linux/fs/xfs/xfs_inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include <linux/log2.h>
   7#include <linux/iversion.h>
   8
   9#include "xfs.h"
  10#include "xfs_fs.h"
  11#include "xfs_shared.h"
  12#include "xfs_format.h"
  13#include "xfs_log_format.h"
  14#include "xfs_trans_resv.h"
  15#include "xfs_sb.h"
  16#include "xfs_mount.h"
  17#include "xfs_defer.h"
  18#include "xfs_inode.h"
  19#include "xfs_da_format.h"
  20#include "xfs_da_btree.h"
  21#include "xfs_dir2.h"
  22#include "xfs_attr_sf.h"
  23#include "xfs_attr.h"
  24#include "xfs_trans_space.h"
  25#include "xfs_trans.h"
  26#include "xfs_buf_item.h"
  27#include "xfs_inode_item.h"
  28#include "xfs_ialloc.h"
  29#include "xfs_bmap.h"
  30#include "xfs_bmap_util.h"
  31#include "xfs_errortag.h"
  32#include "xfs_error.h"
  33#include "xfs_quota.h"
  34#include "xfs_filestream.h"
  35#include "xfs_cksum.h"
  36#include "xfs_trace.h"
  37#include "xfs_icache.h"
  38#include "xfs_symlink.h"
  39#include "xfs_trans_priv.h"
  40#include "xfs_log.h"
  41#include "xfs_bmap_btree.h"
  42#include "xfs_reflink.h"
  43#include "xfs_dir2_priv.h"
  44
  45kmem_zone_t *xfs_inode_zone;
  46
  47/*
  48 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  49 * freed from a file in a single transaction.
  50 */
  51#define XFS_ITRUNC_MAX_EXTENTS  2
  52
  53STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
  54STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  55STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
  56
  57/*
  58 * helper function to extract extent size hint from inode
  59 */
  60xfs_extlen_t
  61xfs_get_extsz_hint(
  62        struct xfs_inode        *ip)
  63{
  64        if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  65                return ip->i_d.di_extsize;
  66        if (XFS_IS_REALTIME_INODE(ip))
  67                return ip->i_mount->m_sb.sb_rextsize;
  68        return 0;
  69}
  70
  71/*
  72 * Helper function to extract CoW extent size hint from inode.
  73 * Between the extent size hint and the CoW extent size hint, we
  74 * return the greater of the two.  If the value is zero (automatic),
  75 * use the default size.
  76 */
  77xfs_extlen_t
  78xfs_get_cowextsz_hint(
  79        struct xfs_inode        *ip)
  80{
  81        xfs_extlen_t            a, b;
  82
  83        a = 0;
  84        if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
  85                a = ip->i_d.di_cowextsize;
  86        b = xfs_get_extsz_hint(ip);
  87
  88        a = max(a, b);
  89        if (a == 0)
  90                return XFS_DEFAULT_COWEXTSZ_HINT;
  91        return a;
  92}
  93
  94/*
  95 * These two are wrapper routines around the xfs_ilock() routine used to
  96 * centralize some grungy code.  They are used in places that wish to lock the
  97 * inode solely for reading the extents.  The reason these places can't just
  98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  99 * bringing in of the extents from disk for a file in b-tree format.  If the
 100 * inode is in b-tree format, then we need to lock the inode exclusively until
 101 * the extents are read in.  Locking it exclusively all the time would limit
 102 * our parallelism unnecessarily, though.  What we do instead is check to see
 103 * if the extents have been read in yet, and only lock the inode exclusively
 104 * if they have not.
 105 *
 106 * The functions return a value which should be given to the corresponding
 107 * xfs_iunlock() call.
 108 */
 109uint
 110xfs_ilock_data_map_shared(
 111        struct xfs_inode        *ip)
 112{
 113        uint                    lock_mode = XFS_ILOCK_SHARED;
 114
 115        if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
 116            (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
 117                lock_mode = XFS_ILOCK_EXCL;
 118        xfs_ilock(ip, lock_mode);
 119        return lock_mode;
 120}
 121
 122uint
 123xfs_ilock_attr_map_shared(
 124        struct xfs_inode        *ip)
 125{
 126        uint                    lock_mode = XFS_ILOCK_SHARED;
 127
 128        if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
 129            (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
 130                lock_mode = XFS_ILOCK_EXCL;
 131        xfs_ilock(ip, lock_mode);
 132        return lock_mode;
 133}
 134
 135/*
 136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 137 * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
 138 * various combinations of the locks to be obtained.
 139 *
 140 * The 3 locks should always be ordered so that the IO lock is obtained first,
 141 * the mmap lock second and the ilock last in order to prevent deadlock.
 142 *
 143 * Basic locking order:
 144 *
 145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
 146 *
 147 * mmap_sem locking order:
 148 *
 149 * i_rwsem -> page lock -> mmap_sem
 150 * mmap_sem -> i_mmap_lock -> page_lock
 151 *
 152 * The difference in mmap_sem locking order mean that we cannot hold the
 153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
 154 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
 155 * in get_user_pages() to map the user pages into the kernel address space for
 156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
 157 * page faults already hold the mmap_sem.
 158 *
 159 * Hence to serialise fully against both syscall and mmap based IO, we need to
 160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
 161 * taken in places where we need to invalidate the page cache in a race
 162 * free manner (e.g. truncate, hole punch and other extent manipulation
 163 * functions).
 164 */
 165void
 166xfs_ilock(
 167        xfs_inode_t             *ip,
 168        uint                    lock_flags)
 169{
 170        trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 171
 172        /*
 173         * You can't set both SHARED and EXCL for the same lock,
 174         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 175         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 176         */
 177        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 178               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 179        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 180               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 181        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 182               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 183        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 184
 185        if (lock_flags & XFS_IOLOCK_EXCL) {
 186                down_write_nested(&VFS_I(ip)->i_rwsem,
 187                                  XFS_IOLOCK_DEP(lock_flags));
 188        } else if (lock_flags & XFS_IOLOCK_SHARED) {
 189                down_read_nested(&VFS_I(ip)->i_rwsem,
 190                                 XFS_IOLOCK_DEP(lock_flags));
 191        }
 192
 193        if (lock_flags & XFS_MMAPLOCK_EXCL)
 194                mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 195        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 196                mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 197
 198        if (lock_flags & XFS_ILOCK_EXCL)
 199                mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 200        else if (lock_flags & XFS_ILOCK_SHARED)
 201                mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 202}
 203
 204/*
 205 * This is just like xfs_ilock(), except that the caller
 206 * is guaranteed not to sleep.  It returns 1 if it gets
 207 * the requested locks and 0 otherwise.  If the IO lock is
 208 * obtained but the inode lock cannot be, then the IO lock
 209 * is dropped before returning.
 210 *
 211 * ip -- the inode being locked
 212 * lock_flags -- this parameter indicates the inode's locks to be
 213 *       to be locked.  See the comment for xfs_ilock() for a list
 214 *       of valid values.
 215 */
 216int
 217xfs_ilock_nowait(
 218        xfs_inode_t             *ip,
 219        uint                    lock_flags)
 220{
 221        trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 222
 223        /*
 224         * You can't set both SHARED and EXCL for the same lock,
 225         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 226         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 227         */
 228        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 229               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 230        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 231               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 232        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 233               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 234        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 235
 236        if (lock_flags & XFS_IOLOCK_EXCL) {
 237                if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
 238                        goto out;
 239        } else if (lock_flags & XFS_IOLOCK_SHARED) {
 240                if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
 241                        goto out;
 242        }
 243
 244        if (lock_flags & XFS_MMAPLOCK_EXCL) {
 245                if (!mrtryupdate(&ip->i_mmaplock))
 246                        goto out_undo_iolock;
 247        } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 248                if (!mrtryaccess(&ip->i_mmaplock))
 249                        goto out_undo_iolock;
 250        }
 251
 252        if (lock_flags & XFS_ILOCK_EXCL) {
 253                if (!mrtryupdate(&ip->i_lock))
 254                        goto out_undo_mmaplock;
 255        } else if (lock_flags & XFS_ILOCK_SHARED) {
 256                if (!mrtryaccess(&ip->i_lock))
 257                        goto out_undo_mmaplock;
 258        }
 259        return 1;
 260
 261out_undo_mmaplock:
 262        if (lock_flags & XFS_MMAPLOCK_EXCL)
 263                mrunlock_excl(&ip->i_mmaplock);
 264        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 265                mrunlock_shared(&ip->i_mmaplock);
 266out_undo_iolock:
 267        if (lock_flags & XFS_IOLOCK_EXCL)
 268                up_write(&VFS_I(ip)->i_rwsem);
 269        else if (lock_flags & XFS_IOLOCK_SHARED)
 270                up_read(&VFS_I(ip)->i_rwsem);
 271out:
 272        return 0;
 273}
 274
 275/*
 276 * xfs_iunlock() is used to drop the inode locks acquired with
 277 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 279 * that we know which locks to drop.
 280 *
 281 * ip -- the inode being unlocked
 282 * lock_flags -- this parameter indicates the inode's locks to be
 283 *       to be unlocked.  See the comment for xfs_ilock() for a list
 284 *       of valid values for this parameter.
 285 *
 286 */
 287void
 288xfs_iunlock(
 289        xfs_inode_t             *ip,
 290        uint                    lock_flags)
 291{
 292        /*
 293         * You can't set both SHARED and EXCL for the same lock,
 294         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 295         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 296         */
 297        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 298               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 299        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 300               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 301        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 302               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 303        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 304        ASSERT(lock_flags != 0);
 305
 306        if (lock_flags & XFS_IOLOCK_EXCL)
 307                up_write(&VFS_I(ip)->i_rwsem);
 308        else if (lock_flags & XFS_IOLOCK_SHARED)
 309                up_read(&VFS_I(ip)->i_rwsem);
 310
 311        if (lock_flags & XFS_MMAPLOCK_EXCL)
 312                mrunlock_excl(&ip->i_mmaplock);
 313        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 314                mrunlock_shared(&ip->i_mmaplock);
 315
 316        if (lock_flags & XFS_ILOCK_EXCL)
 317                mrunlock_excl(&ip->i_lock);
 318        else if (lock_flags & XFS_ILOCK_SHARED)
 319                mrunlock_shared(&ip->i_lock);
 320
 321        trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 322}
 323
 324/*
 325 * give up write locks.  the i/o lock cannot be held nested
 326 * if it is being demoted.
 327 */
 328void
 329xfs_ilock_demote(
 330        xfs_inode_t             *ip,
 331        uint                    lock_flags)
 332{
 333        ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 334        ASSERT((lock_flags &
 335                ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 336
 337        if (lock_flags & XFS_ILOCK_EXCL)
 338                mrdemote(&ip->i_lock);
 339        if (lock_flags & XFS_MMAPLOCK_EXCL)
 340                mrdemote(&ip->i_mmaplock);
 341        if (lock_flags & XFS_IOLOCK_EXCL)
 342                downgrade_write(&VFS_I(ip)->i_rwsem);
 343
 344        trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 345}
 346
 347#if defined(DEBUG) || defined(XFS_WARN)
 348int
 349xfs_isilocked(
 350        xfs_inode_t             *ip,
 351        uint                    lock_flags)
 352{
 353        if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 354                if (!(lock_flags & XFS_ILOCK_SHARED))
 355                        return !!ip->i_lock.mr_writer;
 356                return rwsem_is_locked(&ip->i_lock.mr_lock);
 357        }
 358
 359        if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 360                if (!(lock_flags & XFS_MMAPLOCK_SHARED))
 361                        return !!ip->i_mmaplock.mr_writer;
 362                return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
 363        }
 364
 365        if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 366                if (!(lock_flags & XFS_IOLOCK_SHARED))
 367                        return !debug_locks ||
 368                                lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
 369                return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
 370        }
 371
 372        ASSERT(0);
 373        return 0;
 374}
 375#endif
 376
 377/*
 378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 381 * errors and warnings.
 382 */
 383#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 384static bool
 385xfs_lockdep_subclass_ok(
 386        int subclass)
 387{
 388        return subclass < MAX_LOCKDEP_SUBCLASSES;
 389}
 390#else
 391#define xfs_lockdep_subclass_ok(subclass)       (true)
 392#endif
 393
 394/*
 395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 396 * value. This can be called for any type of inode lock combination, including
 397 * parent locking. Care must be taken to ensure we don't overrun the subclass
 398 * storage fields in the class mask we build.
 399 */
 400static inline int
 401xfs_lock_inumorder(int lock_mode, int subclass)
 402{
 403        int     class = 0;
 404
 405        ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 406                              XFS_ILOCK_RTSUM)));
 407        ASSERT(xfs_lockdep_subclass_ok(subclass));
 408
 409        if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 410                ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 411                class += subclass << XFS_IOLOCK_SHIFT;
 412        }
 413
 414        if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 415                ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 416                class += subclass << XFS_MMAPLOCK_SHIFT;
 417        }
 418
 419        if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 420                ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 421                class += subclass << XFS_ILOCK_SHIFT;
 422        }
 423
 424        return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 425}
 426
 427/*
 428 * The following routine will lock n inodes in exclusive mode.  We assume the
 429 * caller calls us with the inodes in i_ino order.
 430 *
 431 * We need to detect deadlock where an inode that we lock is in the AIL and we
 432 * start waiting for another inode that is locked by a thread in a long running
 433 * transaction (such as truncate). This can result in deadlock since the long
 434 * running trans might need to wait for the inode we just locked in order to
 435 * push the tail and free space in the log.
 436 *
 437 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 439 * lock more than one at a time, lockdep will report false positives saying we
 440 * have violated locking orders.
 441 */
 442static void
 443xfs_lock_inodes(
 444        xfs_inode_t     **ips,
 445        int             inodes,
 446        uint            lock_mode)
 447{
 448        int             attempts = 0, i, j, try_lock;
 449        xfs_log_item_t  *lp;
 450
 451        /*
 452         * Currently supports between 2 and 5 inodes with exclusive locking.  We
 453         * support an arbitrary depth of locking here, but absolute limits on
 454         * inodes depend on the the type of locking and the limits placed by
 455         * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 456         * the asserts.
 457         */
 458        ASSERT(ips && inodes >= 2 && inodes <= 5);
 459        ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 460                            XFS_ILOCK_EXCL));
 461        ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 462                              XFS_ILOCK_SHARED)));
 463        ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 464                inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 465        ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 466                inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 467
 468        if (lock_mode & XFS_IOLOCK_EXCL) {
 469                ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 470        } else if (lock_mode & XFS_MMAPLOCK_EXCL)
 471                ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 472
 473        try_lock = 0;
 474        i = 0;
 475again:
 476        for (; i < inodes; i++) {
 477                ASSERT(ips[i]);
 478
 479                if (i && (ips[i] == ips[i - 1]))        /* Already locked */
 480                        continue;
 481
 482                /*
 483                 * If try_lock is not set yet, make sure all locked inodes are
 484                 * not in the AIL.  If any are, set try_lock to be used later.
