linux/fs/super.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/super.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  super.c contains code to handle: - mount structures
   8 *                                   - super-block tables
   9 *                                   - filesystem drivers list
  10 *                                   - mount system call
  11 *                                   - umount system call
  12 *                                   - ustat system call
  13 *
  14 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  15 *
  16 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  17 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  18 *  Added options to /proc/mounts:
  19 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  20 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  21 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  22 */
  23
  24#include <linux/export.h>
  25#include <linux/slab.h>
  26#include <linux/blkdev.h>
  27#include <linux/mount.h>
  28#include <linux/security.h>
  29#include <linux/writeback.h>            /* for the emergency remount stuff */
  30#include <linux/idr.h>
  31#include <linux/mutex.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/cleancache.h>
  35#include <linux/fsnotify.h>
  36#include <linux/lockdep.h>
  37#include <linux/user_namespace.h>
  38#include "internal.h"
  39
  40static int thaw_super_locked(struct super_block *sb);
  41
  42static LIST_HEAD(super_blocks);
  43static DEFINE_SPINLOCK(sb_lock);
  44
  45static char *sb_writers_name[SB_FREEZE_LEVELS] = {
  46        "sb_writers",
  47        "sb_pagefaults",
  48        "sb_internal",
  49};
  50
  51/*
  52 * One thing we have to be careful of with a per-sb shrinker is that we don't
  53 * drop the last active reference to the superblock from within the shrinker.
  54 * If that happens we could trigger unregistering the shrinker from within the
  55 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  56 * take a passive reference to the superblock to avoid this from occurring.
  57 */
  58static unsigned long super_cache_scan(struct shrinker *shrink,
  59                                      struct shrink_control *sc)
  60{
  61        struct super_block *sb;
  62        long    fs_objects = 0;
  63        long    total_objects;
  64        long    freed = 0;
  65        long    dentries;
  66        long    inodes;
  67
  68        sb = container_of(shrink, struct super_block, s_shrink);
  69
  70        /*
  71         * Deadlock avoidance.  We may hold various FS locks, and we don't want
  72         * to recurse into the FS that called us in clear_inode() and friends..
  73         */
  74        if (!(sc->gfp_mask & __GFP_FS))
  75                return SHRINK_STOP;
  76
  77        if (!trylock_super(sb))
  78                return SHRINK_STOP;
  79
  80        if (sb->s_op->nr_cached_objects)
  81                fs_objects = sb->s_op->nr_cached_objects(sb, sc);
  82
  83        inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
  84        dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
  85        total_objects = dentries + inodes + fs_objects + 1;
  86        if (!total_objects)
  87                total_objects = 1;
  88
  89        /* proportion the scan between the caches */
  90        dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
  91        inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
  92        fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
  93
  94        /*
  95         * prune the dcache first as the icache is pinned by it, then
  96         * prune the icache, followed by the filesystem specific caches
  97         *
  98         * Ensure that we always scan at least one object - memcg kmem
  99         * accounting uses this to fully empty the caches.
 100         */
 101        sc->nr_to_scan = dentries + 1;
 102        freed = prune_dcache_sb(sb, sc);
 103        sc->nr_to_scan = inodes + 1;
 104        freed += prune_icache_sb(sb, sc);
 105
 106        if (fs_objects) {
 107                sc->nr_to_scan = fs_objects + 1;
 108                freed += sb->s_op->free_cached_objects(sb, sc);
 109        }
 110
 111        up_read(&sb->s_umount);
 112        return freed;
 113}
 114
 115static unsigned long super_cache_count(struct shrinker *shrink,
 116                                       struct shrink_control *sc)
 117{
 118        struct super_block *sb;
 119        long    total_objects = 0;
 120
 121        sb = container_of(shrink, struct super_block, s_shrink);
 122
 123        /*
 124         * We don't call trylock_super() here as it is a scalability bottleneck,
 125         * so we're exposed to partial setup state. The shrinker rwsem does not
 126         * protect filesystem operations backing list_lru_shrink_count() or
 127         * s_op->nr_cached_objects(). Counts can change between
 128         * super_cache_count and super_cache_scan, so we really don't need locks
 129         * here.
 130         *
 131         * However, if we are currently mounting the superblock, the underlying
 132         * filesystem might be in a state of partial construction and hence it
 133         * is dangerous to access it.  trylock_super() uses a SB_BORN check to
 134         * avoid this situation, so do the same here. The memory barrier is
 135         * matched with the one in mount_fs() as we don't hold locks here.
 136         */
 137        if (!(sb->s_flags & SB_BORN))
 138                return 0;
 139        smp_rmb();
 140
 141        if (sb->s_op && sb->s_op->nr_cached_objects)
 142                total_objects = sb->s_op->nr_cached_objects(sb, sc);
 143
 144        total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
 145        total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 146
 147        total_objects = vfs_pressure_ratio(total_objects);
 148        return total_objects;
 149}
 150
 151static void destroy_super_work(struct work_struct *work)
 152{
 153        struct super_block *s = container_of(work, struct super_block,
 154                                                        destroy_work);
 155        int i;
 156
 157        for (i = 0; i < SB_FREEZE_LEVELS; i++)
 158                percpu_free_rwsem(&s->s_writers.rw_sem[i]);
 159        kfree(s);
 160}
 161
 162static void destroy_super_rcu(struct rcu_head *head)
 163{
 164        struct super_block *s = container_of(head, struct super_block, rcu);
 165        INIT_WORK(&s->destroy_work, destroy_super_work);
 166        schedule_work(&s->destroy_work);
 167}
 168
 169/* Free a superblock that has never been seen by anyone */
 170static void destroy_unused_super(struct super_block *s)
 171{
 172        if (!s)
 173                return;
 174        up_write(&s->s_umount);
 175        list_lru_destroy(&s->s_dentry_lru);
 176        list_lru_destroy(&s->s_inode_lru);
 177        security_sb_free(s);
 178        put_user_ns(s->s_user_ns);
 179        kfree(s->s_subtype);
 180        free_prealloced_shrinker(&s->s_shrink);
 181        /* no delays needed */
 182        destroy_super_work(&s->destroy_work);
 183}
 184
 185/**
 186 *      alloc_super     -       create new superblock
 187 *      @type:  filesystem type superblock should belong to
 188 *      @flags: the mount flags
 189 *      @user_ns: User namespace for the super_block
 190 *
 191 *      Allocates and initializes a new &struct super_block.  alloc_super()
 192 *      returns a pointer new superblock or %NULL if allocation had failed.
