }
1547                }
1548                change_mnt_propagation(p, MS_PRIVATE);
1549        }
1550}
1551
1552static void shrink_submounts(struct mount *mnt);
1553
1554static int do_umount(struct mount *mnt, int flags)
1555{
1556        struct super_block *sb = mnt->mnt.mnt_sb;
1557        int retval;
1558
1559        retval = security_sb_umount(&mnt->mnt, flags);
1560        if (retval)
1561                return retval;
1562
1563        /*
1564         * Allow userspace to request a mountpoint be expired rather than
1565         * unmounting unconditionally. Unmount only happens if:
1566         *  (1) the mark is already set (the mark is cleared by mntput())
1567         *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1568         */
1569        if (flags & MNT_EXPIRE) {
1570                if (&mnt->mnt == current->fs->root.mnt ||
1571                    flags & (MNT_FORCE | MNT_DETACH))
1572                        return -EINVAL;
1573
1574                /*
1575                 * probably don't strictly need the lock here if we examined
1576                 * all race cases, but it's a slowpath.
1577                 */
1578                lock_mount_hash();
1579                if (mnt_get_count(mnt) != 2) {
1580                        unlock_mount_hash();
1581                        return -EBUSY;
1582                }
1583                unlock_mount_hash();
1584
1585                if (!xchg(&mnt->mnt_expiry_mark, 1))
1586                        return -EAGAIN;
1587        }
1588
1589        /*
1590         * If we may have to abort operations to get out of this
1591         * mount, and they will themselves hold resources we must
1592         * allow the fs to do things. In the Unix tradition of
1593         * 'Gee thats tricky lets do it in userspace' the umount_begin
1594         * might fail to complete on the first run through as other tasks
1595         * must return, and the like. Thats for the mount program to worry
1596         * about for the moment.
1597         */
1598
1599        if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1600                sb->s_op->umount_begin(sb);
1601        }
1602
1603        /*
1604         * No sense to grab the lock for this test, but test itself looks
1605         * somewhat bogus. Suggestions for better replacement?
1606         * Ho-hum... In principle, we might treat that as umount + switch
1607         * to rootfs. GC would eventually take care of the old vfsmount.
1608         * Actually it makes sense, especially if rootfs would contain a
1609         * /reboot - static binary that would close all descriptors and
1610         * call reboot(9). Then init(8) could umount root and exec /reboot.
1611         */
1612        if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1613                /*
1614                 * Special case for "unmounting" root ...
1615                 * we just try to remount it readonly.
1616                 */
1617                if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1618                        return -EPERM;
1619                down_write(&sb->s_umount);
1620                if (!sb_rdonly(sb))
1621                        retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1622                up_write(&sb->s_umount);
1623                return retval;
1624        }
1625
1626        namespace_lock();
1627        lock_mount_hash();
1628        event++;
1629
1630        if (flags & MNT_DETACH) {
1631                if (!list_empty(&mnt->mnt_list))
1632                        umount_tree(mnt, UMOUNT_PROPAGATE);
1633                retval = 0;
1634        } else {
1635                shrink_submounts(mnt);
1636                retval = -EBUSY;
1637                if (!propagate_mount_busy(mnt, 2)) {
1638                        if (!list_empty(&mnt->mnt_list))
1639                                umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1640                        retval = 0;
1641                }
1642        }
1643        unlock_mount_hash();
1644        namespace_unlock();
1645        return retval;
1646}
1647
1648/*
1649 * __detach_mounts - lazily unmount all mounts on the specified dentry
1650 *
1651 * During unlink, rmdir, and d_drop it is possible to loose the path
1652 * to an existing mountpoint, and wind up leaking the mount.
1653 * detach_mounts allows lazily unmounting those mounts instead of
1654 * leaking them.
1655 *
1656 * The caller may hold dentry->d_inode->i_mutex.
1657 */
1658void __detach_mounts(struct dentry *dentry)
1659{
1660        struct mountpoint *mp;
1661        struct mount *mnt;
1662
1663        namespace_lock();
1664        lock_mount_hash();
1665        mp = lookup_mountpoint(dentry);
1666        if (IS_ERR_OR_NULL(mp))
1667                goto out_unlock;
1668
1669        event++;
1670        while (!hlist_empty(&mp->m_list)) {
1671                mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1672                if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1673                        hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1674                        umount_mnt(mnt);
1675                }
1676                else umount_tree(mnt, UMOUNT_CONNECTED);
1677        }
1678        put_mountpoint(mp);
1679out_unlock:
1680        unlock_mount_hash();
1681        namespace_unlock();
1682}
1683
1684/*
1685 * Is the caller allowed to modify his namespace?
1686 */
1687static inline bool may_mount(void)
1688{
1689        return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1690}
1691
1692static inline bool may_mandlock(void)
1693{
1694#ifndef CONFIG_MANDATORY_FILE_LOCKING
1695        return false;
1696#endif
1697        return capable(CAP_SYS_ADMIN);
1698}
1699
1700/*
1701 * Now umount can handle mount points as well as block devices.
1702 * This is important for filesystems which use unnamed block devices.
1703 *
1704 * We now support a flag for forced unmount like the other 'big iron'
1705 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1706 */
1707
1708int ksys_umount(char __user *name, int flags)
1709{
1710        struct path path;
1711        struct mount *mnt;
1712        int retval;
1713        int lookup_flags = 0;
1714
1715        if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1716                return -EINVAL;
1717
1718        if (!may_mount())
1719                return -EPERM;
1720
1721        if (!(flags & UMOUNT_NOFOLLOW))
1722                lookup_flags |= LOOKUP_FOLLOW;
1723
1724        retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1725        if (retval)
1726                goto out;
1727        mnt = real_mount(path.mnt);
1728        retval = -EINVAL;
1729        if (path.dentry != path.mnt->mnt_root)
1730                goto dput_and_out;
1731        if (!check_mnt(mnt))
1732                goto dput_and_out;
1733        if (mnt->mnt.mnt_flags & MNT_LOCKED)
1734                goto dput_and_out;
1735        retval = -EPERM;
1736        if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1737                goto dput_and_out;
1738
1739        retval = do_umount(mnt, flags);
1740dput_and_out:
1741        /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1742        dput(path.dentry);
1743        mntput_no_expire(mnt);
1744out:
1745        return retval;
1746}
1747
1748SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1749{
1750        return ksys_umount(name, flags);
1751}
1752
1753#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1754
1755/*
1756 *      The 2.0 compatible umount. No flags.
1757 */
1758SYSCALL_DEFINE1(oldumount, char __user *, name)
1759{
1760        return ksys_umount(name, 0);
1761}
1762
1763#endif
1764
1765static bool is_mnt_ns_file(struct dentry *dentry)
1766{
1767        /* Is this a proxy for a mount namespace? */
1768        return dentry->d_op == &ns_dentry_operations &&
1769               dentry->d_fsdata == &mntns_operations;
1770}
1771
1772struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1773{
1774        return container_of(ns, struct mnt_namespace, ns);
1775}
1776
1777static bool mnt_ns_loop(struct dentry *dentry)
1778{
1779        /* Could bind mounting the mount namespace inode cause a
1780         * mount namespace loop?