 485                 */
 486                if (!try_lock) {
 487                        for (j = (i - 1); j >= 0 && !try_lock; j--) {
 488                                lp = (xfs_log_item_t *)ips[j]->i_itemp;
 489                                if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
 490                                        try_lock++;
 491                        }
 492                }
 493
 494                /*
 495                 * If any of the previous locks we have locked is in the AIL,
 496                 * we must TRY to get the second and subsequent locks. If
 497                 * we can't get any, we must release all we have
 498                 * and try again.
 499                 */
 500                if (!try_lock) {
 501                        xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 502                        continue;
 503                }
 504
 505                /* try_lock means we have an inode locked that is in the AIL. */
 506                ASSERT(i != 0);
 507                if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 508                        continue;
 509
 510                /*
 511                 * Unlock all previous guys and try again.  xfs_iunlock will try
 512                 * to push the tail if the inode is in the AIL.
 513                 */
 514                attempts++;
 515                for (j = i - 1; j >= 0; j--) {
 516                        /*
 517                         * Check to see if we've already unlocked this one.  Not
 518                         * the first one going back, and the inode ptr is the
 519                         * same.
 520                         */
 521                        if (j != (i - 1) && ips[j] == ips[j + 1])
 522                                continue;
 523
 524                        xfs_iunlock(ips[j], lock_mode);
 525                }
 526
 527                if ((attempts % 5) == 0) {
 528                        delay(1); /* Don't just spin the CPU */
 529                }
 530                i = 0;
 531                try_lock = 0;
 532                goto again;
 533        }
 534}
 535
 536/*
 537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
 538 * the mmaplock or the ilock, but not more than one type at a time. If we lock
 539 * more than one at a time, lockdep will report false positives saying we have
 540 * violated locking orders.  The iolock must be double-locked separately since
 541 * we use i_rwsem for that.  We now support taking one lock EXCL and the other
 542 * SHARED.
 543 */
 544void
 545xfs_lock_two_inodes(
 546        struct xfs_inode        *ip0,
 547        uint                    ip0_mode,
 548        struct xfs_inode        *ip1,
 549        uint                    ip1_mode)
 550{
 551        struct xfs_inode        *temp;
 552        uint                    mode_temp;
 553        int                     attempts = 0;
 554        xfs_log_item_t          *lp;
 555
 556        ASSERT(hweight32(ip0_mode) == 1);
 557        ASSERT(hweight32(ip1_mode) == 1);
 558        ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 559        ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 560        ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 561               !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 562        ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 563               !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 564        ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 565               !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 566        ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 567               !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 568
 569        ASSERT(ip0->i_ino != ip1->i_ino);
 570
 571        if (ip0->i_ino > ip1->i_ino) {
 572                temp = ip0;
 573                ip0 = ip1;
 574                ip1 = temp;
 575                mode_temp = ip0_mode;
 576                ip0_mode = ip1_mode;
 577                ip1_mode = mode_temp;
 578        }
 579
 580 again:
 581        xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
 582
 583        /*
 584         * If the first lock we have locked is in the AIL, we must TRY to get
 585         * the second lock. If we can't get it, we must release the first one
 586         * and try again.
 587         */
 588        lp = (xfs_log_item_t *)ip0->i_itemp;
 589        if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
 590                if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
 591                        xfs_iunlock(ip0, ip0_mode);
 592                        if ((++attempts % 5) == 0)
 593                                delay(1); /* Don't just spin the CPU */
 594                        goto again;
 595                }
 596        } else {
 597                xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
 598        }
 599}
 600
 601void
 602__xfs_iflock(
 603        struct xfs_inode        *ip)
 604{
 605        wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
 606        DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
 607
 608        do {
 609                prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
 610                if (xfs_isiflocked(ip))
 611                        io_schedule();
 612        } while (!xfs_iflock_nowait(ip));
 613
 614        finish_wait(wq, &wait.wq_entry);
 615}
 616
 617STATIC uint
 618_xfs_dic2xflags(
 619        uint16_t                di_flags,
 620        uint64_t                di_flags2,
 621        bool                    has_attr)
 622{
 623        uint                    flags = 0;
 624
 625        if (di_flags & XFS_DIFLAG_ANY) {
 626                if (di_flags & XFS_DIFLAG_REALTIME)
 627                        flags |= FS_XFLAG_REALTIME;
 628                if (di_flags & XFS_DIFLAG_PREALLOC)
 629                        flags |= FS_XFLAG_PREALLOC;
 630                if (di_flags & XFS_DIFLAG_IMMUTABLE)
 631                        flags |= FS_XFLAG_IMMUTABLE;
 632                if (di_flags & XFS_DIFLAG_APPEND)
 633                        flags |= FS_XFLAG_APPEND;
 634                if (di_flags & XFS_DIFLAG_SYNC)
 635                        flags |= FS_XFLAG_SYNC;
 636                if (di_flags & XFS_DIFLAG_NOATIME)
 637                        flags |= FS_XFLAG_NOATIME;
 638                if (di_flags & XFS_DIFLAG_NODUMP)
 639                        flags |= FS_XFLAG_NODUMP;
 640                if (di_flags & XFS_DIFLAG_RTINHERIT)
 641                        flags |= FS_XFLAG_RTINHERIT;
 642                if (di_flags & XFS_DIFLAG_PROJINHERIT)
 643                        flags |= FS_XFLAG_PROJINHERIT;
 644                if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 645                        flags |= FS_XFLAG_NOSYMLINKS;
 646                if (di_flags & XFS_DIFLAG_EXTSIZE)
 647                        flags |= FS_XFLAG_EXTSIZE;
 648                if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 649                        flags |= FS_XFLAG_EXTSZINHERIT;
 650                if (di_flags & XFS_DIFLAG_NODEFRAG)
 651                        flags |= FS_XFLAG_NODEFRAG;
 652                if (di_flags & XFS_DIFLAG_FILESTREAM)
 653                        flags |= FS_XFLAG_FILESTREAM;
 654        }
 655
 656        if (di_flags2 & XFS_DIFLAG2_ANY) {
 657                if (di_flags2 & XFS_DIFLAG2_DAX)
 658                        flags |= FS_XFLAG_DAX;
 659                if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
 660                        flags |= FS_XFLAG_COWEXTSIZE;
 661        }
 662
 663        if (has_attr)
 664                flags |= FS_XFLAG_HASATTR;
 665
 666        return flags;
 667}
 668
 669uint
 670xfs_ip2xflags(
 671        struct xfs_inode        *ip)
 672{
 673        struct xfs_icdinode     *dic = &ip->i_d;
 674
 675        return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
 676}
 677
 678/*
 679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 681 * ci_name->name will point to a the actual name (caller must free) or
 682 * will be set to NULL if an exact match is found.
 683 */
 684int
 685xfs_lookup(
 686        xfs_inode_t             *dp,
 687        struct xfs_name         *name,
 688        xfs_inode_t             **ipp,
 689        struct xfs_name         *ci_name)
 690{
 691        xfs_ino_t               inum;
 692        int                     error;
 693
 694        trace_xfs_lookup(dp, name);
 695
 696        if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 697                return -EIO;
 698
 699        error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 700        if (error)
 701                goto out_unlock;
 702
 703        error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 704        if (error)
 705                goto out_free_name;
 706
 707        return 0;
 708
 709out_free_name:
 710        if (ci_name)
 711                kmem_free(ci_name->name);
 712out_unlock:
 713        *ipp = NULL;
 714        return error;
 715}
 716
 717/*
 718 * Allocate an inode on disk and return a copy of its in-core version.
 719 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 720 * appropriately within the inode.  The uid and gid for the inode are
 721 * set according to the contents of the given cred structure.
 722 *
 723 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 724 * has a free inode available, call xfs_iget() to obtain the in-core
 725 * version of the allocated inode.  Finally, fill in the inode and
 726 * log its initial contents.  In this case, ialloc_context would be
 727 * set to NULL.
 728 *
 729 * If xfs_dialloc() does not have an available inode, it will replenish
 730 * its supply by doing an allocation. Since we can only do one
 731 * allocation within a transaction without deadlocks, we must commit
 732 * the current transaction before returning the inode itself.
 733 * In this case, therefore, we will set ialloc_context and return.
 734 * The caller should then commit the current transaction, start a new
 735 * transaction, and call xfs_ialloc() again to actually get the inode.
 736 *
 737 * To ensure that some other process does not grab the inode that
 738 * was allocated during the first call to xfs_ialloc(), this routine
 739 * also returns the [locked] bp pointing to the head of the freelist
 740 * as ialloc_context.  The caller should hold this buffer across
 741 * the commit and pass it back into this routine on the second call.
 742 *
 743 * If we are allocating quota inodes, we do not have a parent inode
 744 * to attach to or associate with (i.e. pip == NULL) because they
 745 * are not linked into the directory structure - they are attached
 746 * directly to the superblock - and so have no parent.
 747 */
 748static int
 749xfs_ialloc(
 750        xfs_trans_t     *tp,
 751        xfs_inode_t     *pip,
 752        umode_t         mode,
 753        xfs_nlink_t     nlink,
 754        dev_t           rdev,
 755        prid_t          prid,
 756        xfs_buf_t       **ialloc_context,
 757        xfs_inode_t     **ipp)
 758{
 759        struct xfs_mount *mp = tp->t_mountp;
 760        xfs_ino_t       ino;
 761        xfs_inode_t     *ip;
 762        uint            flags;
 763        int             error;
 764        struct timespec64 tv;
 765        struct inode    *inode;
 766
 767        /*
 768         * Call the space management code to pick
 769         * the on-disk inode to be allocated.
 770         */
 771        error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
 772                            ialloc_context, &ino);
 773        if (error)
 774                return error;
 775        if (*ialloc_context || ino == NULLFSINO) {
 776                *ipp = NULL;
 777                return 0;
 778        }
 779        ASSERT(*ialloc_context == NULL);
 780
 781        /*
 782         * Protect against obviously corrupt allocation btree records. Later
 783         * xfs_iget checks will catch re-allocation of other active in-memory
 784         * and on-disk inodes. If we don't catch reallocating the parent inode
 785         * here we will deadlock in xfs_iget() so we have to do these checks
 786         * first.
 787         */
 788        if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
 789                xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
 790                return -EFSCORRUPTED;
 791        }
 792
 793        /*
 794         * Get the in-core inode with the lock held exclusively.
 795         * This is because we're setting fields here we need
 796         * to prevent others from looking at until we're done.
 797         */
 798        error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
 799                         XFS_ILOCK_EXCL, &ip);
 800        if (error)
 801                return error;
 802        ASSERT(ip != NULL);
 803        inode = VFS_I(ip);
 804
 805        /*
 806         * We always convert v1 inodes to v2 now - we only support filesystems
 807         * with >= v2 inode capability, so there is no reason for ever leaving
 808         * an inode in v1 format.
 809         */
 810        if (ip->i_d.di_version == 1)
 811                ip->i_d.di_version = 2;
 812
 813        inode->i_mode = mode;
 814        set_nlink(inode, nlink);
 815        ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
 816        ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
 817        inode->i_rdev = rdev;
 818        xfs_set_projid(ip, prid);
 819
 820        if (pip && XFS_INHERIT_GID(pip)) {
 821                ip->i_d.di_gid = pip->i_d.di_gid;
 822                if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
 823                        inode->i_mode |= S_ISGID;
 824        }
 825
 826        /*
 827         * If the group ID of the new file does not match the effective group
 828         * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 829         * (and only if the irix_sgid_inherit compatibility variable is set).
 830         */
 831        if ((irix_sgid_inherit) &&
 832            (inode->i_mode & S_ISGID) &&
 833            (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
 834                inode->i_mode &= ~S_ISGID;
 835
 836        ip->i_d.di_size = 0;
 837        ip->i_d.di_nextents = 0;
 838        ASSERT(ip->i_d.di_nblocks == 0);
 839
 840        tv = current_time(inode);
 841        inode->i_mtime = tv;
 842        inode->i_atime = tv;
 843        inode->i_ctime = tv;
 844
 845        ip->i_d.di_extsize = 0;
 846        ip->i_d.di_dmevmask = 0;
 847        ip->i_d.di_dmstate = 0;
 848        ip->i_d.di_flags = 0;
 849
 850        if (ip->i_d.di_version == 3) {
 851                inode_set_iversion(inode, 1);
 852                ip->i_d.di_flags2 = 0;
 853                ip->i_d.di_cowextsize = 0;
 854                ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
 855                ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
 856        }
 857
 858
 859        flags = XFS_ILOG_CORE;
 860        switch (mode & S_IFMT) {
 861        case S_IFIFO:
 862        case S_IFCHR:
 863        case S_IFBLK:
 864        case S_IFSOCK:
 865                ip->i_d.di_format = XFS_DINODE_FMT_DEV;
 866                ip->i_df.if_flags = 0;
 867                flags |= XFS_ILOG_DEV;
 868                break;
 869        case S_IFREG:
 870        case S_IFDIR:
 871                if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
 872                        uint            di_flags = 0;
 873
 874                        if (S_ISDIR(mode)) {
 875                                if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 876                                        di_flags |= XFS_DIFLAG_RTINHERIT;
 877                                if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 878                                        di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 879                                        ip->i_d.di_extsize = pip->i_d.di_extsize;
 880                                }
 881                                if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
 882                                        di_flags |= XFS_DIFLAG_PROJINHERIT;
 883                        } else if (S_ISREG(mode)) {
 884                                if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 885                                        di_flags |= XFS_DIFLAG_REALTIME;
 886                                if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 887                                        di_flags |= XFS_DIFLAG_EXTSIZE;
 888                                        ip->i_d.di_extsize = pip->i_d.di_extsize;
 889                                }
 890                        }
 891                        if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
 892                            xfs_inherit_noatime)
 893                                di_flags |= XFS_DIFLAG_NOATIME;
 894                        if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
 895                            xfs_inherit_nodump)
 896                                di_flags |= XFS_DIFLAG_NODUMP;
 897                        if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
 898                            xfs_inherit_sync)
 899                                di_flags |= XFS_DIFLAG_SYNC;
 900                        if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
 901                            xfs_inherit_nosymlinks)
 902                                di_flags |= XFS_DIFLAG_NOSYMLINKS;
 903                        if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
 904                            xfs_inherit_nodefrag)
 905                                di_flags |= XFS_DIFLAG_NODEFRAG;
 906                        if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
 907                                di_flags |= XFS_DIFLAG_FILESTREAM;
 908
 909                        ip->i_d.di_flags |= di_flags;
 910                }
 911                if (pip &&
 912                    (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
 913                    pip->i_d.di_version == 3 &&
 914                    ip->i_d.di_version == 3) {
 915                        uint64_t        di_flags2 = 0;
 916
 917                        if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
 918                                di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
 919                                ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
 920                        }
 921                        if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
 922                                di_flags2 |= XFS_DIFLAG2_DAX;
 923
 924                        ip->i_d.di_flags2 |= di_flags2;
 925                }
 926                /* FALLTHROUGH */
 927        case S_IFLNK:
 928                ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
 929                ip->i_df.if_flags = XFS_IFEXTENTS;
 930                ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
 931                ip->i_df.if_u1.if_root = NULL;
 932                break;
 933        default:
 934                ASSERT(0);
 935        }
 936        /*
 937         * Attribute fork settings for new inode.
