linux/fs/xfs/xfs_log.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_errortag.h"
  14#include "xfs_error.h"
  15#include "xfs_trans.h"
  16#include "xfs_trans_priv.h"
  17#include "xfs_log.h"
  18#include "xfs_log_priv.h"
  19#include "xfs_log_recover.h"
  20#include "xfs_inode.h"
  21#include "xfs_trace.h"
  22#include "xfs_fsops.h"
  23#include "xfs_cksum.h"
  24#include "xfs_sysfs.h"
  25#include "xfs_sb.h"
  26
  27kmem_zone_t     *xfs_log_ticket_zone;
  28
  29/* Local miscellaneous function prototypes */
  30STATIC int
  31xlog_commit_record(
  32        struct xlog             *log,
  33        struct xlog_ticket      *ticket,
  34        struct xlog_in_core     **iclog,
  35        xfs_lsn_t               *commitlsnp);
  36
  37STATIC struct xlog *
  38xlog_alloc_log(
  39        struct xfs_mount        *mp,
  40        struct xfs_buftarg      *log_target,
  41        xfs_daddr_t             blk_offset,
  42        int                     num_bblks);
  43STATIC int
  44xlog_space_left(
  45        struct xlog             *log,
  46        atomic64_t              *head);
  47STATIC int
  48xlog_sync(
  49        struct xlog             *log,
  50        struct xlog_in_core     *iclog);
  51STATIC void
  52xlog_dealloc_log(
  53        struct xlog             *log);
  54
  55/* local state machine functions */
  56STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
  57STATIC void
  58xlog_state_do_callback(
  59        struct xlog             *log,
  60        int                     aborted,
  61        struct xlog_in_core     *iclog);
  62STATIC int
  63xlog_state_get_iclog_space(
  64        struct xlog             *log,
  65        int                     len,
  66        struct xlog_in_core     **iclog,
  67        struct xlog_ticket      *ticket,
  68        int                     *continued_write,
  69        int                     *logoffsetp);
  70STATIC int
  71xlog_state_release_iclog(
  72        struct xlog             *log,
  73        struct xlog_in_core     *iclog);
  74STATIC void
  75xlog_state_switch_iclogs(
  76        struct xlog             *log,
  77        struct xlog_in_core     *iclog,
  78        int                     eventual_size);
  79STATIC void
  80xlog_state_want_sync(
  81        struct xlog             *log,
  82        struct xlog_in_core     *iclog);
  83
  84STATIC void
  85xlog_grant_push_ail(
  86        struct xlog             *log,
  87        int                     need_bytes);
  88STATIC void
  89xlog_regrant_reserve_log_space(
  90        struct xlog             *log,
  91        struct xlog_ticket      *ticket);
  92STATIC void
  93xlog_ungrant_log_space(
  94        struct xlog             *log,
  95        struct xlog_ticket      *ticket);
  96
  97#if defined(DEBUG)
  98STATIC void
  99xlog_verify_dest_ptr(
 100        struct xlog             *log,
 101        void                    *ptr);
 102STATIC void
 103xlog_verify_grant_tail(
 104        struct xlog *log);
 105STATIC void
 106xlog_verify_iclog(
 107        struct xlog             *log,
 108        struct xlog_in_core     *iclog,
 109        int                     count,
 110        bool                    syncing);
 111STATIC void
 112xlog_verify_tail_lsn(
 113        struct xlog             *log,
 114        struct xlog_in_core     *iclog,
 115        xfs_lsn_t               tail_lsn);
 116#else
 117#define xlog_verify_dest_ptr(a,b)
 118#define xlog_verify_grant_tail(a)
 119#define xlog_verify_iclog(a,b,c,d)
 120#define xlog_verify_tail_lsn(a,b,c)
 121#endif
 122
 123STATIC int
 124xlog_iclogs_empty(
 125        struct xlog             *log);
 126
 127static void
 128xlog_grant_sub_space(
 129        struct xlog             *log,
 130        atomic64_t              *head,
 131        int                     bytes)
 132{
 133        int64_t head_val = atomic64_read(head);
 134        int64_t new, old;
 135
 136        do {
 137                int     cycle, space;
 138
 139                xlog_crack_grant_head_val(head_val, &cycle, &space);
 140
 141                space -= bytes;
 142                if (space < 0) {
 143                        space += log->l_logsize;
 144                        cycle--;
 145                }
 146
 147                old = head_val;
 148                new = xlog_assign_grant_head_val(cycle, space);
 149                head_val = atomic64_cmpxchg(head, old, new);
 150        } while (head_val != old);
 151}
 152
 153static void
 154xlog_grant_add_space(
 155        struct xlog             *log,
 156        atomic64_t              *head,
 157        int                     bytes)
 158{
 159        int64_t head_val = atomic64_read(head);
 160        int64_t new, old;
 161
 162        do {
 163                int             tmp;
 164                int             cycle, space;
 165
 166                xlog_crack_grant_head_val(head_val, &cycle, &space);
 167
 168                tmp = log->l_logsize - space;
 169                if (tmp > bytes)
 170                        space += bytes;
 171                else {
 172                        space = bytes - tmp;
 173                        cycle++;
 174                }
 175
 176                old = head_val;
 177                new = xlog_assign_grant_head_val(cycle, space);
 178                head_val = atomic64_cmpxchg(head, old, new);
 179        } while (head_val != old);
 180}
 181
 182STATIC void
 183xlog_grant_head_init(
 184        struct xlog_grant_head  *head)
 185{
 186        xlog_assign_grant_head(&head->grant, 1, 0);
 187        INIT_LIST_HEAD(&head->waiters);
 188        spin_lock_init(&head->lock);
 189}
 190
 191STATIC void
 192xlog_grant_head_wake_all(
 193        struct xlog_grant_head  *head)
 194{
 195        struct xlog_ticket      *tic;
 196
 197        spin_lock(&head->lock);
 198        list_for_each_entry(tic, &head->waiters, t_queue)
 199                wake_up_process(tic->t_task);
 200        spin_unlock(&head->lock);
 201}
 202
 203static inline int
 204xlog_ticket_reservation(
 205        struct xlog             *log,
 206        struct xlog_grant_head  *head,
 207        struct xlog_ticket      *tic)
 208{
 209        if (head == &log->l_write_head) {
 210                ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 211                return tic->t_unit_res;
 212        } else {
 213                if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 214                        return tic->t_unit_res * tic->t_cnt;
 215                else
 216                        return tic->t_unit_res;
 217        }
 218}
 219
 220STATIC bool
 221xlog_grant_head_wake(
 222        struct xlog             *log,
 223        struct xlog_grant_head  *head,
 224        int                     *free_bytes)
 225{
 226        struct xlog_ticket      *tic;
 227        int                     need_bytes;
 228
 229        list_for_each_entry(tic, &head->waiters, t_queue) {
 230                need_bytes = xlog_ticket_reservation(log, head, tic);
 231                if (*free_bytes < need_bytes)
 232                        return false;
 233
 234                *free_bytes -= need_bytes;
 235                trace_xfs_log_grant_wake_up(log, tic);
 236                wake_up_process(tic->t_task);
 237        }
 238
 239        return true;
 240}
 241
 242STATIC int
 243xlog_grant_head_wait(
 244        struct xlog             *log,
 245        struct xlog_grant_head  *head,
 246        struct xlog_ticket      *tic,
 247        int                     need_bytes) __releases(&head->lock)
 248                                            __acquires(&head->lock)
 249{
 250        list_add_tail(&tic->t_queue, &head->waiters);
 251
 252        do {
 253                if (XLOG_FORCED_SHUTDOWN(log))
 254                        goto shutdown;
 255                xlog_grant_push_ail(log, need_bytes);
 256
 257                __set_current_state(TASK_UNINTERRUPTIBLE);
 258                spin_unlock(&head->lock);
 259
 260                XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 261
 262                trace_xfs_log_grant_sleep(log, tic);
 263                schedule();
 264                trace_xfs_log_grant_wake(log, tic);
 265
 266                spin_lock(&head->lock);
 267                if (XLOG_FORCED_SHUTDOWN(log))
 268                        goto shutdown;
 269        } while (xlog_space_left(log, &head->grant) < need_bytes);
 270
 271        list_del_init(&tic->t_queue);
 272        return 0;
 273shutdown:
 274        list_del_init(&tic->t_queue);
 275        return -EIO;
 276}
 277
 278/*
 279 * Atomically get the log space required for a log ticket.
 280 *
 281 * Once a ticket gets put onto head->waiters, it will only return after the
 282 * needed reservation is satisfied.
 283 *
 284 * This function is structured so that it has a lock free fast path. This is
 285 * necessary because every new transaction reservation will come through this
 286 * path. Hence any lock will be globally hot if we take it unconditionally on
 287 * every pass.
 288 *
 289 * As tickets are only ever moved on and off head->waiters under head->lock, we
 290 * only need to take that lock if we are going to add the ticket to the queue
 291 * and sleep. We can avoid taking the lock if the ticket was never added to
 292 * head->waiters because the t_queue list head will be empty and we hold the
 293 * only reference to it so it can safely be checked unlocked.
 294 */
 295STATIC int
 296xlog_grant_head_check(
 297        struct xlog             *log,
 298        struct xlog_grant_head  *head,
 299        struct xlog_ticket      *tic,
 300        int                     *need_bytes)
 301{
 302        int                     free_bytes;
 303        int                     error = 0;
 304
 305        ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 306
 307        /*
 308         * If there are other waiters on the queue then give them a chance at
 309         * logspace before us.  Wake up the first waiters, if we do not wake
 310         * up all the waiters then go to sleep waiting for more free space,
 311         * otherwise try to get some space for this transaction.
 312         */
 313        *need_bytes = xlog_ticket_reservation(log, head, tic);
 314        free_bytes = xlog_space_left(log, &head->grant);
 315        if (!list_empty_careful(&head->waiters)) {
 316                spin_lock(&head->lock);
 317                if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 318                    free_bytes < *need_bytes) {
 319                        error = xlog_grant_head_wait(log, head, tic,
 320                                                     *need_bytes);
 321                }
 322                spin_unlock(&head->lock);
 323        } else if (free_bytes < *need_bytes) {
 324                spin_lock(&head->lock);
 325                error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 326                spin_unlock(&head->lock);
 327        }
 328
 329        return error;
 330}
 331
 332static void
 333xlog_tic_reset_res(xlog_ticket_t *tic)
 334{
 335        tic->t_res_num = 0;
 336        tic->t_res_arr_sum = 0;
 337        tic->t_res_num_ophdrs = 0;
 338}
 339
 340static void
 341xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 342{
 343        if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 344                /* add to overflow and start again */
 345                tic->t_res_o_flow += tic->t_res_arr_sum;
 346                tic->t_res_num = 0;
 347                tic->t_res_arr_sum = 0;
 348        }
 349
 350        tic->t_res_arr[tic->t_res_num].r_len = len;
 351        tic->t_res_arr[tic->t_res_num].r_type = type;
 352        tic->t_res_arr_sum += len;
 353        tic->t_res_num++;
 354}
 355
 356/*
 357 * Replenish the byte reservation required by moving the grant write head.
 358 */
 359int
 360xfs_log_regrant(
 361        struct xfs_mount        *mp,
 362        struct xlog_ticket      *tic)
 363{
 364        struct xlog             *log = mp->m_log;
 365        int                     need_bytes;
 366        int                     error = 0;
 367
 368        if (XLOG_FORCED_SHUTDOWN(log))
 369                return -EIO;
 370
 371        XFS_STATS_INC(mp, xs_try_logspace);
 372
 373        /*
 374         * This is a new transaction on the ticket, so we need to change the
 375         * transaction ID so that the next transaction has a different TID in
 376         * the log. Just add one to the existing tid so that we can see chains
 377         * of rolling transactions in the log easily.
 378         */
 379        tic->t_tid++;
 380
 381        xlog_grant_push_ail(log, tic->t_unit_res);
 382
 383        tic->t_curr_res = tic->t_unit_res;
 384        xlog_tic_reset_res(tic);
 385
 386        if (tic->t_cnt > 0)
 387                return 0;
 388
 389        trace_xfs_log_regrant(log, tic);
 390
 391        error = xlog_grant_head_check(log, &log->l_write_head, tic,
 392                                      &need_bytes);
 393        if (error)
 394                goto out_error;
 395
 396        xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 397        trace_xfs_log_regrant_exit(log, tic);
 398        xlog_verify_grant_tail(log);
 399        return 0;
 400
 401out_error:
 402        /*
 403         * If we are failing, make sure the ticket doesn't have any current
 404         * reservations.  We don't want to add this back when the ticket/
 405         * transaction gets cancelled.
 406         */
 407        tic->t_curr_res = 0;
 408        tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
 409        return error;
 410}
 411
 412/*
 413 * Reserve log space and return a ticket corresponding the reservation.
 414 *
 415 * Each reservation is going to reserve extra space for a log record header.
 416 * When writes happen to the on-disk log, we don't subtract the length of the
 417 * log record header from any reservation.  By wasting space in each
 418 * reservation, we prevent over allocation problems.
 419 */
 420int
 421xfs_log_reserve(
 422        struct xfs_mount        *mp,
 423        int                     unit_bytes,
 424        int                     cnt,
 425        struct xlog_ticket      **ticp,
 426        uint8_t                 client,
 427        bool                    permanent)
 428{
 429        struct xlog             *log = mp->m_log;
 430        struct xlog_ticket      *tic;
 431        int                     need_bytes;
 432        int                     error = 0;
 433
 434        ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 435
 436        if (XLOG_FORCED_SHUTDOWN(log))
 437                return -EIO;
 438
 439        XFS_STATS_INC(mp, xs_try_logspace);
 440
 441        ASSERT(*ticp == NULL);
 442        tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
 443                                KM_SLEEP | KM_MAYFAIL);
 444        if (!tic)
 445                return -ENOMEM;
 446
 447        *ticp = tic;
 448
 449        xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
 450                                            : tic->t_unit_res);
 451
 452        trace_xfs_log_reserve(log, tic);
 453
 454        error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 455                                      &need_bytes);
 456        if (error)
 457                goto out_error;
 458
 459        xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 460        xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 461        trace_xfs_log_reserve_exit(log, tic);
 462        xlog_verify_grant_tail(log);
 463        return 0;
 464
 465out_error:
 466        /*
 467         * If we are failing, make sure the ticket doesn't have any current
 468         * reservations.  We don't want to add this back when the ticket/
 469         * transaction gets cancelled.
 470         */
 471        tic->t_curr_res = 0;
 472        tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
 473        return error;
 474}
 475
 476
 477/*
 478 * NOTES:
 479 *
 480 *      1. currblock field gets updated at startup and after in-core logs
 481 *              marked as with WANT_SYNC.
 482 */
 483
 484/*
 485 * This routine is called when a user of a log manager ticket is done with
 486 * the reservation.  If the ticket was ever used, then a commit record for
 487 * the associated transaction is written out as a log operation header with
 488 * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
 489 * a given ticket.  If the ticket was one with a permanent reservation, then
 490 * a few operations are done differently.  Permanent reservation tickets by
 491 * default don't release the reservation.  They just commit the current
 492 * transaction with the belief that the reservation is still needed.  A flag
 493 * must be passed in before permanent reservations are actually released.
 494 * When these type of tickets are not released, they need to be set into
 495 * the inited state again.  By doing this, a start record will be written
 496 * out when the next write occurs.
 497 */
 498xfs_lsn_t
 499xfs_log_done(
 500        struct xfs_mount        *mp,
 501        struct xlog_ticket      *ticket,
 502        struct xlog_in_core     **iclog,
 503        bool                    regrant)
 504{
 505        struct xlog             *log = mp->m_log;
 506        xfs_lsn_t               lsn = 0;
 507
 508        if (XLOG_FORCED_SHUTDOWN(log) ||
 509            /*
 510             * If nothing was ever written, don't write out commit record.