 193 */
 194static struct super_block *alloc_super(struct file_system_type *type, int flags,
 195                                       struct user_namespace *user_ns)
 196{
 197        struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 198        static const struct super_operations default_op;
 199        int i;
 200
 201        if (!s)
 202                return NULL;
 203
 204        INIT_LIST_HEAD(&s->s_mounts);
 205        s->s_user_ns = get_user_ns(user_ns);
 206        init_rwsem(&s->s_umount);
 207        lockdep_set_class(&s->s_umount, &type->s_umount_key);
 208        /*
 209         * sget() can have s_umount recursion.
 210         *
 211         * When it cannot find a suitable sb, it allocates a new
 212         * one (this one), and tries again to find a suitable old
 213         * one.
 214         *
 215         * In case that succeeds, it will acquire the s_umount
 216         * lock of the old one. Since these are clearly distrinct
 217         * locks, and this object isn't exposed yet, there's no
 218         * risk of deadlocks.
 219         *
 220         * Annotate this by putting this lock in a different
 221         * subclass.
 222         */
 223        down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 224
 225        if (security_sb_alloc(s))
 226                goto fail;
 227
 228        for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 229                if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
 230                                        sb_writers_name[i],
 231                                        &type->s_writers_key[i]))
 232                        goto fail;
 233        }
 234        init_waitqueue_head(&s->s_writers.wait_unfrozen);
 235        s->s_bdi = &noop_backing_dev_info;
 236        s->s_flags = flags;
 237        if (s->s_user_ns != &init_user_ns)
 238                s->s_iflags |= SB_I_NODEV;
 239        INIT_HLIST_NODE(&s->s_instances);
 240        INIT_HLIST_BL_HEAD(&s->s_roots);
 241        mutex_init(&s->s_sync_lock);
 242        INIT_LIST_HEAD(&s->s_inodes);
 243        spin_lock_init(&s->s_inode_list_lock);
 244        INIT_LIST_HEAD(&s->s_inodes_wb);
 245        spin_lock_init(&s->s_inode_wblist_lock);
 246
 247        if (list_lru_init_memcg(&s->s_dentry_lru))
 248                goto fail;
 249        if (list_lru_init_memcg(&s->s_inode_lru))
 250                goto fail;
 251        s->s_count = 1;
 252        atomic_set(&s->s_active, 1);
 253        mutex_init(&s->s_vfs_rename_mutex);
 254        lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 255        init_rwsem(&s->s_dquot.dqio_sem);
 256        s->s_maxbytes = MAX_NON_LFS;
 257        s->s_op = &default_op;
 258        s->s_time_gran = 1000000000;
 259        s->cleancache_poolid = CLEANCACHE_NO_POOL;
 260
 261        s->s_shrink.seeks = DEFAULT_SEEKS;
 262        s->s_shrink.scan_objects = super_cache_scan;
 263        s->s_shrink.count_objects = super_cache_count;
 264        s->s_shrink.batch = 1024;
 265        s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
 266        if (prealloc_shrinker(&s->s_shrink))
 267                goto fail;
 268        return s;
 269
 270fail:
 271        destroy_unused_super(s);
 272        return NULL;
 273}
 274
 275/* Superblock refcounting  */
 276
 277/*
 278 * Drop a superblock's refcount.  The caller must hold sb_lock.
 279 */
 280static void __put_super(struct super_block *s)
 281{
 282        if (!--s->s_count) {
 283                list_del_init(&s->s_list);
 284                WARN_ON(s->s_dentry_lru.node);
 285                WARN_ON(s->s_inode_lru.node);
 286                WARN_ON(!list_empty(&s->s_mounts));
 287                security_sb_free(s);
 288                put_user_ns(s->s_user_ns);
 289                kfree(s->s_subtype);
 290                call_rcu(&s->rcu, destroy_super_rcu);
 291        }
 292}
 293
 294/**
 295 *      put_super       -       drop a temporary reference to superblock
 296 *      @sb: superblock in question
 297 *
 298 *      Drops a temporary reference, frees superblock if there's no
 299 *      references left.
 300 */
 301static void put_super(struct super_block *sb)
 302{
 303        spin_lock(&sb_lock);
 304        __put_super(sb);
 305        spin_unlock(&sb_lock);
 306}
 307
 308
 309/**
 310 *      deactivate_locked_super -       drop an active reference to superblock
 311 *      @s: superblock to deactivate
 312 *
 313 *      Drops an active reference to superblock, converting it into a temporary
 314 *      one if there is no other active references left.  In that case we
 315 *      tell fs driver to shut it down and drop the temporary reference we
 316 *      had just acquired.
 317 *
 318 *      Caller holds exclusive lock on superblock; that lock is released.
 319 */
 320void deactivate_locked_super(struct super_block *s)
 321{
 322        struct file_system_type *fs = s->s_type;
 323        if (atomic_dec_and_test(&s->s_active)) {
 324                cleancache_invalidate_fs(s);
 325                unregister_shrinker(&s->s_shrink);
 326                fs->kill_sb(s);
 327
 328                /*
 329                 * Since list_lru_destroy() may sleep, we cannot call it from
 330                 * put_super(), where we hold the sb_lock. Therefore we destroy
 331                 * the lru lists right now.
 332                 */
 333                list_lru_destroy(&s->s_dentry_lru);
 334                list_lru_destroy(&s->s_inode_lru);
 335
 336                put_filesystem(fs);
 337                put_super(s);
 338        } else {
 339                up_write(&s->s_umount);
 340        }
 341}
 342
 343EXPORT_SYMBOL(deactivate_locked_super);
 344
 345/**
 346 *      deactivate_super        -       drop an active reference to superblock
 347 *      @s: superblock to deactivate
 348 *
 349 *      Variant of deactivate_locked_super(), except that superblock is *not*
 350 *      locked by caller.  If we are going to drop the final active reference,
 351 *      lock will be acquired prior to that.
 352 */
 353void deactivate_super(struct super_block *s)
 354{
 355        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 356                down_write(&s->s_umount);
 357                deactivate_locked_super(s);
 358        }
 359}
 360
 361EXPORT_SYMBOL(deactivate_super);
 362
 363/**
 364 *      grab_super - acquire an active reference
 365 *      @s: reference we are trying to make active
 366 *
 367 *      Tries to acquire an active reference.  grab_super() is used when we
 368 *      had just found a superblock in super_blocks or fs_type->fs_supers
 369 *      and want to turn it into a full-blown active reference.  grab_super()
 370 *      is called with sb_lock held and drops it.  Returns 1 in case of
 371 *      success, 0 if we had failed (superblock contents was already dead or
 372 *      dying when grab_super() had been called).  Note that this is only
 373 *      called for superblocks not in rundown mode (== ones still on ->fs_supers
 374 *      of their type), so increment of ->s_count is OK here.