 938         */
 939        ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 940        ip->i_d.di_anextents = 0;
 941
 942        /*
 943         * Log the new values stuffed into the inode.
 944         */
 945        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 946        xfs_trans_log_inode(tp, ip, flags);
 947
 948        /* now that we have an i_mode we can setup the inode structure */
 949        xfs_setup_inode(ip);
 950
 951        *ipp = ip;
 952        return 0;
 953}
 954
 955/*
 956 * Allocates a new inode from disk and return a pointer to the
 957 * incore copy. This routine will internally commit the current
 958 * transaction and allocate a new one if the Space Manager needed
 959 * to do an allocation to replenish the inode free-list.
 960 *
 961 * This routine is designed to be called from xfs_create and
 962 * xfs_create_dir.
 963 *
 964 */
 965int
 966xfs_dir_ialloc(
 967        xfs_trans_t     **tpp,          /* input: current transaction;
 968                                           output: may be a new transaction. */
 969        xfs_inode_t     *dp,            /* directory within whose allocate
 970                                           the inode. */
 971        umode_t         mode,
 972        xfs_nlink_t     nlink,
 973        dev_t           rdev,
 974        prid_t          prid,           /* project id */
 975        xfs_inode_t     **ipp)          /* pointer to inode; it will be
 976                                           locked. */
 977{
 978        xfs_trans_t     *tp;
 979        xfs_inode_t     *ip;
 980        xfs_buf_t       *ialloc_context = NULL;
 981        int             code;
 982        void            *dqinfo;
 983        uint            tflags;
 984
 985        tp = *tpp;
 986        ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 987
 988        /*
 989         * xfs_ialloc will return a pointer to an incore inode if
 990         * the Space Manager has an available inode on the free
 991         * list. Otherwise, it will do an allocation and replenish
 992         * the freelist.  Since we can only do one allocation per
 993         * transaction without deadlocks, we will need to commit the
 994         * current transaction and start a new one.  We will then
 995         * need to call xfs_ialloc again to get the inode.
 996         *
 997         * If xfs_ialloc did an allocation to replenish the freelist,
 998         * it returns the bp containing the head of the freelist as
 999         * ialloc_context. We will hold a lock on it across the
1000         * transaction commit so that no other process can steal
1001         * the inode(s) that we've just allocated.
1002         */
1003        code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
1004                        &ip);
1005
1006        /*
1007         * Return an error if we were unable to allocate a new inode.
1008         * This should only happen if we run out of space on disk or
1009         * encounter a disk error.
1010         */
1011        if (code) {
1012                *ipp = NULL;
1013                return code;
1014        }
1015        if (!ialloc_context && !ip) {
1016                *ipp = NULL;
1017                return -ENOSPC;
1018        }
1019
1020        /*
1021         * If the AGI buffer is non-NULL, then we were unable to get an
1022         * inode in one operation.  We need to commit the current
1023         * transaction and call xfs_ialloc() again.  It is guaranteed
1024         * to succeed the second time.
1025         */
1026        if (ialloc_context) {
1027                /*
1028                 * Normally, xfs_trans_commit releases all the locks.
1029                 * We call bhold to hang on to the ialloc_context across
1030                 * the commit.  Holding this buffer prevents any other
1031                 * processes from doing any allocations in this
1032                 * allocation group.
1033                 */
1034                xfs_trans_bhold(tp, ialloc_context);
1035
1036                /*
1037                 * We want the quota changes to be associated with the next
1038                 * transaction, NOT this one. So, detach the dqinfo from this
1039                 * and attach it to the next transaction.
1040                 */
1041                dqinfo = NULL;
1042                tflags = 0;
1043                if (tp->t_dqinfo) {
1044                        dqinfo = (void *)tp->t_dqinfo;
1045                        tp->t_dqinfo = NULL;
1046                        tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1047                        tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1048                }
1049
1050                code = xfs_trans_roll(&tp);
1051
1052                /*
1053                 * Re-attach the quota info that we detached from prev trx.
1054                 */
1055                if (dqinfo) {
1056                        tp->t_dqinfo = dqinfo;
1057                        tp->t_flags |= tflags;
1058                }
1059
1060                if (code) {
1061                        xfs_buf_relse(ialloc_context);
1062                        *tpp = tp;
1063                        *ipp = NULL;
1064                        return code;
1065                }
1066                xfs_trans_bjoin(tp, ialloc_context);
1067
1068                /*
1069                 * Call ialloc again. Since we've locked out all
1070                 * other allocations in this allocation group,
1071                 * this call should always succeed.
1072                 */
1073                code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1074                                  &ialloc_context, &ip);
1075
1076                /*
1077                 * If we get an error at this point, return to the caller
1078                 * so that the current transaction can be aborted.
1079                 */
1080                if (code) {
1081                        *tpp = tp;
1082                        *ipp = NULL;
1083                        return code;
1084                }
1085                ASSERT(!ialloc_context && ip);
1086
1087        }
1088
1089        *ipp = ip;
1090        *tpp = tp;
1091
1092        return 0;
1093}
1094
1095/*
1096 * Decrement the link count on an inode & log the change.  If this causes the
1097 * link count to go to zero, move the inode to AGI unlinked list so that it can
1098 * be freed when the last active reference goes away via xfs_inactive().
1099 */
1100static int                      /* error */
1101xfs_droplink(
1102        xfs_trans_t *tp,
1103        xfs_inode_t *ip)
1104{
1105        xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1106
1107        drop_nlink(VFS_I(ip));
1108        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1109
1110        if (VFS_I(ip)->i_nlink)
1111                return 0;
1112
1113        return xfs_iunlink(tp, ip);
1114}
1115
1116/*
1117 * Increment the link count on an inode & log the change.
1118 */
1119static int
1120xfs_bumplink(
1121        xfs_trans_t *tp,
1122        xfs_inode_t *ip)
1123{
1124        xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1125
1126        ASSERT(ip->i_d.di_version > 1);
1127        inc_nlink(VFS_I(ip));
1128        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1129        return 0;
1130}
1131
1132int
1133xfs_create(
1134        xfs_inode_t             *dp,
1135        struct xfs_name         *name,
1136        umode_t                 mode,
1137        dev_t                   rdev,
1138        xfs_inode_t             **ipp)
1139{
1140        int                     is_dir = S_ISDIR(mode);
1141        struct xfs_mount        *mp = dp->i_mount;
1142        struct xfs_inode        *ip = NULL;
1143        struct xfs_trans        *tp = NULL;
1144        int                     error;
1145        struct xfs_defer_ops    dfops;
1146        xfs_fsblock_t           first_block;
1147        bool                    unlock_dp_on_error = false;
1148        prid_t                  prid;
1149        struct xfs_dquot        *udqp = NULL;
1150        struct xfs_dquot        *gdqp = NULL;
1151        struct xfs_dquot        *pdqp = NULL;
1152        struct xfs_trans_res    *tres;
1153        uint                    resblks;
1154
1155        trace_xfs_create(dp, name);
1156
1157        if (XFS_FORCED_SHUTDOWN(mp))
1158                return -EIO;
1159
1160        prid = xfs_get_initial_prid(dp);
1161
1162        /*
1163         * Make sure that we have allocated dquot(s) on disk.
1164         */
1165        error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1166                                        xfs_kgid_to_gid(current_fsgid()), prid,
1167                                        XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1168                                        &udqp, &gdqp, &pdqp);
1169        if (error)
1170                return error;
1171
1172        if (is_dir) {
1173                resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1174                tres = &M_RES(mp)->tr_mkdir;
1175        } else {
1176                resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1177                tres = &M_RES(mp)->tr_create;
1178        }
1179
1180        /*
1181         * Initially assume that the file does not exist and
1182         * reserve the resources for that case.  If that is not
1183         * the case we'll drop the one we have and get a more
1184         * appropriate transaction later.
1185         */
1186        error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1187        if (error == -ENOSPC) {
1188                /* flush outstanding delalloc blocks and retry */
1189                xfs_flush_inodes(mp);
1190                error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1191        }
1192        if (error)
1193                goto out_release_inode;
1194
1195        xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1196        unlock_dp_on_error = true;
1197
1198        xfs_defer_init(&dfops, &first_block);
1199        tp->t_agfl_dfops = &dfops;
1200
1201        /*
1202         * Reserve disk quota and the inode.
1203         */
1204        error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1205                                                pdqp, resblks, 1, 0);
1206        if (error)
1207                goto out_trans_cancel;
1208
1209        /*
1210         * A newly created regular or special file just has one directory
1211         * entry pointing to them, but a directory also the "." entry
1212         * pointing to itself.
1213         */
1214        error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1215        if (error)
1216                goto out_trans_cancel;
1217
1218        /*
1219         * Now we join the directory inode to the transaction.  We do not do it
1220         * earlier because xfs_dir_ialloc might commit the previous transaction
1221         * (and release all the locks).  An error from here on will result in
1222         * the transaction cancel unlocking dp so don't do it explicitly in the
1223         * error path.
1224         */
1225        xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1226        unlock_dp_on_error = false;
1227
1228        error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1229                                        &first_block, &dfops, resblks ?
1230                                        resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1231        if (error) {
1232                ASSERT(error != -ENOSPC);
1233                goto out_trans_cancel;
1234        }
1235        xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1236        xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1237
1238        if (is_dir) {
1239                error = xfs_dir_init(tp, ip, dp);
1240                if (error)
1241                        goto out_bmap_cancel;
1242
1243                error = xfs_bumplink(tp, dp);
1244                if (error)
1245                        goto out_bmap_cancel;
1246        }
1247
1248        /*
1249         * If this is a synchronous mount, make sure that the
1250         * create transaction goes to disk before returning to
1251         * the user.
1252         */
1253        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1254                xfs_trans_set_sync(tp);
1255
1256        /*
1257         * Attach the dquot(s) to the inodes and modify them incore.
1258         * These ids of the inode couldn't have changed since the new
1259         * inode has been locked ever since it was created.
1260         */
1261        xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1262
1263        error = xfs_defer_finish(&tp, &dfops);
1264        if (error)
1265                goto out_bmap_cancel;
1266
1267        error = xfs_trans_commit(tp);
1268        if (error)
1269                goto out_release_inode;
1270
1271        xfs_qm_dqrele(udqp);
1272        xfs_qm_dqrele(gdqp);
1273        xfs_qm_dqrele(pdqp);
1274
1275        *ipp = ip;
1276        return 0;
1277
1278 out_bmap_cancel:
1279        xfs_defer_cancel(&dfops);
1280 out_trans_cancel:
1281        xfs_trans_cancel(tp);
1282 out_release_inode:
1283        /*
1284         * Wait until after the current transaction is aborted to finish the
1285         * setup of the inode and release the inode.  This prevents recursive
1286         * transactions and deadlocks from xfs_inactive.
1287         */
1288        if (ip) {
1289                xfs_finish_inode_setup(ip);
1290                IRELE(ip);
1291        }
1292
1293        xfs_qm_dqrele(udqp);
1294        xfs_qm_dqrele(gdqp);
1295        xfs_qm_dqrele(pdqp);
1296
1297        if (unlock_dp_on_error)
1298                xfs_iunlock(dp, XFS_ILOCK_EXCL);
1299        return error;
1300}
1301
1302int
1303xfs_create_tmpfile(
1304        struct xfs_inode        *dp,
1305        umode_t                 mode,
1306        struct xfs_inode        **ipp)
1307{
1308        struct xfs_mount        *mp = dp->i_mount;
1309        struct xfs_inode        *ip = NULL;
1310        struct xfs_trans        *tp = NULL;
1311        int                     error;
1312        prid_t                  prid;
1313        struct xfs_dquot        *udqp = NULL;
1314        struct xfs_dquot        *gdqp = NULL;
1315        struct xfs_dquot        *pdqp = NULL;
1316        struct xfs_trans_res    *tres;
1317        uint                    resblks;
1318
1319        if (XFS_FORCED_SHUTDOWN(mp))
1320                return -EIO;
1321
1322        prid = xfs_get_initial_prid(dp);
1323
1324        /*
1325         * Make sure that we have allocated dquot(s) on disk.
1326         */
1327        error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1328                                xfs_kgid_to_gid(current_fsgid()), prid,
1329                                XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1330                                &udqp, &gdqp, &pdqp);
1331        if (error)
1332                return error;
1333
1334        resblks = XFS_IALLOC_SPACE_RES(mp);
1335        tres = &M_RES(mp)->tr_create_tmpfile;
1336
1337        error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1338        if (error)
1339                goto out_release_inode;
1340
1341        error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1342                                                pdqp, resblks, 1, 0);
1343        if (error)
1344                goto out_trans_cancel;
1345
1346        error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip);
1347        if (error)
1348                goto out_trans_cancel;
1349
1350        if (mp->m_flags & XFS_MOUNT_WSYNC)
1351                xfs_trans_set_sync(tp);
1352
1353        /*
1354         * Attach the dquot(s) to the inodes and modify them incore.
1355         * These ids of the inode couldn't have changed since the new
1356         * inode has been locked ever since it was created.
1357         */
1358        xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1359
1360        error = xfs_iunlink(tp, ip);
1361        if (error)
1362                goto out_trans_cancel;
1363
1364        error = xfs_trans_commit(tp);
1365        if (error)
1366                goto out_release_inode;
1367
1368        xfs_qm_dqrele(udqp);
1369        xfs_qm_dqrele(gdqp);
1370        xfs_qm_dqrele(pdqp);
1371
1372        *ipp = ip;
1373        return 0;
1374
1375 out_trans_cancel:
1376        xfs_trans_cancel(tp);
1377 out_release_inode:
1378        /*
1379         * Wait until after the current transaction is aborted to finish the
1380         * setup of the inode and release the inode.  This prevents recursive
1381         * transactions and deadlocks from xfs_inactive.