 511             * If we get an error, just continue and give back the log ticket.
 512             */
 513            (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
 514             (xlog_commit_record(log, ticket, iclog, &lsn)))) {
 515                lsn = (xfs_lsn_t) -1;
 516                regrant = false;
 517        }
 518
 519
 520        if (!regrant) {
 521                trace_xfs_log_done_nonperm(log, ticket);
 522
 523                /*
 524                 * Release ticket if not permanent reservation or a specific
 525                 * request has been made to release a permanent reservation.
 526                 */
 527                xlog_ungrant_log_space(log, ticket);
 528        } else {
 529                trace_xfs_log_done_perm(log, ticket);
 530
 531                xlog_regrant_reserve_log_space(log, ticket);
 532                /* If this ticket was a permanent reservation and we aren't
 533                 * trying to release it, reset the inited flags; so next time
 534                 * we write, a start record will be written out.
 535                 */
 536                ticket->t_flags |= XLOG_TIC_INITED;
 537        }
 538
 539        xfs_log_ticket_put(ticket);
 540        return lsn;
 541}
 542
 543/*
 544 * Attaches a new iclog I/O completion callback routine during
 545 * transaction commit.  If the log is in error state, a non-zero
 546 * return code is handed back and the caller is responsible for
 547 * executing the callback at an appropriate time.
 548 */
 549int
 550xfs_log_notify(
 551        struct xlog_in_core     *iclog,
 552        xfs_log_callback_t      *cb)
 553{
 554        int     abortflg;
 555
 556        spin_lock(&iclog->ic_callback_lock);
 557        abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
 558        if (!abortflg) {
 559                ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
 560                              (iclog->ic_state == XLOG_STATE_WANT_SYNC));
 561                cb->cb_next = NULL;
 562                *(iclog->ic_callback_tail) = cb;
 563                iclog->ic_callback_tail = &(cb->cb_next);
 564        }
 565        spin_unlock(&iclog->ic_callback_lock);
 566        return abortflg;
 567}
 568
 569int
 570xfs_log_release_iclog(
 571        struct xfs_mount        *mp,
 572        struct xlog_in_core     *iclog)
 573{
 574        if (xlog_state_release_iclog(mp->m_log, iclog)) {
 575                xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
 576                return -EIO;
 577        }
 578
 579        return 0;
 580}
 581
 582/*
 583 * Mount a log filesystem
 584 *
 585 * mp           - ubiquitous xfs mount point structure
 586 * log_target   - buftarg of on-disk log device
 587 * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
 588 * num_bblocks  - Number of BBSIZE blocks in on-disk log
 589 *
 590 * Return error or zero.
 591 */
 592int
 593xfs_log_mount(
 594        xfs_mount_t     *mp,
 595        xfs_buftarg_t   *log_target,
 596        xfs_daddr_t     blk_offset,
 597        int             num_bblks)
 598{
 599        bool            fatal = xfs_sb_version_hascrc(&mp->m_sb);
 600        int             error = 0;
 601        int             min_logfsbs;
 602
 603        if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 604                xfs_notice(mp, "Mounting V%d Filesystem",
 605                           XFS_SB_VERSION_NUM(&mp->m_sb));
 606        } else {
 607                xfs_notice(mp,
 608"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
 609                           XFS_SB_VERSION_NUM(&mp->m_sb));
 610                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 611        }
 612
 613        mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 614        if (IS_ERR(mp->m_log)) {
 615                error = PTR_ERR(mp->m_log);
 616                goto out;
 617        }
 618
 619        /*
 620         * Validate the given log space and drop a critical message via syslog
 621         * if the log size is too small that would lead to some unexpected
 622         * situations in transaction log space reservation stage.
 623         *
 624         * Note: we can't just reject the mount if the validation fails.  This
 625         * would mean that people would have to downgrade their kernel just to
 626         * remedy the situation as there is no way to grow the log (short of
 627         * black magic surgery with xfs_db).
 628         *
 629         * We can, however, reject mounts for CRC format filesystems, as the
 630         * mkfs binary being used to make the filesystem should never create a
 631         * filesystem with a log that is too small.
 632         */
 633        min_logfsbs = xfs_log_calc_minimum_size(mp);
 634
 635        if (mp->m_sb.sb_logblocks < min_logfsbs) {
 636                xfs_warn(mp,
 637                "Log size %d blocks too small, minimum size is %d blocks",
 638                         mp->m_sb.sb_logblocks, min_logfsbs);
 639                error = -EINVAL;
 640        } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
 641                xfs_warn(mp,
 642                "Log size %d blocks too large, maximum size is %lld blocks",
 643                         mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
 644                error = -EINVAL;
 645        } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
 646                xfs_warn(mp,
 647                "log size %lld bytes too large, maximum size is %lld bytes",
 648                         XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
 649                         XFS_MAX_LOG_BYTES);
 650                error = -EINVAL;
 651        } else if (mp->m_sb.sb_logsunit > 1 &&
 652                   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
 653                xfs_warn(mp,
 654                "log stripe unit %u bytes must be a multiple of block size",
 655                         mp->m_sb.sb_logsunit);
 656                error = -EINVAL;
 657                fatal = true;
 658        }
 659        if (error) {
 660                /*
 661                 * Log check errors are always fatal on v5; or whenever bad
 662                 * metadata leads to a crash.
 663                 */
 664                if (fatal) {
 665                        xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 666                        ASSERT(0);
 667                        goto out_free_log;
 668                }
 669                xfs_crit(mp, "Log size out of supported range.");
 670                xfs_crit(mp,
 671"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 672        }
 673
 674        /*
 675         * Initialize the AIL now we have a log.
 676         */
 677        error = xfs_trans_ail_init(mp);
 678        if (error) {
 679                xfs_warn(mp, "AIL initialisation failed: error %d", error);
 680                goto out_free_log;
 681        }
 682        mp->m_log->l_ailp = mp->m_ail;
 683
 684        /*
 685         * skip log recovery on a norecovery mount.  pretend it all
 686         * just worked.
 687         */
 688        if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 689                int     readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 690
 691                if (readonly)
 692                        mp->m_flags &= ~XFS_MOUNT_RDONLY;
 693
 694                error = xlog_recover(mp->m_log);
 695
 696                if (readonly)
 697                        mp->m_flags |= XFS_MOUNT_RDONLY;
 698                if (error) {
 699                        xfs_warn(mp, "log mount/recovery failed: error %d",
 700                                error);
 701                        xlog_recover_cancel(mp->m_log);
 702                        goto out_destroy_ail;
 703                }
 704        }
 705
 706        error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 707                               "log");
 708        if (error)
 709                goto out_destroy_ail;
 710
 711        /* Normal transactions can now occur */
 712        mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 713
 714        /*
 715         * Now the log has been fully initialised and we know were our
 716         * space grant counters are, we can initialise the permanent ticket
 717         * needed for delayed logging to work.
 718         */
 719        xlog_cil_init_post_recovery(mp->m_log);
 720
 721        return 0;
 722
 723out_destroy_ail:
 724        xfs_trans_ail_destroy(mp);
 725out_free_log:
 726        xlog_dealloc_log(mp->m_log);
 727out:
 728        return error;
 729}
 730
 731/*
 732 * Finish the recovery of the file system.  This is separate from the
 733 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 734 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 735 * here.
 736 *
 737 * If we finish recovery successfully, start the background log work. If we are
 738 * not doing recovery, then we have a RO filesystem and we don't need to start
 739 * it.
 740 */
 741int
 742xfs_log_mount_finish(
 743        struct xfs_mount        *mp)
 744{
 745        int     error = 0;
 746        bool    readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 747        bool    recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
 748
 749        if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
 750                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 751                return 0;
 752        } else if (readonly) {
 753                /* Allow unlinked processing to proceed */
 754                mp->m_flags &= ~XFS_MOUNT_RDONLY;
 755        }
 756
 757        /*
 758         * During the second phase of log recovery, we need iget and
 759         * iput to behave like they do for an active filesystem.
 760         * xfs_fs_drop_inode needs to be able to prevent the deletion
 761         * of inodes before we're done replaying log items on those
 762         * inodes.  Turn it off immediately after recovery finishes
 763         * so that we don't leak the quota inodes if subsequent mount
 764         * activities fail.
 765         *
 766         * We let all inodes involved in redo item processing end up on
 767         * the LRU instead of being evicted immediately so that if we do
 768         * something to an unlinked inode, the irele won't cause
 769         * premature truncation and freeing of the inode, which results
 770         * in log recovery failure.  We have to evict the unreferenced
 771         * lru inodes after clearing SB_ACTIVE because we don't
 772         * otherwise clean up the lru if there's a subsequent failure in
 773         * xfs_mountfs, which leads to us leaking the inodes if nothing
 774         * else (e.g. quotacheck) references the inodes before the
 775         * mount failure occurs.
 776         */
 777        mp->m_super->s_flags |= SB_ACTIVE;
 778        error = xlog_recover_finish(mp->m_log);
 779        if (!error)
 780                xfs_log_work_queue(mp);
 781        mp->m_super->s_flags &= ~SB_ACTIVE;
 782        evict_inodes(mp->m_super);
 783
 784        /*
 785         * Drain the buffer LRU after log recovery. This is required for v4
 786         * filesystems to avoid leaving around buffers with NULL verifier ops,
 787         * but we do it unconditionally to make sure we're always in a clean
 788         * cache state after mount.
 789         *
 790         * Don't push in the error case because the AIL may have pending intents
 791         * that aren't removed until recovery is cancelled.
 792         */
 793        if (!error && recovered) {
 794                xfs_log_force(mp, XFS_LOG_SYNC);
 795                xfs_ail_push_all_sync(mp->m_ail);
 796        }
 797        xfs_wait_buftarg(mp->m_ddev_targp);
 798
 799        if (readonly)
 800                mp->m_flags |= XFS_MOUNT_RDONLY;
 801
 802        return error;
 803}
 804
 805/*
 806 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 807 * the log.
 808 */
 809int
 810xfs_log_mount_cancel(
 811        struct xfs_mount        *mp)
 812{
 813        int                     error;
 814
 815        error = xlog_recover_cancel(mp->m_log);
 816        xfs_log_unmount(mp);
 817
 818        return error;
 819}
 820
 821/*
 822 * Final log writes as part of unmount.
 823 *
 824 * Mark the filesystem clean as unmount happens.  Note that during relocation
 825 * this routine needs to be executed as part of source-bag while the
 826 * deallocation must not be done until source-end.
 827 */
 828
 829/*
 830 * Unmount record used to have a string "Unmount filesystem--" in the
 831 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 832 * We just write the magic number now since that particular field isn't
 833 * currently architecture converted and "Unmount" is a bit foo.
 834 * As far as I know, there weren't any dependencies on the old behaviour.
 835 */
 836
 837static int
 838xfs_log_unmount_write(xfs_mount_t *mp)
 839{
 840        struct xlog      *log = mp->m_log;
 841        xlog_in_core_t   *iclog;
 842#ifdef DEBUG
 843        xlog_in_core_t   *first_iclog;
 844#endif
 845        xlog_ticket_t   *tic = NULL;
 846        xfs_lsn_t        lsn;
 847        int              error;
 848
 849        /*
 850         * Don't write out unmount record on norecovery mounts or ro devices.
 851         * Or, if we are doing a forced umount (typically because of IO errors).
 852         */
 853        if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
 854            xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
 855                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 856                return 0;
 857        }
 858
 859        error = xfs_log_force(mp, XFS_LOG_SYNC);
 860        ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
 861
 862#ifdef DEBUG
 863        first_iclog = iclog = log->l_iclog;
 864        do {
 865                if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
 866                        ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
 867                        ASSERT(iclog->ic_offset == 0);
 868                }
 869                iclog = iclog->ic_next;
 870        } while (iclog != first_iclog);
 871#endif
 872        if (! (XLOG_FORCED_SHUTDOWN(log))) {
 873                error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
 874                if (!error) {
 875                        /* the data section must be 32 bit size aligned */
 876                        struct {
 877                            uint16_t magic;
 878                            uint16_t pad1;
 879                            uint32_t pad2; /* may as well make it 64 bits */
 880                        } magic = {
 881                                .magic = XLOG_UNMOUNT_TYPE,
 882                        };
 883                        struct xfs_log_iovec reg = {
 884                                .i_addr = &magic,
 885                                .i_len = sizeof(magic),
 886                                .i_type = XLOG_REG_TYPE_UNMOUNT,
 887                        };
 888                        struct xfs_log_vec vec = {
 889                                .lv_niovecs = 1,
 890                                .lv_iovecp = &reg,
 891                        };
 892
 893                        /* remove inited flag, and account for space used */
 894                        tic->t_flags = 0;
 895                        tic->t_curr_res -= sizeof(magic);
 896                        error = xlog_write(log, &vec, tic, &lsn,
 897                                           NULL, XLOG_UNMOUNT_TRANS);
 898                        /*
 899                         * At this point, we're umounting anyway,
 900                         * so there's no point in transitioning log state
 901                         * to IOERROR. Just continue...
 902                         */
 903                }
 904
 905                if (error)
 906                        xfs_alert(mp, "%s: unmount record failed", __func__);
 907
 908
 909                spin_lock(&log->l_icloglock);
 910                iclog = log->l_iclog;
 911                atomic_inc(&iclog->ic_refcnt);
 912                xlog_state_want_sync(log, iclog);
 913                spin_unlock(&log->l_icloglock);
 914                error = xlog_state_release_iclog(log, iclog);
 915
 916                spin_lock(&log->l_icloglock);
 917                if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
 918                      iclog->ic_state == XLOG_STATE_DIRTY)) {
 919                        if (!XLOG_FORCED_SHUTDOWN(log)) {
 920                                xlog_wait(&iclog->ic_force_wait,
 921                                                        &log->l_icloglock);
 922                        } else {
 923                                spin_unlock(&log->l_icloglock);
 924                        }
 925                } else {
 926                        spin_unlock(&log->l_icloglock);
 927                }
 928                if (tic) {
 929                        trace_xfs_log_umount_write(log, tic);
 930                        xlog_ungrant_log_space(log, tic);
 931                        xfs_log_ticket_put(tic);
 932                }
 933        } else {
 934                /*
 935                 * We're already in forced_shutdown mode, couldn't
 936                 * even attempt to write out the unmount transaction.
 937                 *
 938                 * Go through the motions of sync'ing and releasing
 939                 * the iclog, even though no I/O will actually happen,
 940                 * we need to wait for other log I/Os that may already
 941                 * be in progress.  Do this as a separate section of
 942                 * code so we'll know if we ever get stuck here that
 943                 * we're in this odd situation of trying to unmount
 944                 * a file system that went into forced_shutdown as
 945                 * the result of an unmount..
 946                 */
 947                spin_lock(&log->l_icloglock);
 948                iclog = log->l_iclog;
 949                atomic_inc(&iclog->ic_refcnt);
 950
 951                xlog_state_want_sync(log, iclog);
 952                spin_unlock(&log->l_icloglock);
 953                error =  xlog_state_release_iclog(log, iclog);
 954
 955                spin_lock(&log->l_icloglock);
 956
 957                if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
 958                        || iclog->ic_state == XLOG_STATE_DIRTY
 959                        || iclog->ic_state == XLOG_STATE_IOERROR) ) {
 960
 961                                xlog_wait(&iclog->ic_force_wait,
 962                                                        &log->l_icloglock);
 963                } else {
 964                        spin_unlock(&log->l_icloglock);
 965                }
 966        }
 967
 968        return error;
 969}       /* xfs_log_unmount_write */
 970
 971/*
 972 * Empty the log for unmount/freeze.