 375 */
 376static int grab_super(struct super_block *s) __releases(sb_lock)
 377{
 378        s->s_count++;
 379        spin_unlock(&sb_lock);
 380        down_write(&s->s_umount);
 381        if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
 382                put_super(s);
 383                return 1;
 384        }
 385        up_write(&s->s_umount);
 386        put_super(s);
 387        return 0;
 388}
 389
 390/*
 391 *      trylock_super - try to grab ->s_umount shared
 392 *      @sb: reference we are trying to grab
 393 *
 394 *      Try to prevent fs shutdown.  This is used in places where we
 395 *      cannot take an active reference but we need to ensure that the
 396 *      filesystem is not shut down while we are working on it. It returns
 397 *      false if we cannot acquire s_umount or if we lose the race and
 398 *      filesystem already got into shutdown, and returns true with the s_umount
 399 *      lock held in read mode in case of success. On successful return,
 400 *      the caller must drop the s_umount lock when done.
 401 *
 402 *      Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 403 *      The reason why it's safe is that we are OK with doing trylock instead
 404 *      of down_read().  There's a couple of places that are OK with that, but
 405 *      it's very much not a general-purpose interface.
 406 */
 407bool trylock_super(struct super_block *sb)
 408{
 409        if (down_read_trylock(&sb->s_umount)) {
 410                if (!hlist_unhashed(&sb->s_instances) &&
 411                    sb->s_root && (sb->s_flags & SB_BORN))
 412                        return true;
 413                up_read(&sb->s_umount);
 414        }
 415
 416        return false;
 417}
 418
 419/**
 420 *      generic_shutdown_super  -       common helper for ->kill_sb()
 421 *      @sb: superblock to kill
 422 *
 423 *      generic_shutdown_super() does all fs-independent work on superblock
 424 *      shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 425 *      that need destruction out of superblock, call generic_shutdown_super()
 426 *      and release aforementioned objects.  Note: dentries and inodes _are_
 427 *      taken care of and do not need specific handling.
 428 *
 429 *      Upon calling this function, the filesystem may no longer alter or
 430 *      rearrange the set of dentries belonging to this super_block, nor may it
 431 *      change the attachments of dentries to inodes.
 432 */
 433void generic_shutdown_super(struct super_block *sb)
 434{
 435        const struct super_operations *sop = sb->s_op;
 436
 437        if (sb->s_root) {
 438                shrink_dcache_for_umount(sb);
 439                sync_filesystem(sb);
 440                sb->s_flags &= ~SB_ACTIVE;
 441
 442                fsnotify_unmount_inodes(sb);
 443                cgroup_writeback_umount();
 444
 445                evict_inodes(sb);
 446
 447                if (sb->s_dio_done_wq) {
 448                        destroy_workqueue(sb->s_dio_done_wq);
 449                        sb->s_dio_done_wq = NULL;
 450                }
 451
 452                if (sop->put_super)
 453                        sop->put_super(sb);
 454
 455                if (!list_empty(&sb->s_inodes)) {
 456                        printk("VFS: Busy inodes after unmount of %s. "
 457                           "Self-destruct in 5 seconds.  Have a nice day...\n",
 458                           sb->s_id);
 459                }
 460        }
 461        spin_lock(&sb_lock);
 462        /* should be initialized for __put_super_and_need_restart() */
 463        hlist_del_init(&sb->s_instances);
 464        spin_unlock(&sb_lock);
 465        up_write(&sb->s_umount);
 466        if (sb->s_bdi != &noop_backing_dev_info) {
 467                bdi_put(sb->s_bdi);
 468                sb->s_bdi = &noop_backing_dev_info;
 469        }
 470}
 471
 472EXPORT_SYMBOL(generic_shutdown_super);
 473
 474/**
 475 *      sget_userns -   find or create a superblock
 476 *      @type:  filesystem type superblock should belong to
 477 *      @test:  comparison callback
 478 *      @set:   setup callback
 479 *      @flags: mount flags
 480 *      @user_ns: User namespace for the super_block
 481 *      @data:  argument to each of them
 482 */
 483struct super_block *sget_userns(struct file_system_type *type,
 484                        int (*test)(struct super_block *,void *),
 485                        int (*set)(struct super_block *,void *),
 486                        int flags, struct user_namespace *user_ns,
 487                        void *data)
 488{
 489        struct super_block *s = NULL;
 490        struct super_block *old;
 491        int err;
 492
 493        if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
 494            !(type->fs_flags & FS_USERNS_MOUNT) &&
 495            !capable(CAP_SYS_ADMIN))
 496                return ERR_PTR(-EPERM);
 497retry:
 498        spin_lock(&sb_lock);
 499        if (test) {
 500                hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 501                        if (!test(old, data))
 502                                continue;
 503                        if (user_ns != old->s_user_ns) {
 504                                spin_unlock(&sb_lock);
 505                                destroy_unused_super(s);
 506                                return ERR_PTR(-EBUSY);
 507                        }
 508                        if (!grab_super(old))
 509                                goto retry;
 510                        destroy_unused_super(s);
 511                        return old;
 512                }
 513        }
 514        if (!s) {
 515                spin_unlock(&sb_lock);
 516                s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
 517                if (!s)
 518                        return ERR_PTR(-ENOMEM);
 519                goto retry;
 520        }
 521
 522        err = set(s, data);
 523        if (err) {
 524                spin_unlock(&sb_lock);
 525                destroy_unused_super(s);
 526                return ERR_PTR(err);
 527        }
 528        s->s_type = type;
 529        strlcpy(s->s_id, type->name, sizeof(s->s_id));
 530        list_add_tail(&s->s_list, &super_blocks);
 531        hlist_add_head(&s->s_instances, &type->fs_supers);
 532        spin_unlock(&sb_lock);
 533        get_filesystem(type);
 534        register_shrinker_prepared(&s->s_shrink);
 535        return s;
 536}
 537
 538EXPORT_SYMBOL(sget_userns);
 539
 540/**
 541 *      sget    -       find or create a superblock
 542 *      @type:    filesystem type superblock should belong to
 543 *      @test:    comparison callback
 544 *      @set:     setup callback
 545 *      @flags:   mount flags
 546 *      @data:    argument to each of them
 547 */
 548struct super_block *sget(struct file_system_type *type,
 549                        int (*test)(struct super_block *,void *),
 550                        int (*set)(struct super_block *,void *),
 551                        int flags,
 552                        void *data)
 553{
 554        struct user_namespace *user_ns = current_user_ns();
 555
 556        /* We don't yet pass the user namespace of the parent
 557         * mount through to here so always use &init_user_ns
 558         * until that changes.