1382         */
1383        if (ip) {
1384                xfs_finish_inode_setup(ip);
1385                IRELE(ip);
1386        }
1387
1388        xfs_qm_dqrele(udqp);
1389        xfs_qm_dqrele(gdqp);
1390        xfs_qm_dqrele(pdqp);
1391
1392        return error;
1393}
1394
1395int
1396xfs_link(
1397        xfs_inode_t             *tdp,
1398        xfs_inode_t             *sip,
1399        struct xfs_name         *target_name)
1400{
1401        xfs_mount_t             *mp = tdp->i_mount;
1402        xfs_trans_t             *tp;
1403        int                     error;
1404        struct xfs_defer_ops    dfops;
1405        xfs_fsblock_t           first_block;
1406        int                     resblks;
1407
1408        trace_xfs_link(tdp, target_name);
1409
1410        ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1411
1412        if (XFS_FORCED_SHUTDOWN(mp))
1413                return -EIO;
1414
1415        error = xfs_qm_dqattach(sip);
1416        if (error)
1417                goto std_return;
1418
1419        error = xfs_qm_dqattach(tdp);
1420        if (error)
1421                goto std_return;
1422
1423        resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1424        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1425        if (error == -ENOSPC) {
1426                resblks = 0;
1427                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1428        }
1429        if (error)
1430                goto std_return;
1431
1432        xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1433
1434        xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1435        xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1436
1437        /*
1438         * If we are using project inheritance, we only allow hard link
1439         * creation in our tree when the project IDs are the same; else
1440         * the tree quota mechanism could be circumvented.
1441         */
1442        if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1443                     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1444                error = -EXDEV;
1445                goto error_return;
1446        }
1447
1448        if (!resblks) {
1449                error = xfs_dir_canenter(tp, tdp, target_name);
1450                if (error)
1451                        goto error_return;
1452        }
1453
1454        xfs_defer_init(&dfops, &first_block);
1455        tp->t_agfl_dfops = &dfops;
1456
1457        /*
1458         * Handle initial link state of O_TMPFILE inode
1459         */
1460        if (VFS_I(sip)->i_nlink == 0) {
1461                error = xfs_iunlink_remove(tp, sip);
1462                if (error)
1463                        goto error_return;
1464        }
1465
1466        error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1467                                        &first_block, &dfops, resblks);
1468        if (error)
1469                goto error_return;
1470        xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1471        xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1472
1473        error = xfs_bumplink(tp, sip);
1474        if (error)
1475                goto error_return;
1476
1477        /*
1478         * If this is a synchronous mount, make sure that the
1479         * link transaction goes to disk before returning to
1480         * the user.
1481         */
1482        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1483                xfs_trans_set_sync(tp);
1484
1485        error = xfs_defer_finish(&tp, &dfops);
1486        if (error) {
1487                xfs_defer_cancel(&dfops);
1488                goto error_return;
1489        }
1490
1491        return xfs_trans_commit(tp);
1492
1493 error_return:
1494        xfs_trans_cancel(tp);
1495 std_return:
1496        return error;
1497}
1498
1499/* Clear the reflink flag and the cowblocks tag if possible. */
1500static void
1501xfs_itruncate_clear_reflink_flags(
1502        struct xfs_inode        *ip)
1503{
1504        struct xfs_ifork        *dfork;
1505        struct xfs_ifork        *cfork;
1506
1507        if (!xfs_is_reflink_inode(ip))
1508                return;
1509        dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1510        cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1511        if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1512                ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1513        if (cfork->if_bytes == 0)
1514                xfs_inode_clear_cowblocks_tag(ip);
1515}
1516
1517/*
1518 * Free up the underlying blocks past new_size.  The new size must be smaller
1519 * than the current size.  This routine can be used both for the attribute and
1520 * data fork, and does not modify the inode size, which is left to the caller.
1521 *
1522 * The transaction passed to this routine must have made a permanent log
1523 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1524 * given transaction and start new ones, so make sure everything involved in
1525 * the transaction is tidy before calling here.  Some transaction will be
1526 * returned to the caller to be committed.  The incoming transaction must
1527 * already include the inode, and both inode locks must be held exclusively.
1528 * The inode must also be "held" within the transaction.  On return the inode
1529 * will be "held" within the returned transaction.  This routine does NOT
1530 * require any disk space to be reserved for it within the transaction.
1531 *
1532 * If we get an error, we must return with the inode locked and linked into the
1533 * current transaction. This keeps things simple for the higher level code,
1534 * because it always knows that the inode is locked and held in the transaction
1535 * that returns to it whether errors occur or not.  We don't mark the inode
1536 * dirty on error so that transactions can be easily aborted if possible.
1537 */
1538int
1539xfs_itruncate_extents_flags(
1540        struct xfs_trans        **tpp,
1541        struct xfs_inode        *ip,
1542        int                     whichfork,
1543        xfs_fsize_t             new_size,
1544        int                     flags)
1545{
1546        struct xfs_mount        *mp = ip->i_mount;
1547        struct xfs_trans        *tp = *tpp;
1548        struct xfs_defer_ops    dfops;
1549        xfs_fsblock_t           first_block;
1550        xfs_fileoff_t           first_unmap_block;
1551        xfs_fileoff_t           last_block;
1552        xfs_filblks_t           unmap_len;
1553        int                     error = 0;
1554        int                     done = 0;
1555
1556        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1557        ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1558               xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1559        ASSERT(new_size <= XFS_ISIZE(ip));
1560        ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1561        ASSERT(ip->i_itemp != NULL);
1562        ASSERT(ip->i_itemp->ili_lock_flags == 0);
1563        ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1564
1565        trace_xfs_itruncate_extents_start(ip, new_size);
1566
1567        flags |= xfs_bmapi_aflag(whichfork);
1568
1569        /*
1570         * Since it is possible for space to become allocated beyond
1571         * the end of the file (in a crash where the space is allocated
1572         * but the inode size is not yet updated), simply remove any
1573         * blocks which show up between the new EOF and the maximum
1574         * possible file size.  If the first block to be removed is
1575         * beyond the maximum file size (ie it is the same as last_block),
1576         * then there is nothing to do.
1577         */
1578        first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1579        last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1580        if (first_unmap_block == last_block)
1581                return 0;
1582
1583        ASSERT(first_unmap_block < last_block);
1584        unmap_len = last_block - first_unmap_block + 1;
1585        while (!done) {
1586                xfs_defer_init(&dfops, &first_block);
1587                error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags,
1588                                    XFS_ITRUNC_MAX_EXTENTS, &first_block,
1589                                    &dfops, &done);
1590                if (error)
1591                        goto out_bmap_cancel;
1592
1593                /*
1594                 * Duplicate the transaction that has the permanent
1595                 * reservation and commit the old transaction.
1596                 */
1597                xfs_defer_ijoin(&dfops, ip);
1598                error = xfs_defer_finish(&tp, &dfops);
1599                if (error)
1600                        goto out_bmap_cancel;
1601
1602                error = xfs_trans_roll_inode(&tp, ip);
1603                if (error)
1604                        goto out;
1605        }
1606
1607        if (whichfork == XFS_DATA_FORK) {
1608                /* Remove all pending CoW reservations. */
1609                error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1610                                first_unmap_block, last_block, true);
1611                if (error)
1612                        goto out;
1613
1614                xfs_itruncate_clear_reflink_flags(ip);
1615        }
1616
1617        /*
1618         * Always re-log the inode so that our permanent transaction can keep
1619         * on rolling it forward in the log.
1620         */
1621        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1622
1623        trace_xfs_itruncate_extents_end(ip, new_size);
1624
1625out:
1626        *tpp = tp;
1627        return error;
1628out_bmap_cancel:
1629        /*
1630         * If the bunmapi call encounters an error, return to the caller where
1631         * the transaction can be properly aborted.  We just need to make sure
1632         * we're not holding any resources that we were not when we came in.
1633         */
1634        xfs_defer_cancel(&dfops);
1635        goto out;
1636}
1637
1638int
1639xfs_release(
1640        xfs_inode_t     *ip)
1641{
1642        xfs_mount_t     *mp = ip->i_mount;
1643        int             error;
1644
1645        if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1646                return 0;
1647
1648        /* If this is a read-only mount, don't do this (would generate I/O) */
1649        if (mp->m_flags & XFS_MOUNT_RDONLY)
1650                return 0;
1651
1652        if (!XFS_FORCED_SHUTDOWN(mp)) {
1653                int truncated;
1654
1655                /*
1656                 * If we previously truncated this file and removed old data
1657                 * in the process, we want to initiate "early" writeout on
1658                 * the last close.  This is an attempt to combat the notorious
1659                 * NULL files problem which is particularly noticeable from a
1660                 * truncate down, buffered (re-)write (delalloc), followed by
1661                 * a crash.  What we are effectively doing here is
1662                 * significantly reducing the time window where we'd otherwise
1663                 * be exposed to that problem.
1664                 */
1665                truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1666                if (truncated) {
1667                        xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1668                        if (ip->i_delayed_blks > 0) {
1669                                error = filemap_flush(VFS_I(ip)->i_mapping);
1670                                if (error)
1671                                        return error;
1672                        }
1673                }
1674        }
1675
1676        if (VFS_I(ip)->i_nlink == 0)
1677                return 0;
1678
1679        if (xfs_can_free_eofblocks(ip, false)) {
1680
1681                /*
1682                 * Check if the inode is being opened, written and closed
1683                 * frequently and we have delayed allocation blocks outstanding
1684                 * (e.g. streaming writes from the NFS server), truncating the
1685                 * blocks past EOF will cause fragmentation to occur.
1686                 *
1687                 * In this case don't do the truncation, but we have to be
1688                 * careful how we detect this case. Blocks beyond EOF show up as
1689                 * i_delayed_blks even when the inode is clean, so we need to
1690                 * truncate them away first before checking for a dirty release.
1691                 * Hence on the first dirty close we will still remove the
1692                 * speculative allocation, but after that we will leave it in
1693                 * place.
1694                 */
1695                if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1696                        return 0;
1697                /*
1698                 * If we can't get the iolock just skip truncating the blocks
1699                 * past EOF because we could deadlock with the mmap_sem
1700                 * otherwise. We'll get another chance to drop them once the
1701                 * last reference to the inode is dropped, so we'll never leak
1702                 * blocks permanently.
1703                 */
1704                if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1705                        error = xfs_free_eofblocks(ip);
1706                        xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1707                        if (error)
1708                                return error;
1709                }
1710
1711                /* delalloc blocks after truncation means it really is dirty */
1712                if (ip->i_delayed_blks)
1713                        xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1714        }
1715        return 0;
1716}
1717
1718/*
1719 * xfs_inactive_truncate
1720 *
1721 * Called to perform a truncate when an inode becomes unlinked.
1722 */
1723STATIC int
1724xfs_inactive_truncate(
1725        struct xfs_inode *ip)
1726{
1727        struct xfs_mount        *mp = ip->i_mount;
1728        struct xfs_trans        *tp;
1729        int                     error;
1730
1731        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1732        if (error) {
1733                ASSERT(XFS_FORCED_SHUTDOWN(mp));
1734                return error;
1735        }
1736
1737        xfs_ilock(ip, XFS_ILOCK_EXCL);
1738        xfs_trans_ijoin(tp, ip, 0);
1739
1740        /*
1741         * Log the inode size first to prevent stale data exposure in the event
1742         * of a system crash before the truncate completes. See the related
1743         * comment in xfs_vn_setattr_size() for details.
1744         */
1745        ip->i_d.di_size = 0;
1746        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1747
1748        error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1749        if (error)
1750                goto error_trans_cancel;
1751
1752        ASSERT(ip->i_d.di_nextents == 0);
1753
1754        error = xfs_trans_commit(tp);
1755        if (error)
1756                goto error_unlock;
1757
1758        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1759        return 0;
1760
1761error_trans_cancel:
1762        xfs_trans_cancel(tp);
1763error_unlock:
1764        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1765        return error;
1766}
1767
1768/*
1769 * xfs_inactive_ifree()
1770 *
1771 * Perform the inode free when an inode is unlinked.
1772 */
1773STATIC int
1774xfs_inactive_ifree(
1775        struct xfs_inode *ip)
1776{
1777        struct xfs_defer_ops    dfops;
1778        xfs_fsblock_t           first_block;
1779        struct xfs_mount        *mp = ip->i_mount;
1780        struct xfs_trans        *tp;
1781        int                     error;
1782
1783        /*
1784         * We try to use a per-AG reservation for any block needed by the finobt
1785         * tree, but as the finobt feature predates the per-AG reservation
1786         * support a degraded file system might not have enough space for the
1787         * reservation at mount time.  In that case try to dip into the reserved
1788         * pool and pray.
1789         *
1790         * Send a warning if the reservation does happen to fail, as the inode
1791         * now remains allocated and sits on the unlinked list until the fs is
1792         * repaired.
1793         */
1794        if (unlikely(mp->m_inotbt_nores)) {
1795                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1796                                XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1797                                &tp);
1798        } else {
1799                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1800        }
1801        if (error) {
1802                if (error == -ENOSPC) {
1803                        xfs_warn_ratelimited(mp,
1804                        "Failed to remove inode(s) from unlinked list. "
1805                        "Please free space, unmount and run xfs_repair.");
1806                } else {
1807                        ASSERT(XFS_FORCED_SHUTDOWN(mp));
1808                }
1809                return error;
1810        }
1811
1812        xfs_ilock(ip, XFS_ILOCK_EXCL);
1813        xfs_trans_ijoin(tp, ip, 0);
1814
1815        xfs_defer_init(&dfops, &first_block);
1816        tp->t_agfl_dfops = &dfops;
1817        error = xfs_ifree(tp, ip, &dfops);
1818        if (error) {
1819                /*
1820                 * If we fail to free the inode, shut down.  The cancel
1821                 * might do that, we need to make sure.  Otherwise the
1822                 * inode might be lost for a long time or forever.
1823                 */
1824                if (!XFS_FORCED_SHUTDOWN(mp)) {
1825                        xfs_notice(mp, "%s: xfs_ifree returned error %d",
1826                                __func__, error);
1827                        xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1828                }
1829                xfs_trans_cancel(tp);
1830                xfs_iunlock(ip, XFS_ILOCK_EXCL);
1831                return error;
1832        }
1833
1834        /*
1835         * Credit the quota account(s). The inode is gone.
1836         */
1837        xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1838
1839        /*
1840         * Just ignore errors at this point.  There is nothing we can do except
1841         * to try to keep going. Make sure it's not a silent error.
1842         */
1843        error = xfs_defer_finish(&tp, &dfops);
1844        if (error) {
1845                xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
1846                        __func__, error);
1847                xfs_defer_cancel(&dfops);
1848        }
1849        error = xfs_trans_commit(tp);
1850        if (error)
1851                xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1852                        __func__, error);
1853
1854        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1855        return 0;
1856}
1857
1858/*
1859 * xfs_inactive
1860 *
1861 * This is called when the vnode reference count for the vnode
1862 * goes to zero.  If the file has been unlinked, then it must
1863 * now be truncated.  Also, we clear all of the read-ahead state
1864 * kept for the inode here since the file is now closed.