 973 *
 974 * To do this, we first need to shut down the background log work so it is not
 975 * trying to cover the log as we clean up. We then need to unpin all objects in
 976 * the log so we can then flush them out. Once they have completed their IO and
 977 * run the callbacks removing themselves from the AIL, we can write the unmount
 978 * record.
 979 */
 980void
 981xfs_log_quiesce(
 982        struct xfs_mount        *mp)
 983{
 984        cancel_delayed_work_sync(&mp->m_log->l_work);
 985        xfs_log_force(mp, XFS_LOG_SYNC);
 986
 987        /*
 988         * The superblock buffer is uncached and while xfs_ail_push_all_sync()
 989         * will push it, xfs_wait_buftarg() will not wait for it. Further,
 990         * xfs_buf_iowait() cannot be used because it was pushed with the
 991         * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
 992         * the IO to complete.
 993         */
 994        xfs_ail_push_all_sync(mp->m_ail);
 995        xfs_wait_buftarg(mp->m_ddev_targp);
 996        xfs_buf_lock(mp->m_sb_bp);
 997        xfs_buf_unlock(mp->m_sb_bp);
 998
 999        xfs_log_unmount_write(mp);
1000}
1001
1002/*
1003 * Shut down and release the AIL and Log.
1004 *
1005 * During unmount, we need to ensure we flush all the dirty metadata objects
1006 * from the AIL so that the log is empty before we write the unmount record to
1007 * the log. Once this is done, we can tear down the AIL and the log.
1008 */
1009void
1010xfs_log_unmount(
1011        struct xfs_mount        *mp)
1012{
1013        xfs_log_quiesce(mp);
1014
1015        xfs_trans_ail_destroy(mp);
1016
1017        xfs_sysfs_del(&mp->m_log->l_kobj);
1018
1019        xlog_dealloc_log(mp->m_log);
1020}
1021
1022void
1023xfs_log_item_init(
1024        struct xfs_mount        *mp,
1025        struct xfs_log_item     *item,
1026        int                     type,
1027        const struct xfs_item_ops *ops)
1028{
1029        item->li_mountp = mp;
1030        item->li_ailp = mp->m_ail;
1031        item->li_type = type;
1032        item->li_ops = ops;
1033        item->li_lv = NULL;
1034
1035        INIT_LIST_HEAD(&item->li_ail);
1036        INIT_LIST_HEAD(&item->li_cil);
1037        INIT_LIST_HEAD(&item->li_bio_list);
1038        INIT_LIST_HEAD(&item->li_trans);
1039}
1040
1041/*
1042 * Wake up processes waiting for log space after we have moved the log tail.
1043 */
1044void
1045xfs_log_space_wake(
1046        struct xfs_mount        *mp)
1047{
1048        struct xlog             *log = mp->m_log;
1049        int                     free_bytes;
1050
1051        if (XLOG_FORCED_SHUTDOWN(log))
1052                return;
1053
1054        if (!list_empty_careful(&log->l_write_head.waiters)) {
1055                ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1056
1057                spin_lock(&log->l_write_head.lock);
1058                free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1059                xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1060                spin_unlock(&log->l_write_head.lock);
1061        }
1062
1063        if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1064                ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1065
1066                spin_lock(&log->l_reserve_head.lock);
1067                free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1068                xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1069                spin_unlock(&log->l_reserve_head.lock);
1070        }
1071}
1072
1073/*
1074 * Determine if we have a transaction that has gone to disk that needs to be
1075 * covered. To begin the transition to the idle state firstly the log needs to
1076 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1077 * we start attempting to cover the log.
1078 *
1079 * Only if we are then in a state where covering is needed, the caller is
1080 * informed that dummy transactions are required to move the log into the idle
1081 * state.
1082 *
1083 * If there are any items in the AIl or CIL, then we do not want to attempt to
1084 * cover the log as we may be in a situation where there isn't log space
1085 * available to run a dummy transaction and this can lead to deadlocks when the
1086 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1087 * there's no point in running a dummy transaction at this point because we
1088 * can't start trying to idle the log until both the CIL and AIL are empty.
1089 */
1090static int
1091xfs_log_need_covered(xfs_mount_t *mp)
1092{
1093        struct xlog     *log = mp->m_log;
1094        int             needed = 0;
1095
1096        if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1097                return 0;
1098
1099        if (!xlog_cil_empty(log))
1100                return 0;
1101
1102        spin_lock(&log->l_icloglock);
1103        switch (log->l_covered_state) {
1104        case XLOG_STATE_COVER_DONE:
1105        case XLOG_STATE_COVER_DONE2:
1106        case XLOG_STATE_COVER_IDLE:
1107                break;
1108        case XLOG_STATE_COVER_NEED:
1109        case XLOG_STATE_COVER_NEED2:
1110                if (xfs_ail_min_lsn(log->l_ailp))
1111                        break;
1112                if (!xlog_iclogs_empty(log))
1113                        break;
1114
1115                needed = 1;
1116                if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1117                        log->l_covered_state = XLOG_STATE_COVER_DONE;
1118                else
1119                        log->l_covered_state = XLOG_STATE_COVER_DONE2;
1120                break;
1121        default:
1122                needed = 1;
1123                break;
1124        }
1125        spin_unlock(&log->l_icloglock);
1126        return needed;
1127}
1128
1129/*
1130 * We may be holding the log iclog lock upon entering this routine.
1131 */
1132xfs_lsn_t
1133xlog_assign_tail_lsn_locked(
1134        struct xfs_mount        *mp)
1135{
1136        struct xlog             *log = mp->m_log;
1137        struct xfs_log_item     *lip;
1138        xfs_lsn_t               tail_lsn;
1139
1140        assert_spin_locked(&mp->m_ail->ail_lock);
1141
1142        /*
1143         * To make sure we always have a valid LSN for the log tail we keep
1144         * track of the last LSN which was committed in log->l_last_sync_lsn,
1145         * and use that when the AIL was empty.
1146         */
1147        lip = xfs_ail_min(mp->m_ail);
1148        if (lip)
1149                tail_lsn = lip->li_lsn;
1150        else
1151                tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1152        trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1153        atomic64_set(&log->l_tail_lsn, tail_lsn);
1154        return tail_lsn;
1155}
1156
1157xfs_lsn_t
1158xlog_assign_tail_lsn(
1159        struct xfs_mount        *mp)
1160{
1161        xfs_lsn_t               tail_lsn;
1162
1163        spin_lock(&mp->m_ail->ail_lock);
1164        tail_lsn = xlog_assign_tail_lsn_locked(mp);
1165        spin_unlock(&mp->m_ail->ail_lock);
1166
1167        return tail_lsn;
1168}
1169
1170/*
1171 * Return the space in the log between the tail and the head.  The head
1172 * is passed in the cycle/bytes formal parms.  In the special case where
1173 * the reserve head has wrapped passed the tail, this calculation is no
1174 * longer valid.  In this case, just return 0 which means there is no space
1175 * in the log.  This works for all places where this function is called
1176 * with the reserve head.  Of course, if the write head were to ever
1177 * wrap the tail, we should blow up.  Rather than catch this case here,
1178 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1179 *
1180 * This code also handles the case where the reservation head is behind
1181 * the tail.  The details of this case are described below, but the end
1182 * result is that we return the size of the log as the amount of space left.
1183 */
1184STATIC int
1185xlog_space_left(
1186        struct xlog     *log,
1187        atomic64_t      *head)
1188{
1189        int             free_bytes;
1190        int             tail_bytes;
1191        int             tail_cycle;
1192        int             head_cycle;
1193        int             head_bytes;
1194
1195        xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1196        xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1197        tail_bytes = BBTOB(tail_bytes);
1198        if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1199                free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1200        else if (tail_cycle + 1 < head_cycle)
1201                return 0;
1202        else if (tail_cycle < head_cycle) {
1203                ASSERT(tail_cycle == (head_cycle - 1));
1204                free_bytes = tail_bytes - head_bytes;
1205        } else {
1206                /*
1207                 * The reservation head is behind the tail.
1208                 * In this case we just want to return the size of the
1209                 * log as the amount of space left.
1210                 */
1211                xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1212                xfs_alert(log->l_mp,
1213                          "  tail_cycle = %d, tail_bytes = %d",
1214                          tail_cycle, tail_bytes);
1215                xfs_alert(log->l_mp,
1216                          "  GH   cycle = %d, GH   bytes = %d",
1217                          head_cycle, head_bytes);
1218                ASSERT(0);
1219                free_bytes = log->l_logsize;
1220        }
1221        return free_bytes;
1222}
1223
1224
1225/*
1226 * Log function which is called when an io completes.
1227 *
1228 * The log manager needs its own routine, in order to control what
1229 * happens with the buffer after the write completes.
1230 */
1231static void
1232xlog_iodone(xfs_buf_t *bp)
1233{
1234        struct xlog_in_core     *iclog = bp->b_log_item;
1235        struct xlog             *l = iclog->ic_log;
1236        int                     aborted = 0;
1237
1238        /*
1239         * Race to shutdown the filesystem if we see an error or the iclog is in
1240         * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1241         * CRC errors into log recovery.
1242         */
1243        if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) ||
1244            iclog->ic_state & XLOG_STATE_IOABORT) {
1245                if (iclog->ic_state & XLOG_STATE_IOABORT)
1246                        iclog->ic_state &= ~XLOG_STATE_IOABORT;
1247
1248                xfs_buf_ioerror_alert(bp, __func__);
1249                xfs_buf_stale(bp);
1250                xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1251                /*
1252                 * This flag will be propagated to the trans-committed
1253                 * callback routines to let them know that the log-commit
1254                 * didn't succeed.
1255                 */
1256                aborted = XFS_LI_ABORTED;
1257        } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1258                aborted = XFS_LI_ABORTED;
1259        }
1260
1261        /* log I/O is always issued ASYNC */
1262        ASSERT(bp->b_flags & XBF_ASYNC);
1263        xlog_state_done_syncing(iclog, aborted);
1264
1265        /*
1266         * drop the buffer lock now that we are done. Nothing references
1267         * the buffer after this, so an unmount waiting on this lock can now
1268         * tear it down safely. As such, it is unsafe to reference the buffer
1269         * (bp) after the unlock as we could race with it being freed.
1270         */
1271        xfs_buf_unlock(bp);
1272}
1273
1274/*
1275 * Return size of each in-core log record buffer.
1276 *
1277 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1278 *
1279 * If the filesystem blocksize is too large, we may need to choose a
1280 * larger size since the directory code currently logs entire blocks.
1281 */
1282
1283STATIC void
1284xlog_get_iclog_buffer_size(
1285        struct xfs_mount        *mp,
1286        struct xlog             *log)
1287{
1288        int size;
1289        int xhdrs;
1290
1291        if (mp->m_logbufs <= 0)
1292                log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1293        else
1294                log->l_iclog_bufs = mp->m_logbufs;
1295
1296        /*
1297         * Buffer size passed in from mount system call.
1298         */
1299        if (mp->m_logbsize > 0) {
1300                size = log->l_iclog_size = mp->m_logbsize;
1301                log->l_iclog_size_log = 0;
1302                while (size != 1) {
1303                        log->l_iclog_size_log++;
1304                        size >>= 1;
1305                }
1306
1307                if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1308                        /* # headers = size / 32k
1309                         * one header holds cycles from 32k of data
1310                         */
1311
1312                        xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1313                        if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1314                                xhdrs++;
1315                        log->l_iclog_hsize = xhdrs << BBSHIFT;
1316                        log->l_iclog_heads = xhdrs;
1317                } else {
1318                        ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1319                        log->l_iclog_hsize = BBSIZE;
1320                        log->l_iclog_heads = 1;
1321                }
1322                goto done;
1323        }
1324
1325        /* All machines use 32kB buffers by default. */
1326        log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1327        log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1328
1329        /* the default log size is 16k or 32k which is one header sector */
1330        log->l_iclog_hsize = BBSIZE;
1331        log->l_iclog_heads = 1;
1332
1333done:
1334        /* are we being asked to make the sizes selected above visible? */
1335        if (mp->m_logbufs == 0)
1336                mp->m_logbufs = log->l_iclog_bufs;
1337        if (mp->m_logbsize == 0)
1338                mp->m_logbsize = log->l_iclog_size;
1339}       /* xlog_get_iclog_buffer_size */
1340
1341
1342void
1343xfs_log_work_queue(
1344        struct xfs_mount        *mp)
1345{
1346        queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1347                                msecs_to_jiffies(xfs_syncd_centisecs * 10));
1348}
1349
1350/*
1351 * Every sync period we need to unpin all items in the AIL and push them to
1352 * disk. If there is nothing dirty, then we might need to cover the log to
1353 * indicate that the filesystem is idle.
1354 */
1355static void
1356xfs_log_worker(
1357        struct work_struct      *work)
1358{
1359        struct xlog             *log = container_of(to_delayed_work(work),
1360                                                struct xlog, l_work);
1361        struct xfs_mount        *mp = log->l_mp;
1362
1363        /* dgc: errors ignored - not fatal and nowhere to report them */
1364        if (xfs_log_need_covered(mp)) {
1365                /*
1366                 * Dump a transaction into the log that contains no real change.
1367                 * This is needed to stamp the current tail LSN into the log
1368                 * during the covering operation.
1369                 *
1370                 * We cannot use an inode here for this - that will push dirty
1371                 * state back up into the VFS and then periodic inode flushing
1372                 * will prevent log covering from making progress. Hence we
1373                 * synchronously log the superblock instead to ensure the
1374                 * superblock is immediately unpinned and can be written back.
1375                 */
1376                xfs_sync_sb(mp, true);
1377        } else
1378                xfs_log_force(mp, 0);
1379
1380        /* start pushing all the metadata that is currently dirty */
1381        xfs_ail_push_all(mp->m_ail);
1382
1383        /* queue us up again */
1384        xfs_log_work_queue(mp);
1385}
1386
1387/*
1388 * This routine initializes some of the log structure for a given mount point.
1389 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1390 * some other stuff may be filled in too.
1391 */
1392STATIC struct xlog *
1393xlog_alloc_log(
1394        struct xfs_mount        *mp,
1395        struct xfs_buftarg      *log_target,
1396        xfs_daddr_t             blk_offset,
1397        int                     num_bblks)
1398{
1399        struct xlog             *log;
1400        xlog_rec_header_t       *head;
1401        xlog_in_core_t          **iclogp;
1402        xlog_in_core_t          *iclog, *prev_iclog=NULL;
1403        xfs_buf_t               *bp;
1404        int                     i;
1405        int                     error = -ENOMEM;
1406        uint                    log2_size = 0;
1407
1408        log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1409        if (!log) {
1410                xfs_warn(mp, "Log allocation failed: No memory!");
1411                goto out;
1412        }
1413
1414        log->l_mp          = mp;
1415        log->l_targ        = log_target;
1416        log->l_logsize     = BBTOB(num_bblks);
1417        log->l_logBBstart  = blk_offset;
1418        log->l_logBBsize   = num_bblks;
1419        log->l_covered_state = XLOG_STATE_COVER_IDLE;
1420        log->l_flags       |= XLOG_ACTIVE_RECOVERY;
1421        INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1422
1423        log->l_prev_block  = -1;
1424        /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1425        xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1426        xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1427        log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1428
1429        xlog_grant_head_init(&log->l_reserve_head);
1430        xlog_grant_head_init(&log->l_write_head);
1431
1432        error = -EFSCORRUPTED;
1433        if (xfs_sb_version_hassector(&mp->m_sb)) {
1434                log2_size = mp->m_sb.sb_logsectlog;
1435                if (log2_size < BBSHIFT) {
1436                        xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1437                                log2_size, BBSHIFT);
1438                        goto out_free_log;
1439                }
1440
1441                log2_size -= BBSHIFT;
1442                if (log2_size > mp->m_sectbb_log) {
1443                        xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1444                                log2_size, mp->m_sectbb_log);
1445                        goto out_free_log;
1446                }
1447
1448                /* for larger sector sizes, must have v2 or external log */
1449                if (log2_size && log->l_logBBstart > 0 &&
1450                            !xfs_sb_version_haslogv2(&mp->m_sb)) {
1451                        xfs_warn(mp,
1452                "log sector size (0x%x) invalid for configuration.",
1453                                log2_size);
1454                        goto out_free_log;
1455                }
1456        }
1457        log->l_sectBBsize = 1 << log2_size;
1458
1459        xlog_get_iclog_buffer_size(mp, log);
1460
1461        /*
1462         * Use a NULL block for the extra log buffer used during splits so that
1463         * it will trigger errors if we ever try to do IO on it without first
1464         * having set it up properly.