1781         */
1782        struct mnt_namespace *mnt_ns;
1783        if (!is_mnt_ns_file(dentry))
1784                return false;
1785
1786        mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1787        return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1788}
1789
1790struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1791                                        int flag)
1792{
1793        struct mount *res, *p, *q, *r, *parent;
1794
1795        if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1796                return ERR_PTR(-EINVAL);
1797
1798        if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1799                return ERR_PTR(-EINVAL);
1800
1801        res = q = clone_mnt(mnt, dentry, flag);
1802        if (IS_ERR(q))
1803                return q;
1804
1805        q->mnt_mountpoint = mnt->mnt_mountpoint;
1806
1807        p = mnt;
1808        list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1809                struct mount *s;
1810                if (!is_subdir(r->mnt_mountpoint, dentry))
1811                        continue;
1812
1813                for (s = r; s; s = next_mnt(s, r)) {
1814                        if (!(flag & CL_COPY_UNBINDABLE) &&
1815                            IS_MNT_UNBINDABLE(s)) {
1816                                s = skip_mnt_tree(s);
1817                                continue;
1818                        }
1819                        if (!(flag & CL_COPY_MNT_NS_FILE) &&
1820                            is_mnt_ns_file(s->mnt.mnt_root)) {
1821                                s = skip_mnt_tree(s);
1822                                continue;
1823                        }
1824                        while (p != s->mnt_parent) {
1825                                p = p->mnt_parent;
1826                                q = q->mnt_parent;
1827                        }
1828                        p = s;
1829                        parent = q;
1830                        q = clone_mnt(p, p->mnt.mnt_root, flag);
1831                        if (IS_ERR(q))
1832                                goto out;
1833                        lock_mount_hash();
1834                        list_add_tail(&q->mnt_list, &res->mnt_list);
1835                        attach_mnt(q, parent, p->mnt_mp);
1836                        unlock_mount_hash();
1837                }
1838        }
1839        return res;
1840out:
1841        if (res) {
1842                lock_mount_hash();
1843                umount_tree(res, UMOUNT_SYNC);
1844                unlock_mount_hash();
1845        }
1846        return q;
1847}
1848
1849/* Caller should check returned pointer for errors */
1850
1851struct vfsmount *collect_mounts(const struct path *path)
1852{
1853        struct mount *tree;
1854        namespace_lock();
1855        if (!check_mnt(real_mount(path->mnt)))
1856                tree = ERR_PTR(-EINVAL);
1857        else
1858                tree = copy_tree(real_mount(path->mnt), path->dentry,
1859                                 CL_COPY_ALL | CL_PRIVATE);
1860        namespace_unlock();
1861        if (IS_ERR(tree))
1862                return ERR_CAST(tree);
1863        return &tree->mnt;
1864}
1865
1866void drop_collected_mounts(struct vfsmount *mnt)
1867{
1868        namespace_lock();
1869        lock_mount_hash();
1870        umount_tree(real_mount(mnt), UMOUNT_SYNC);
1871        unlock_mount_hash();
1872        namespace_unlock();
1873}
1874
1875/**
1876 * clone_private_mount - create a private clone of a path
1877 *
1878 * This creates a new vfsmount, which will be the clone of @path.  The new will
1879 * not be attached anywhere in the namespace and will be private (i.e. changes
1880 * to the originating mount won't be propagated into this).
1881 *
1882 * Release with mntput().
1883 */
1884struct vfsmount *clone_private_mount(const struct path *path)
1885{
1886        struct mount *old_mnt = real_mount(path->mnt);
1887        struct mount *new_mnt;
1888
1889        if (IS_MNT_UNBINDABLE(old_mnt))
1890                return ERR_PTR(-EINVAL);
1891
1892        new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1893        if (IS_ERR(new_mnt))
1894                return ERR_CAST(new_mnt);
1895
1896        return &new_mnt->mnt;
1897}
1898EXPORT_SYMBOL_GPL(clone_private_mount);
1899
1900int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1901                   struct vfsmount *root)
1902{
1903        struct mount *mnt;
1904        int res = f(root, arg);
1905        if (res)
1906                return res;
1907        list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1908                res = f(&mnt->mnt, arg);
1909                if (res)
1910                        return res;
1911        }
1912        return 0;
1913}
1914
1915static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1916{
1917        struct mount *p;
1918
1919        for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1920                if (p->mnt_group_id && !IS_MNT_SHARED(p))
1921                        mnt_release_group_id(p);
1922        }
1923}
1924
1925static int invent_group_ids(struct mount *mnt, bool recurse)
1926{
1927        struct mount *p;
1928
1929        for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1930                if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1931                        int err = mnt_alloc_group_id(p);
1932                        if (err) {
1933                                cleanup_group_ids(mnt, p);
1934                                return err;
1935                        }
1936                }
1937        }
1938
1939        return 0;
1940}
1941
1942int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1943{
1944        unsigned int max = READ_ONCE(sysctl_mount_max);
1945        unsigned int mounts = 0, old, pending, sum;
1946        struct mount *p;
1947
1948        for (p = mnt; p; p = next_mnt(p, mnt))
1949                mounts++;
1950
1951        old = ns->mounts;
1952        pending = ns->pending_mounts;
1953        sum = old + pending;
1954        if ((old > sum) ||
1955            (pending > sum) ||
1956            (max < sum) ||
1957            (mounts > (max - sum)))
1958                return -ENOSPC;
1959
1960        ns->pending_mounts = pending + mounts;
1961        return 0;
1962}
1963
1964/*
1965 *  @source_mnt : mount tree to be attached
1966 *  @nd         : place the mount tree @source_mnt is attached
1967 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1968 *                 store the parent mount and mountpoint dentry.
1969 *                 (done when source_mnt is moved)
1970 *
1971 *  NOTE: in the table below explains the semantics when a source mount
1972 *  of a given type is attached to a destination mount of a given type.
1973 * ---------------------------------------------------------------------------
1974 * |         BIND MOUNT OPERATION                                            |
1975 * |**************************************************************************
1976 * | source-->| shared        |       private  |       slave    | unbindable |
1977 * | dest     |               |                |                |            |
1978 * |   |      |               |                |                |            |
1979 * |   v      |               |                |                |            |
1980 * |**************************************************************************
1981 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1982 * |          |               |                |                |            |
1983 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1984 * ***************************************************************************
1985 * A bind operation clones the source mount and mounts the clone on the
1986 * destination mount.
1987 *
1988 * (++)  the cloned mount is propagated to all the mounts in the propagation
1989 *       tree of the destination mount and the cloned mount is added to
1990 *       the peer group of the source mount.
1991 * (+)   the cloned mount is created under the destination mount and is marked
1992 *       as shared. The cloned mount is added to the peer group of the source
1993 *       mount.
1994 * (+++) the mount is propagated to all the mounts in the propagation tree
1995 *       of the destination mount and the cloned mount is made slave
1996 *       of the same master as that of the source mount. The cloned mount
1997 *       is marked as 'shared and slave'.
1998 * (*)   the cloned mount is made a slave of the same master as that of the
1999 *       source mount.
2000 *
2001 * ---------------------------------------------------------------------------
2002 * |                    MOVE MOUNT OPERATION                                 |
2003 * |**************************************************************************
2004 * | source-->| shared        |       private  |       slave    | unbindable |
2005 * | dest     |               |                |                |            |
2006 * |   |      |               |                |                |            |
2007 * |   v      |               |                |                |            |
2008 * |**************************************************************************
2009 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2010 * |          |               |                |                |            |
2011 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2012 * ***************************************************************************
2013 *
2014 * (+)  the mount is moved to the destination. And is then propagated to
2015 *      all the mounts in the propagation tree of the destination mount.
2016 * (+*)  the mount is moved to the destination.
2017 * (+++)  the mount is moved to the destination and is then propagated to
2018 *      all the mounts belonging to the destination mount's propagation tree.
2019 *      the mount is marked as 'shared and slave'.
2020 * (*)  the mount continues to be a slave at the new location.
2021 *
2022 * if the source mount is a tree, the operations explained above is
2023 * applied to each mount in the tree.
2024 * Must be called without spinlocks held, since this function can sleep
2025 * in allocations.