1865 */
1866void
1867xfs_inactive(
1868        xfs_inode_t     *ip)
1869{
1870        struct xfs_mount        *mp;
1871        struct xfs_ifork        *cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1872        int                     error;
1873        int                     truncate = 0;
1874
1875        /*
1876         * If the inode is already free, then there can be nothing
1877         * to clean up here.
1878         */
1879        if (VFS_I(ip)->i_mode == 0) {
1880                ASSERT(ip->i_df.if_real_bytes == 0);
1881                ASSERT(ip->i_df.if_broot_bytes == 0);
1882                return;
1883        }
1884
1885        mp = ip->i_mount;
1886        ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1887
1888        /* If this is a read-only mount, don't do this (would generate I/O) */
1889        if (mp->m_flags & XFS_MOUNT_RDONLY)
1890                return;
1891
1892        /* Try to clean out the cow blocks if there are any. */
1893        if (xfs_is_reflink_inode(ip) && cow_ifp->if_bytes > 0)
1894                xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1895
1896        if (VFS_I(ip)->i_nlink != 0) {
1897                /*
1898                 * force is true because we are evicting an inode from the
1899                 * cache. Post-eof blocks must be freed, lest we end up with
1900                 * broken free space accounting.
1901                 *
1902                 * Note: don't bother with iolock here since lockdep complains
1903                 * about acquiring it in reclaim context. We have the only
1904                 * reference to the inode at this point anyways.
1905                 */
1906                if (xfs_can_free_eofblocks(ip, true))
1907                        xfs_free_eofblocks(ip);
1908
1909                return;
1910        }
1911
1912        if (S_ISREG(VFS_I(ip)->i_mode) &&
1913            (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1914             ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1915                truncate = 1;
1916
1917        error = xfs_qm_dqattach(ip);
1918        if (error)
1919                return;
1920
1921        if (S_ISLNK(VFS_I(ip)->i_mode))
1922                error = xfs_inactive_symlink(ip);
1923        else if (truncate)
1924                error = xfs_inactive_truncate(ip);
1925        if (error)
1926                return;
1927
1928        /*
1929         * If there are attributes associated with the file then blow them away
1930         * now.  The code calls a routine that recursively deconstructs the
1931         * attribute fork. If also blows away the in-core attribute fork.
1932         */
1933        if (XFS_IFORK_Q(ip)) {
1934                error = xfs_attr_inactive(ip);
1935                if (error)
1936                        return;
1937        }
1938
1939        ASSERT(!ip->i_afp);
1940        ASSERT(ip->i_d.di_anextents == 0);
1941        ASSERT(ip->i_d.di_forkoff == 0);
1942
1943        /*
1944         * Free the inode.
1945         */
1946        error = xfs_inactive_ifree(ip);
1947        if (error)
1948                return;
1949
1950        /*
1951         * Release the dquots held by inode, if any.
1952         */
1953        xfs_qm_dqdetach(ip);
1954}
1955
1956/*
1957 * This is called when the inode's link count goes to 0 or we are creating a
1958 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1959 * set to true as the link count is dropped to zero by the VFS after we've
1960 * created the file successfully, so we have to add it to the unlinked list
1961 * while the link count is non-zero.
1962 *
1963 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1964 * list when the inode is freed.
1965 */
1966STATIC int
1967xfs_iunlink(
1968        struct xfs_trans *tp,
1969        struct xfs_inode *ip)
1970{
1971        xfs_mount_t     *mp = tp->t_mountp;
1972        xfs_agi_t       *agi;
1973        xfs_dinode_t    *dip;
1974        xfs_buf_t       *agibp;
1975        xfs_buf_t       *ibp;
1976        xfs_agino_t     agino;
1977        short           bucket_index;
1978        int             offset;
1979        int             error;
1980
1981        ASSERT(VFS_I(ip)->i_mode != 0);
1982
1983        /*
1984         * Get the agi buffer first.  It ensures lock ordering
1985         * on the list.
1986         */
1987        error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1988        if (error)
1989                return error;
1990        agi = XFS_BUF_TO_AGI(agibp);
1991
1992        /*
1993         * Get the index into the agi hash table for the
1994         * list this inode will go on.
1995         */
1996        agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1997        ASSERT(agino != 0);
1998        bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1999        ASSERT(agi->agi_unlinked[bucket_index]);
2000        ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
2001
2002        if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
2003                /*
2004                 * There is already another inode in the bucket we need
2005                 * to add ourselves to.  Add us at the front of the list.
2006                 * Here we put the head pointer into our next pointer,
2007                 * and then we fall through to point the head at us.
2008                 */
2009                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2010                                       0, 0);
2011                if (error)
2012                        return error;
2013
2014                ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
2015                dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
2016                offset = ip->i_imap.im_boffset +
2017                        offsetof(xfs_dinode_t, di_next_unlinked);
2018
2019                /* need to recalc the inode CRC if appropriate */
2020                xfs_dinode_calc_crc(mp, dip);
2021
2022                xfs_trans_inode_buf(tp, ibp);
2023                xfs_trans_log_buf(tp, ibp, offset,
2024                                  (offset + sizeof(xfs_agino_t) - 1));
2025                xfs_inobp_check(mp, ibp);
2026        }
2027
2028        /*
2029         * Point the bucket head pointer at the inode being inserted.
2030         */
2031        ASSERT(agino != 0);
2032        agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2033        offset = offsetof(xfs_agi_t, agi_unlinked) +
2034                (sizeof(xfs_agino_t) * bucket_index);
2035        xfs_trans_log_buf(tp, agibp, offset,
2036                          (offset + sizeof(xfs_agino_t) - 1));
2037        return 0;
2038}
2039
2040/*
2041 * Pull the on-disk inode from the AGI unlinked list.
2042 */
2043STATIC int
2044xfs_iunlink_remove(
2045        xfs_trans_t     *tp,
2046        xfs_inode_t     *ip)
2047{
2048        xfs_ino_t       next_ino;
2049        xfs_mount_t     *mp;
2050        xfs_agi_t       *agi;
2051        xfs_dinode_t    *dip;
2052        xfs_buf_t       *agibp;
2053        xfs_buf_t       *ibp;
2054        xfs_agnumber_t  agno;
2055        xfs_agino_t     agino;
2056        xfs_agino_t     next_agino;
2057        xfs_buf_t       *last_ibp;
2058        xfs_dinode_t    *last_dip = NULL;
2059        short           bucket_index;
2060        int             offset, last_offset = 0;
2061        int             error;
2062
2063        mp = tp->t_mountp;
2064        agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2065
2066        /*
2067         * Get the agi buffer first.  It ensures lock ordering
2068         * on the list.
2069         */
2070        error = xfs_read_agi(mp, tp, agno, &agibp);
2071        if (error)
2072                return error;
2073
2074        agi = XFS_BUF_TO_AGI(agibp);
2075
2076        /*
2077         * Get the index into the agi hash table for the
2078         * list this inode will go on.
2079         */
2080        agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2081        if (!xfs_verify_agino(mp, agno, agino))
2082                return -EFSCORRUPTED;
2083        bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2084        if (!xfs_verify_agino(mp, agno,
2085                        be32_to_cpu(agi->agi_unlinked[bucket_index]))) {
2086                XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2087                                agi, sizeof(*agi));
2088                return -EFSCORRUPTED;
2089        }
2090
2091        if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2092                /*
2093                 * We're at the head of the list.  Get the inode's on-disk
2094                 * buffer to see if there is anyone after us on the list.
2095                 * Only modify our next pointer if it is not already NULLAGINO.
2096                 * This saves us the overhead of dealing with the buffer when
2097                 * there is no need to change it.
2098                 */
2099                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2100                                       0, 0);
2101                if (error) {
2102                        xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2103                                __func__, error);
2104                        return error;
2105                }
2106                next_agino = be32_to_cpu(dip->di_next_unlinked);
2107                ASSERT(next_agino != 0);
2108                if (next_agino != NULLAGINO) {
2109                        dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2110                        offset = ip->i_imap.im_boffset +
2111                                offsetof(xfs_dinode_t, di_next_unlinked);
2112
2113                        /* need to recalc the inode CRC if appropriate */
2114                        xfs_dinode_calc_crc(mp, dip);
2115
2116                        xfs_trans_inode_buf(tp, ibp);
2117                        xfs_trans_log_buf(tp, ibp, offset,
2118                                          (offset + sizeof(xfs_agino_t) - 1));
2119                        xfs_inobp_check(mp, ibp);
2120                } else {
2121                        xfs_trans_brelse(tp, ibp);
2122                }
2123                /*
2124                 * Point the bucket head pointer at the next inode.
2125                 */
2126                ASSERT(next_agino != 0);
2127                ASSERT(next_agino != agino);
2128                agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2129                offset = offsetof(xfs_agi_t, agi_unlinked) +
2130                        (sizeof(xfs_agino_t) * bucket_index);
2131                xfs_trans_log_buf(tp, agibp, offset,
2132                                  (offset + sizeof(xfs_agino_t) - 1));
2133        } else {
2134                /*
2135                 * We need to search the list for the inode being freed.
2136                 */
2137                next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2138                last_ibp = NULL;
2139                while (next_agino != agino) {
2140                        struct xfs_imap imap;
2141
2142                        if (last_ibp)
2143                                xfs_trans_brelse(tp, last_ibp);
2144
2145                        imap.im_blkno = 0;
2146                        next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2147
2148                        error = xfs_imap(mp, tp, next_ino, &imap, 0);
2149                        if (error) {
2150                                xfs_warn(mp,
2151        "%s: xfs_imap returned error %d.",
2152                                         __func__, error);
2153                                return error;
2154                        }
2155
2156                        error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2157                                               &last_ibp, 0, 0);
2158                        if (error) {
2159                                xfs_warn(mp,
2160        "%s: xfs_imap_to_bp returned error %d.",
2161                                        __func__, error);
2162                                return error;
2163                        }
2164
2165                        last_offset = imap.im_boffset;
2166                        next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2167                        if (!xfs_verify_agino(mp, agno, next_agino)) {
2168                                XFS_CORRUPTION_ERROR(__func__,
2169                                                XFS_ERRLEVEL_LOW, mp,
2170                                                last_dip, sizeof(*last_dip));
2171                                return -EFSCORRUPTED;
2172                        }
2173                }
2174
2175                /*
2176                 * Now last_ibp points to the buffer previous to us on the
2177                 * unlinked list.  Pull us from the list.
2178                 */
2179                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2180                                       0, 0);
2181                if (error) {
2182                        xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2183                                __func__, error);
2184                        return error;
2185                }
2186                next_agino = be32_to_cpu(dip->di_next_unlinked);
2187                ASSERT(next_agino != 0);
2188                ASSERT(next_agino != agino);
2189                if (next_agino != NULLAGINO) {
2190                        dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2191                        offset = ip->i_imap.im_boffset +
2192                                offsetof(xfs_dinode_t, di_next_unlinked);
2193
2194                        /* need to recalc the inode CRC if appropriate */
2195                        xfs_dinode_calc_crc(mp, dip);
2196
2197                        xfs_trans_inode_buf(tp, ibp);
2198                        xfs_trans_log_buf(tp, ibp, offset,
2199                                          (offset + sizeof(xfs_agino_t) - 1));
2200                        xfs_inobp_check(mp, ibp);
2201                } else {
2202                        xfs_trans_brelse(tp, ibp);
2203                }
2204                /*
2205                 * Point the previous inode on the list to the next inode.
2206                 */
2207                last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2208                ASSERT(next_agino != 0);
2209                offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2210
2211                /* need to recalc the inode CRC if appropriate */
2212                xfs_dinode_calc_crc(mp, last_dip);
2213
2214                xfs_trans_inode_buf(tp, last_ibp);
2215                xfs_trans_log_buf(tp, last_ibp, offset,
2216                                  (offset + sizeof(xfs_agino_t) - 1));
2217                xfs_inobp_check(mp, last_ibp);
2218        }
2219        return 0;
2220}
2221
2222/*
2223 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2224 * inodes that are in memory - they all must be marked stale and attached to
2225 * the cluster buffer.
2226 */
2227STATIC int
2228xfs_ifree_cluster(
2229        xfs_inode_t             *free_ip,
2230        xfs_trans_t             *tp,
2231        struct xfs_icluster     *xic)
2232{
2233        xfs_mount_t             *mp = free_ip->i_mount;
2234        int                     blks_per_cluster;
2235        int                     inodes_per_cluster;
2236        int                     nbufs;
2237        int                     i, j;
2238        int                     ioffset;
2239        xfs_daddr_t             blkno;
2240        xfs_buf_t               *bp;
2241        xfs_inode_t             *ip;
2242        xfs_inode_log_item_t    *iip;
2243        struct xfs_log_item     *lip;
2244        struct xfs_perag        *pag;
2245        xfs_ino_t               inum;
2246
2247        inum = xic->first_ino;
2248        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2249        blks_per_cluster = xfs_icluster_size_fsb(mp);
2250        inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2251        nbufs = mp->m_ialloc_blks / blks_per_cluster;
2252
2253        for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2254                /*
2255                 * The allocation bitmap tells us which inodes of the chunk were
2256                 * physically allocated. Skip the cluster if an inode falls into
2257                 * a sparse region.
2258                 */
2259                ioffset = inum - xic->first_ino;
2260                if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2261                        ASSERT(ioffset % inodes_per_cluster == 0);
2262                        continue;
2263                }
2264
2265                blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2266                                         XFS_INO_TO_AGBNO(mp, inum));
2267
2268                /*
2269                 * We obtain and lock the backing buffer first in the process
2270                 * here, as we have to ensure that any dirty inode that we
2271                 * can't get the flush lock on is attached to the buffer.
2272                 * If we scan the in-memory inodes first, then buffer IO can
2273                 * complete before we get a lock on it, and hence we may fail
2274                 * to mark all the active inodes on the buffer stale.
2275                 */
2276                bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2277                                        mp->m_bsize * blks_per_cluster,
2278                                        XBF_UNMAPPED);
2279
2280                if (!bp)
2281                        return -ENOMEM;
2282
2283                /*
2284                 * This buffer may not have been correctly initialised as we
2285                 * didn't read it from disk. That's not important because we are
2286                 * only using to mark the buffer as stale in the log, and to
2287                 * attach stale cached inodes on it. That means it will never be
2288                 * dispatched for IO. If it is, we want to know about it, and we
2289                 * want it to fail. We can acheive this by adding a write
2290                 * verifier to the buffer.
2291                 */
2292                 bp->b_ops = &xfs_inode_buf_ops;
2293
2294                /*
2295                 * Walk the inodes already attached to the buffer and mark them
2296                 * stale. These will all have the flush locks held, so an
2297                 * in-memory inode walk can't lock them. By marking them all
2298                 * stale first, we will not attempt to lock them in the loop
2299                 * below as the XFS_ISTALE flag will be set.