1465         */
1466        error = -ENOMEM;
1467        bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1468                           BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1469        if (!bp)
1470                goto out_free_log;
1471
1472        /*
1473         * The iclogbuf buffer locks are held over IO but we are not going to do
1474         * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1475         * when appropriately.
1476         */
1477        ASSERT(xfs_buf_islocked(bp));
1478        xfs_buf_unlock(bp);
1479
1480        /* use high priority wq for log I/O completion */
1481        bp->b_ioend_wq = mp->m_log_workqueue;
1482        bp->b_iodone = xlog_iodone;
1483        log->l_xbuf = bp;
1484
1485        spin_lock_init(&log->l_icloglock);
1486        init_waitqueue_head(&log->l_flush_wait);
1487
1488        iclogp = &log->l_iclog;
1489        /*
1490         * The amount of memory to allocate for the iclog structure is
1491         * rather funky due to the way the structure is defined.  It is
1492         * done this way so that we can use different sizes for machines
1493         * with different amounts of memory.  See the definition of
1494         * xlog_in_core_t in xfs_log_priv.h for details.
1495         */
1496        ASSERT(log->l_iclog_size >= 4096);
1497        for (i=0; i < log->l_iclog_bufs; i++) {
1498                *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1499                if (!*iclogp)
1500                        goto out_free_iclog;
1501
1502                iclog = *iclogp;
1503                iclog->ic_prev = prev_iclog;
1504                prev_iclog = iclog;
1505
1506                bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1507                                          BTOBB(log->l_iclog_size),
1508                                          XBF_NO_IOACCT);
1509                if (!bp)
1510                        goto out_free_iclog;
1511
1512                ASSERT(xfs_buf_islocked(bp));
1513                xfs_buf_unlock(bp);
1514
1515                /* use high priority wq for log I/O completion */
1516                bp->b_ioend_wq = mp->m_log_workqueue;
1517                bp->b_iodone = xlog_iodone;
1518                iclog->ic_bp = bp;
1519                iclog->ic_data = bp->b_addr;
1520#ifdef DEBUG
1521                log->l_iclog_bak[i] = &iclog->ic_header;
1522#endif
1523                head = &iclog->ic_header;
1524                memset(head, 0, sizeof(xlog_rec_header_t));
1525                head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1526                head->h_version = cpu_to_be32(
1527                        xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1528                head->h_size = cpu_to_be32(log->l_iclog_size);
1529                /* new fields */
1530                head->h_fmt = cpu_to_be32(XLOG_FMT);
1531                memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1532
1533                iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1534                iclog->ic_state = XLOG_STATE_ACTIVE;
1535                iclog->ic_log = log;
1536                atomic_set(&iclog->ic_refcnt, 0);
1537                spin_lock_init(&iclog->ic_callback_lock);
1538                iclog->ic_callback_tail = &(iclog->ic_callback);
1539                iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1540
1541                init_waitqueue_head(&iclog->ic_force_wait);
1542                init_waitqueue_head(&iclog->ic_write_wait);
1543
1544                iclogp = &iclog->ic_next;
1545        }
1546        *iclogp = log->l_iclog;                 /* complete ring */
1547        log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1548
1549        error = xlog_cil_init(log);
1550        if (error)
1551                goto out_free_iclog;
1552        return log;
1553
1554out_free_iclog:
1555        for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1556                prev_iclog = iclog->ic_next;
1557                if (iclog->ic_bp)
1558                        xfs_buf_free(iclog->ic_bp);
1559                kmem_free(iclog);
1560        }
1561        spinlock_destroy(&log->l_icloglock);
1562        xfs_buf_free(log->l_xbuf);
1563out_free_log:
1564        kmem_free(log);
1565out:
1566        return ERR_PTR(error);
1567}       /* xlog_alloc_log */
1568
1569
1570/*
1571 * Write out the commit record of a transaction associated with the given
1572 * ticket.  Return the lsn of the commit record.
1573 */
1574STATIC int
1575xlog_commit_record(
1576        struct xlog             *log,
1577        struct xlog_ticket      *ticket,
1578        struct xlog_in_core     **iclog,
1579        xfs_lsn_t               *commitlsnp)
1580{
1581        struct xfs_mount *mp = log->l_mp;
1582        int     error;
1583        struct xfs_log_iovec reg = {
1584                .i_addr = NULL,
1585                .i_len = 0,
1586                .i_type = XLOG_REG_TYPE_COMMIT,
1587        };
1588        struct xfs_log_vec vec = {
1589                .lv_niovecs = 1,
1590                .lv_iovecp = &reg,
1591        };
1592
1593        ASSERT_ALWAYS(iclog);
1594        error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1595                                        XLOG_COMMIT_TRANS);
1596        if (error)
1597                xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1598        return error;
1599}
1600
1601/*
1602 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1603 * log space.  This code pushes on the lsn which would supposedly free up
1604 * the 25% which we want to leave free.  We may need to adopt a policy which
1605 * pushes on an lsn which is further along in the log once we reach the high
1606 * water mark.  In this manner, we would be creating a low water mark.
1607 */
1608STATIC void
1609xlog_grant_push_ail(
1610        struct xlog     *log,
1611        int             need_bytes)
1612{
1613        xfs_lsn_t       threshold_lsn = 0;
1614        xfs_lsn_t       last_sync_lsn;
1615        int             free_blocks;
1616        int             free_bytes;
1617        int             threshold_block;
1618        int             threshold_cycle;
1619        int             free_threshold;
1620
1621        ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1622
1623        free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1624        free_blocks = BTOBBT(free_bytes);
1625
1626        /*
1627         * Set the threshold for the minimum number of free blocks in the
1628         * log to the maximum of what the caller needs, one quarter of the
1629         * log, and 256 blocks.
1630         */
1631        free_threshold = BTOBB(need_bytes);
1632        free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1633        free_threshold = max(free_threshold, 256);
1634        if (free_blocks >= free_threshold)
1635                return;
1636
1637        xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1638                                                &threshold_block);
1639        threshold_block += free_threshold;
1640        if (threshold_block >= log->l_logBBsize) {
1641                threshold_block -= log->l_logBBsize;
1642                threshold_cycle += 1;
1643        }
1644        threshold_lsn = xlog_assign_lsn(threshold_cycle,
1645                                        threshold_block);
1646        /*
1647         * Don't pass in an lsn greater than the lsn of the last
1648         * log record known to be on disk. Use a snapshot of the last sync lsn
1649         * so that it doesn't change between the compare and the set.
1650         */
1651        last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1652        if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1653                threshold_lsn = last_sync_lsn;
1654
1655        /*
1656         * Get the transaction layer to kick the dirty buffers out to
1657         * disk asynchronously. No point in trying to do this if
1658         * the filesystem is shutting down.
1659         */
1660        if (!XLOG_FORCED_SHUTDOWN(log))
1661                xfs_ail_push(log->l_ailp, threshold_lsn);
1662}
1663
1664/*
1665 * Stamp cycle number in every block
1666 */
1667STATIC void
1668xlog_pack_data(
1669        struct xlog             *log,
1670        struct xlog_in_core     *iclog,
1671        int                     roundoff)
1672{
1673        int                     i, j, k;
1674        int                     size = iclog->ic_offset + roundoff;
1675        __be32                  cycle_lsn;
1676        char                    *dp;
1677
1678        cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1679
1680        dp = iclog->ic_datap;
1681        for (i = 0; i < BTOBB(size); i++) {
1682                if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1683                        break;
1684                iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1685                *(__be32 *)dp = cycle_lsn;
1686                dp += BBSIZE;
1687        }
1688
1689        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1690                xlog_in_core_2_t *xhdr = iclog->ic_data;
1691
1692                for ( ; i < BTOBB(size); i++) {
1693                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1694                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1695                        xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1696                        *(__be32 *)dp = cycle_lsn;
1697                        dp += BBSIZE;
1698                }
1699
1700                for (i = 1; i < log->l_iclog_heads; i++)
1701                        xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1702        }
1703}
1704
1705/*
1706 * Calculate the checksum for a log buffer.
1707 *
1708 * This is a little more complicated than it should be because the various
1709 * headers and the actual data are non-contiguous.
1710 */
1711__le32
1712xlog_cksum(
1713        struct xlog             *log,
1714        struct xlog_rec_header  *rhead,
1715        char                    *dp,
1716        int                     size)
1717{
1718        uint32_t                crc;
1719
1720        /* first generate the crc for the record header ... */
1721        crc = xfs_start_cksum_update((char *)rhead,
1722                              sizeof(struct xlog_rec_header),
1723                              offsetof(struct xlog_rec_header, h_crc));
1724
1725        /* ... then for additional cycle data for v2 logs ... */
1726        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1727                union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1728                int             i;
1729                int             xheads;
1730
1731                xheads = size / XLOG_HEADER_CYCLE_SIZE;
1732                if (size % XLOG_HEADER_CYCLE_SIZE)
1733                        xheads++;
1734
1735                for (i = 1; i < xheads; i++) {
1736                        crc = crc32c(crc, &xhdr[i].hic_xheader,
1737                                     sizeof(struct xlog_rec_ext_header));
1738                }
1739        }
1740
1741        /* ... and finally for the payload */
1742        crc = crc32c(crc, dp, size);
1743
1744        return xfs_end_cksum(crc);
1745}
1746
1747/*
1748 * The bdstrat callback function for log bufs. This gives us a central
1749 * place to trap bufs in case we get hit by a log I/O error and need to
1750 * shutdown. Actually, in practice, even when we didn't get a log error,
1751 * we transition the iclogs to IOERROR state *after* flushing all existing
1752 * iclogs to disk. This is because we don't want anymore new transactions to be
1753 * started or completed afterwards.
1754 *
1755 * We lock the iclogbufs here so that we can serialise against IO completion
1756 * during unmount. We might be processing a shutdown triggered during unmount,
1757 * and that can occur asynchronously to the unmount thread, and hence we need to
1758 * ensure that completes before tearing down the iclogbufs. Hence we need to
1759 * hold the buffer lock across the log IO to acheive that.
1760 */
1761STATIC int
1762xlog_bdstrat(
1763        struct xfs_buf          *bp)
1764{
1765        struct xlog_in_core     *iclog = bp->b_log_item;
1766
1767        xfs_buf_lock(bp);
1768        if (iclog->ic_state & XLOG_STATE_IOERROR) {
1769                xfs_buf_ioerror(bp, -EIO);
1770                xfs_buf_stale(bp);
1771                xfs_buf_ioend(bp);
1772                /*
1773                 * It would seem logical to return EIO here, but we rely on
1774                 * the log state machine to propagate I/O errors instead of
1775                 * doing it here. Similarly, IO completion will unlock the
1776                 * buffer, so we don't do it here.
1777                 */
1778                return 0;
1779        }
1780
1781        xfs_buf_submit(bp);
1782        return 0;
1783}
1784
1785/*
1786 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1787 * fashion.  Previously, we should have moved the current iclog
1788 * ptr in the log to point to the next available iclog.  This allows further
1789 * write to continue while this code syncs out an iclog ready to go.
1790 * Before an in-core log can be written out, the data section must be scanned
1791 * to save away the 1st word of each BBSIZE block into the header.  We replace
1792 * it with the current cycle count.  Each BBSIZE block is tagged with the
1793 * cycle count because there in an implicit assumption that drives will
1794 * guarantee that entire 512 byte blocks get written at once.  In other words,
1795 * we can't have part of a 512 byte block written and part not written.  By
1796 * tagging each block, we will know which blocks are valid when recovering
1797 * after an unclean shutdown.
1798 *
1799 * This routine is single threaded on the iclog.  No other thread can be in
1800 * this routine with the same iclog.  Changing contents of iclog can there-
1801 * fore be done without grabbing the state machine lock.  Updating the global
1802 * log will require grabbing the lock though.
1803 *
1804 * The entire log manager uses a logical block numbering scheme.  Only
1805 * log_sync (and then only bwrite()) know about the fact that the log may
1806 * not start with block zero on a given device.  The log block start offset
1807 * is added immediately before calling bwrite().
1808 */
1809
1810STATIC int
1811xlog_sync(
1812        struct xlog             *log,
1813        struct xlog_in_core     *iclog)
1814{
1815        xfs_buf_t       *bp;
1816        int             i;
1817        uint            count;          /* byte count of bwrite */
1818        uint            count_init;     /* initial count before roundup */
1819        int             roundoff;       /* roundoff to BB or stripe */
1820        int             split = 0;      /* split write into two regions */
1821        int             error;
1822        int             v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1823        int             size;
1824
1825        XFS_STATS_INC(log->l_mp, xs_log_writes);
1826        ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1827
1828        /* Add for LR header */
1829        count_init = log->l_iclog_hsize + iclog->ic_offset;
1830
1831        /* Round out the log write size */
1832        if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1833                /* we have a v2 stripe unit to use */
1834                count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1835        } else {
1836                count = BBTOB(BTOBB(count_init));
1837        }
1838        roundoff = count - count_init;
1839        ASSERT(roundoff >= 0);
1840        ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1841                roundoff < log->l_mp->m_sb.sb_logsunit)
1842                || 
1843                (log->l_mp->m_sb.sb_logsunit <= 1 && 
1844                 roundoff < BBTOB(1)));
1845
1846        /* move grant heads by roundoff in sync */
1847        xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1848        xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1849
1850        /* put cycle number in every block */
1851        xlog_pack_data(log, iclog, roundoff); 
1852
1853        /* real byte length */
1854        size = iclog->ic_offset;
1855        if (v2)
1856                size += roundoff;
1857        iclog->ic_header.h_len = cpu_to_be32(size);
1858
1859        bp = iclog->ic_bp;
1860        XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1861
1862        XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1863
1864        /* Do we need to split this write into 2 parts? */
1865        if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1866                char            *dptr;
1867
1868                split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1869                count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1870                iclog->ic_bwritecnt = 2;
1871
1872                /*
1873                 * Bump the cycle numbers at the start of each block in the
1874                 * part of the iclog that ends up in the buffer that gets
1875                 * written to the start of the log.
1876                 *
1877                 * Watch out for the header magic number case, though.
1878                 */
1879                dptr = (char *)&iclog->ic_header + count;
1880                for (i = 0; i < split; i += BBSIZE) {
1881                        uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1882                        if (++cycle == XLOG_HEADER_MAGIC_NUM)
1883                                cycle++;
1884                        *(__be32 *)dptr = cpu_to_be32(cycle);
1885
1886                        dptr += BBSIZE;
1887                }
1888        } else {
1889                iclog->ic_bwritecnt = 1;
1890        }
1891
1892        /* calculcate the checksum */
1893        iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1894                                            iclog->ic_datap, size);
1895        /*
1896         * Intentionally corrupt the log record CRC based on the error injection
1897         * frequency, if defined. This facilitates testing log recovery in the
1898         * event of torn writes. Hence, set the IOABORT state to abort the log
1899         * write on I/O completion and shutdown the fs. The subsequent mount
1900         * detects the bad CRC and attempts to recover.