 559         */
 560        if (flags & SB_SUBMOUNT)
 561                user_ns = &init_user_ns;
 562
 563        /* Ensure the requestor has permissions over the target filesystem */
 564        if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
 565                return ERR_PTR(-EPERM);
 566
 567        return sget_userns(type, test, set, flags, user_ns, data);
 568}
 569
 570EXPORT_SYMBOL(sget);
 571
 572void drop_super(struct super_block *sb)
 573{
 574        up_read(&sb->s_umount);
 575        put_super(sb);
 576}
 577
 578EXPORT_SYMBOL(drop_super);
 579
 580void drop_super_exclusive(struct super_block *sb)
 581{
 582        up_write(&sb->s_umount);
 583        put_super(sb);
 584}
 585EXPORT_SYMBOL(drop_super_exclusive);
 586
 587static void __iterate_supers(void (*f)(struct super_block *))
 588{
 589        struct super_block *sb, *p = NULL;
 590
 591        spin_lock(&sb_lock);
 592        list_for_each_entry(sb, &super_blocks, s_list) {
 593                if (hlist_unhashed(&sb->s_instances))
 594                        continue;
 595                sb->s_count++;
 596                spin_unlock(&sb_lock);
 597
 598                f(sb);
 599
 600                spin_lock(&sb_lock);
 601                if (p)
 602                        __put_super(p);
 603                p = sb;
 604        }
 605        if (p)
 606                __put_super(p);
 607        spin_unlock(&sb_lock);
 608}
 609/**
 610 *      iterate_supers - call function for all active superblocks
 611 *      @f: function to call
 612 *      @arg: argument to pass to it
 613 *
 614 *      Scans the superblock list and calls given function, passing it
 615 *      locked superblock and given argument.
 616 */
 617void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 618{
 619        struct super_block *sb, *p = NULL;
 620
 621        spin_lock(&sb_lock);
 622        list_for_each_entry(sb, &super_blocks, s_list) {
 623                if (hlist_unhashed(&sb->s_instances))
 624                        continue;
 625                sb->s_count++;
 626                spin_unlock(&sb_lock);
 627
 628                down_read(&sb->s_umount);
 629                if (sb->s_root && (sb->s_flags & SB_BORN))
 630                        f(sb, arg);
 631                up_read(&sb->s_umount);
 632
 633                spin_lock(&sb_lock);
 634                if (p)
 635                        __put_super(p);
 636                p = sb;
 637        }
 638        if (p)
 639                __put_super(p);
 640        spin_unlock(&sb_lock);
 641}
 642
 643/**
 644 *      iterate_supers_type - call function for superblocks of given type
 645 *      @type: fs type
 646 *      @f: function to call
 647 *      @arg: argument to pass to it
 648 *
 649 *      Scans the superblock list and calls given function, passing it
 650 *      locked superblock and given argument.
 651 */
 652void iterate_supers_type(struct file_system_type *type,
 653        void (*f)(struct super_block *, void *), void *arg)
 654{
 655        struct super_block *sb, *p = NULL;
 656
 657        spin_lock(&sb_lock);
 658        hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 659                sb->s_count++;
 660                spin_unlock(&sb_lock);
 661
 662                down_read(&sb->s_umount);
 663                if (sb->s_root && (sb->s_flags & SB_BORN))
 664                        f(sb, arg);
 665                up_read(&sb->s_umount);
 666
 667                spin_lock(&sb_lock);
 668                if (p)
 669                        __put_super(p);
 670                p = sb;
 671        }
 672        if (p)
 673                __put_super(p);
 674        spin_unlock(&sb_lock);
 675}
 676
 677EXPORT_SYMBOL(iterate_supers_type);
 678
 679static struct super_block *__get_super(struct block_device *bdev, bool excl)
 680{
 681        struct super_block *sb;
 682
 683        if (!bdev)
 684                return NULL;
 685
 686        spin_lock(&sb_lock);
 687rescan:
 688        list_for_each_entry(sb, &super_blocks, s_list) {
 689                if (hlist_unhashed(&sb->s_instances))
 690                        continue;
 691                if (sb->s_bdev == bdev) {
 692                        sb->s_count++;
 693                        spin_unlock(&sb_lock);
 694                        if (!excl)
 695                                down_read(&sb->s_umount);
 696                        else
 697                                down_write(&sb->s_umount);
 698                        /* still alive? */
 699                        if (sb->s_root && (sb->s_flags & SB_BORN))
 700                                return sb;
 701                        if (!excl)
 702                                up_read(&sb->s_umount);
 703                        else
 704                                up_write(&sb->s_umount);
 705                        /* nope, got unmounted */
 706                        spin_lock(&sb_lock);
 707                        __put_super(sb);
 708                        goto rescan;
 709                }
 710        }
 711        spin_unlock(&sb_lock);
 712        return NULL;
 713}
 714
 715/**
 716 *      get_super - get the superblock of a device
 717 *      @bdev: device to get the superblock for
 718 *
 719 *      Scans the superblock list and finds the superblock of the file system
 720 *      mounted on the device given. %NULL is returned if no match is found.
 721 */
 722struct super_block *get_super(struct block_device *bdev)
 723{
 724        return __get_super(bdev, false);
 725}
 726EXPORT_SYMBOL(get_super);
 727
 728static struct super_block *__get_super_thawed(struct block_device *bdev,
 729                                              bool excl)
 730{
 731        while (1) {
 732                struct super_block *s = __get_super(bdev, excl);
 733                if (!s || s->s_writers.frozen == SB_UNFROZEN)
 734                        return s;
 735                if (!excl)
 736                        up_read(&s->s_umount);
 737                else
 738                        up_write(&s->s_umount);
 739                wait_event(s->s_writers.wait_unfrozen,
 740                           s->s_writers.frozen == SB_UNFROZEN);
 741                put_super(s);
 742        }
 743}
 744
 745/**
 746 *      get_super_thawed - get thawed superblock of a device
 747 *      @bdev: device to get the superblock for
 748 *
 749 *      Scans the superblock list and finds the superblock of the file system
 750 *      mounted on the device. The superblock is returned once it is thawed
 751 *      (or immediately if it was not frozen). %NULL is returned if no match
 752 *      is found.