2300                 */
2301                list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2302                        if (lip->li_type == XFS_LI_INODE) {
2303                                iip = (xfs_inode_log_item_t *)lip;
2304                                ASSERT(iip->ili_logged == 1);
2305                                lip->li_cb = xfs_istale_done;
2306                                xfs_trans_ail_copy_lsn(mp->m_ail,
2307                                                        &iip->ili_flush_lsn,
2308                                                        &iip->ili_item.li_lsn);
2309                                xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2310                        }
2311                }
2312
2313
2314                /*
2315                 * For each inode in memory attempt to add it to the inode
2316                 * buffer and set it up for being staled on buffer IO
2317                 * completion.  This is safe as we've locked out tail pushing
2318                 * and flushing by locking the buffer.
2319                 *
2320                 * We have already marked every inode that was part of a
2321                 * transaction stale above, which means there is no point in
2322                 * even trying to lock them.
2323                 */
2324                for (i = 0; i < inodes_per_cluster; i++) {
2325retry:
2326                        rcu_read_lock();
2327                        ip = radix_tree_lookup(&pag->pag_ici_root,
2328                                        XFS_INO_TO_AGINO(mp, (inum + i)));
2329
2330                        /* Inode not in memory, nothing to do */
2331                        if (!ip) {
2332                                rcu_read_unlock();
2333                                continue;
2334                        }
2335
2336                        /*
2337                         * because this is an RCU protected lookup, we could
2338                         * find a recently freed or even reallocated inode
2339                         * during the lookup. We need to check under the
2340                         * i_flags_lock for a valid inode here. Skip it if it
2341                         * is not valid, the wrong inode or stale.
2342                         */
2343                        spin_lock(&ip->i_flags_lock);
2344                        if (ip->i_ino != inum + i ||
2345                            __xfs_iflags_test(ip, XFS_ISTALE)) {
2346                                spin_unlock(&ip->i_flags_lock);
2347                                rcu_read_unlock();
2348                                continue;
2349                        }
2350                        spin_unlock(&ip->i_flags_lock);
2351
2352                        /*
2353                         * Don't try to lock/unlock the current inode, but we
2354                         * _cannot_ skip the other inodes that we did not find
2355                         * in the list attached to the buffer and are not
2356                         * already marked stale. If we can't lock it, back off
2357                         * and retry.
2358                         */
2359                        if (ip != free_ip) {
2360                                if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2361                                        rcu_read_unlock();
2362                                        delay(1);
2363                                        goto retry;
2364                                }
2365
2366                                /*
2367                                 * Check the inode number again in case we're
2368                                 * racing with freeing in xfs_reclaim_inode().
2369                                 * See the comments in that function for more
2370                                 * information as to why the initial check is
2371                                 * not sufficient.
2372                                 */
2373                                if (ip->i_ino != inum + i) {
2374                                        xfs_iunlock(ip, XFS_ILOCK_EXCL);
2375                                        rcu_read_unlock();
2376                                        continue;
2377                                }
2378                        }
2379                        rcu_read_unlock();
2380
2381                        xfs_iflock(ip);
2382                        xfs_iflags_set(ip, XFS_ISTALE);
2383
2384                        /*
2385                         * we don't need to attach clean inodes or those only
2386                         * with unlogged changes (which we throw away, anyway).
2387                         */
2388                        iip = ip->i_itemp;
2389                        if (!iip || xfs_inode_clean(ip)) {
2390                                ASSERT(ip != free_ip);
2391                                xfs_ifunlock(ip);
2392                                xfs_iunlock(ip, XFS_ILOCK_EXCL);
2393                                continue;
2394                        }
2395
2396                        iip->ili_last_fields = iip->ili_fields;
2397                        iip->ili_fields = 0;
2398                        iip->ili_fsync_fields = 0;
2399                        iip->ili_logged = 1;
2400                        xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2401                                                &iip->ili_item.li_lsn);
2402
2403                        xfs_buf_attach_iodone(bp, xfs_istale_done,
2404                                                  &iip->ili_item);
2405
2406                        if (ip != free_ip)
2407                                xfs_iunlock(ip, XFS_ILOCK_EXCL);
2408                }
2409
2410                xfs_trans_stale_inode_buf(tp, bp);
2411                xfs_trans_binval(tp, bp);
2412        }
2413
2414        xfs_perag_put(pag);
2415        return 0;
2416}
2417
2418/*
2419 * Free any local-format buffers sitting around before we reset to
2420 * extents format.
2421 */
2422static inline void
2423xfs_ifree_local_data(
2424        struct xfs_inode        *ip,
2425        int                     whichfork)
2426{
2427        struct xfs_ifork        *ifp;
2428
2429        if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2430                return;
2431
2432        ifp = XFS_IFORK_PTR(ip, whichfork);
2433        xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2434}
2435
2436/*
2437 * This is called to return an inode to the inode free list.
2438 * The inode should already be truncated to 0 length and have
2439 * no pages associated with it.  This routine also assumes that
2440 * the inode is already a part of the transaction.
2441 *
2442 * The on-disk copy of the inode will have been added to the list
2443 * of unlinked inodes in the AGI. We need to remove the inode from
2444 * that list atomically with respect to freeing it here.
2445 */
2446int
2447xfs_ifree(
2448        xfs_trans_t     *tp,
2449        xfs_inode_t     *ip,
2450        struct xfs_defer_ops    *dfops)
2451{
2452        int                     error;
2453        struct xfs_icluster     xic = { 0 };
2454
2455        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2456        ASSERT(VFS_I(ip)->i_nlink == 0);
2457        ASSERT(ip->i_d.di_nextents == 0);
2458        ASSERT(ip->i_d.di_anextents == 0);
2459        ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2460        ASSERT(ip->i_d.di_nblocks == 0);
2461
2462        /*
2463         * Pull the on-disk inode from the AGI unlinked list.
2464         */
2465        error = xfs_iunlink_remove(tp, ip);
2466        if (error)
2467                return error;
2468
2469        error = xfs_difree(tp, ip->i_ino, dfops, &xic);
2470        if (error)
2471                return error;
2472
2473        xfs_ifree_local_data(ip, XFS_DATA_FORK);
2474        xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2475
2476        VFS_I(ip)->i_mode = 0;          /* mark incore inode as free */
2477        ip->i_d.di_flags = 0;
2478        ip->i_d.di_flags2 = 0;
2479        ip->i_d.di_dmevmask = 0;
2480        ip->i_d.di_forkoff = 0;         /* mark the attr fork not in use */
2481        ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2482        ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2483
2484        /* Don't attempt to replay owner changes for a deleted inode */
2485        ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2486
2487        /*
2488         * Bump the generation count so no one will be confused
2489         * by reincarnations of this inode.
2490         */
2491        VFS_I(ip)->i_generation++;
2492        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2493
2494        if (xic.deleted)
2495                error = xfs_ifree_cluster(ip, tp, &xic);
2496
2497        return error;
2498}
2499
2500/*
2501 * This is called to unpin an inode.  The caller must have the inode locked
2502 * in at least shared mode so that the buffer cannot be subsequently pinned
2503 * once someone is waiting for it to be unpinned.
2504 */
2505static void
2506xfs_iunpin(
2507        struct xfs_inode        *ip)
2508{
2509        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2510
2511        trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2512
2513        /* Give the log a push to start the unpinning I/O */
2514        xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2515
2516}
2517
2518static void
2519__xfs_iunpin_wait(
2520        struct xfs_inode        *ip)
2521{
2522        wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2523        DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2524
2525        xfs_iunpin(ip);
2526
2527        do {
2528                prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2529                if (xfs_ipincount(ip))
2530                        io_schedule();
2531        } while (xfs_ipincount(ip));
2532        finish_wait(wq, &wait.wq_entry);
2533}
2534
2535void
2536xfs_iunpin_wait(
2537        struct xfs_inode        *ip)
2538{
2539        if (xfs_ipincount(ip))
2540                __xfs_iunpin_wait(ip);
2541}
2542
2543/*
2544 * Removing an inode from the namespace involves removing the directory entry
2545 * and dropping the link count on the inode. Removing the directory entry can
2546 * result in locking an AGF (directory blocks were freed) and removing a link
2547 * count can result in placing the inode on an unlinked list which results in
2548 * locking an AGI.
2549 *
2550 * The big problem here is that we have an ordering constraint on AGF and AGI
2551 * locking - inode allocation locks the AGI, then can allocate a new extent for
2552 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2553 * removes the inode from the unlinked list, requiring that we lock the AGI
2554 * first, and then freeing the inode can result in an inode chunk being freed
2555 * and hence freeing disk space requiring that we lock an AGF.
2556 *
2557 * Hence the ordering that is imposed by other parts of the code is AGI before
2558 * AGF. This means we cannot remove the directory entry before we drop the inode
2559 * reference count and put it on the unlinked list as this results in a lock
2560 * order of AGF then AGI, and this can deadlock against inode allocation and
2561 * freeing. Therefore we must drop the link counts before we remove the
2562 * directory entry.
2563 *
2564 * This is still safe from a transactional point of view - it is not until we
2565 * get to xfs_defer_finish() that we have the possibility of multiple
2566 * transactions in this operation. Hence as long as we remove the directory
2567 * entry and drop the link count in the first transaction of the remove
2568 * operation, there are no transactional constraints on the ordering here.
2569 */
2570int
2571xfs_remove(
2572        xfs_inode_t             *dp,
2573        struct xfs_name         *name,
2574        xfs_inode_t             *ip)
2575{
2576        xfs_mount_t             *mp = dp->i_mount;
2577        xfs_trans_t             *tp = NULL;
2578        int                     is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2579        int                     error = 0;
2580        struct xfs_defer_ops    dfops;
2581        xfs_fsblock_t           first_block;
2582        uint                    resblks;
2583
2584        trace_xfs_remove(dp, name);
2585
2586        if (XFS_FORCED_SHUTDOWN(mp))
2587                return -EIO;
2588
2589        error = xfs_qm_dqattach(dp);
2590        if (error)
2591                goto std_return;
2592
2593        error = xfs_qm_dqattach(ip);
2594        if (error)
2595                goto std_return;
2596
2597        /*
2598         * We try to get the real space reservation first,
2599         * allowing for directory btree deletion(s) implying
2600         * possible bmap insert(s).  If we can't get the space
2601         * reservation then we use 0 instead, and avoid the bmap
2602         * btree insert(s) in the directory code by, if the bmap
2603         * insert tries to happen, instead trimming the LAST
2604         * block from the directory.
2605         */
2606        resblks = XFS_REMOVE_SPACE_RES(mp);
2607        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2608        if (error == -ENOSPC) {
2609                resblks = 0;
2610                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2611                                &tp);
2612        }
2613        if (error) {
2614                ASSERT(error != -ENOSPC);
2615                goto std_return;
2616        }
2617
2618        xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2619
2620        xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2621        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2622
2623        /*
2624         * If we're removing a directory perform some additional validation.
2625         */
2626        if (is_dir) {
2627                ASSERT(VFS_I(ip)->i_nlink >= 2);
2628                if (VFS_I(ip)->i_nlink != 2) {
2629                        error = -ENOTEMPTY;
2630                        goto out_trans_cancel;
2631                }
2632                if (!xfs_dir_isempty(ip)) {
2633                        error = -ENOTEMPTY;
2634                        goto out_trans_cancel;
2635                }
2636
2637                /* Drop the link from ip's "..".  */
2638                error = xfs_droplink(tp, dp);
2639                if (error)
2640                        goto out_trans_cancel;
2641
2642                /* Drop the "." link from ip to self.  */
2643                error = xfs_droplink(tp, ip);
2644                if (error)
2645                        goto out_trans_cancel;
2646        } else {
2647                /*
2648                 * When removing a non-directory we need to log the parent
2649                 * inode here.  For a directory this is done implicitly
2650                 * by the xfs_droplink call for the ".." entry.
2651                 */
2652                xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2653        }
2654        xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2655
2656        /* Drop the link from dp to ip. */
2657        error = xfs_droplink(tp, ip);
2658        if (error)
2659                goto out_trans_cancel;
2660
2661        xfs_defer_init(&dfops, &first_block);
2662        tp->t_agfl_dfops = &dfops;
2663        error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2664                                        &first_block, &dfops, resblks);
2665        if (error) {
2666                ASSERT(error != -ENOENT);
2667                goto out_bmap_cancel;
2668        }
2669
2670        /*
2671         * If this is a synchronous mount, make sure that the
2672         * remove transaction goes to disk before returning to
2673         * the user.
2674         */
2675        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2676                xfs_trans_set_sync(tp);
2677
2678        error = xfs_defer_finish(&tp, &dfops);
2679        if (error)
2680                goto out_bmap_cancel;
2681
2682        error = xfs_trans_commit(tp);
2683        if (error)
2684                goto std_return;
2685
2686        if (is_dir && xfs_inode_is_filestream(ip))
2687                xfs_filestream_deassociate(ip);
2688
2689        return 0;
2690
2691 out_bmap_cancel:
2692        xfs_defer_cancel(&dfops);
2693 out_trans_cancel:
2694        xfs_trans_cancel(tp);
2695 std_return:
2696        return error;
2697}
2698
2699/*
2700 * Enter all inodes for a rename transaction into a sorted array.
2701 */
2702#define __XFS_SORT_INODES       5
2703STATIC void
2704xfs_sort_for_rename(
2705        struct xfs_inode        *dp1,   /* in: old (source) directory inode */
2706        struct xfs_inode        *dp2,   /* in: new (target) directory inode */
2707        struct xfs_inode        *ip1,   /* in: inode of old entry */
2708        struct xfs_inode        *ip2,   /* in: inode of new entry */
2709        struct xfs_inode        *wip,   /* in: whiteout inode */
2710        struct xfs_inode        **i_tab,/* out: sorted array of inodes */
2711        int                     *num_inodes)  /* in/out: inodes in array */
2712{
2713        int                     i, j;
2714
2715        ASSERT(*num_inodes == __XFS_SORT_INODES);
2716        memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2717
2718        /*
2719         * i_tab contains a list of pointers to inodes.  We initialize
2720         * the table here & we'll sort it.  We will then use it to
2721         * order the acquisition of the inode locks.
2722         *
2723         * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2724         */
2725        i = 0;
2726        i_tab[i++] = dp1;
2727        i_tab[i++] = dp2;
2728        i_tab[i++] = ip1;
2729        if (ip2)
2730                i_tab[i++] = ip2;
2731        if (wip)
2732                i_tab[i++] = wip;
2733        *num_inodes = i;
2734
2735        /*
2736         * Sort the elements via bubble sort.  (Remember, there are at
2737         * most 5 elements to sort, so this is adequate.)