2026 */
2027static int attach_recursive_mnt(struct mount *source_mnt,
2028                        struct mount *dest_mnt,
2029                        struct mountpoint *dest_mp,
2030                        struct path *parent_path)
2031{
2032        HLIST_HEAD(tree_list);
2033        struct mnt_namespace *ns = dest_mnt->mnt_ns;
2034        struct mountpoint *smp;
2035        struct mount *child, *p;
2036        struct hlist_node *n;
2037        int err;
2038
2039        /* Preallocate a mountpoint in case the new mounts need
2040         * to be tucked under other mounts.
2041         */
2042        smp = get_mountpoint(source_mnt->mnt.mnt_root);
2043        if (IS_ERR(smp))
2044                return PTR_ERR(smp);
2045
2046        /* Is there space to add these mounts to the mount namespace? */
2047        if (!parent_path) {
2048                err = count_mounts(ns, source_mnt);
2049                if (err)
2050                        goto out;
2051        }
2052
2053        if (IS_MNT_SHARED(dest_mnt)) {
2054                err = invent_group_ids(source_mnt, true);
2055                if (err)
2056                        goto out;
2057                err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2058                lock_mount_hash();
2059                if (err)
2060                        goto out_cleanup_ids;
2061                for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2062                        set_mnt_shared(p);
2063        } else {
2064                lock_mount_hash();
2065        }
2066        if (parent_path) {
2067                detach_mnt(source_mnt, parent_path);
2068                attach_mnt(source_mnt, dest_mnt, dest_mp);
2069                touch_mnt_namespace(source_mnt->mnt_ns);
2070        } else {
2071                mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2072                commit_tree(source_mnt);
2073        }
2074
2075        hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2076                struct mount *q;
2077                hlist_del_init(&child->mnt_hash);
2078                q = __lookup_mnt(&child->mnt_parent->mnt,
2079                                 child->mnt_mountpoint);
2080                if (q)
2081                        mnt_change_mountpoint(child, smp, q);
2082                commit_tree(child);
2083        }
2084        put_mountpoint(smp);
2085        unlock_mount_hash();
2086
2087        return 0;
2088
2089 out_cleanup_ids:
2090        while (!hlist_empty(&tree_list)) {
2091                child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2092                child->mnt_parent->mnt_ns->pending_mounts = 0;
2093                umount_tree(child, UMOUNT_SYNC);
2094        }
2095        unlock_mount_hash();
2096        cleanup_group_ids(source_mnt, NULL);
2097 out:
2098        ns->pending_mounts = 0;
2099
2100        read_seqlock_excl(&mount_lock);
2101        put_mountpoint(smp);
2102        read_sequnlock_excl(&mount_lock);
2103
2104        return err;
2105}
2106
2107static struct mountpoint *lock_mount(struct path *path)
2108{
2109        struct vfsmount *mnt;
2110        struct dentry *dentry = path->dentry;
2111retry:
2112        inode_lock(dentry->d_inode);
2113        if (unlikely(cant_mount(dentry))) {
2114                inode_unlock(dentry->d_inode);
2115                return ERR_PTR(-ENOENT);
2116        }
2117        namespace_lock();
2118        mnt = lookup_mnt(path);
2119        if (likely(!mnt)) {
2120                struct mountpoint *mp = get_mountpoint(dentry);
2121                if (IS_ERR(mp)) {
2122                        namespace_unlock();
2123                        inode_unlock(dentry->d_inode);
2124                        return mp;
2125                }
2126                return mp;
2127        }
2128        namespace_unlock();
2129        inode_unlock(path->dentry->d_inode);
2130        path_put(path);
2131        path->mnt = mnt;
2132        dentry = path->dentry = dget(mnt->mnt_root);
2133        goto retry;
2134}
2135
2136static void unlock_mount(struct mountpoint *where)
2137{
2138        struct dentry *dentry = where->m_dentry;
2139
2140        read_seqlock_excl(&mount_lock);
2141        put_mountpoint(where);
2142        read_sequnlock_excl(&mount_lock);
2143
2144        namespace_unlock();
2145        inode_unlock(dentry->d_inode);
2146}
2147
2148static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2149{
2150        if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2151                return -EINVAL;
2152
2153        if (d_is_dir(mp->m_dentry) !=
2154              d_is_dir(mnt->mnt.mnt_root))
2155                return -ENOTDIR;
2156
2157        return attach_recursive_mnt(mnt, p, mp, NULL);
2158}
2159
2160/*
2161 * Sanity check the flags to change_mnt_propagation.
2162 */
2163
2164static int flags_to_propagation_type(int ms_flags)
2165{
2166        int type = ms_flags & ~(MS_REC | MS_SILENT);
2167
2168        /* Fail if any non-propagation flags are set */
2169        if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2170                return 0;
2171        /* Only one propagation flag should be set */
2172        if (!is_power_of_2(type))
2173                return 0;
2174        return type;
2175}
2176
2177/*
2178 * recursively change the type of the mountpoint.
2179 */
2180static int do_change_type(struct path *path, int ms_flags)
2181{
2182        struct mount *m;
2183        struct mount *mnt = real_mount(path->mnt);
2184        int recurse = ms_flags & MS_REC;
2185        int type;
2186        int err = 0;
2187
2188        if (path->dentry != path->mnt->mnt_root)
2189                return -EINVAL;
2190
2191        type = flags_to_propagation_type(ms_flags);
2192        if (!type)
2193                return -EINVAL;
2194
2195        namespace_lock();
2196        if (type == MS_SHARED) {
2197                err = invent_group_ids(mnt, recurse);
2198                if (err)
2199                        goto out_unlock;
2200        }
2201
2202        lock_mount_hash();
2203        for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2204                change_mnt_propagation(m, type);
2205        unlock_mount_hash();
2206
2207 out_unlock:
2208        namespace_unlock();
2209        return err;
2210}
2211
2212static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2213{
2214        struct mount *child;
2215        list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2216                if (!is_subdir(child->mnt_mountpoint, dentry))
2217                        continue;
2218
2219                if (child->mnt.mnt_flags & MNT_LOCKED)
2220                        return true;
2221        }
2222        return false;
2223}
2224
2225/*
2226 * do loopback mount.
2227 */
2228static int do_loopback(struct path *path, const char *old_name,
2229                                int recurse)
2230{
2231        struct path old_path;
2232        struct mount *mnt = NULL, *old, *parent;
2233        struct mountpoint *mp;
2234        int err;
2235        if (!old_name || !*old_name)
2236                return -EINVAL;
2237        err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2238        if (err)
2239                return err;
2240
2241        err = -EINVAL;
2242        if (mnt_ns_loop(old_path.dentry))
2243                goto out;
2244
2245        mp = lock_mount(path);
2246        err = PTR_ERR(mp);
2247        if (IS_ERR(mp))
2248                goto out;
2249
2250        old = real_mount(old_path.mnt);
2251        parent = real_mount(path->mnt);
2252
2253        err = -EINVAL;
2254        if (IS_MNT_UNBINDABLE(old))
2255                goto out2;
2256
2257        if (!check_mnt(parent))
2258                goto out2;
2259
2260        if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2261                goto out2;
2262
2263        if (!recurse && has_locked_children(old, old_path.dentry))
2264                goto out2;
2265
2266        if (recurse)
2267                mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2268        else
2269                mnt = clone_mnt(old, old_path.dentry, 0);
2270
2271        if (IS_ERR(mnt)) {
2272                err = PTR_ERR(mnt);
2273                goto out2;
2274        }
2275
2276        mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2277
2278        err = graft_tree(mnt, parent, mp);
2279        if (err) {
2280                lock_mount_hash();
2281                umount_tree(mnt, UMOUNT_SYNC);
2282                unlock_mount_hash();
2283        }
2284out2:
2285        unlock_mount(mp);
2286out:
2287        path_put(&old_path);
2288        return err;
2289}
2290
2291static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2292{
2293        int error = 0;
2294        int readonly_request = 0;
2295
2296        if (ms_flags & MS_RDONLY)
2297                readonly_request = 1;
2298        if (readonly_request == __mnt_is_readonly(mnt))
2299                return 0;
2300
2301        if (readonly_request)
2302                error = mnt_make_readonly(real_mount(mnt));
2303        else
2304                __mnt_unmake_readonly(real_mount(mnt));
2305        return error;
2306}
2307
2308/*
2309 * change filesystem flags. dir should be a physical root of filesystem.