1901         */
1902        if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1903                iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1904                iclog->ic_state |= XLOG_STATE_IOABORT;
1905                xfs_warn(log->l_mp,
1906        "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1907                         be64_to_cpu(iclog->ic_header.h_lsn));
1908        }
1909
1910        bp->b_io_length = BTOBB(count);
1911        bp->b_log_item = iclog;
1912        bp->b_flags &= ~XBF_FLUSH;
1913        bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1914
1915        /*
1916         * Flush the data device before flushing the log to make sure all meta
1917         * data written back from the AIL actually made it to disk before
1918         * stamping the new log tail LSN into the log buffer.  For an external
1919         * log we need to issue the flush explicitly, and unfortunately
1920         * synchronously here; for an internal log we can simply use the block
1921         * layer state machine for preflushes.
1922         */
1923        if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1924                xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1925        else
1926                bp->b_flags |= XBF_FLUSH;
1927
1928        ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1929        ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1930
1931        xlog_verify_iclog(log, iclog, count, true);
1932
1933        /* account for log which doesn't start at block #0 */
1934        XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1935
1936        /*
1937         * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1938         * is shutting down.
1939         */
1940        error = xlog_bdstrat(bp);
1941        if (error) {
1942                xfs_buf_ioerror_alert(bp, "xlog_sync");
1943                return error;
1944        }
1945        if (split) {
1946                bp = iclog->ic_log->l_xbuf;
1947                XFS_BUF_SET_ADDR(bp, 0);             /* logical 0 */
1948                xfs_buf_associate_memory(bp,
1949                                (char *)&iclog->ic_header + count, split);
1950                bp->b_log_item = iclog;
1951                bp->b_flags &= ~XBF_FLUSH;
1952                bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1953
1954                ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1955                ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1956
1957                /* account for internal log which doesn't start at block #0 */
1958                XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1959                error = xlog_bdstrat(bp);
1960                if (error) {
1961                        xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1962                        return error;
1963                }
1964        }
1965        return 0;
1966}       /* xlog_sync */
1967
1968/*
1969 * Deallocate a log structure
1970 */
1971STATIC void
1972xlog_dealloc_log(
1973        struct xlog     *log)
1974{
1975        xlog_in_core_t  *iclog, *next_iclog;
1976        int             i;
1977
1978        xlog_cil_destroy(log);
1979
1980        /*
1981         * Cycle all the iclogbuf locks to make sure all log IO completion
1982         * is done before we tear down these buffers.
1983         */
1984        iclog = log->l_iclog;
1985        for (i = 0; i < log->l_iclog_bufs; i++) {
1986                xfs_buf_lock(iclog->ic_bp);
1987                xfs_buf_unlock(iclog->ic_bp);
1988                iclog = iclog->ic_next;
1989        }
1990
1991        /*
1992         * Always need to ensure that the extra buffer does not point to memory
1993         * owned by another log buffer before we free it. Also, cycle the lock
1994         * first to ensure we've completed IO on it.
1995         */
1996        xfs_buf_lock(log->l_xbuf);
1997        xfs_buf_unlock(log->l_xbuf);
1998        xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1999        xfs_buf_free(log->l_xbuf);
2000
2001        iclog = log->l_iclog;
2002        for (i = 0; i < log->l_iclog_bufs; i++) {
2003                xfs_buf_free(iclog->ic_bp);
2004                next_iclog = iclog->ic_next;
2005                kmem_free(iclog);
2006                iclog = next_iclog;
2007        }
2008        spinlock_destroy(&log->l_icloglock);
2009
2010        log->l_mp->m_log = NULL;
2011        kmem_free(log);
2012}       /* xlog_dealloc_log */
2013
2014/*
2015 * Update counters atomically now that memcpy is done.
2016 */
2017/* ARGSUSED */
2018static inline void
2019xlog_state_finish_copy(
2020        struct xlog             *log,
2021        struct xlog_in_core     *iclog,
2022        int                     record_cnt,
2023        int                     copy_bytes)
2024{
2025        spin_lock(&log->l_icloglock);
2026
2027        be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2028        iclog->ic_offset += copy_bytes;
2029
2030        spin_unlock(&log->l_icloglock);
2031}       /* xlog_state_finish_copy */
2032
2033
2034
2035
2036/*
2037 * print out info relating to regions written which consume
2038 * the reservation
2039 */
2040void
2041xlog_print_tic_res(
2042        struct xfs_mount        *mp,
2043        struct xlog_ticket      *ticket)
2044{
2045        uint i;
2046        uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2047
2048        /* match with XLOG_REG_TYPE_* in xfs_log.h */
2049#define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2050        static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2051            REG_TYPE_STR(BFORMAT, "bformat"),
2052            REG_TYPE_STR(BCHUNK, "bchunk"),
2053            REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2054            REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2055            REG_TYPE_STR(IFORMAT, "iformat"),
2056            REG_TYPE_STR(ICORE, "icore"),
2057            REG_TYPE_STR(IEXT, "iext"),
2058            REG_TYPE_STR(IBROOT, "ibroot"),
2059            REG_TYPE_STR(ILOCAL, "ilocal"),
2060            REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2061            REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2062            REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2063            REG_TYPE_STR(QFORMAT, "qformat"),
2064            REG_TYPE_STR(DQUOT, "dquot"),
2065            REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2066            REG_TYPE_STR(LRHEADER, "LR header"),
2067            REG_TYPE_STR(UNMOUNT, "unmount"),
2068            REG_TYPE_STR(COMMIT, "commit"),
2069            REG_TYPE_STR(TRANSHDR, "trans header"),
2070            REG_TYPE_STR(ICREATE, "inode create")
2071        };
2072#undef REG_TYPE_STR
2073
2074        xfs_warn(mp, "ticket reservation summary:");
2075        xfs_warn(mp, "  unit res    = %d bytes",
2076                 ticket->t_unit_res);
2077        xfs_warn(mp, "  current res = %d bytes",
2078                 ticket->t_curr_res);
2079        xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2080                 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2081        xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2082                 ticket->t_res_num_ophdrs, ophdr_spc);
2083        xfs_warn(mp, "  ophdr + reg = %u bytes",
2084                 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2085        xfs_warn(mp, "  num regions = %u",
2086                 ticket->t_res_num);
2087
2088        for (i = 0; i < ticket->t_res_num; i++) {
2089                uint r_type = ticket->t_res_arr[i].r_type;
2090                xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2091                            ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2092                            "bad-rtype" : res_type_str[r_type]),
2093                            ticket->t_res_arr[i].r_len);
2094        }
2095}
2096
2097/*
2098 * Print a summary of the transaction.
2099 */
2100void
2101xlog_print_trans(
2102        struct xfs_trans        *tp)
2103{
2104        struct xfs_mount        *mp = tp->t_mountp;
2105        struct xfs_log_item     *lip;
2106
2107        /* dump core transaction and ticket info */
2108        xfs_warn(mp, "transaction summary:");
2109        xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2110        xfs_warn(mp, "  log count = %d", tp->t_log_count);
2111        xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2112
2113        xlog_print_tic_res(mp, tp->t_ticket);
2114
2115        /* dump each log item */
2116        list_for_each_entry(lip, &tp->t_items, li_trans) {
2117                struct xfs_log_vec      *lv = lip->li_lv;
2118                struct xfs_log_iovec    *vec;
2119                int                     i;
2120
2121                xfs_warn(mp, "log item: ");
2122                xfs_warn(mp, "  type    = 0x%x", lip->li_type);
2123                xfs_warn(mp, "  flags   = 0x%lx", lip->li_flags);
2124                if (!lv)
2125                        continue;
2126                xfs_warn(mp, "  niovecs = %d", lv->lv_niovecs);
2127                xfs_warn(mp, "  size    = %d", lv->lv_size);
2128                xfs_warn(mp, "  bytes   = %d", lv->lv_bytes);
2129                xfs_warn(mp, "  buf len = %d", lv->lv_buf_len);
2130
2131                /* dump each iovec for the log item */
2132                vec = lv->lv_iovecp;
2133                for (i = 0; i < lv->lv_niovecs; i++) {
2134                        int dumplen = min(vec->i_len, 32);
2135
2136                        xfs_warn(mp, "  iovec[%d]", i);
2137                        xfs_warn(mp, "    type  = 0x%x", vec->i_type);
2138                        xfs_warn(mp, "    len   = %d", vec->i_len);
2139                        xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2140                        xfs_hex_dump(vec->i_addr, dumplen);
2141
2142                        vec++;
2143                }
2144        }
2145}
2146
2147/*
2148 * Calculate the potential space needed by the log vector.  Each region gets
2149 * its own xlog_op_header_t and may need to be double word aligned.
2150 */
2151static int
2152xlog_write_calc_vec_length(
2153        struct xlog_ticket      *ticket,
2154        struct xfs_log_vec      *log_vector)
2155{
2156        struct xfs_log_vec      *lv;
2157        int                     headers = 0;
2158        int                     len = 0;
2159        int                     i;
2160
2161        /* acct for start rec of xact */
2162        if (ticket->t_flags & XLOG_TIC_INITED)
2163                headers++;
2164
2165        for (lv = log_vector; lv; lv = lv->lv_next) {
2166                /* we don't write ordered log vectors */
2167                if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2168                        continue;
2169
2170                headers += lv->lv_niovecs;
2171
2172                for (i = 0; i < lv->lv_niovecs; i++) {
2173                        struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2174
2175                        len += vecp->i_len;
2176                        xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2177                }
2178        }
2179
2180        ticket->t_res_num_ophdrs += headers;
2181        len += headers * sizeof(struct xlog_op_header);
2182
2183        return len;
2184}
2185
2186/*
2187 * If first write for transaction, insert start record  We can't be trying to
2188 * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2189 */
2190static int
2191xlog_write_start_rec(
2192        struct xlog_op_header   *ophdr,
2193        struct xlog_ticket      *ticket)
2194{
2195        if (!(ticket->t_flags & XLOG_TIC_INITED))
2196                return 0;
2197
2198        ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2199        ophdr->oh_clientid = ticket->t_clientid;
2200        ophdr->oh_len = 0;
2201        ophdr->oh_flags = XLOG_START_TRANS;
2202        ophdr->oh_res2 = 0;
2203
2204        ticket->t_flags &= ~XLOG_TIC_INITED;
2205
2206        return sizeof(struct xlog_op_header);
2207}
2208
2209static xlog_op_header_t *
2210xlog_write_setup_ophdr(
2211        struct xlog             *log,
2212        struct xlog_op_header   *ophdr,
2213        struct xlog_ticket      *ticket,
2214        uint                    flags)
2215{
2216        ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2217        ophdr->oh_clientid = ticket->t_clientid;
2218        ophdr->oh_res2 = 0;
2219
2220        /* are we copying a commit or unmount record? */
2221        ophdr->oh_flags = flags;
2222
2223        /*
2224         * We've seen logs corrupted with bad transaction client ids.  This
2225         * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2226         * and shut down the filesystem.
2227         */
2228        switch (ophdr->oh_clientid)  {
2229        case XFS_TRANSACTION:
2230        case XFS_VOLUME:
2231        case XFS_LOG:
2232                break;
2233        default:
2234                xfs_warn(log->l_mp,
2235                        "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2236                        ophdr->oh_clientid, ticket);
2237                return NULL;
2238        }
2239
2240        return ophdr;
2241}
2242
2243/*
2244 * Set up the parameters of the region copy into the log. This has
2245 * to handle region write split across multiple log buffers - this
2246 * state is kept external to this function so that this code can
2247 * be written in an obvious, self documenting manner.
2248 */
2249static int
2250xlog_write_setup_copy(
2251        struct xlog_ticket      *ticket,
2252        struct xlog_op_header   *ophdr,
2253        int                     space_available,
2254        int                     space_required,
2255        int                     *copy_off,
2256        int                     *copy_len,
2257        int                     *last_was_partial_copy,
2258        int                     *bytes_consumed)
2259{
2260        int                     still_to_copy;
2261
2262        still_to_copy = space_required - *bytes_consumed;
2263        *copy_off = *bytes_consumed;
2264
2265        if (still_to_copy <= space_available) {
2266                /* write of region completes here */
2267                *copy_len = still_to_copy;
2268                ophdr->oh_len = cpu_to_be32(*copy_len);
2269                if (*last_was_partial_copy)
2270                        ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2271                *last_was_partial_copy = 0;
2272                *bytes_consumed = 0;
2273                return 0;
2274        }
2275
2276        /* partial write of region, needs extra log op header reservation */
2277        *copy_len = space_available;
2278        ophdr->oh_len = cpu_to_be32(*copy_len);
2279        ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2280        if (*last_was_partial_copy)
2281                ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2282        *bytes_consumed += *copy_len;
2283        (*last_was_partial_copy)++;
2284
2285        /* account for new log op header */
2286        ticket->t_curr_res -= sizeof(struct xlog_op_header);
2287        ticket->t_res_num_ophdrs++;
2288
2289        return sizeof(struct xlog_op_header);
2290}
2291
2292static int
2293xlog_write_copy_finish(
2294        struct xlog             *log,
2295        struct xlog_in_core     *iclog,
2296        uint                    flags,
2297        int                     *record_cnt,
2298        int                     *data_cnt,
2299        int                     *partial_copy,
2300        int                     *partial_copy_len,
2301        int                     log_offset,
2302        struct xlog_in_core     **commit_iclog)
2303{
2304        if (*partial_copy) {
2305                /*
2306                 * This iclog has already been marked WANT_SYNC by
2307                 * xlog_state_get_iclog_space.
2308                 */
2309                xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2310                *record_cnt = 0;
2311                *data_cnt = 0;
2312                return xlog_state_release_iclog(log, iclog);
2313        }
2314
2315        *partial_copy = 0;
2316        *partial_copy_len = 0;
2317
2318        if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2319                /* no more space in this iclog - push it. */
2320                xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2321                *record_cnt = 0;
2322                *data_cnt = 0;
2323
2324                spin_lock(&log->l_icloglock);
2325                xlog_state_want_sync(log, iclog);
2326                spin_unlock(&log->l_icloglock);
2327
2328                if (!commit_iclog)
2329                        return xlog_state_release_iclog(log, iclog);
2330                ASSERT(flags & XLOG_COMMIT_TRANS);
2331                *commit_iclog = iclog;
2332        }
2333
2334        return 0;
2335}
2336
2337/*
2338 * Write some region out to in-core log
2339 *
2340 * This will be called when writing externally provided regions or when
2341 * writing out a commit record for a given transaction.
2342 *
2343 * General algorithm:
2344 *      1. Find total length of this write.  This may include adding to the
2345 *              lengths passed in.
2346 *      2. Check whether we violate the tickets reservation.
2347 *      3. While writing to this iclog
2348 *          A. Reserve as much space in this iclog as can get
2349 *          B. If this is first write, save away start lsn
2350 *          C. While writing this region:
2351 *              1. If first write of transaction, write start record
2352 *              2. Write log operation header (header per region)
2353 *              3. Find out if we can fit entire region into this iclog
2354 *              4. Potentially, verify destination memcpy ptr
2355 *              5. Memcpy (partial) region
2356 *              6. If partial copy, release iclog; otherwise, continue
2357 *                      copying more regions into current iclog
2358 *      4. Mark want sync bit (in simulation mode)
2359 *      5. Release iclog for potential flush to on-disk log.