 753 */
 754struct super_block *get_super_thawed(struct block_device *bdev)
 755{
 756        return __get_super_thawed(bdev, false);
 757}
 758EXPORT_SYMBOL(get_super_thawed);
 759
 760/**
 761 *      get_super_exclusive_thawed - get thawed superblock of a device
 762 *      @bdev: device to get the superblock for
 763 *
 764 *      Scans the superblock list and finds the superblock of the file system
 765 *      mounted on the device. The superblock is returned once it is thawed
 766 *      (or immediately if it was not frozen) and s_umount semaphore is held
 767 *      in exclusive mode. %NULL is returned if no match is found.
 768 */
 769struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
 770{
 771        return __get_super_thawed(bdev, true);
 772}
 773EXPORT_SYMBOL(get_super_exclusive_thawed);
 774
 775/**
 776 * get_active_super - get an active reference to the superblock of a device
 777 * @bdev: device to get the superblock for
 778 *
 779 * Scans the superblock list and finds the superblock of the file system
 780 * mounted on the device given.  Returns the superblock with an active
 781 * reference or %NULL if none was found.
 782 */
 783struct super_block *get_active_super(struct block_device *bdev)
 784{
 785        struct super_block *sb;
 786
 787        if (!bdev)
 788                return NULL;
 789
 790restart:
 791        spin_lock(&sb_lock);
 792        list_for_each_entry(sb, &super_blocks, s_list) {
 793                if (hlist_unhashed(&sb->s_instances))
 794                        continue;
 795                if (sb->s_bdev == bdev) {
 796                        if (!grab_super(sb))
 797                                goto restart;
 798                        up_write(&sb->s_umount);
 799                        return sb;
 800                }
 801        }
 802        spin_unlock(&sb_lock);
 803        return NULL;
 804}
 805
 806struct super_block *user_get_super(dev_t dev)
 807{
 808        struct super_block *sb;
 809
 810        spin_lock(&sb_lock);
 811rescan:
 812        list_for_each_entry(sb, &super_blocks, s_list) {
 813                if (hlist_unhashed(&sb->s_instances))
 814                        continue;
 815                if (sb->s_dev ==  dev) {
 816                        sb->s_count++;
 817                        spin_unlock(&sb_lock);
 818                        down_read(&sb->s_umount);
 819                        /* still alive? */
 820                        if (sb->s_root && (sb->s_flags & SB_BORN))
 821                                return sb;
 822                        up_read(&sb->s_umount);
 823                        /* nope, got unmounted */
 824                        spin_lock(&sb_lock);
 825                        __put_super(sb);
 826                        goto rescan;
 827                }
 828        }
 829        spin_unlock(&sb_lock);
 830        return NULL;
 831}
 832
 833/**
 834 *      do_remount_sb - asks filesystem to change mount options.
 835 *      @sb:    superblock in question
 836 *      @sb_flags: revised superblock flags
 837 *      @data:  the rest of options
 838 *      @force: whether or not to force the change
 839 *
 840 *      Alters the mount options of a mounted file system.
 841 */
 842int do_remount_sb(struct super_block *sb, int sb_flags, void *data, int force)
 843{
 844        int retval;
 845        int remount_ro;
 846
 847        if (sb->s_writers.frozen != SB_UNFROZEN)
 848                return -EBUSY;
 849
 850#ifdef CONFIG_BLOCK
 851        if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
 852                return -EACCES;
 853#endif
 854
 855        remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
 856
 857        if (remount_ro) {
 858                if (!hlist_empty(&sb->s_pins)) {
 859                        up_write(&sb->s_umount);
 860                        group_pin_kill(&sb->s_pins);
 861                        down_write(&sb->s_umount);
 862                        if (!sb->s_root)
 863                                return 0;
 864                        if (sb->s_writers.frozen != SB_UNFROZEN)
 865                                return -EBUSY;
 866                        remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
 867                }
 868        }
 869        shrink_dcache_sb(sb);
 870
 871        /* If we are remounting RDONLY and current sb is read/write,
 872           make sure there are no rw files opened */
 873        if (remount_ro) {
 874                if (force) {
 875                        sb->s_readonly_remount = 1;
 876                        smp_wmb();
 877                } else {
 878                        retval = sb_prepare_remount_readonly(sb);
 879                        if (retval)
 880                                return retval;
 881                }
 882        }
 883
 884        if (sb->s_op->remount_fs) {
 885                retval = sb->s_op->remount_fs(sb, &sb_flags, data);
 886                if (retval) {
 887                        if (!force)
 888                                goto cancel_readonly;
 889                        /* If forced remount, go ahead despite any errors */
 890                        WARN(1, "forced remount of a %s fs returned %i\n",
 891                             sb->s_type->name, retval);
 892                }
 893        }
 894        sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK);
 895        /* Needs to be ordered wrt mnt_is_readonly() */
 896        smp_wmb();
 897        sb->s_readonly_remount = 0;
 898
 899        /*
 900         * Some filesystems modify their metadata via some other path than the
 901         * bdev buffer cache (eg. use a private mapping, or directories in
 902         * pagecache, etc). Also file data modifications go via their own
 903         * mappings. So If we try to mount readonly then copy the filesystem
 904         * from bdev, we could get stale data, so invalidate it to give a best
 905         * effort at coherency.
 906         */
 907        if (remount_ro && sb->s_bdev)
 908                invalidate_bdev(sb->s_bdev);
 909        return 0;
 910
 911cancel_readonly:
 912        sb->s_readonly_remount = 0;
 913        return retval;
 914}
 915
 916static void do_emergency_remount_callback(struct super_block *sb)
 917{
 918        down_write(&sb->s_umount);
 919        if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
 920            !sb_rdonly(sb)) {
 921                /*
 922                 * What lock protects sb->s_flags??
 923                 */
 924                do_remount_sb(sb, SB_RDONLY, NULL, 1);
 925        }
 926        up_write(&sb->s_umount);
 927}
 928
 929static void do_emergency_remount(struct work_struct *work)
 930{
 931        __iterate_supers(do_emergency_remount_callback);
 932        kfree(work);
 933        printk("Emergency Remount complete\n");
 934}
 935
 936void emergency_remount(void)
 937{
 938        struct work_struct *work;
 939
 940        work = kmalloc(sizeof(*work), GFP_ATOMIC);
 941        if (work) {
 942                INIT_WORK(work, do_emergency_remount);
 943                schedule_work(work);
 944        }
 945}
 946
 947static void do_thaw_all_callback(struct super_block *sb)
 948{
 949        down_write(&sb->s_umount);
 950        if (sb->s_root && sb->s_flags & SB_BORN) {
 951                emergency_thaw_bdev(sb);
 952                thaw_super_locked(sb);
 953        } else {
 954                up_write(&sb->s_umount);
 955        }
 956}
 957
 958static void do_thaw_all(struct work_struct *work)
 959{
 960        __iterate_supers(do_thaw_all_callback);
 961        kfree(work);
 962        printk(KERN_WARNING "Emergency Thaw complete\n");
 963}
 964
 965/**
 966 * emergency_thaw_all -- forcibly thaw every frozen filesystem
 967 *
 968 * Used for emergency unfreeze of all filesystems via SysRq
 969 */
 970void emergency_thaw_all(void)
 971{
 972        struct work_struct *work;
 973
 974        work = kmalloc(sizeof(*work), GFP_ATOMIC);
 975        if (work) {
 976                INIT_WORK(work, do_thaw_all);
 977                schedule_work(work);
 978        }
 979}
 980
 981/*
 982 * Unnamed block devices are dummy devices used by virtual
 983 * filesystems which don't use real block-devices.  -- jrs
 984 */
 985
 986static DEFINE_IDA(unnamed_dev_ida);
 987static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
 988/* Many userspace utilities consider an FSID of 0 invalid.