2310 * If you've mounted a non-root directory somewhere and want to do remount
2311 * on it - tough luck.
2312 */
2313static int do_remount(struct path *path, int ms_flags, int sb_flags,
2314                      int mnt_flags, void *data)
2315{
2316        int err;
2317        struct super_block *sb = path->mnt->mnt_sb;
2318        struct mount *mnt = real_mount(path->mnt);
2319
2320        if (!check_mnt(mnt))
2321                return -EINVAL;
2322
2323        if (path->dentry != path->mnt->mnt_root)
2324                return -EINVAL;
2325
2326        /* Don't allow changing of locked mnt flags.
2327         *
2328         * No locks need to be held here while testing the various
2329         * MNT_LOCK flags because those flags can never be cleared
2330         * once they are set.
2331         */
2332        if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2333            !(mnt_flags & MNT_READONLY)) {
2334                return -EPERM;
2335        }
2336        if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2337            !(mnt_flags & MNT_NODEV)) {
2338                return -EPERM;
2339        }
2340        if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2341            !(mnt_flags & MNT_NOSUID)) {
2342                return -EPERM;
2343        }
2344        if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2345            !(mnt_flags & MNT_NOEXEC)) {
2346                return -EPERM;
2347        }
2348        if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2349            ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2350                return -EPERM;
2351        }
2352
2353        err = security_sb_remount(sb, data);
2354        if (err)
2355                return err;
2356
2357        down_write(&sb->s_umount);
2358        if (ms_flags & MS_BIND)
2359                err = change_mount_flags(path->mnt, ms_flags);
2360        else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2361                err = -EPERM;
2362        else
2363                err = do_remount_sb(sb, sb_flags, data, 0);
2364        if (!err) {
2365                lock_mount_hash();
2366                mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2367                mnt->mnt.mnt_flags = mnt_flags;
2368                touch_mnt_namespace(mnt->mnt_ns);
2369                unlock_mount_hash();
2370        }
2371        up_write(&sb->s_umount);
2372        return err;
2373}
2374
2375static inline int tree_contains_unbindable(struct mount *mnt)
2376{
2377        struct mount *p;
2378        for (p = mnt; p; p = next_mnt(p, mnt)) {
2379                if (IS_MNT_UNBINDABLE(p))
2380                        return 1;
2381        }
2382        return 0;
2383}
2384
2385static int do_move_mount(struct path *path, const char *old_name)
2386{
2387        struct path old_path, parent_path;
2388        struct mount *p;
2389        struct mount *old;
2390        struct mountpoint *mp;
2391        int err;
2392        if (!old_name || !*old_name)
2393                return -EINVAL;
2394        err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2395        if (err)
2396                return err;
2397
2398        mp = lock_mount(path);
2399        err = PTR_ERR(mp);
2400        if (IS_ERR(mp))
2401                goto out;
2402
2403        old = real_mount(old_path.mnt);
2404        p = real_mount(path->mnt);
2405
2406        err = -EINVAL;
2407        if (!check_mnt(p) || !check_mnt(old))
2408                goto out1;
2409
2410        if (old->mnt.mnt_flags & MNT_LOCKED)
2411                goto out1;
2412
2413        err = -EINVAL;
2414        if (old_path.dentry != old_path.mnt->mnt_root)
2415                goto out1;
2416
2417        if (!mnt_has_parent(old))
2418                goto out1;
2419
2420        if (d_is_dir(path->dentry) !=
2421              d_is_dir(old_path.dentry))
2422                goto out1;
2423        /*
2424         * Don't move a mount residing in a shared parent.
2425         */
2426        if (IS_MNT_SHARED(old->mnt_parent))
2427                goto out1;
2428        /*
2429         * Don't move a mount tree containing unbindable mounts to a destination
2430         * mount which is shared.
2431         */
2432        if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2433                goto out1;
2434        err = -ELOOP;
2435        for (; mnt_has_parent(p); p = p->mnt_parent)
2436                if (p == old)
2437                        goto out1;
2438
2439        err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2440        if (err)
2441                goto out1;
2442
2443        /* if the mount is moved, it should no longer be expire
2444         * automatically */
2445        list_del_init(&old->mnt_expire);
2446out1:
2447        unlock_mount(mp);
2448out:
2449        if (!err)
2450                path_put(&parent_path);
2451        path_put(&old_path);
2452        return err;
2453}
2454
2455static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2456{
2457        int err;
2458        const char *subtype = strchr(fstype, '.');
2459        if (subtype) {
2460                subtype++;
2461                err = -EINVAL;
2462                if (!subtype[0])
2463                        goto err;
2464        } else
2465                subtype = "";
2466
2467        mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2468        err = -ENOMEM;
2469        if (!mnt->mnt_sb->s_subtype)
2470                goto err;
2471        return mnt;
2472
2473 err:
2474        mntput(mnt);
2475        return ERR_PTR(err);
2476}
2477
2478/*
2479 * add a mount into a namespace's mount tree
2480 */
2481static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2482{
2483        struct mountpoint *mp;
2484        struct mount *parent;
2485        int err;
2486
2487        mnt_flags &= ~MNT_INTERNAL_FLAGS;
2488
2489        mp = lock_mount(path);
2490        if (IS_ERR(mp))
2491                return PTR_ERR(mp);
2492
2493        parent = real_mount(path->mnt);
2494        err = -EINVAL;
2495        if (unlikely(!check_mnt(parent))) {
2496                /* that's acceptable only for automounts done in private ns */
2497                if (!(mnt_flags & MNT_SHRINKABLE))
2498                        goto unlock;
2499                /* ... and for those we'd better have mountpoint still alive */
2500                if (!parent->mnt_ns)
2501                        goto unlock;
2502        }
2503
2504        /* Refuse the same filesystem on the same mount point */
2505        err = -EBUSY;
2506        if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2507            path->mnt->mnt_root == path->dentry)
2508                goto unlock;
2509
2510        err = -EINVAL;
2511        if (d_is_symlink(newmnt->mnt.mnt_root))
2512                goto unlock;
2513
2514        newmnt->mnt.mnt_flags = mnt_flags;
2515        err = graft_tree(newmnt, parent, mp);
2516
2517unlock:
2518        unlock_mount(mp);
2519        return err;
2520}
2521
2522static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2523
2524/*
2525 * create a new mount for userspace and request it to be added into the
2526 * namespace's tree
2527 */
2528static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2529                        int mnt_flags, const char *name, void *data)
2530{
2531        struct file_system_type *type;
2532        struct vfsmount *mnt;
2533        int err;
2534
2535        if (!fstype)
2536                return -EINVAL;
2537
2538        type = get_fs_type(fstype);
2539        if (!type)
2540                return -ENODEV;
2541
2542        mnt = vfs_kern_mount(type, sb_flags, name, data);
2543        if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2544            !mnt->mnt_sb->s_subtype)
2545                mnt = fs_set_subtype(mnt, fstype);
2546
2547        put_filesystem(type);
2548        if (IS_ERR(mnt))
2549                return PTR_ERR(mnt);
2550
2551        if (mount_too_revealing(mnt, &mnt_flags)) {
2552                mntput(mnt);
2553                return -EPERM;
2554        }
2555
2556        err = do_add_mount(real_mount(mnt), path, mnt_flags);
2557        if (err)
2558                mntput(mnt);
2559        return err;
2560}
2561
2562int finish_automount(struct vfsmount *m, struct path *path)
2563{
2564        struct mount *mnt = real_mount(m);
2565        int err;
2566        /* The new mount record should have at least 2 refs to prevent it being
2567         * expired before we get a chance to add it
2568         */
2569        BUG_ON(mnt_get_count(mnt) < 2);
2570
2571        if (m->mnt_sb == path->mnt->mnt_sb &&
2572            m->mnt_root == path->dentry) {
2573                err = -ELOOP;
2574                goto fail;
2575        }
2576
2577        err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2578        if (!err)
2579                return 0;
2580fail:
2581        /* remove m from any expiration list it may be on */
2582        if (!list_empty(&mnt->mnt_expire)) {
2583                namespace_lock();
2584                list_del_init(&mnt->mnt_expire);
2585                namespace_unlock();
2586        }
2587        mntput(m);
2588        mntput(m);
2589        return err;
2590}
2591
2592/**
2593 * mnt_set_expiry - Put a mount on an expiration list
2594 * @mnt: The mount to list.