2360 *
2361 * ERRORS:
2362 * 1.   Panic if reservation is overrun.  This should never happen since
2363 *      reservation amounts are generated internal to the filesystem.
2364 * NOTES:
2365 * 1. Tickets are single threaded data structures.
2366 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2367 *      syncing routine.  When a single log_write region needs to span
2368 *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2369 *      on all log operation writes which don't contain the end of the
2370 *      region.  The XLOG_END_TRANS bit is used for the in-core log
2371 *      operation which contains the end of the continued log_write region.
2372 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2373 *      we don't really know exactly how much space will be used.  As a result,
2374 *      we don't update ic_offset until the end when we know exactly how many
2375 *      bytes have been written out.
2376 */
2377int
2378xlog_write(
2379        struct xlog             *log,
2380        struct xfs_log_vec      *log_vector,
2381        struct xlog_ticket      *ticket,
2382        xfs_lsn_t               *start_lsn,
2383        struct xlog_in_core     **commit_iclog,
2384        uint                    flags)
2385{
2386        struct xlog_in_core     *iclog = NULL;
2387        struct xfs_log_iovec    *vecp;
2388        struct xfs_log_vec      *lv;
2389        int                     len;
2390        int                     index;
2391        int                     partial_copy = 0;
2392        int                     partial_copy_len = 0;
2393        int                     contwr = 0;
2394        int                     record_cnt = 0;
2395        int                     data_cnt = 0;
2396        int                     error;
2397
2398        *start_lsn = 0;
2399
2400        len = xlog_write_calc_vec_length(ticket, log_vector);
2401
2402        /*
2403         * Region headers and bytes are already accounted for.
2404         * We only need to take into account start records and
2405         * split regions in this function.
2406         */
2407        if (ticket->t_flags & XLOG_TIC_INITED)
2408                ticket->t_curr_res -= sizeof(xlog_op_header_t);
2409
2410        /*
2411         * Commit record headers need to be accounted for. These
2412         * come in as separate writes so are easy to detect.
2413         */
2414        if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2415                ticket->t_curr_res -= sizeof(xlog_op_header_t);
2416
2417        if (ticket->t_curr_res < 0) {
2418                xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2419                     "ctx ticket reservation ran out. Need to up reservation");
2420                xlog_print_tic_res(log->l_mp, ticket);
2421                xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2422        }
2423
2424        index = 0;
2425        lv = log_vector;
2426        vecp = lv->lv_iovecp;
2427        while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2428                void            *ptr;
2429                int             log_offset;
2430
2431                error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2432                                                   &contwr, &log_offset);
2433                if (error)
2434                        return error;
2435
2436                ASSERT(log_offset <= iclog->ic_size - 1);
2437                ptr = iclog->ic_datap + log_offset;
2438
2439                /* start_lsn is the first lsn written to. That's all we need. */
2440                if (!*start_lsn)
2441                        *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2442
2443                /*
2444                 * This loop writes out as many regions as can fit in the amount
2445                 * of space which was allocated by xlog_state_get_iclog_space().
2446                 */
2447                while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2448                        struct xfs_log_iovec    *reg;
2449                        struct xlog_op_header   *ophdr;
2450                        int                     start_rec_copy;
2451                        int                     copy_len;
2452                        int                     copy_off;
2453                        bool                    ordered = false;
2454
2455                        /* ordered log vectors have no regions to write */
2456                        if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2457                                ASSERT(lv->lv_niovecs == 0);
2458                                ordered = true;
2459                                goto next_lv;
2460                        }
2461
2462                        reg = &vecp[index];
2463                        ASSERT(reg->i_len % sizeof(int32_t) == 0);
2464                        ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2465
2466                        start_rec_copy = xlog_write_start_rec(ptr, ticket);
2467                        if (start_rec_copy) {
2468                                record_cnt++;
2469                                xlog_write_adv_cnt(&ptr, &len, &log_offset,
2470                                                   start_rec_copy);
2471                        }
2472
2473                        ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2474                        if (!ophdr)
2475                                return -EIO;
2476
2477                        xlog_write_adv_cnt(&ptr, &len, &log_offset,
2478                                           sizeof(struct xlog_op_header));
2479
2480                        len += xlog_write_setup_copy(ticket, ophdr,
2481                                                     iclog->ic_size-log_offset,
2482                                                     reg->i_len,
2483                                                     &copy_off, &copy_len,
2484                                                     &partial_copy,
2485                                                     &partial_copy_len);
2486                        xlog_verify_dest_ptr(log, ptr);
2487
2488                        /*
2489                         * Copy region.
2490                         *
2491                         * Unmount records just log an opheader, so can have
2492                         * empty payloads with no data region to copy. Hence we
2493                         * only copy the payload if the vector says it has data
2494                         * to copy.
2495                         */
2496                        ASSERT(copy_len >= 0);
2497                        if (copy_len > 0) {
2498                                memcpy(ptr, reg->i_addr + copy_off, copy_len);
2499                                xlog_write_adv_cnt(&ptr, &len, &log_offset,
2500                                                   copy_len);
2501                        }
2502                        copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2503                        record_cnt++;
2504                        data_cnt += contwr ? copy_len : 0;
2505
2506                        error = xlog_write_copy_finish(log, iclog, flags,
2507                                                       &record_cnt, &data_cnt,
2508                                                       &partial_copy,
2509                                                       &partial_copy_len,
2510                                                       log_offset,
2511                                                       commit_iclog);
2512                        if (error)
2513                                return error;
2514
2515                        /*
2516                         * if we had a partial copy, we need to get more iclog
2517                         * space but we don't want to increment the region
2518                         * index because there is still more is this region to
2519                         * write.
2520                         *
2521                         * If we completed writing this region, and we flushed
2522                         * the iclog (indicated by resetting of the record
2523                         * count), then we also need to get more log space. If
2524                         * this was the last record, though, we are done and
2525                         * can just return.
2526                         */
2527                        if (partial_copy)
2528                                break;
2529
2530                        if (++index == lv->lv_niovecs) {
2531next_lv:
2532                                lv = lv->lv_next;
2533                                index = 0;
2534                                if (lv)
2535                                        vecp = lv->lv_iovecp;
2536                        }
2537                        if (record_cnt == 0 && !ordered) {
2538                                if (!lv)
2539                                        return 0;
2540                                break;
2541                        }
2542                }
2543        }
2544
2545        ASSERT(len == 0);
2546
2547        xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2548        if (!commit_iclog)
2549                return xlog_state_release_iclog(log, iclog);
2550
2551        ASSERT(flags & XLOG_COMMIT_TRANS);
2552        *commit_iclog = iclog;
2553        return 0;
2554}
2555
2556
2557/*****************************************************************************
2558 *
2559 *              State Machine functions
2560 *
2561 *****************************************************************************
2562 */
2563
2564/* Clean iclogs starting from the head.  This ordering must be
2565 * maintained, so an iclog doesn't become ACTIVE beyond one that
2566 * is SYNCING.  This is also required to maintain the notion that we use
2567 * a ordered wait queue to hold off would be writers to the log when every
2568 * iclog is trying to sync to disk.
2569 *
2570 * State Change: DIRTY -> ACTIVE
2571 */
2572STATIC void
2573xlog_state_clean_log(
2574        struct xlog *log)
2575{
2576        xlog_in_core_t  *iclog;
2577        int changed = 0;
2578
2579        iclog = log->l_iclog;
2580        do {
2581                if (iclog->ic_state == XLOG_STATE_DIRTY) {
2582                        iclog->ic_state = XLOG_STATE_ACTIVE;
2583                        iclog->ic_offset       = 0;
2584                        ASSERT(iclog->ic_callback == NULL);
2585                        /*
2586                         * If the number of ops in this iclog indicate it just
2587                         * contains the dummy transaction, we can
2588                         * change state into IDLE (the second time around).
2589                         * Otherwise we should change the state into
2590                         * NEED a dummy.
2591                         * We don't need to cover the dummy.
2592                         */
2593                        if (!changed &&
2594                           (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2595                                        XLOG_COVER_OPS)) {
2596                                changed = 1;
2597                        } else {
2598                                /*
2599                                 * We have two dirty iclogs so start over
2600                                 * This could also be num of ops indicates
2601                                 * this is not the dummy going out.
2602                                 */
2603                                changed = 2;
2604                        }
2605                        iclog->ic_header.h_num_logops = 0;
2606                        memset(iclog->ic_header.h_cycle_data, 0,
2607                              sizeof(iclog->ic_header.h_cycle_data));
2608                        iclog->ic_header.h_lsn = 0;
2609                } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2610                        /* do nothing */;
2611                else
2612                        break;  /* stop cleaning */
2613                iclog = iclog->ic_next;
2614        } while (iclog != log->l_iclog);
2615
2616        /* log is locked when we are called */
2617        /*
2618         * Change state for the dummy log recording.
2619         * We usually go to NEED. But we go to NEED2 if the changed indicates
2620         * we are done writing the dummy record.
2621         * If we are done with the second dummy recored (DONE2), then
2622         * we go to IDLE.
2623         */
2624        if (changed) {
2625                switch (log->l_covered_state) {
2626                case XLOG_STATE_COVER_IDLE:
2627                case XLOG_STATE_COVER_NEED:
2628                case XLOG_STATE_COVER_NEED2:
2629                        log->l_covered_state = XLOG_STATE_COVER_NEED;
2630                        break;
2631
2632                case XLOG_STATE_COVER_DONE:
2633                        if (changed == 1)
2634                                log->l_covered_state = XLOG_STATE_COVER_NEED2;
2635                        else
2636                                log->l_covered_state = XLOG_STATE_COVER_NEED;
2637                        break;
2638
2639                case XLOG_STATE_COVER_DONE2:
2640                        if (changed == 1)
2641                                log->l_covered_state = XLOG_STATE_COVER_IDLE;
2642                        else
2643                                log->l_covered_state = XLOG_STATE_COVER_NEED;
2644                        break;
2645
2646                default:
2647                        ASSERT(0);
2648                }
2649        }
2650}       /* xlog_state_clean_log */
2651
2652STATIC xfs_lsn_t
2653xlog_get_lowest_lsn(
2654        struct xlog     *log)
2655{
2656        xlog_in_core_t  *lsn_log;
2657        xfs_lsn_t       lowest_lsn, lsn;
2658
2659        lsn_log = log->l_iclog;
2660        lowest_lsn = 0;
2661        do {
2662            if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2663                lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2664                if ((lsn && !lowest_lsn) ||
2665                    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2666                        lowest_lsn = lsn;
2667                }
2668            }
2669            lsn_log = lsn_log->ic_next;
2670        } while (lsn_log != log->l_iclog);
2671        return lowest_lsn;
2672}
2673
2674
2675STATIC void
2676xlog_state_do_callback(
2677        struct xlog             *log,
2678        int                     aborted,
2679        struct xlog_in_core     *ciclog)
2680{
2681        xlog_in_core_t     *iclog;
2682        xlog_in_core_t     *first_iclog;        /* used to know when we've
2683                                                 * processed all iclogs once */
2684        xfs_log_callback_t *cb, *cb_next;
2685        int                flushcnt = 0;
2686        xfs_lsn_t          lowest_lsn;
2687        int                ioerrors;    /* counter: iclogs with errors */
2688        int                loopdidcallbacks; /* flag: inner loop did callbacks*/
2689        int                funcdidcallbacks; /* flag: function did callbacks */
2690        int                repeats;     /* for issuing console warnings if
2691                                         * looping too many times */
2692        int                wake = 0;
2693
2694        spin_lock(&log->l_icloglock);
2695        first_iclog = iclog = log->l_iclog;
2696        ioerrors = 0;
2697        funcdidcallbacks = 0;
2698        repeats = 0;
2699
2700        do {
2701                /*
2702                 * Scan all iclogs starting with the one pointed to by the
2703                 * log.  Reset this starting point each time the log is
2704                 * unlocked (during callbacks).
2705                 *
2706                 * Keep looping through iclogs until one full pass is made
2707                 * without running any callbacks.
2708                 */
2709                first_iclog = log->l_iclog;
2710                iclog = log->l_iclog;
2711                loopdidcallbacks = 0;
2712                repeats++;
2713
2714                do {
2715
2716                        /* skip all iclogs in the ACTIVE & DIRTY states */
2717                        if (iclog->ic_state &
2718                            (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2719                                iclog = iclog->ic_next;
2720                                continue;
2721                        }
2722
2723                        /*
2724                         * Between marking a filesystem SHUTDOWN and stopping
2725                         * the log, we do flush all iclogs to disk (if there
2726                         * wasn't a log I/O error). So, we do want things to
2727                         * go smoothly in case of just a SHUTDOWN  w/o a
2728                         * LOG_IO_ERROR.
2729                         */
2730                        if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2731                                /*
2732                                 * Can only perform callbacks in order.  Since
2733                                 * this iclog is not in the DONE_SYNC/
2734                                 * DO_CALLBACK state, we skip the rest and
2735                                 * just try to clean up.  If we set our iclog
2736                                 * to DO_CALLBACK, we will not process it when
2737                                 * we retry since a previous iclog is in the
2738                                 * CALLBACK and the state cannot change since
2739                                 * we are holding the l_icloglock.
2740                                 */
2741                                if (!(iclog->ic_state &
2742                                        (XLOG_STATE_DONE_SYNC |
2743                                                 XLOG_STATE_DO_CALLBACK))) {
2744                                        if (ciclog && (ciclog->ic_state ==
2745                                                        XLOG_STATE_DONE_SYNC)) {
2746                                                ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2747                                        }
2748                                        break;
2749                                }
2750                                /*
2751                                 * We now have an iclog that is in either the
2752                                 * DO_CALLBACK or DONE_SYNC states. The other
2753                                 * states (WANT_SYNC, SYNCING, or CALLBACK were
2754                                 * caught by the above if and are going to
2755                                 * clean (i.e. we aren't doing their callbacks)
2756                                 * see the above if.
2757                                 */
2758
2759                                /*
2760                                 * We will do one more check here to see if we
2761                                 * have chased our tail around.
2762                                 */
2763
2764                                lowest_lsn = xlog_get_lowest_lsn(log);
2765                                if (lowest_lsn &&
2766                                    XFS_LSN_CMP(lowest_lsn,
2767                                                be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2768                                        iclog = iclog->ic_next;
2769                                        continue; /* Leave this iclog for
2770                                                   * another thread */
2771                                }
2772
2773                                iclog->ic_state = XLOG_STATE_CALLBACK;
2774
2775
2776                                /*
2777                                 * Completion of a iclog IO does not imply that
2778                                 * a transaction has completed, as transactions
2779                                 * can be large enough to span many iclogs. We
2780                                 * cannot change the tail of the log half way
2781                                 * through a transaction as this may be the only
2782                                 * transaction in the log and moving th etail to
2783                                 * point to the middle of it will prevent
2784                                 * recovery from finding the start of the
2785                                 * transaction. Hence we should only update the
2786                                 * last_sync_lsn if this iclog contains
2787                                 * transaction completion callbacks on it.
2788                                 *
2789                                 * We have to do this before we drop the
2790                                 * icloglock to ensure we are the only one that
2791                                 * can update it.
2792                                 */
2793                                ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2794                                        be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2795                                if (iclog->ic_callback)
2796                                        atomic64_set(&log->l_last_sync_lsn,
2797                                                be64_to_cpu(iclog->ic_header.h_lsn));
2798
2799                        } else
2800                                ioerrors++;
2801
2802                        spin_unlock(&log->l_icloglock);
2803
2804                        /*
2805                         * Keep processing entries in the callback list until
2806                         * we come around and it is empty.  We need to
2807                         * atomically see that the list is empty and change the
2808                         * state to DIRTY so that we don't miss any more
2809                         * callbacks being added.