 989 * Always return at least 1 from get_anon_bdev.
 990 */
 991static int unnamed_dev_start = 1;
 992
 993int get_anon_bdev(dev_t *p)
 994{
 995        int dev;
 996        int error;
 997
 998 retry:
 999        if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
1000                return -ENOMEM;
1001        spin_lock(&unnamed_dev_lock);
1002        error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
1003        if (!error)
1004                unnamed_dev_start = dev + 1;
1005        spin_unlock(&unnamed_dev_lock);
1006        if (error == -EAGAIN)
1007                /* We raced and lost with another CPU. */
1008                goto retry;
1009        else if (error)
1010                return -EAGAIN;
1011
1012        if (dev >= (1 << MINORBITS)) {
1013                spin_lock(&unnamed_dev_lock);
1014                ida_remove(&unnamed_dev_ida, dev);
1015                if (unnamed_dev_start > dev)
1016                        unnamed_dev_start = dev;
1017                spin_unlock(&unnamed_dev_lock);
1018                return -EMFILE;
1019        }
1020        *p = MKDEV(0, dev & MINORMASK);
1021        return 0;
1022}
1023EXPORT_SYMBOL(get_anon_bdev);
1024
1025void free_anon_bdev(dev_t dev)
1026{
1027        int slot = MINOR(dev);
1028        spin_lock(&unnamed_dev_lock);
1029        ida_remove(&unnamed_dev_ida, slot);
1030        if (slot < unnamed_dev_start)
1031                unnamed_dev_start = slot;
1032        spin_unlock(&unnamed_dev_lock);
1033}
1034EXPORT_SYMBOL(free_anon_bdev);
1035
1036int set_anon_super(struct super_block *s, void *data)
1037{
1038        return get_anon_bdev(&s->s_dev);
1039}
1040
1041EXPORT_SYMBOL(set_anon_super);
1042
1043void kill_anon_super(struct super_block *sb)
1044{
1045        dev_t dev = sb->s_dev;
1046        generic_shutdown_super(sb);
1047        free_anon_bdev(dev);
1048}
1049
1050EXPORT_SYMBOL(kill_anon_super);
1051
1052void kill_litter_super(struct super_block *sb)
1053{
1054        if (sb->s_root)
1055                d_genocide(sb->s_root);
1056        kill_anon_super(sb);
1057}
1058
1059EXPORT_SYMBOL(kill_litter_super);
1060
1061static int ns_test_super(struct super_block *sb, void *data)
1062{
1063        return sb->s_fs_info == data;
1064}
1065
1066static int ns_set_super(struct super_block *sb, void *data)
1067{
1068        sb->s_fs_info = data;
1069        return set_anon_super(sb, NULL);
1070}
1071
1072struct dentry *mount_ns(struct file_system_type *fs_type,
1073        int flags, void *data, void *ns, struct user_namespace *user_ns,
1074        int (*fill_super)(struct super_block *, void *, int))
1075{
1076        struct super_block *sb;
1077
1078        /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1079         * over the namespace.
1080         */
1081        if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1082                return ERR_PTR(-EPERM);
1083
1084        sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1085                         user_ns, ns);
1086        if (IS_ERR(sb))
1087                return ERR_CAST(sb);
1088
1089        if (!sb->s_root) {
1090                int err;
1091                err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1092                if (err) {
1093                        deactivate_locked_super(sb);
1094                        return ERR_PTR(err);
1095                }
1096
1097                sb->s_flags |= SB_ACTIVE;
1098        }
1099
1100        return dget(sb->s_root);
1101}
1102
1103EXPORT_SYMBOL(mount_ns);
1104
1105#ifdef CONFIG_BLOCK
1106static int set_bdev_super(struct super_block *s, void *data)
1107{
1108        s->s_bdev = data;
1109        s->s_dev = s->s_bdev->bd_dev;
1110        s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1111
1112        return 0;
1113}
1114
1115static int test_bdev_super(struct super_block *s, void *data)
1116{
1117        return (void *)s->s_bdev == data;
1118}
1119
1120struct dentry *mount_bdev(struct file_system_type *fs_type,
1121        int flags, const char *dev_name, void *data,
1122        int (*fill_super)(struct super_block *, void *, int))
1123{
1124        struct block_device *bdev;
1125        struct super_block *s;
1126        fmode_t mode = FMODE_READ | FMODE_EXCL;
1127        int error = 0;
1128
1129        if (!(flags & SB_RDONLY))
1130                mode |= FMODE_WRITE;
1131
1132        bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1133        if (IS_ERR(bdev))
1134                return ERR_CAST(bdev);
1135
1136        /*
1137         * once the super is inserted into the list by sget, s_umount
1138         * will protect the lockfs code from trying to start a snapshot
1139         * while we are mounting
1140         */
1141        mutex_lock(&bdev->bd_fsfreeze_mutex);
1142        if (bdev->bd_fsfreeze_count > 0) {
1143                mutex_unlock(&bdev->bd_fsfreeze_mutex);
1144                error = -EBUSY;
1145                goto error_bdev;
1146        }
1147        s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1148                 bdev);
1149        mutex_unlock(&bdev->bd_fsfreeze_mutex);
1150        if (IS_ERR(s))
1151                goto error_s;
1152
1153        if (s->s_root) {
1154                if ((flags ^ s->s_flags) & SB_RDONLY) {
1155                        deactivate_locked_super(s);
1156                        error = -EBUSY;
1157                        goto error_bdev;
1158                }
1159
1160                /*
1161                 * s_umount nests inside bd_mutex during
1162                 * __invalidate_device().  blkdev_put() acquires
1163                 * bd_mutex and can't be called under s_umount.  Drop
1164                 * s_umount temporarily.  This is safe as we're
1165                 * holding an active reference.