2595 * @expiry_list: The list to add the mount to.
2596 */
2597void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2598{
2599        namespace_lock();
2600
2601        list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2602
2603        namespace_unlock();
2604}
2605EXPORT_SYMBOL(mnt_set_expiry);
2606
2607/*
2608 * process a list of expirable mountpoints with the intent of discarding any
2609 * mountpoints that aren't in use and haven't been touched since last we came
2610 * here
2611 */
2612void mark_mounts_for_expiry(struct list_head *mounts)
2613{
2614        struct mount *mnt, *next;
2615        LIST_HEAD(graveyard);
2616
2617        if (list_empty(mounts))
2618                return;
2619
2620        namespace_lock();
2621        lock_mount_hash();
2622
2623        /* extract from the expiration list every vfsmount that matches the
2624         * following criteria:
2625         * - only referenced by its parent vfsmount
2626         * - still marked for expiry (marked on the last call here; marks are
2627         *   cleared by mntput())
2628         */
2629        list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2630                if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2631                        propagate_mount_busy(mnt, 1))
2632                        continue;
2633                list_move(&mnt->mnt_expire, &graveyard);
2634        }
2635        while (!list_empty(&graveyard)) {
2636                mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2637                touch_mnt_namespace(mnt->mnt_ns);
2638                umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2639        }
2640        unlock_mount_hash();
2641        namespace_unlock();
2642}
2643
2644EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2645
2646/*
2647 * Ripoff of 'select_parent()'
2648 *
2649 * search the list of submounts for a given mountpoint, and move any
2650 * shrinkable submounts to the 'graveyard' list.
2651 */
2652static int select_submounts(struct mount *parent, struct list_head *graveyard)
2653{
2654        struct mount *this_parent = parent;
2655        struct list_head *next;
2656        int found = 0;
2657
2658repeat:
2659        next = this_parent->mnt_mounts.next;
2660resume:
2661        while (next != &this_parent->mnt_mounts) {
2662                struct list_head *tmp = next;
2663                struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2664
2665                next = tmp->next;
2666                if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2667                        continue;
2668                /*
2669                 * Descend a level if the d_mounts list is non-empty.
2670                 */
2671                if (!list_empty(&mnt->mnt_mounts)) {
2672                        this_parent = mnt;
2673                        goto repeat;
2674                }
2675
2676                if (!propagate_mount_busy(mnt, 1)) {
2677                        list_move_tail(&mnt->mnt_expire, graveyard);
2678                        found++;
2679                }
2680        }
2681        /*
2682         * All done at this level ... ascend and resume the search
2683         */
2684        if (this_parent != parent) {
2685                next = this_parent->mnt_child.next;
2686                this_parent = this_parent->mnt_parent;
2687                goto resume;
2688        }
2689        return found;
2690}
2691
2692/*
2693 * process a list of expirable mountpoints with the intent of discarding any
2694 * submounts of a specific parent mountpoint
2695 *
2696 * mount_lock must be held for write
2697 */
2698static void shrink_submounts(struct mount *mnt)
2699{
2700        LIST_HEAD(graveyard);
2701        struct mount *m;
2702
2703        /* extract submounts of 'mountpoint' from the expiration list */
2704        while (select_submounts(mnt, &graveyard)) {
2705                while (!list_empty(&graveyard)) {
2706                        m = list_first_entry(&graveyard, struct mount,
2707                                                mnt_expire);
2708                        touch_mnt_namespace(m->mnt_ns);
2709                        umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2710                }
2711        }
2712}
2713
2714/*
2715 * Some copy_from_user() implementations do not return the exact number of
2716 * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2717 * Note that this function differs from copy_from_user() in that it will oops
2718 * on bad values of `to', rather than returning a short copy.
2719 */
2720static long exact_copy_from_user(void *to, const void __user * from,
2721                                 unsigned long n)
2722{
2723        char *t = to;
2724        const char __user *f = from;
2725        char c;
2726
2727        if (!access_ok(VERIFY_READ, from, n))
2728                return n;
2729
2730        while (n) {
2731                if (__get_user(c, f)) {
2732                        memset(t, 0, n);
2733                        break;
2734                }
2735                *t++ = c;
2736                f++;
2737                n--;
2738        }
2739        return n;
2740}
2741
2742void *copy_mount_options(const void __user * data)
2743{
2744        int i;
2745        unsigned long size;
2746        char *copy;
2747
2748        if (!data)
2749                return NULL;
2750
2751        copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2752        if (!copy)
2753                return ERR_PTR(-ENOMEM);
2754
2755        /* We only care that *some* data at the address the user
2756         * gave us is valid.  Just in case, we'll zero
2757         * the remainder of the page.
2758         */
2759        /* copy_from_user cannot cross TASK_SIZE ! */
2760        size = TASK_SIZE - (unsigned long)data;
2761        if (size > PAGE_SIZE)
2762                size = PAGE_SIZE;
2763
2764        i = size - exact_copy_from_user(copy, data, size);
2765        if (!i) {
2766                kfree(copy);
2767                return ERR_PTR(-EFAULT);
2768        }
2769        if (i != PAGE_SIZE)
2770                memset(copy + i, 0, PAGE_SIZE - i);
2771        return copy;
2772}
2773
2774char *copy_mount_string(const void __user *data)
2775{
2776        return data ? strndup_user(data, PAGE_SIZE) : NULL;
2777}
2778
2779/*
2780 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2781 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2782 *
2783 * data is a (void *) that can point to any structure up to
2784 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2785 * information (or be NULL).
2786 *
2787 * Pre-0.97 versions of mount() didn't have a flags word.
2788 * When the flags word was introduced its top half was required
2789 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2790 * Therefore, if this magic number is present, it carries no information
2791 * and must be discarded.