2738         */
2739        for (i = 0; i < *num_inodes; i++) {
2740                for (j = 1; j < *num_inodes; j++) {
2741                        if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2742                                struct xfs_inode *temp = i_tab[j];
2743                                i_tab[j] = i_tab[j-1];
2744                                i_tab[j-1] = temp;
2745                        }
2746                }
2747        }
2748}
2749
2750static int
2751xfs_finish_rename(
2752        struct xfs_trans        *tp,
2753        struct xfs_defer_ops    *dfops)
2754{
2755        int                     error;
2756
2757        /*
2758         * If this is a synchronous mount, make sure that the rename transaction
2759         * goes to disk before returning to the user.
2760         */
2761        if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2762                xfs_trans_set_sync(tp);
2763
2764        error = xfs_defer_finish(&tp, dfops);
2765        if (error) {
2766                xfs_defer_cancel(dfops);
2767                xfs_trans_cancel(tp);
2768                return error;
2769        }
2770
2771        return xfs_trans_commit(tp);
2772}
2773
2774/*
2775 * xfs_cross_rename()
2776 *
2777 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2778 */
2779STATIC int
2780xfs_cross_rename(
2781        struct xfs_trans        *tp,
2782        struct xfs_inode        *dp1,
2783        struct xfs_name         *name1,
2784        struct xfs_inode        *ip1,
2785        struct xfs_inode        *dp2,
2786        struct xfs_name         *name2,
2787        struct xfs_inode        *ip2,
2788        struct xfs_defer_ops    *dfops,
2789        xfs_fsblock_t           *first_block,
2790        int                     spaceres)
2791{
2792        int             error = 0;
2793        int             ip1_flags = 0;
2794        int             ip2_flags = 0;
2795        int             dp2_flags = 0;
2796
2797        /* Swap inode number for dirent in first parent */
2798        error = xfs_dir_replace(tp, dp1, name1,
2799                                ip2->i_ino,
2800                                first_block, dfops, spaceres);
2801        if (error)
2802                goto out_trans_abort;
2803
2804        /* Swap inode number for dirent in second parent */
2805        error = xfs_dir_replace(tp, dp2, name2,
2806                                ip1->i_ino,
2807                                first_block, dfops, spaceres);
2808        if (error)
2809                goto out_trans_abort;
2810
2811        /*
2812         * If we're renaming one or more directories across different parents,
2813         * update the respective ".." entries (and link counts) to match the new
2814         * parents.
2815         */
2816        if (dp1 != dp2) {
2817                dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2818
2819                if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2820                        error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2821                                                dp1->i_ino, first_block,
2822                                                dfops, spaceres);
2823                        if (error)
2824                                goto out_trans_abort;
2825
2826                        /* transfer ip2 ".." reference to dp1 */
2827                        if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2828                                error = xfs_droplink(tp, dp2);
2829                                if (error)
2830                                        goto out_trans_abort;
2831                                error = xfs_bumplink(tp, dp1);
2832                                if (error)
2833                                        goto out_trans_abort;
2834                        }
2835
2836                        /*
2837                         * Although ip1 isn't changed here, userspace needs
2838                         * to be warned about the change, so that applications
2839                         * relying on it (like backup ones), will properly
2840                         * notify the change
2841                         */
2842                        ip1_flags |= XFS_ICHGTIME_CHG;
2843                        ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2844                }
2845
2846                if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2847                        error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2848                                                dp2->i_ino, first_block,
2849                                                dfops, spaceres);
2850                        if (error)
2851                                goto out_trans_abort;
2852
2853                        /* transfer ip1 ".." reference to dp2 */
2854                        if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2855                                error = xfs_droplink(tp, dp1);
2856                                if (error)
2857                                        goto out_trans_abort;
2858                                error = xfs_bumplink(tp, dp2);
2859                                if (error)
2860                                        goto out_trans_abort;
2861                        }
2862
2863                        /*
2864                         * Although ip2 isn't changed here, userspace needs
2865                         * to be warned about the change, so that applications
2866                         * relying on it (like backup ones), will properly
2867                         * notify the change
2868                         */
2869                        ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2870                        ip2_flags |= XFS_ICHGTIME_CHG;
2871                }
2872        }
2873
2874        if (ip1_flags) {
2875                xfs_trans_ichgtime(tp, ip1, ip1_flags);
2876                xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2877        }
2878        if (ip2_flags) {
2879                xfs_trans_ichgtime(tp, ip2, ip2_flags);
2880                xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2881        }
2882        if (dp2_flags) {
2883                xfs_trans_ichgtime(tp, dp2, dp2_flags);
2884                xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2885        }
2886        xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2887        xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2888        return xfs_finish_rename(tp, dfops);
2889
2890out_trans_abort:
2891        xfs_defer_cancel(dfops);
2892        xfs_trans_cancel(tp);
2893        return error;
2894}
2895
2896/*
2897 * xfs_rename_alloc_whiteout()
2898 *
2899 * Return a referenced, unlinked, unlocked inode that that can be used as a
2900 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2901 * crash between allocating the inode and linking it into the rename transaction
2902 * recovery will free the inode and we won't leak it.
2903 */
2904static int
2905xfs_rename_alloc_whiteout(
2906        struct xfs_inode        *dp,
2907        struct xfs_inode        **wip)
2908{
2909        struct xfs_inode        *tmpfile;
2910        int                     error;
2911
2912        error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2913        if (error)
2914                return error;
2915
2916        /*
2917         * Prepare the tmpfile inode as if it were created through the VFS.
2918         * Otherwise, the link increment paths will complain about nlink 0->1.
2919         * Drop the link count as done by d_tmpfile(), complete the inode setup
2920         * and flag it as linkable.
2921         */
2922        drop_nlink(VFS_I(tmpfile));
2923        xfs_setup_iops(tmpfile);
2924        xfs_finish_inode_setup(tmpfile);
2925        VFS_I(tmpfile)->i_state |= I_LINKABLE;
2926
2927        *wip = tmpfile;
2928        return 0;
2929}
2930
2931/*
2932 * xfs_rename
2933 */
2934int
2935xfs_rename(
2936        struct xfs_inode        *src_dp,
2937        struct xfs_name         *src_name,
2938        struct xfs_inode        *src_ip,
2939        struct xfs_inode        *target_dp,
2940        struct xfs_name         *target_name,
2941        struct xfs_inode        *target_ip,
2942        unsigned int            flags)
2943{
2944        struct xfs_mount        *mp = src_dp->i_mount;
2945        struct xfs_trans        *tp;
2946        struct xfs_defer_ops    dfops;
2947        xfs_fsblock_t           first_block;
2948        struct xfs_inode        *wip = NULL;            /* whiteout inode */
2949        struct xfs_inode        *inodes[__XFS_SORT_INODES];
2950        int                     num_inodes = __XFS_SORT_INODES;
2951        bool                    new_parent = (src_dp != target_dp);
2952        bool                    src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2953        int                     spaceres;
2954        int                     error;
2955
2956        trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2957
2958        if ((flags & RENAME_EXCHANGE) && !target_ip)
2959                return -EINVAL;
2960
2961        /*
2962         * If we are doing a whiteout operation, allocate the whiteout inode
2963         * we will be placing at the target and ensure the type is set
2964         * appropriately.
2965         */
2966        if (flags & RENAME_WHITEOUT) {
2967                ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2968                error = xfs_rename_alloc_whiteout(target_dp, &wip);
2969                if (error)
2970                        return error;
2971
2972                /* setup target dirent info as whiteout */
2973                src_name->type = XFS_DIR3_FT_CHRDEV;
2974        }
2975
2976        xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2977                                inodes, &num_inodes);
2978
2979        spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2980        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2981        if (error == -ENOSPC) {
2982                spaceres = 0;
2983                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2984                                &tp);
2985        }
2986        if (error)
2987                goto out_release_wip;
2988
2989        /*
2990         * Attach the dquots to the inodes
2991         */
2992        error = xfs_qm_vop_rename_dqattach(inodes);
2993        if (error)
2994                goto out_trans_cancel;
2995
2996        /*
2997         * Lock all the participating inodes. Depending upon whether
2998         * the target_name exists in the target directory, and
2999         * whether the target directory is the same as the source
3000         * directory, we can lock from 2 to 4 inodes.
3001         */
3002        xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3003
3004        /*
3005         * Join all the inodes to the transaction. From this point on,
3006         * we can rely on either trans_commit or trans_cancel to unlock
3007         * them.
3008         */
3009        xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3010        if (new_parent)
3011                xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3012        xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3013        if (target_ip)
3014                xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3015        if (wip)
3016                xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3017
3018        /*
3019         * If we are using project inheritance, we only allow renames
3020         * into our tree when the project IDs are the same; else the
3021         * tree quota mechanism would be circumvented.
3022         */
3023        if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3024                     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
3025                error = -EXDEV;
3026                goto out_trans_cancel;
3027        }
3028
3029        xfs_defer_init(&dfops, &first_block);
3030        tp->t_agfl_dfops = &dfops;
3031
3032        /* RENAME_EXCHANGE is unique from here on. */
3033        if (flags & RENAME_EXCHANGE)
3034                return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3035                                        target_dp, target_name, target_ip,
3036                                        &dfops, &first_block, spaceres);
3037
3038        /*
3039         * Set up the target.
3040         */
3041        if (target_ip == NULL) {
3042                /*
3043                 * If there's no space reservation, check the entry will
3044                 * fit before actually inserting it.
3045                 */
3046                if (!spaceres) {
3047                        error = xfs_dir_canenter(tp, target_dp, target_name);
3048                        if (error)
3049                                goto out_trans_cancel;
3050                }
3051                /*
3052                 * If target does not exist and the rename crosses
3053                 * directories, adjust the target directory link count
3054                 * to account for the ".." reference from the new entry.
3055                 */
3056                error = xfs_dir_createname(tp, target_dp, target_name,
3057                                                src_ip->i_ino, &first_block,
3058                                                &dfops, spaceres);
3059                if (error)
3060                        goto out_bmap_cancel;
3061
3062                xfs_trans_ichgtime(tp, target_dp,
3063                                        XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3064
3065                if (new_parent && src_is_directory) {
3066                        error = xfs_bumplink(tp, target_dp);
3067                        if (error)
3068                                goto out_bmap_cancel;
3069                }
3070        } else { /* target_ip != NULL */
3071                /*
3072                 * If target exists and it's a directory, check that both
3073                 * target and source are directories and that target can be
3074                 * destroyed, or that neither is a directory.
3075                 */
3076                if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3077                        /*
3078                         * Make sure target dir is empty.
3079                         */
3080                        if (!(xfs_dir_isempty(target_ip)) ||
3081                            (VFS_I(target_ip)->i_nlink > 2)) {
3082                                error = -EEXIST;
3083                                goto out_trans_cancel;
3084                        }
3085                }
3086
3087                /*
3088                 * Link the source inode under the target name.
3089                 * If the source inode is a directory and we are moving
3090                 * it across directories, its ".." entry will be
3091                 * inconsistent until we replace that down below.
3092                 *
3093                 * In case there is already an entry with the same
3094                 * name at the destination directory, remove it first.
3095                 */
3096                error = xfs_dir_replace(tp, target_dp, target_name,
3097                                        src_ip->i_ino,
3098                                        &first_block, &dfops, spaceres);
3099                if (error)
3100                        goto out_bmap_cancel;
3101
3102                xfs_trans_ichgtime(tp, target_dp,
3103                                        XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3104
3105                /*
3106                 * Decrement the link count on the target since the target
3107                 * dir no longer points to it.
3108                 */
3109                error = xfs_droplink(tp, target_ip);
3110                if (error)
3111                        goto out_bmap_cancel;
3112
3113                if (src_is_directory) {
3114                        /*
3115                         * Drop the link from the old "." entry.
3116                         */
3117                        error = xfs_droplink(tp, target_ip);
3118                        if (error)
3119                                goto out_bmap_cancel;
3120                }
3121        } /* target_ip != NULL */
3122
3123        /*
3124         * Remove the source.
3125         */
3126        if (new_parent && src_is_directory) {
3127                /*
3128                 * Rewrite the ".." entry to point to the new
3129                 * directory.
3130                 */
3131                error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3132                                        target_dp->i_ino,
3133                                        &first_block, &dfops, spaceres);
3134                ASSERT(error != -EEXIST);
3135                if (error)
3136                        goto out_bmap_cancel;
3137        }
3138
3139        /*
3140         * We always want to hit the ctime on the source inode.
3141         *
3142         * This isn't strictly required by the standards since the source
3143         * inode isn't really being changed, but old unix file systems did
3144         * it and some incremental backup programs won't work without it.
3145         */
3146        xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3147        xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3148
3149        /*
3150         * Adjust the link count on src_dp.  This is necessary when
3151         * renaming a directory, either within one parent when
3152         * the target existed, or across two parent directories.
3153         */
3154        if (src_is_directory && (new_parent || target_ip != NULL)) {
3155
3156                /*
3157                 * Decrement link count on src_directory since the
3158                 * entry that's moved no longer points to it.
3159                 */
3160                error = xfs_droplink(tp, src_dp);
3161                if (error)
3162                        goto out_bmap_cancel;
3163        }
3164
3165        /*
3166         * For whiteouts, we only need to update the source dirent with the
3167         * inode number of the whiteout inode rather than removing it
3168         * altogether.
3169         */
3170        if (wip) {
3171                error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3172                                        &first_block, &dfops, spaceres);
3173        } else
3174                error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3175                                           &first_block, &dfops, spaceres);
3176        if (error)
3177                goto out_bmap_cancel;
3178
3179        /*
3180         * For whiteouts, we need to bump the link count on the whiteout inode.
3181         * This means that failures all the way up to this point leave the inode
3182         * on the unlinked list and so cleanup is a simple matter of dropping
3183         * the remaining reference to it. If we fail here after bumping the link
3184         * count, we're shutting down the filesystem so we'll never see the
3185         * intermediate state on disk.
3186         */
3187        if (wip) {
3188                ASSERT(VFS_I(wip)->i_nlink == 0);
3189                error = xfs_bumplink(tp, wip);
3190                if (error)
3191                        goto out_bmap_cancel;
3192                error = xfs_iunlink_remove(tp, wip);
3193                if (error)
3194                        goto out_bmap_cancel;
3195                xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3196
3197                /*
3198                 * Now we have a real link, clear the "I'm a tmpfile" state
3199                 * flag from the inode so it doesn't accidentally get misused in
3200                 * future.