1166                 */
1167                up_write(&s->s_umount);
1168                blkdev_put(bdev, mode);
1169                down_write(&s->s_umount);
1170        } else {
1171                s->s_mode = mode;
1172                snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1173                sb_set_blocksize(s, block_size(bdev));
1174                error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1175                if (error) {
1176                        deactivate_locked_super(s);
1177                        goto error;
1178                }
1179
1180                s->s_flags |= SB_ACTIVE;
1181                bdev->bd_super = s;
1182        }
1183
1184        return dget(s->s_root);
1185
1186error_s:
1187        error = PTR_ERR(s);
1188error_bdev:
1189        blkdev_put(bdev, mode);
1190error:
1191        return ERR_PTR(error);
1192}
1193EXPORT_SYMBOL(mount_bdev);
1194
1195void kill_block_super(struct super_block *sb)
1196{
1197        struct block_device *bdev = sb->s_bdev;
1198        fmode_t mode = sb->s_mode;
1199
1200        bdev->bd_super = NULL;
1201        generic_shutdown_super(sb);
1202        sync_blockdev(bdev);
1203        WARN_ON_ONCE(!(mode & FMODE_EXCL));
1204        blkdev_put(bdev, mode | FMODE_EXCL);
1205}
1206
1207EXPORT_SYMBOL(kill_block_super);
1208#endif
1209
1210struct dentry *mount_nodev(struct file_system_type *fs_type,
1211        int flags, void *data,
1212        int (*fill_super)(struct super_block *, void *, int))
1213{
1214        int error;
1215        struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1216
1217        if (IS_ERR(s))
1218                return ERR_CAST(s);
1219
1220        error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1221        if (error) {
1222                deactivate_locked_super(s);
1223                return ERR_PTR(error);
1224        }
1225        s->s_flags |= SB_ACTIVE;
1226        return dget(s->s_root);
1227}
1228EXPORT_SYMBOL(mount_nodev);
1229
1230static int compare_single(struct super_block *s, void *p)
1231{
1232        return 1;
1233}
1234
1235struct dentry *mount_single(struct file_system_type *fs_type,
1236        int flags, void *data,
1237        int (*fill_super)(struct super_block *, void *, int))
1238{
1239        struct super_block *s;
1240        int error;
1241
1242        s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1243        if (IS_ERR(s))
1244                return ERR_CAST(s);
1245        if (!s->s_root) {
1246                error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1247                if (error) {
1248                        deactivate_locked_super(s);
1249                        return ERR_PTR(error);
1250                }
1251                s->s_flags |= SB_ACTIVE;
1252        } else {
1253                do_remount_sb(s, flags, data, 0);
1254        }
1255        return dget(s->s_root);
1256}
1257EXPORT_SYMBOL(mount_single);
1258
1259struct dentry *
1260mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1261{
1262        struct dentry *root;
1263        struct super_block *sb;
1264        char *secdata = NULL;
1265        int error = -ENOMEM;
1266
1267        if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1268                secdata = alloc_secdata();
1269                if (!secdata)
1270                        goto out;
1271
1272                error = security_sb_copy_data(data, secdata);
1273                if (error)
1274                        goto out_free_secdata;
1275        }
1276
1277        root = type->mount(type, flags, name, data);
1278        if (IS_ERR(root)) {
1279                error = PTR_ERR(root);
1280                goto out_free_secdata;
1281        }
1282        sb = root->d_sb;
1283        BUG_ON(!sb);
1284        WARN_ON(!sb->s_bdi);
1285
1286        /*
1287         * Write barrier is for super_cache_count(). We place it before setting
1288         * SB_BORN as the data dependency between the two functions is the
1289         * superblock structure contents that we just set up, not the SB_BORN
1290         * flag.
1291         */
1292        smp_wmb();
1293        sb->s_flags |= SB_BORN;
1294
1295        error = security_sb_kern_mount(sb, flags, secdata);
1296        if (error)
1297                goto out_sb;
1298
1299        /*
1300         * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1301         * but s_maxbytes was an unsigned long long for many releases. Throw
1302         * this warning for a little while to try and catch filesystems that
1303         * violate this rule.
1304         */
1305        WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1306                "negative value (%lld)\n", type->name, sb->s_maxbytes);
1307
1308        up_write(&sb->s_umount);
1309        free_secdata(secdata);
1310        return root;
1311out_sb:
1312        dput(root);
1313        deactivate_locked_super(sb);
1314out_free_secdata:
1315        free_secdata(secdata);
1316out:
1317        return ERR_PTR(error);
1318}
1319
1320/*
1321 * Setup private BDI for given superblock. It gets automatically cleaned up
1322 * in generic_shutdown_super().
1323 */
1324int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1325{
1326        struct backing_dev_info *bdi;
1327        int err;
1328        va_list args;
1329
1330        bdi = bdi_alloc(GFP_KERNEL);
1331        if (!bdi)
1332                return -ENOMEM;
1333
1334        bdi->name = sb->s_type->name;
1335
1336        va_start(args, fmt);
1337        err = bdi_register_va(bdi, fmt, args);
1338        va_end(args);
1339        if (err) {
1340                bdi_put(bdi);
1341                return err;
1342        }
1343        WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1344        sb->s_bdi = bdi;
1345
1346        return 0;
1347}
1348EXPORT_SYMBOL(super_setup_bdi_name);
1349
1350/*
1351 * Setup private BDI for given superblock. I gets automatically cleaned up
1352 * in generic_shutdown_super().
1353 */
1354int super_setup_bdi(struct super_block *sb)
1355{
1356        static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1357
1358        return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1359                                    atomic_long_inc_return(&bdi_seq));
1360}
1361EXPORT_SYMBOL(super_setup_bdi);
1362
1363/*
1364 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1365 * instead.
1366 */
1367void __sb_end_write(struct super_block *sb, int level)
1368{
1369        percpu_up_read(sb->s_writers.rw_sem + level-1);
1370}
1371EXPORT_SYMBOL(__sb_end_write);
1372
1373/*
1374 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1375 * instead.
1376 */
1377int __sb_start_write(struct super_block *sb, int level, bool wait)
1378{
1379        bool force_trylock = false;
1380        int ret = 1;
1381
1382#ifdef CONFIG_LOCKDEP
1383        /*
1384         * We want lockdep to tell us about possible deadlocks with freezing
1385         * but it's it bit tricky to properly instrument it. Getting a freeze
1386         * protection works as getting a read lock but there are subtle
1387         * problems. XFS for example gets freeze protection on internal level
1388         * twice in some cases, which is OK only because we already hold a
1389         * freeze protection also on higher level. Due to these cases we have
1390         * to use wait == F (trylock mode) which must not fail.