2792 */
2793long do_mount(const char *dev_name, const char __user *dir_name,
2794                const char *type_page, unsigned long flags, void *data_page)
2795{
2796        struct path path;
2797        unsigned int mnt_flags = 0, sb_flags;
2798        int retval = 0;
2799
2800        /* Discard magic */
2801        if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2802                flags &= ~MS_MGC_MSK;
2803
2804        /* Basic sanity checks */
2805        if (data_page)
2806                ((char *)data_page)[PAGE_SIZE - 1] = 0;
2807
2808        if (flags & MS_NOUSER)
2809                return -EINVAL;
2810
2811        /* ... and get the mountpoint */
2812        retval = user_path(dir_name, &path);
2813        if (retval)
2814                return retval;
2815
2816        retval = security_sb_mount(dev_name, &path,
2817                                   type_page, flags, data_page);
2818        if (!retval && !may_mount())
2819                retval = -EPERM;
2820        if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2821                retval = -EPERM;
2822        if (retval)
2823                goto dput_out;
2824
2825        /* Default to relatime unless overriden */
2826        if (!(flags & MS_NOATIME))
2827                mnt_flags |= MNT_RELATIME;
2828
2829        /* Separate the per-mountpoint flags */
2830        if (flags & MS_NOSUID)
2831                mnt_flags |= MNT_NOSUID;
2832        if (flags & MS_NODEV)
2833                mnt_flags |= MNT_NODEV;
2834        if (flags & MS_NOEXEC)
2835                mnt_flags |= MNT_NOEXEC;
2836        if (flags & MS_NOATIME)
2837                mnt_flags |= MNT_NOATIME;
2838        if (flags & MS_NODIRATIME)
2839                mnt_flags |= MNT_NODIRATIME;
2840        if (flags & MS_STRICTATIME)
2841                mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2842        if (flags & MS_RDONLY)
2843                mnt_flags |= MNT_READONLY;
2844
2845        /* The default atime for remount is preservation */
2846        if ((flags & MS_REMOUNT) &&
2847            ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2848                       MS_STRICTATIME)) == 0)) {
2849                mnt_flags &= ~MNT_ATIME_MASK;
2850                mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2851        }
2852
2853        sb_flags = flags & (SB_RDONLY |
2854                            SB_SYNCHRONOUS |
2855                            SB_MANDLOCK |
2856                            SB_DIRSYNC |
2857                            SB_SILENT |
2858                            SB_POSIXACL |
2859                            SB_LAZYTIME |
2860                            SB_I_VERSION);
2861
2862        if (flags & MS_REMOUNT)
2863                retval = do_remount(&path, flags, sb_flags, mnt_flags,
2864                                    data_page);
2865        else if (flags & MS_BIND)
2866                retval = do_loopback(&path, dev_name, flags & MS_REC);
2867        else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2868                retval = do_change_type(&path, flags);
2869        else if (flags & MS_MOVE)
2870                retval = do_move_mount(&path, dev_name);
2871        else
2872                retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2873                                      dev_name, data_page);
2874dput_out:
2875        path_put(&path);
2876        return retval;
2877}
2878
2879static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2880{
2881        return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2882}
2883
2884static void dec_mnt_namespaces(struct ucounts *ucounts)
2885{
2886        dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2887}
2888
2889static void free_mnt_ns(struct mnt_namespace *ns)
2890{
2891        ns_free_inum(&ns->ns);
2892        dec_mnt_namespaces(ns->ucounts);
2893        put_user_ns(ns->user_ns);
2894        kfree(ns);
2895}
2896
2897/*
2898 * Assign a sequence number so we can detect when we attempt to bind
2899 * mount a reference to an older mount namespace into the current
2900 * mount namespace, preventing reference counting loops.  A 64bit
2901 * number incrementing at 10Ghz will take 12,427 years to wrap which
2902 * is effectively never, so we can ignore the possibility.
2903 */
2904static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2905
2906static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2907{
2908        struct mnt_namespace *new_ns;
2909        struct ucounts *ucounts;
2910        int ret;
2911
2912        ucounts = inc_mnt_namespaces(user_ns);
2913        if (!ucounts)
2914                return ERR_PTR(-ENOSPC);
2915
2916        new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2917        if (!new_ns) {
2918                dec_mnt_namespaces(ucounts);
2919                return ERR_PTR(-ENOMEM);
2920        }
2921        ret = ns_alloc_inum(&new_ns->ns);
2922        if (ret) {
2923                kfree(new_ns);
2924                dec_mnt_namespaces(ucounts);
2925                return ERR_PTR(ret);
2926        }
2927        new_ns->ns.ops = &mntns_operations;
2928        new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2929        atomic_set(&new_ns->count, 1);
2930        new_ns->root = NULL;
2931        INIT_LIST_HEAD(&new_ns->list);
2932        init_waitqueue_head(&new_ns->poll);
2933        new_ns->event = 0;
2934        new_ns->user_ns = get_user_ns(user_ns);
2935        new_ns->ucounts = ucounts;
2936        new_ns->mounts = 0;
2937        new_ns->pending_mounts = 0;
2938        return new_ns;
2939}
2940
2941__latent_entropy
2942struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2943                struct user_namespace *user_ns, struct fs_struct *new_fs)
2944{
2945        struct mnt_namespace *new_ns;
2946        struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2947        struct mount *p, *q;
2948        struct mount *old;
2949        struct mount *new;
2950        int copy_flags;
2951
2952        BUG_ON(!ns);
2953
2954        if (likely(!(flags & CLONE_NEWNS))) {
2955                get_mnt_ns(ns);
2956                return ns;
2957        }
2958
2959        old = ns->root;
2960
2961        new_ns = alloc_mnt_ns(user_ns);
2962        if (IS_ERR(new_ns))
2963                return new_ns;
2964
2965        namespace_lock();
2966        /* First pass: copy the tree topology */
2967        copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2968        if (user_ns != ns->user_ns)
2969                copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2970        new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2971        if (IS_ERR(new)) {
2972                namespace_unlock();
2973                free_mnt_ns(new_ns);
2974                return ERR_CAST(new);
2975        }
2976        new_ns->root = new;
2977        list_add_tail(&new_ns->list, &new->mnt_list);
2978
2979        /*
2980         * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2981         * as belonging to new namespace.  We have already acquired a private
2982         * fs_struct, so tsk->fs->lock is not needed.