3201                 */
3202                VFS_I(wip)->i_state &= ~I_LINKABLE;
3203        }
3204
3205        xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3206        xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3207        if (new_parent)
3208                xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3209
3210        error = xfs_finish_rename(tp, &dfops);
3211        if (wip)
3212                IRELE(wip);
3213        return error;
3214
3215out_bmap_cancel:
3216        xfs_defer_cancel(&dfops);
3217out_trans_cancel:
3218        xfs_trans_cancel(tp);
3219out_release_wip:
3220        if (wip)
3221                IRELE(wip);
3222        return error;
3223}
3224
3225STATIC int
3226xfs_iflush_cluster(
3227        struct xfs_inode        *ip,
3228        struct xfs_buf          *bp)
3229{
3230        struct xfs_mount        *mp = ip->i_mount;
3231        struct xfs_perag        *pag;
3232        unsigned long           first_index, mask;
3233        unsigned long           inodes_per_cluster;
3234        int                     cilist_size;
3235        struct xfs_inode        **cilist;
3236        struct xfs_inode        *cip;
3237        int                     nr_found;
3238        int                     clcount = 0;
3239        int                     i;
3240
3241        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3242
3243        inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3244        cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3245        cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3246        if (!cilist)
3247                goto out_put;
3248
3249        mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3250        first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3251        rcu_read_lock();
3252        /* really need a gang lookup range call here */
3253        nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3254                                        first_index, inodes_per_cluster);
3255        if (nr_found == 0)
3256                goto out_free;
3257
3258        for (i = 0; i < nr_found; i++) {
3259                cip = cilist[i];
3260                if (cip == ip)
3261                        continue;
3262
3263                /*
3264                 * because this is an RCU protected lookup, we could find a
3265                 * recently freed or even reallocated inode during the lookup.
3266                 * We need to check under the i_flags_lock for a valid inode
3267                 * here. Skip it if it is not valid or the wrong inode.
3268                 */
3269                spin_lock(&cip->i_flags_lock);
3270                if (!cip->i_ino ||
3271                    __xfs_iflags_test(cip, XFS_ISTALE)) {
3272                        spin_unlock(&cip->i_flags_lock);
3273                        continue;
3274                }
3275
3276                /*
3277                 * Once we fall off the end of the cluster, no point checking
3278                 * any more inodes in the list because they will also all be
3279                 * outside the cluster.
3280                 */
3281                if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3282                        spin_unlock(&cip->i_flags_lock);
3283                        break;
3284                }
3285                spin_unlock(&cip->i_flags_lock);
3286
3287                /*
3288                 * Do an un-protected check to see if the inode is dirty and
3289                 * is a candidate for flushing.  These checks will be repeated
3290                 * later after the appropriate locks are acquired.
3291                 */
3292                if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3293                        continue;
3294
3295                /*
3296                 * Try to get locks.  If any are unavailable or it is pinned,
3297                 * then this inode cannot be flushed and is skipped.
3298                 */
3299
3300                if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3301                        continue;
3302                if (!xfs_iflock_nowait(cip)) {
3303                        xfs_iunlock(cip, XFS_ILOCK_SHARED);
3304                        continue;
3305                }
3306                if (xfs_ipincount(cip)) {
3307                        xfs_ifunlock(cip);
3308                        xfs_iunlock(cip, XFS_ILOCK_SHARED);
3309                        continue;
3310                }
3311
3312
3313                /*
3314                 * Check the inode number again, just to be certain we are not
3315                 * racing with freeing in xfs_reclaim_inode(). See the comments
3316                 * in that function for more information as to why the initial
3317                 * check is not sufficient.
3318                 */
3319                if (!cip->i_ino) {
3320                        xfs_ifunlock(cip);
3321                        xfs_iunlock(cip, XFS_ILOCK_SHARED);
3322                        continue;
3323                }
3324
3325                /*
3326                 * arriving here means that this inode can be flushed.  First
3327                 * re-check that it's dirty before flushing.
3328                 */
3329                if (!xfs_inode_clean(cip)) {
3330                        int     error;
3331                        error = xfs_iflush_int(cip, bp);
3332                        if (error) {
3333                                xfs_iunlock(cip, XFS_ILOCK_SHARED);
3334                                goto cluster_corrupt_out;
3335                        }
3336                        clcount++;
3337                } else {
3338                        xfs_ifunlock(cip);
3339                }
3340                xfs_iunlock(cip, XFS_ILOCK_SHARED);
3341        }
3342
3343        if (clcount) {
3344                XFS_STATS_INC(mp, xs_icluster_flushcnt);
3345                XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3346        }
3347
3348out_free:
3349        rcu_read_unlock();
3350        kmem_free(cilist);
3351out_put:
3352        xfs_perag_put(pag);
3353        return 0;
3354
3355
3356cluster_corrupt_out:
3357        /*
3358         * Corruption detected in the clustering loop.  Invalidate the
3359         * inode buffer and shut down the filesystem.
3360         */
3361        rcu_read_unlock();
3362        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3363
3364        /*
3365         * We'll always have an inode attached to the buffer for completion
3366         * process by the time we are called from xfs_iflush(). Hence we have
3367         * always need to do IO completion processing to abort the inodes
3368         * attached to the buffer.  handle them just like the shutdown case in
3369         * xfs_buf_submit().
3370         */
3371        ASSERT(bp->b_iodone);
3372        bp->b_flags &= ~XBF_DONE;
3373        xfs_buf_stale(bp);
3374        xfs_buf_ioerror(bp, -EIO);
3375        xfs_buf_ioend(bp);
3376
3377        /* abort the corrupt inode, as it was not attached to the buffer */
3378        xfs_iflush_abort(cip, false);
3379        kmem_free(cilist);
3380        xfs_perag_put(pag);
3381        return -EFSCORRUPTED;
3382}
3383
3384/*
3385 * Flush dirty inode metadata into the backing buffer.
3386 *
3387 * The caller must have the inode lock and the inode flush lock held.  The
3388 * inode lock will still be held upon return to the caller, and the inode
3389 * flush lock will be released after the inode has reached the disk.
3390 *
3391 * The caller must write out the buffer returned in *bpp and release it.
3392 */
3393int
3394xfs_iflush(
3395        struct xfs_inode        *ip,
3396        struct xfs_buf          **bpp)
3397{
3398        struct xfs_mount        *mp = ip->i_mount;
3399        struct xfs_buf          *bp = NULL;
3400        struct xfs_dinode       *dip;
3401        int                     error;
3402
3403        XFS_STATS_INC(mp, xs_iflush_count);
3404
3405        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3406        ASSERT(xfs_isiflocked(ip));
3407        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3408               ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3409
3410        *bpp = NULL;
3411
3412        xfs_iunpin_wait(ip);
3413
3414        /*
3415         * For stale inodes we cannot rely on the backing buffer remaining
3416         * stale in cache for the remaining life of the stale inode and so
3417         * xfs_imap_to_bp() below may give us a buffer that no longer contains
3418         * inodes below. We have to check this after ensuring the inode is
3419         * unpinned so that it is safe to reclaim the stale inode after the
3420         * flush call.
3421         */
3422        if (xfs_iflags_test(ip, XFS_ISTALE)) {
3423                xfs_ifunlock(ip);
3424                return 0;
3425        }
3426
3427        /*
3428         * This may have been unpinned because the filesystem is shutting
3429         * down forcibly. If that's the case we must not write this inode
3430         * to disk, because the log record didn't make it to disk.
3431         *
3432         * We also have to remove the log item from the AIL in this case,
3433         * as we wait for an empty AIL as part of the unmount process.
3434         */
3435        if (XFS_FORCED_SHUTDOWN(mp)) {
3436                error = -EIO;
3437                goto abort_out;
3438        }
3439
3440        /*
3441         * Get the buffer containing the on-disk inode. We are doing a try-lock
3442         * operation here, so we may get  an EAGAIN error. In that case, we
3443         * simply want to return with the inode still dirty.
3444         *
3445         * If we get any other error, we effectively have a corruption situation
3446         * and we cannot flush the inode, so we treat it the same as failing
3447         * xfs_iflush_int().
3448         */
3449        error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3450                               0);
3451        if (error == -EAGAIN) {
3452                xfs_ifunlock(ip);
3453                return error;
3454        }
3455        if (error)
3456                goto corrupt_out;
3457
3458        /*
3459         * First flush out the inode that xfs_iflush was called with.
3460         */
3461        error = xfs_iflush_int(ip, bp);
3462        if (error)
3463                goto corrupt_out;
3464
3465        /*
3466         * If the buffer is pinned then push on the log now so we won't
3467         * get stuck waiting in the write for too long.
3468         */
3469        if (xfs_buf_ispinned(bp))
3470                xfs_log_force(mp, 0);
3471
3472        /*
3473         * inode clustering: try to gather other inodes into this write
3474         *
3475         * Note: Any error during clustering will result in the filesystem
3476         * being shut down and completion callbacks run on the cluster buffer.
3477         * As we have already flushed and attached this inode to the buffer,
3478         * it has already been aborted and released by xfs_iflush_cluster() and
3479         * so we have no further error handling to do here.
3480         */
3481        error = xfs_iflush_cluster(ip, bp);
3482        if (error)
3483                return error;
3484
3485        *bpp = bp;
3486        return 0;
3487
3488corrupt_out:
3489        if (bp)
3490                xfs_buf_relse(bp);
3491        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3492abort_out:
3493        /* abort the corrupt inode, as it was not attached to the buffer */
3494        xfs_iflush_abort(ip, false);
3495        return error;
3496}
3497
3498/*
3499 * If there are inline format data / attr forks attached to this inode,
3500 * make sure they're not corrupt.
3501 */
3502bool
3503xfs_inode_verify_forks(
3504        struct xfs_inode        *ip)
3505{
3506        struct xfs_ifork        *ifp;
3507        xfs_failaddr_t          fa;
3508
3509        fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3510        if (fa) {
3511                ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3512                xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3513                                ifp->if_u1.if_data, ifp->if_bytes, fa);
3514                return false;
3515        }
3516
3517        fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3518        if (fa) {
3519                ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3520                xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3521                                ifp ? ifp->if_u1.if_data : NULL,
3522                                ifp ? ifp->if_bytes : 0, fa);
3523                return false;
3524        }
3525        return true;
3526}
3527
3528STATIC int
3529xfs_iflush_int(
3530        struct xfs_inode        *ip,
3531        struct xfs_buf          *bp)
3532{
3533        struct xfs_inode_log_item *iip = ip->i_itemp;
3534        struct xfs_dinode       *dip;
3535        struct xfs_mount        *mp = ip->i_mount;
3536
3537        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3538        ASSERT(xfs_isiflocked(ip));
3539        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3540               ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3541        ASSERT(iip != NULL && iip->ili_fields != 0);
3542        ASSERT(ip->i_d.di_version > 1);
3543
3544        /* set *dip = inode's place in the buffer */
3545        dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3546
3547        if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3548                               mp, XFS_ERRTAG_IFLUSH_1)) {
3549                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3550                        "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3551                        __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3552                goto corrupt_out;
3553        }
3554        if (S_ISREG(VFS_I(ip)->i_mode)) {
3555                if (XFS_TEST_ERROR(
3556                    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3557                    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3558                    mp, XFS_ERRTAG_IFLUSH_3)) {
3559                        xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3560                                "%s: Bad regular inode %Lu, ptr "PTR_FMT,
3561                                __func__, ip->i_ino, ip);
3562                        goto corrupt_out;
3563                }
3564        } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3565                if (XFS_TEST_ERROR(
3566                    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3567                    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3568                    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3569                    mp, XFS_ERRTAG_IFLUSH_4)) {
3570                        xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3571                                "%s: Bad directory inode %Lu, ptr "PTR_FMT,
3572                                __func__, ip->i_ino, ip);
3573                        goto corrupt_out;
3574                }
3575        }
3576        if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3577                                ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3578                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3579                        "%s: detected corrupt incore inode %Lu, "
3580                        "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3581                        __func__, ip->i_ino,
3582                        ip->i_d.di_nextents + ip->i_d.di_anextents,
3583                        ip->i_d.di_nblocks, ip);
3584                goto corrupt_out;
3585        }
3586        if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3587                                mp, XFS_ERRTAG_IFLUSH_6)) {
3588                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3589                        "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3590                        __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3591                goto corrupt_out;
3592        }
3593
3594        /*
3595         * Inode item log recovery for v2 inodes are dependent on the
3596         * di_flushiter count for correct sequencing. We bump the flush
3597         * iteration count so we can detect flushes which postdate a log record
3598         * during recovery. This is redundant as we now log every change and
3599         * hence this can't happen but we need to still do it to ensure
3600         * backwards compatibility with old kernels that predate logging all
3601         * inode changes.
3602         */
3603        if (ip->i_d.di_version < 3)
3604                ip->i_d.di_flushiter++;
3605
3606        /* Check the inline fork data before we write out. */
3607        if (!xfs_inode_verify_forks(ip))
3608                goto corrupt_out;
3609
3610        /*
3611         * Copy the dirty parts of the inode into the on-disk inode.  We always
3612         * copy out the core of the inode, because if the inode is dirty at all
3613         * the core must be.
3614         */
3615        xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3616
3617        /* Wrap, we never let the log put out DI_MAX_FLUSH */
3618        if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3619                ip->i_d.di_flushiter = 0;
3620
3621        xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3622        if (XFS_IFORK_Q(ip))
3623                xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3624        xfs_inobp_check(mp, bp);
3625
3626        /*
3627         * We've recorded everything logged in the inode, so we'd like to clear
3628         * the ili_fields bits so we don't log and flush things unnecessarily.
3629         * However, we can't stop logging all this information until the data
3630         * we've copied into the disk buffer is written to disk.  If we did we
3631         * might overwrite the copy of the inode in the log with all the data
3632         * after re-logging only part of it, and in the face of a crash we
3633         * wouldn't have all the data we need to recover.
3634         *
3635         * What we do is move the bits to the ili_last_fields field.  When
3636         * logging the inode, these bits are moved back to the ili_fields field.
3637         * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3638         * know that the information those bits represent is permanently on
3639         * disk.  As long as the flush completes before the inode is logged
3640         * again, then both ili_fields and ili_last_fields will be cleared.
3641         *
3642         * We can play with the ili_fields bits here, because the inode lock
3643         * must be held exclusively in order to set bits there and the flush
3644         * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3645         * done routine can tell whether or not to look in the AIL.  Also, store
3646         * the current LSN of the inode so that we can tell whether the item has
3647         * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3648         * need the AIL lock, because it is a 64 bit value that cannot be read
3649         * atomically.
3650         */
3651        iip->ili_last_fields = iip->ili_fields;
3652        iip->ili_fields = 0;
3653        iip->ili_fsync_fields = 0;
3654        iip->ili_logged = 1;
3655
3656        xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3657                                &iip->ili_item.li_lsn);
3658
3659        /*
3660         * Attach the function xfs_iflush_done to the inode's
3661         * buffer.  This will remove the inode from the AIL
3662         * and unlock the inode's flush lock when the inode is
3663         * completely written to disk.
3664         */
3665        xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3666
3667        /* generate the checksum. */
3668        xfs_dinode_calc_crc(mp, dip);
3669
3670        ASSERT(!list_empty(&bp->b_li_list));
3671        ASSERT(bp->b_iodone != NULL);
3672        return 0;
3673
3674corrupt_out:
3675        return -EFSCORRUPTED;
3676}
3677