1391         */
1392        if (wait) {
1393                int i;
1394
1395                for (i = 0; i < level - 1; i++)
1396                        if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1397                                force_trylock = true;
1398                                break;
1399                        }
1400        }
1401#endif
1402        if (wait && !force_trylock)
1403                percpu_down_read(sb->s_writers.rw_sem + level-1);
1404        else
1405                ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1406
1407        WARN_ON(force_trylock && !ret);
1408        return ret;
1409}
1410EXPORT_SYMBOL(__sb_start_write);
1411
1412/**
1413 * sb_wait_write - wait until all writers to given file system finish
1414 * @sb: the super for which we wait
1415 * @level: type of writers we wait for (normal vs page fault)
1416 *
1417 * This function waits until there are no writers of given type to given file
1418 * system.
1419 */
1420static void sb_wait_write(struct super_block *sb, int level)
1421{
1422        percpu_down_write(sb->s_writers.rw_sem + level-1);
1423}
1424
1425/*
1426 * We are going to return to userspace and forget about these locks, the
1427 * ownership goes to the caller of thaw_super() which does unlock().
1428 */
1429static void lockdep_sb_freeze_release(struct super_block *sb)
1430{
1431        int level;
1432
1433        for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1434                percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1435}
1436
1437/*
1438 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1439 */
1440static void lockdep_sb_freeze_acquire(struct super_block *sb)
1441{
1442        int level;
1443
1444        for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1445                percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1446}
1447
1448static void sb_freeze_unlock(struct super_block *sb)
1449{
1450        int level;
1451
1452        for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1453                percpu_up_write(sb->s_writers.rw_sem + level);
1454}
1455
1456/**
1457 * freeze_super - lock the filesystem and force it into a consistent state
1458 * @sb: the super to lock
1459 *
1460 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1461 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1462 * -EBUSY.
1463 *
1464 * During this function, sb->s_writers.frozen goes through these values:
1465 *
1466 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1467 *
1468 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1469 * writes should be blocked, though page faults are still allowed. We wait for
1470 * all writes to complete and then proceed to the next stage.
1471 *
1472 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1473 * but internal fs threads can still modify the filesystem (although they
1474 * should not dirty new pages or inodes), writeback can run etc. After waiting
1475 * for all running page faults we sync the filesystem which will clean all
1476 * dirty pages and inodes (no new dirty pages or inodes can be created when
1477 * sync is running).
1478 *
1479 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1480 * modification are blocked (e.g. XFS preallocation truncation on inode
1481 * reclaim). This is usually implemented by blocking new transactions for
1482 * filesystems that have them and need this additional guard. After all
1483 * internal writers are finished we call ->freeze_fs() to finish filesystem
1484 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1485 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1486 *
1487 * sb->s_writers.frozen is protected by sb->s_umount.
1488 */
1489int freeze_super(struct super_block *sb)
1490{
1491        int ret;
1492
1493        atomic_inc(&sb->s_active);
1494        down_write(&sb->s_umount);
1495        if (sb->s_writers.frozen != SB_UNFROZEN) {
1496                deactivate_locked_super(sb);
1497                return -EBUSY;
1498        }
1499
1500        if (!(sb->s_flags & SB_BORN)) {
1501                up_write(&sb->s_umount);
1502                return 0;       /* sic - it's "nothing to do" */
1503        }
1504
1505        if (sb_rdonly(sb)) {
1506                /* Nothing to do really... */
1507                sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1508                up_write(&sb->s_umount);
1509                return 0;
1510        }
1511
1512        sb->s_writers.frozen = SB_FREEZE_WRITE;
1513        /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1514        up_write(&sb->s_umount);
1515        sb_wait_write(sb, SB_FREEZE_WRITE);
1516        down_write(&sb->s_umount);
1517
1518        /* Now we go and block page faults... */
1519        sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1520        sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1521
1522        /* All writers are done so after syncing there won't be dirty data */
1523        sync_filesystem(sb);
1524
1525        /* Now wait for internal filesystem counter */
1526        sb->s_writers.frozen = SB_FREEZE_FS;
1527        sb_wait_write(sb, SB_FREEZE_FS);
1528
1529        if (sb->s_op->freeze_fs) {
1530                ret = sb->s_op->freeze_fs(sb);
1531                if (ret) {
1532                        printk(KERN_ERR
1533                                "VFS:Filesystem freeze failed\n");
1534                        sb->s_writers.frozen = SB_UNFROZEN;
1535                        sb_freeze_unlock(sb);
1536                        wake_up(&sb->s_writers.wait_unfrozen);
1537                        deactivate_locked_super(sb);
1538                        return ret;
1539                }
1540        }
1541        /*
1542         * For debugging purposes so that fs can warn if it sees write activity
1543         * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1544         */
1545        sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1546        lockdep_sb_freeze_release(sb);
1547        up_write(&sb->s_umount);
1548        return 0;
1549}
1550EXPORT_SYMBOL(freeze_super);
1551
1552/**
1553 * thaw_super -- unlock filesystem
1554 * @sb: the super to thaw
1555 *
1556 * Unlocks the filesystem and marks it writeable again after freeze_super().
1557 */
1558static int thaw_super_locked(struct super_block *sb)
1559{
1560        int error;
1561
1562        if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1563                up_write(&sb->s_umount);
1564                return -EINVAL;
1565        }
1566
1567        if (sb_rdonly(sb)) {
1568                sb->s_writers.frozen = SB_UNFROZEN;
1569                goto out;
1570        }
1571
1572        lockdep_sb_freeze_acquire(sb);
1573
1574        if (sb->s_op->unfreeze_fs) {
1575                error = sb->s_op->unfreeze_fs(sb);
1576                if (error) {
1577                        printk(KERN_ERR
1578                                "VFS:Filesystem thaw failed\n");
1579                        lockdep_sb_freeze_release(sb);
1580                        up_write(&sb->s_umount);
1581                        return error;
1582                }
1583        }
1584
1585        sb->s_writers.frozen = SB_UNFROZEN;
1586        sb_freeze_unlock(sb);
1587out:
1588        wake_up(&sb->s_writers.wait_unfrozen);
1589        deactivate_locked_super(sb);
1590        return 0;
1591}
1592
1593int thaw_super(struct super_block *sb)
1594{
1595        down_write(&sb->s_umount);
1596        return thaw_super_locked(sb);
1597}
1598EXPORT_SYMBOL(thaw_super);
1599