2983         */
2984        p = old;
2985        q = new;
2986        while (p) {
2987                q->mnt_ns = new_ns;
2988                new_ns->mounts++;
2989                if (new_fs) {
2990                        if (&p->mnt == new_fs->root.mnt) {
2991                                new_fs->root.mnt = mntget(&q->mnt);
2992                                rootmnt = &p->mnt;
2993                        }
2994                        if (&p->mnt == new_fs->pwd.mnt) {
2995                                new_fs->pwd.mnt = mntget(&q->mnt);
2996                                pwdmnt = &p->mnt;
2997                        }
2998                }
2999                p = next_mnt(p, old);
3000                q = next_mnt(q, new);
3001                if (!q)
3002                        break;
3003                while (p->mnt.mnt_root != q->mnt.mnt_root)
3004                        p = next_mnt(p, old);
3005        }
3006        namespace_unlock();
3007
3008        if (rootmnt)
3009                mntput(rootmnt);
3010        if (pwdmnt)
3011                mntput(pwdmnt);
3012
3013        return new_ns;
3014}
3015
3016/**
3017 * create_mnt_ns - creates a private namespace and adds a root filesystem
3018 * @mnt: pointer to the new root filesystem mountpoint
3019 */
3020static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
3021{
3022        struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
3023        if (!IS_ERR(new_ns)) {
3024                struct mount *mnt = real_mount(m);
3025                mnt->mnt_ns = new_ns;
3026                new_ns->root = mnt;
3027                new_ns->mounts++;
3028                list_add(&mnt->mnt_list, &new_ns->list);
3029        } else {
3030                mntput(m);
3031        }
3032        return new_ns;
3033}
3034
3035struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3036{
3037        struct mnt_namespace *ns;
3038        struct super_block *s;
3039        struct path path;
3040        int err;
3041
3042        ns = create_mnt_ns(mnt);
3043        if (IS_ERR(ns))
3044                return ERR_CAST(ns);
3045
3046        err = vfs_path_lookup(mnt->mnt_root, mnt,
3047                        name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3048
3049        put_mnt_ns(ns);
3050
3051        if (err)
3052                return ERR_PTR(err);
3053
3054        /* trade a vfsmount reference for active sb one */
3055        s = path.mnt->mnt_sb;
3056        atomic_inc(&s->s_active);
3057        mntput(path.mnt);
3058        /* lock the sucker */
3059        down_write(&s->s_umount);
3060        /* ... and return the root of (sub)tree on it */
3061        return path.dentry;
3062}
3063EXPORT_SYMBOL(mount_subtree);
3064
3065int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
3066               unsigned long flags, void __user *data)
3067{
3068        int ret;
3069        char *kernel_type;
3070        char *kernel_dev;
3071        void *options;
3072
3073        kernel_type = copy_mount_string(type);
3074        ret = PTR_ERR(kernel_type);
3075        if (IS_ERR(kernel_type))
3076                goto out_type;
3077
3078        kernel_dev = copy_mount_string(dev_name);
3079        ret = PTR_ERR(kernel_dev);
3080        if (IS_ERR(kernel_dev))
3081                goto out_dev;
3082
3083        options = copy_mount_options(data);
3084        ret = PTR_ERR(options);
3085        if (IS_ERR(options))
3086                goto out_data;
3087
3088        ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3089
3090        kfree(options);
3091out_data:
3092        kfree(kernel_dev);
3093out_dev:
3094        kfree(kernel_type);
3095out_type:
3096        return ret;
3097}
3098
3099SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3100                char __user *, type, unsigned long, flags, void __user *, data)
3101{
3102        return ksys_mount(dev_name, dir_name, type, flags, data);
3103}
3104
3105/*
3106 * Return true if path is reachable from root
3107 *
3108 * namespace_sem or mount_lock is held
3109 */
3110bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3111                         const struct path *root)
3112{
3113        while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3114                dentry = mnt->mnt_mountpoint;
3115                mnt = mnt->mnt_parent;
3116        }
3117        return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3118}
3119
3120bool path_is_under(const struct path *path1, const struct path *path2)
3121{
3122        bool res;
3123        read_seqlock_excl(&mount_lock);
3124        res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3125        read_sequnlock_excl(&mount_lock);
3126        return res;
3127}
3128EXPORT_SYMBOL(path_is_under);
3129
3130/*
3131 * pivot_root Semantics:
3132 * Moves the root file system of the current process to the directory put_old,
3133 * makes new_root as the new root file system of the current process, and sets
3134 * root/cwd of all processes which had them on the current root to new_root.
3135 *
3136 * Restrictions:
3137 * The new_root and put_old must be directories, and  must not be on the
3138 * same file  system as the current process root. The put_old  must  be
3139 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3140 * pointed to by put_old must yield the same directory as new_root. No other
3141 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3142 *
3143 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3144 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3145 * in this situation.
3146 *
3147 * Notes:
3148 *  - we don't move root/cwd if they are not at the root (reason: if something
3149 *    cared enough to change them, it's probably wrong to force them elsewhere)
3150 *  - it's okay to pick a root that isn't the root of a file system, e.g.
3151 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3152 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3153 *    first.
3154 */
3155SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3156                const char __user *, put_old)
3157{
3158        struct path new, old, parent_path, root_parent, root;
3159        struct mount *new_mnt, *root_mnt, *old_mnt;
3160        struct mountpoint *old_mp, *root_mp;
3161        int error;
3162
3163        if (!may_mount())
3164                return -EPERM;
3165
3166        error = user_path_dir(new_root, &new);
3167        if (error)
3168                goto out0;
3169
3170        error = user_path_dir(put_old, &old);
3171        if (error)
3172                goto out1;
3173
3174        error = security_sb_pivotroot(&old, &new);
3175        if (error)
3176                goto out2;
3177
3178        get_fs_root(current->fs, &root);
3179        old_mp = lock_mount(&old);
3180        error = PTR_ERR(old_mp);
3181        if (IS_ERR(old_mp))
3182                goto out3;
3183
3184        error = -EINVAL;
3185        new_mnt = real_mount(new.mnt);
3186        root_mnt = real_mount(root.mnt);
3187        old_mnt = real_mount(old.mnt);
3188        if (IS_MNT_SHARED(old_mnt) ||
3189                IS_MNT_SHARED(new_mnt->mnt_parent) ||
3190                IS_MNT_SHARED(root_mnt->mnt_parent))
3191                goto out4;
3192        if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3193                goto out4;
3194        if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3195                goto out4;
3196        error = -ENOENT;
3197        if (d_unlinked(new.dentry))
3198                goto out4;
3199        error = -EBUSY;
3200        if (new_mnt == root_mnt || old_mnt == root_mnt)
3201                goto out4; /* loop, on the same file system  */
3202        error = -EINVAL;
3203        if (root.mnt->mnt_root != root.dentry)
3204                goto out4; /* not a mountpoint */
3205        if (!mnt_has_parent(root_mnt))
3206                goto out4; /* not attached */
3207        root_mp = root_mnt->mnt_mp;
3208        if (new.mnt->mnt_root != new.dentry)
3209                goto out4; /* not a mountpoint */
3210        if (!mnt_has_parent(new_mnt))
3211                goto out4; /* not attached */
3212        /* make sure we can reach put_old from new_root */
3213        if (!is_path_reachable(old_mnt, old.dentry, &new))
3214                goto out4;
3215        /* make certain new is below the root */
3216        if (!is_path_reachable(new_mnt, new.dentry, &root))
3217                goto out4;
3218        root_mp->m_count++; /* pin it so it won't go away */
3219        lock_mount_hash();
3220        detach_mnt(new_mnt, &parent_path);
3221        detach_mnt(root_mnt, &root_parent);
3222        if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3223                new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3224                root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3225        }
3226        /* mount old root on put_old */
3227        attach_mnt(root_mnt, old_mnt, old_mp);
3228        /* mount new_root on / */
3229        attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3230        touch_mnt_namespace(current->nsproxy->mnt_ns);
3231        /* A moved mount should not expire automatically */
3232        list_del_init(&new_mnt->mnt_expire);
3233        put_mountpoint(root_mp);
3234        unlock_mount_hash();
3235        chroot_fs_refs(&root, &new);
3236        error = 0;
3237out4:
3238        unlock_mount(old_mp);
3239        if (!error) {
3240                path_put(&root_parent);
3241                path_put(&parent_path);
3242        }
3243out3:
3244        path_put(&root);
3245out2:
3246        path_put(&old);
3247out1:
3248        path_put(&new);
3249out0:
3250        return error;
3251}
3252
3253static void __init init_mount_tree(void)
3254{
3255        struct vfsmount *mnt;
3256        struct mnt_namespace *ns;
3257        struct path root;
3258        struct file_system_type *type;
3259
3260        type = get_fs_type("rootfs");
3261        if (!type)
3262                panic("Can't find rootfs type");
3263        mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3264        put_filesystem(type);
3265        if (IS_ERR(mnt))
3266                panic("Can't create rootfs");