2810                         */
2811                        spin_lock(&iclog->ic_callback_lock);
2812                        cb = iclog->ic_callback;
2813                        while (cb) {
2814                                iclog->ic_callback_tail = &(iclog->ic_callback);
2815                                iclog->ic_callback = NULL;
2816                                spin_unlock(&iclog->ic_callback_lock);
2817
2818                                /* perform callbacks in the order given */
2819                                for (; cb; cb = cb_next) {
2820                                        cb_next = cb->cb_next;
2821                                        cb->cb_func(cb->cb_arg, aborted);
2822                                }
2823                                spin_lock(&iclog->ic_callback_lock);
2824                                cb = iclog->ic_callback;
2825                        }
2826
2827                        loopdidcallbacks++;
2828                        funcdidcallbacks++;
2829
2830                        spin_lock(&log->l_icloglock);
2831                        ASSERT(iclog->ic_callback == NULL);
2832                        spin_unlock(&iclog->ic_callback_lock);
2833                        if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2834                                iclog->ic_state = XLOG_STATE_DIRTY;
2835
2836                        /*
2837                         * Transition from DIRTY to ACTIVE if applicable.
2838                         * NOP if STATE_IOERROR.
2839                         */
2840                        xlog_state_clean_log(log);
2841
2842                        /* wake up threads waiting in xfs_log_force() */
2843                        wake_up_all(&iclog->ic_force_wait);
2844
2845                        iclog = iclog->ic_next;
2846                } while (first_iclog != iclog);
2847
2848                if (repeats > 5000) {
2849                        flushcnt += repeats;
2850                        repeats = 0;
2851                        xfs_warn(log->l_mp,
2852                                "%s: possible infinite loop (%d iterations)",
2853                                __func__, flushcnt);
2854                }
2855        } while (!ioerrors && loopdidcallbacks);
2856
2857#ifdef DEBUG
2858        /*
2859         * Make one last gasp attempt to see if iclogs are being left in limbo.
2860         * If the above loop finds an iclog earlier than the current iclog and
2861         * in one of the syncing states, the current iclog is put into
2862         * DO_CALLBACK and the callbacks are deferred to the completion of the
2863         * earlier iclog. Walk the iclogs in order and make sure that no iclog
2864         * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2865         * states.
2866         *
2867         * Note that SYNCING|IOABORT is a valid state so we cannot just check
2868         * for ic_state == SYNCING.
2869         */
2870        if (funcdidcallbacks) {
2871                first_iclog = iclog = log->l_iclog;
2872                do {
2873                        ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2874                        /*
2875                         * Terminate the loop if iclogs are found in states
2876                         * which will cause other threads to clean up iclogs.
2877                         *
2878                         * SYNCING - i/o completion will go through logs
2879                         * DONE_SYNC - interrupt thread should be waiting for
2880                         *              l_icloglock
2881                         * IOERROR - give up hope all ye who enter here
2882                         */
2883                        if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2884                            iclog->ic_state & XLOG_STATE_SYNCING ||
2885                            iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2886                            iclog->ic_state == XLOG_STATE_IOERROR )
2887                                break;
2888                        iclog = iclog->ic_next;
2889                } while (first_iclog != iclog);
2890        }
2891#endif
2892
2893        if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2894                wake = 1;
2895        spin_unlock(&log->l_icloglock);
2896
2897        if (wake)
2898                wake_up_all(&log->l_flush_wait);
2899}
2900
2901
2902/*
2903 * Finish transitioning this iclog to the dirty state.
2904 *
2905 * Make sure that we completely execute this routine only when this is
2906 * the last call to the iclog.  There is a good chance that iclog flushes,
2907 * when we reach the end of the physical log, get turned into 2 separate
2908 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2909 * routine.  By using the reference count bwritecnt, we guarantee that only
2910 * the second completion goes through.
2911 *
2912 * Callbacks could take time, so they are done outside the scope of the
2913 * global state machine log lock.
2914 */
2915STATIC void
2916xlog_state_done_syncing(
2917        xlog_in_core_t  *iclog,
2918        int             aborted)
2919{
2920        struct xlog        *log = iclog->ic_log;
2921
2922        spin_lock(&log->l_icloglock);
2923
2924        ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2925               iclog->ic_state == XLOG_STATE_IOERROR);
2926        ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2927        ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2928
2929
2930        /*
2931         * If we got an error, either on the first buffer, or in the case of
2932         * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2933         * and none should ever be attempted to be written to disk
2934         * again.
2935         */
2936        if (iclog->ic_state != XLOG_STATE_IOERROR) {
2937                if (--iclog->ic_bwritecnt == 1) {
2938                        spin_unlock(&log->l_icloglock);
2939                        return;
2940                }
2941                iclog->ic_state = XLOG_STATE_DONE_SYNC;
2942        }
2943
2944        /*
2945         * Someone could be sleeping prior to writing out the next
2946         * iclog buffer, we wake them all, one will get to do the
2947         * I/O, the others get to wait for the result.
2948         */
2949        wake_up_all(&iclog->ic_write_wait);
2950        spin_unlock(&log->l_icloglock);
2951        xlog_state_do_callback(log, aborted, iclog);    /* also cleans log */
2952}       /* xlog_state_done_syncing */
2953
2954
2955/*
2956 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2957 * sleep.  We wait on the flush queue on the head iclog as that should be
2958 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2959 * we will wait here and all new writes will sleep until a sync completes.
2960 *
2961 * The in-core logs are used in a circular fashion. They are not used
2962 * out-of-order even when an iclog past the head is free.
2963 *
2964 * return:
2965 *      * log_offset where xlog_write() can start writing into the in-core
2966 *              log's data space.
2967 *      * in-core log pointer to which xlog_write() should write.
2968 *      * boolean indicating this is a continued write to an in-core log.
2969 *              If this is the last write, then the in-core log's offset field
2970 *              needs to be incremented, depending on the amount of data which
2971 *              is copied.
2972 */
2973STATIC int
2974xlog_state_get_iclog_space(
2975        struct xlog             *log,
2976        int                     len,
2977        struct xlog_in_core     **iclogp,
2978        struct xlog_ticket      *ticket,
2979        int                     *continued_write,
2980        int                     *logoffsetp)
2981{
2982        int               log_offset;
2983        xlog_rec_header_t *head;
2984        xlog_in_core_t    *iclog;
2985        int               error;
2986
2987restart:
2988        spin_lock(&log->l_icloglock);
2989        if (XLOG_FORCED_SHUTDOWN(log)) {
2990                spin_unlock(&log->l_icloglock);
2991                return -EIO;
2992        }
2993
2994        iclog = log->l_iclog;
2995        if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2996                XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2997
2998                /* Wait for log writes to have flushed */
2999                xlog_wait(&log->l_flush_wait, &log->l_icloglock);
3000                goto restart;
3001        }
3002
3003        head = &iclog->ic_header;
3004
3005        atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
3006        log_offset = iclog->ic_offset;
3007
3008        /* On the 1st write to an iclog, figure out lsn.  This works
3009         * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3010         * committing to.  If the offset is set, that's how many blocks
3011         * must be written.
3012         */
3013        if (log_offset == 0) {
3014                ticket->t_curr_res -= log->l_iclog_hsize;
3015                xlog_tic_add_region(ticket,
3016                                    log->l_iclog_hsize,
3017                                    XLOG_REG_TYPE_LRHEADER);
3018                head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3019                head->h_lsn = cpu_to_be64(
3020                        xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3021                ASSERT(log->l_curr_block >= 0);
3022        }
3023
3024        /* If there is enough room to write everything, then do it.  Otherwise,
3025         * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3026         * bit is on, so this will get flushed out.  Don't update ic_offset
3027         * until you know exactly how many bytes get copied.  Therefore, wait
3028         * until later to update ic_offset.
3029         *
3030         * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3031         * can fit into remaining data section.
3032         */
3033        if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3034                xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3035
3036                /*
3037                 * If I'm the only one writing to this iclog, sync it to disk.
3038                 * We need to do an atomic compare and decrement here to avoid
3039                 * racing with concurrent atomic_dec_and_lock() calls in
3040                 * xlog_state_release_iclog() when there is more than one
3041                 * reference to the iclog.
3042                 */
3043                if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3044                        /* we are the only one */
3045                        spin_unlock(&log->l_icloglock);
3046                        error = xlog_state_release_iclog(log, iclog);
3047                        if (error)
3048                                return error;
3049                } else {
3050                        spin_unlock(&log->l_icloglock);
3051                }
3052                goto restart;
3053        }
3054
3055        /* Do we have enough room to write the full amount in the remainder
3056         * of this iclog?  Or must we continue a write on the next iclog and
3057         * mark this iclog as completely taken?  In the case where we switch
3058         * iclogs (to mark it taken), this particular iclog will release/sync
3059         * to disk in xlog_write().
3060         */
3061        if (len <= iclog->ic_size - iclog->ic_offset) {
3062                *continued_write = 0;
3063                iclog->ic_offset += len;
3064        } else {
3065                *continued_write = 1;
3066                xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3067        }
3068        *iclogp = iclog;
3069
3070        ASSERT(iclog->ic_offset <= iclog->ic_size);
3071        spin_unlock(&log->l_icloglock);
3072
3073        *logoffsetp = log_offset;
3074        return 0;
3075}       /* xlog_state_get_iclog_space */
3076
3077/* The first cnt-1 times through here we don't need to
3078 * move the grant write head because the permanent
3079 * reservation has reserved cnt times the unit amount.
3080 * Release part of current permanent unit reservation and
3081 * reset current reservation to be one units worth.  Also
3082 * move grant reservation head forward.
3083 */
3084STATIC void
3085xlog_regrant_reserve_log_space(
3086        struct xlog             *log,
3087        struct xlog_ticket      *ticket)
3088{
3089        trace_xfs_log_regrant_reserve_enter(log, ticket);
3090
3091        if (ticket->t_cnt > 0)
3092                ticket->t_cnt--;
3093
3094        xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3095                                        ticket->t_curr_res);
3096        xlog_grant_sub_space(log, &log->l_write_head.grant,
3097                                        ticket->t_curr_res);
3098        ticket->t_curr_res = ticket->t_unit_res;
3099        xlog_tic_reset_res(ticket);
3100
3101        trace_xfs_log_regrant_reserve_sub(log, ticket);
3102
3103        /* just return if we still have some of the pre-reserved space */
3104        if (ticket->t_cnt > 0)
3105                return;
3106
3107        xlog_grant_add_space(log, &log->l_reserve_head.grant,
3108                                        ticket->t_unit_res);
3109
3110        trace_xfs_log_regrant_reserve_exit(log, ticket);
3111
3112        ticket->t_curr_res = ticket->t_unit_res;
3113        xlog_tic_reset_res(ticket);
3114}       /* xlog_regrant_reserve_log_space */
3115
3116
3117/*
3118 * Give back the space left from a reservation.
3119 *
3120 * All the information we need to make a correct determination of space left
3121 * is present.  For non-permanent reservations, things are quite easy.  The
3122 * count should have been decremented to zero.  We only need to deal with the
3123 * space remaining in the current reservation part of the ticket.  If the
3124 * ticket contains a permanent reservation, there may be left over space which
3125 * needs to be released.  A count of N means that N-1 refills of the current
3126 * reservation can be done before we need to ask for more space.  The first
3127 * one goes to fill up the first current reservation.  Once we run out of
3128 * space, the count will stay at zero and the only space remaining will be
3129 * in the current reservation field.
3130 */
3131STATIC void
3132xlog_ungrant_log_space(
3133        struct xlog             *log,
3134        struct xlog_ticket      *ticket)
3135{
3136        int     bytes;
3137
3138        if (ticket->t_cnt > 0)
3139                ticket->t_cnt--;
3140
3141        trace_xfs_log_ungrant_enter(log, ticket);
3142        trace_xfs_log_ungrant_sub(log, ticket);
3143
3144        /*
3145         * If this is a permanent reservation ticket, we may be able to free
3146         * up more space based on the remaining count.
3147         */
3148        bytes = ticket->t_curr_res;
3149        if (ticket->t_cnt > 0) {
3150                ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3151                bytes += ticket->t_unit_res*ticket->t_cnt;
3152        }
3153
3154        xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3155        xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3156
3157        trace_xfs_log_ungrant_exit(log, ticket);
3158
3159        xfs_log_space_wake(log->l_mp);
3160}
3161
3162/*
3163 * Flush iclog to disk if this is the last reference to the given iclog and
3164 * the WANT_SYNC bit is set.
3165 *
3166 * When this function is entered, the iclog is not necessarily in the
3167 * WANT_SYNC state.  It may be sitting around waiting to get filled.
3168 *
3169 *
3170 */
3171STATIC int
3172xlog_state_release_iclog(
3173        struct xlog             *log,
3174        struct xlog_in_core     *iclog)
3175{
3176        int             sync = 0;       /* do we sync? */
3177
3178        if (iclog->ic_state & XLOG_STATE_IOERROR)
3179                return -EIO;
3180
3181        ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3182        if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3183                return 0;
3184
3185        if (iclog->ic_state & XLOG_STATE_IOERROR) {
3186                spin_unlock(&log->l_icloglock);
3187                return -EIO;
3188        }
3189        ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3190               iclog->ic_state == XLOG_STATE_WANT_SYNC);
3191
3192        if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3193                /* update tail before writing to iclog */
3194                xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3195                sync++;
3196                iclog->ic_state = XLOG_STATE_SYNCING;
3197                iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3198                xlog_verify_tail_lsn(log, iclog, tail_lsn);
3199                /* cycle incremented when incrementing curr_block */
3200        }
3201        spin_unlock(&log->l_icloglock);
3202
3203        /*
3204         * We let the log lock go, so it's possible that we hit a log I/O
3205         * error or some other SHUTDOWN condition that marks the iclog
3206         * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3207         * this iclog has consistent data, so we ignore IOERROR
3208         * flags after this point.
3209         */
3210        if (sync)
3211                return xlog_sync(log, iclog);
3212        return 0;
3213}       /* xlog_state_release_iclog */
3214
3215
3216/*
3217 * This routine will mark the current iclog in the ring as WANT_SYNC
3218 * and move the current iclog pointer to the next iclog in the ring.
3219 * When this routine is called from xlog_state_get_iclog_space(), the
3220 * exact size of the iclog has not yet been determined.  All we know is
3221 * that every data block.  We have run out of space in this log record.
3222 */
3223STATIC void
3224xlog_state_switch_iclogs(
3225        struct xlog             *log,
3226        struct xlog_in_core     *iclog,
3227        int                     eventual_size)
3228{
3229        ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3230        if (!eventual_size)
3231                eventual_size = iclog->ic_offset;
3232        iclog->ic_state = XLOG_STATE_WANT_SYNC;
3233        iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3234        log->l_prev_block = log->l_curr_block;
3235        log->l_prev_cycle = log->l_curr_cycle;
3236
3237        /* roll log?: ic_offset changed later */
3238        log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3239
3240        /* Round up to next log-sunit */
3241        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3242            log->l_mp->m_sb.sb_logsunit > 1) {
3243                uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3244                log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3245        }
3246
3247        if (log->l_curr_block >= log->l_logBBsize) {
3248                /*
3249                 * Rewind the current block before the cycle is bumped to make
3250                 * sure that the combined LSN never transiently moves forward
3251                 * when the log wraps to the next cycle. This is to support the
3252                 * unlocked sample of these fields from xlog_valid_lsn(). Most
3253                 * other cases should acquire l_icloglock.