3267
3268        ns = create_mnt_ns(mnt);
3269        if (IS_ERR(ns))
3270                panic("Can't allocate initial namespace");
3271
3272        init_task.nsproxy->mnt_ns = ns;
3273        get_mnt_ns(ns);
3274
3275        root.mnt = mnt;
3276        root.dentry = mnt->mnt_root;
3277        mnt->mnt_flags |= MNT_LOCKED;
3278
3279        set_fs_pwd(current->fs, &root);
3280        set_fs_root(current->fs, &root);
3281}
3282
3283void __init mnt_init(void)
3284{
3285        int err;
3286
3287        mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3288                        0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3289
3290        mount_hashtable = alloc_large_system_hash("Mount-cache",
3291                                sizeof(struct hlist_head),
3292                                mhash_entries, 19,
3293                                HASH_ZERO,
3294                                &m_hash_shift, &m_hash_mask, 0, 0);
3295        mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3296                                sizeof(struct hlist_head),
3297                                mphash_entries, 19,
3298                                HASH_ZERO,
3299                                &mp_hash_shift, &mp_hash_mask, 0, 0);
3300
3301        if (!mount_hashtable || !mountpoint_hashtable)
3302                panic("Failed to allocate mount hash table\n");
3303
3304        kernfs_init();
3305
3306        err = sysfs_init();
3307        if (err)
3308                printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3309                        __func__, err);
3310        fs_kobj = kobject_create_and_add("fs", NULL);
3311        if (!fs_kobj)
3312                printk(KERN_WARNING "%s: kobj create error\n", __func__);
3313        init_rootfs();
3314        init_mount_tree();
3315}
3316
3317void put_mnt_ns(struct mnt_namespace *ns)
3318{
3319        if (!atomic_dec_and_test(&ns->count))
3320                return;
3321        drop_collected_mounts(&ns->root->mnt);
3322        free_mnt_ns(ns);
3323}
3324
3325struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3326{
3327        struct vfsmount *mnt;
3328        mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3329        if (!IS_ERR(mnt)) {
3330                /*
3331                 * it is a longterm mount, don't release mnt until
3332                 * we unmount before file sys is unregistered
3333                */
3334                real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3335        }
3336        return mnt;
3337}
3338EXPORT_SYMBOL_GPL(kern_mount_data);
3339
3340void kern_unmount(struct vfsmount *mnt)
3341{
3342        /* release long term mount so mount point can be released */
3343        if (!IS_ERR_OR_NULL(mnt)) {
3344                real_mount(mnt)->mnt_ns = NULL;
3345                synchronize_rcu();      /* yecchhh... */
3346                mntput(mnt);
3347        }
3348}
3349EXPORT_SYMBOL(kern_unmount);
3350
3351bool our_mnt(struct vfsmount *mnt)
3352{
3353        return check_mnt(real_mount(mnt));
3354}
3355
3356bool current_chrooted(void)
3357{
3358        /* Does the current process have a non-standard root */
3359        struct path ns_root;
3360        struct path fs_root;
3361        bool chrooted;
3362
3363        /* Find the namespace root */
3364        ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3365        ns_root.dentry = ns_root.mnt->mnt_root;
3366        path_get(&ns_root);
3367        while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3368                ;
3369
3370        get_fs_root(current->fs, &fs_root);
3371
3372        chrooted = !path_equal(&fs_root, &ns_root);
3373
3374        path_put(&fs_root);
3375        path_put(&ns_root);
3376
3377        return chrooted;
3378}
3379
3380static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3381                                int *new_mnt_flags)
3382{
3383        int new_flags = *new_mnt_flags;
3384        struct mount *mnt;
3385        bool visible = false;
3386
3387        down_read(&namespace_sem);
3388        list_for_each_entry(mnt, &ns->list, mnt_list) {
3389                struct mount *child;
3390                int mnt_flags;
3391
3392                if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3393                        continue;
3394
3395                /* This mount is not fully visible if it's root directory
3396                 * is not the root directory of the filesystem.
3397                 */
3398                if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3399                        continue;
3400
3401                /* A local view of the mount flags */
3402                mnt_flags = mnt->mnt.mnt_flags;
3403
3404                /* Don't miss readonly hidden in the superblock flags */
3405                if (sb_rdonly(mnt->mnt.mnt_sb))
3406                        mnt_flags |= MNT_LOCK_READONLY;
3407
3408                /* Verify the mount flags are equal to or more permissive
3409                 * than the proposed new mount.
3410                 */
3411                if ((mnt_flags & MNT_LOCK_READONLY) &&
3412                    !(new_flags & MNT_READONLY))
3413                        continue;
3414                if ((mnt_flags & MNT_LOCK_ATIME) &&
3415                    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3416                        continue;
3417
3418                /* This mount is not fully visible if there are any
3419                 * locked child mounts that cover anything except for
3420                 * empty directories.
3421                 */
3422                list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3423                        struct inode *inode = child->mnt_mountpoint->d_inode;
3424                        /* Only worry about locked mounts */
3425                        if (!(child->mnt.mnt_flags & MNT_LOCKED))
3426                                continue;
3427                        /* Is the directory permanetly empty? */
3428                        if (!is_empty_dir_inode(inode))
3429                                goto next;
3430                }
3431                /* Preserve the locked attributes */
3432                *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3433                                               MNT_LOCK_ATIME);
3434                visible = true;
3435                goto found;
3436        next:   ;
3437        }
3438found:
3439        up_read(&namespace_sem);
3440        return visible;
3441}
3442
3443static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3444{
3445        const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3446        struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3447        unsigned long s_iflags;
3448
3449        if (ns->user_ns == &init_user_ns)
3450                return false;
3451
3452        /* Can this filesystem be too revealing? */
3453        s_iflags = mnt->mnt_sb->s_iflags;
3454        if (!(s_iflags & SB_I_USERNS_VISIBLE))
3455                return false;
3456
3457        if ((s_iflags & required_iflags) != required_iflags) {
3458                WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3459                          required_iflags);
3460                return true;
3461        }
3462
3463        return !mnt_already_visible(ns, mnt, new_mnt_flags);
3464}
3465
3466bool mnt_may_suid(struct vfsmount *mnt)
3467{
3468        /*
3469         * Foreign mounts (accessed via fchdir or through /proc
3470         * symlinks) are always treated as if they are nosuid.  This
3471         * prevents namespaces from trusting potentially unsafe
3472         * suid/sgid bits, file caps, or security labels that originate
3473         * in other namespaces.
3474         */
3475        return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3476               current_in_userns(mnt->mnt_sb->s_user_ns);
3477}
3478
3479static struct ns_common *mntns_get(struct task_struct *task)
3480{
3481        struct ns_common *ns = NULL;
3482        struct nsproxy *nsproxy;
3483
3484        task_lock(task);
3485        nsproxy = task->nsproxy;
3486        if (nsproxy) {
3487                ns = &nsproxy->mnt_ns->ns;
3488                get_mnt_ns(to_mnt_ns(ns));
3489        }
3490        task_unlock(task);
3491
3492        return ns;
3493}
3494
3495static void mntns_put(struct ns_common *ns)
3496{
3497        put_mnt_ns(to_mnt_ns(ns));
3498}
3499
3500static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3501{
3502        struct fs_struct *fs = current->fs;
3503        struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3504        struct path root;
3505        int err;
3506
3507        if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3508            !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3509            !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3510                return -EPERM;
3511
3512        if (fs->users != 1)
3513                return -EINVAL;
3514
3515        get_mnt_ns(mnt_ns);
3516        old_mnt_ns = nsproxy->mnt_ns;
3517        nsproxy->mnt_ns = mnt_ns;
3518
3519        /* Find the root */
3520        err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3521                                "/", LOOKUP_DOWN, &root);
3522        if (err) {
3523                /* revert to old namespace */
3524                nsproxy->mnt_ns = old_mnt_ns;
3525                put_mnt_ns(mnt_ns);
3526                return err;
3527        }
3528
3529        put_mnt_ns(old_mnt_ns);
3530
3531        /* Update the pwd and root */
3532        set_fs_pwd(fs, &root);
3533        set_fs_root(fs, &root);
3534
3535        path_put(&root);
3536        return 0;
3537}
3538
3539static struct user_namespace *mntns_owner(struct ns_common *ns)
3540{
3541        return to_mnt_ns(ns)->user_ns;
3542}
3543
3544const struct proc_ns_operations mntns_operations = {
3545        .name           = "mnt",
3546        .type           = CLONE_NEWNS,
3547        .get            = mntns_get,
3548        .put            = mntns_put,
3549        .install        = mntns_install,
3550        .owner          = mntns_owner,
3551};
3552