3254                 */
3255                log->l_curr_block -= log->l_logBBsize;
3256                ASSERT(log->l_curr_block >= 0);
3257                smp_wmb();
3258                log->l_curr_cycle++;
3259                if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3260                        log->l_curr_cycle++;
3261        }
3262        ASSERT(iclog == log->l_iclog);
3263        log->l_iclog = iclog->ic_next;
3264}       /* xlog_state_switch_iclogs */
3265
3266/*
3267 * Write out all data in the in-core log as of this exact moment in time.
3268 *
3269 * Data may be written to the in-core log during this call.  However,
3270 * we don't guarantee this data will be written out.  A change from past
3271 * implementation means this routine will *not* write out zero length LRs.
3272 *
3273 * Basically, we try and perform an intelligent scan of the in-core logs.
3274 * If we determine there is no flushable data, we just return.  There is no
3275 * flushable data if:
3276 *
3277 *      1. the current iclog is active and has no data; the previous iclog
3278 *              is in the active or dirty state.
3279 *      2. the current iclog is drity, and the previous iclog is in the
3280 *              active or dirty state.
3281 *
3282 * We may sleep if:
3283 *
3284 *      1. the current iclog is not in the active nor dirty state.
3285 *      2. the current iclog dirty, and the previous iclog is not in the
3286 *              active nor dirty state.
3287 *      3. the current iclog is active, and there is another thread writing
3288 *              to this particular iclog.
3289 *      4. a) the current iclog is active and has no other writers
3290 *         b) when we return from flushing out this iclog, it is still
3291 *              not in the active nor dirty state.
3292 */
3293int
3294xfs_log_force(
3295        struct xfs_mount        *mp,
3296        uint                    flags)
3297{
3298        struct xlog             *log = mp->m_log;
3299        struct xlog_in_core     *iclog;
3300        xfs_lsn_t               lsn;
3301
3302        XFS_STATS_INC(mp, xs_log_force);
3303        trace_xfs_log_force(mp, 0, _RET_IP_);
3304
3305        xlog_cil_force(log);
3306
3307        spin_lock(&log->l_icloglock);
3308        iclog = log->l_iclog;
3309        if (iclog->ic_state & XLOG_STATE_IOERROR)
3310                goto out_error;
3311
3312        if (iclog->ic_state == XLOG_STATE_DIRTY ||
3313            (iclog->ic_state == XLOG_STATE_ACTIVE &&
3314             atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3315                /*
3316                 * If the head is dirty or (active and empty), then we need to
3317                 * look at the previous iclog.
3318                 *
3319                 * If the previous iclog is active or dirty we are done.  There
3320                 * is nothing to sync out. Otherwise, we attach ourselves to the
3321                 * previous iclog and go to sleep.
3322                 */
3323                iclog = iclog->ic_prev;
3324                if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3325                    iclog->ic_state == XLOG_STATE_DIRTY)
3326                        goto out_unlock;
3327        } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3328                if (atomic_read(&iclog->ic_refcnt) == 0) {
3329                        /*
3330                         * We are the only one with access to this iclog.
3331                         *
3332                         * Flush it out now.  There should be a roundoff of zero
3333                         * to show that someone has already taken care of the
3334                         * roundoff from the previous sync.
3335                         */
3336                        atomic_inc(&iclog->ic_refcnt);
3337                        lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3338                        xlog_state_switch_iclogs(log, iclog, 0);
3339                        spin_unlock(&log->l_icloglock);
3340
3341                        if (xlog_state_release_iclog(log, iclog))
3342                                return -EIO;
3343
3344                        spin_lock(&log->l_icloglock);
3345                        if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
3346                            iclog->ic_state == XLOG_STATE_DIRTY)
3347                                goto out_unlock;
3348                } else {
3349                        /*
3350                         * Someone else is writing to this iclog.
3351                         *
3352                         * Use its call to flush out the data.  However, the
3353                         * other thread may not force out this LR, so we mark
3354                         * it WANT_SYNC.
3355                         */
3356                        xlog_state_switch_iclogs(log, iclog, 0);
3357                }
3358        } else {
3359                /*
3360                 * If the head iclog is not active nor dirty, we just attach
3361                 * ourselves to the head and go to sleep if necessary.
3362                 */
3363                ;
3364        }
3365
3366        if (!(flags & XFS_LOG_SYNC))
3367                goto out_unlock;
3368
3369        if (iclog->ic_state & XLOG_STATE_IOERROR)
3370                goto out_error;
3371        XFS_STATS_INC(mp, xs_log_force_sleep);
3372        xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3373        if (iclog->ic_state & XLOG_STATE_IOERROR)
3374                return -EIO;
3375        return 0;
3376
3377out_unlock:
3378        spin_unlock(&log->l_icloglock);
3379        return 0;
3380out_error:
3381        spin_unlock(&log->l_icloglock);
3382        return -EIO;
3383}
3384
3385static int
3386__xfs_log_force_lsn(
3387        struct xfs_mount        *mp,
3388        xfs_lsn_t               lsn,
3389        uint                    flags,
3390        int                     *log_flushed,
3391        bool                    already_slept)
3392{
3393        struct xlog             *log = mp->m_log;
3394        struct xlog_in_core     *iclog;
3395
3396        spin_lock(&log->l_icloglock);
3397        iclog = log->l_iclog;
3398        if (iclog->ic_state & XLOG_STATE_IOERROR)
3399                goto out_error;
3400
3401        while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3402                iclog = iclog->ic_next;
3403                if (iclog == log->l_iclog)
3404                        goto out_unlock;
3405        }
3406
3407        if (iclog->ic_state == XLOG_STATE_DIRTY)
3408                goto out_unlock;
3409
3410        if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3411                /*
3412                 * We sleep here if we haven't already slept (e.g. this is the
3413                 * first time we've looked at the correct iclog buf) and the
3414                 * buffer before us is going to be sync'ed.  The reason for this
3415                 * is that if we are doing sync transactions here, by waiting
3416                 * for the previous I/O to complete, we can allow a few more
3417                 * transactions into this iclog before we close it down.
3418                 *
3419                 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3420                 * refcnt so we can release the log (which drops the ref count).
3421                 * The state switch keeps new transaction commits from using
3422                 * this buffer.  When the current commits finish writing into
3423                 * the buffer, the refcount will drop to zero and the buffer
3424                 * will go out then.
3425                 */
3426                if (!already_slept &&
3427                    (iclog->ic_prev->ic_state &
3428                     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3429                        ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3430
3431                        XFS_STATS_INC(mp, xs_log_force_sleep);
3432
3433                        xlog_wait(&iclog->ic_prev->ic_write_wait,
3434                                        &log->l_icloglock);
3435                        return -EAGAIN;
3436                }
3437                atomic_inc(&iclog->ic_refcnt);
3438                xlog_state_switch_iclogs(log, iclog, 0);
3439                spin_unlock(&log->l_icloglock);
3440                if (xlog_state_release_iclog(log, iclog))
3441                        return -EIO;
3442                if (log_flushed)
3443                        *log_flushed = 1;
3444                spin_lock(&log->l_icloglock);
3445        }
3446
3447        if (!(flags & XFS_LOG_SYNC) ||
3448            (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY)))
3449                goto out_unlock;
3450
3451        if (iclog->ic_state & XLOG_STATE_IOERROR)
3452                goto out_error;
3453
3454        XFS_STATS_INC(mp, xs_log_force_sleep);
3455        xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3456        if (iclog->ic_state & XLOG_STATE_IOERROR)
3457                return -EIO;
3458        return 0;
3459
3460out_unlock:
3461        spin_unlock(&log->l_icloglock);
3462        return 0;
3463out_error:
3464        spin_unlock(&log->l_icloglock);
3465        return -EIO;
3466}
3467
3468/*
3469 * Force the in-core log to disk for a specific LSN.
3470 *
3471 * Find in-core log with lsn.
3472 *      If it is in the DIRTY state, just return.
3473 *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3474 *              state and go to sleep or return.
3475 *      If it is in any other state, go to sleep or return.
3476 *
3477 * Synchronous forces are implemented with a wait queue.  All callers trying
3478 * to force a given lsn to disk must wait on the queue attached to the
3479 * specific in-core log.  When given in-core log finally completes its write
3480 * to disk, that thread will wake up all threads waiting on the queue.
3481 */
3482int
3483xfs_log_force_lsn(
3484        struct xfs_mount        *mp,
3485        xfs_lsn_t               lsn,
3486        uint                    flags,
3487        int                     *log_flushed)
3488{
3489        int                     ret;
3490        ASSERT(lsn != 0);
3491
3492        XFS_STATS_INC(mp, xs_log_force);
3493        trace_xfs_log_force(mp, lsn, _RET_IP_);
3494
3495        lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3496        if (lsn == NULLCOMMITLSN)
3497                return 0;
3498
3499        ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3500        if (ret == -EAGAIN)
3501                ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3502        return ret;
3503}
3504
3505/*
3506 * Called when we want to mark the current iclog as being ready to sync to
3507 * disk.
3508 */
3509STATIC void
3510xlog_state_want_sync(
3511        struct xlog             *log,
3512        struct xlog_in_core     *iclog)
3513{
3514        assert_spin_locked(&log->l_icloglock);
3515
3516        if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3517                xlog_state_switch_iclogs(log, iclog, 0);
3518        } else {
3519                ASSERT(iclog->ic_state &
3520                        (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3521        }
3522}
3523
3524
3525/*****************************************************************************
3526 *
3527 *              TICKET functions
3528 *
3529 *****************************************************************************
3530 */
3531
3532/*
3533 * Free a used ticket when its refcount falls to zero.
3534 */
3535void
3536xfs_log_ticket_put(
3537        xlog_ticket_t   *ticket)
3538{
3539        ASSERT(atomic_read(&ticket->t_ref) > 0);
3540        if (atomic_dec_and_test(&ticket->t_ref))
3541                kmem_zone_free(xfs_log_ticket_zone, ticket);
3542}
3543
3544xlog_ticket_t *
3545xfs_log_ticket_get(
3546        xlog_ticket_t   *ticket)
3547{
3548        ASSERT(atomic_read(&ticket->t_ref) > 0);
3549        atomic_inc(&ticket->t_ref);
3550        return ticket;
3551}
3552
3553/*
3554 * Figure out the total log space unit (in bytes) that would be
3555 * required for a log ticket.
3556 */
3557int
3558xfs_log_calc_unit_res(
3559        struct xfs_mount        *mp,
3560        int                     unit_bytes)
3561{
3562        struct xlog             *log = mp->m_log;
3563        int                     iclog_space;
3564        uint                    num_headers;
3565
3566        /*
3567         * Permanent reservations have up to 'cnt'-1 active log operations
3568         * in the log.  A unit in this case is the amount of space for one
3569         * of these log operations.  Normal reservations have a cnt of 1
3570         * and their unit amount is the total amount of space required.
3571         *
3572         * The following lines of code account for non-transaction data
3573         * which occupy space in the on-disk log.
3574         *
3575         * Normal form of a transaction is:
3576         * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3577         * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3578         *
3579         * We need to account for all the leadup data and trailer data
3580         * around the transaction data.
3581         * And then we need to account for the worst case in terms of using
3582         * more space.
3583         * The worst case will happen if:
3584         * - the placement of the transaction happens to be such that the
3585         *   roundoff is at its maximum
3586         * - the transaction data is synced before the commit record is synced
3587         *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3588         *   Therefore the commit record is in its own Log Record.
3589         *   This can happen as the commit record is called with its
3590         *   own region to xlog_write().
3591         *   This then means that in the worst case, roundoff can happen for
3592         *   the commit-rec as well.
3593         *   The commit-rec is smaller than padding in this scenario and so it is
3594         *   not added separately.
3595         */
3596
3597        /* for trans header */
3598        unit_bytes += sizeof(xlog_op_header_t);
3599        unit_bytes += sizeof(xfs_trans_header_t);
3600
3601        /* for start-rec */
3602        unit_bytes += sizeof(xlog_op_header_t);
3603
3604        /*
3605         * for LR headers - the space for data in an iclog is the size minus
3606         * the space used for the headers. If we use the iclog size, then we
3607         * undercalculate the number of headers required.
3608         *
3609         * Furthermore - the addition of op headers for split-recs might
3610         * increase the space required enough to require more log and op
3611         * headers, so take that into account too.
3612         *
3613         * IMPORTANT: This reservation makes the assumption that if this
3614         * transaction is the first in an iclog and hence has the LR headers
3615         * accounted to it, then the remaining space in the iclog is
3616         * exclusively for this transaction.  i.e. if the transaction is larger
3617         * than the iclog, it will be the only thing in that iclog.
3618         * Fundamentally, this means we must pass the entire log vector to
3619         * xlog_write to guarantee this.
3620         */
3621        iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3622        num_headers = howmany(unit_bytes, iclog_space);
3623
3624        /* for split-recs - ophdrs added when data split over LRs */
3625        unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3626
3627        /* add extra header reservations if we overrun */
3628        while (!num_headers ||
3629               howmany(unit_bytes, iclog_space) > num_headers) {
3630                unit_bytes += sizeof(xlog_op_header_t);
3631                num_headers++;
3632        }
3633        unit_bytes += log->l_iclog_hsize * num_headers;
3634
3635        /* for commit-rec LR header - note: padding will subsume the ophdr */
3636        unit_bytes += log->l_iclog_hsize;
3637
3638        /* for roundoff padding for transaction data and one for commit record */
3639        if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3640                /* log su roundoff */
3641                unit_bytes += 2 * mp->m_sb.sb_logsunit;
3642        } else {
3643                /* BB roundoff */
3644                unit_bytes += 2 * BBSIZE;
3645        }
3646
3647        return unit_bytes;
3648}
3649
3650/*
3651 * Allocate and initialise a new log ticket.
3652 */
3653struct xlog_ticket *
3654xlog_ticket_alloc(
3655        struct xlog             *log,
3656        int                     unit_bytes,
3657        int                     cnt,
3658        char                    client,
3659        bool                    permanent,
3660        xfs_km_flags_t          alloc_flags)
3661{
3662        struct xlog_ticket      *tic;
3663        int                     unit_res;
3664
3665        tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3666        if (!tic)
3667                return NULL;
3668
3669        unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3670
3671        atomic_set(&tic->t_ref, 1);
3672        tic->t_task             = current;
3673        INIT_LIST_HEAD(&tic->t_queue);
3674        tic->t_unit_res         = unit_res;
3675        tic->t_curr_res         = unit_res;
3676        tic->t_cnt              = cnt;
3677        tic->t_ocnt             = cnt;
3678        tic->t_tid              = prandom_u32();
3679        tic->t_clientid         = client;
3680        tic->t_flags            = XLOG_TIC_INITED;
3681        if (permanent)
3682                tic->t_flags |= XLOG_TIC_PERM_RESERV;
3683
3684        xlog_tic_reset_res(tic);
3685
3686        return tic;
3687}
3688
3689
3690/******************************************************************************
3691 *
3692 *              Log debug routines
3693 *
3694 ******************************************************************************
3695 */
3696#if defined(DEBUG)
3697/*
3698 * Make sure that the destination ptr is within the valid data region of
3699 * one of the iclogs.  This uses backup pointers stored in a different
3700 * part of the log in case we trash the log structure.
3701 */
3702STATIC void
3703xlog_verify_dest_ptr(
3704        struct xlog     *log,
3705        void            *ptr)
3706{
3707        int i;
3708        int good_ptr = 0;
3709
3710        for (i = 0; i < log->l_iclog_bufs; i++) {
3711                if (ptr >= log->l_iclog_bak[i] &&
3712                    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3713                        good_ptr++;
3714        }
3715
3716        if (!good_ptr)
3717                xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3718}
3719
3720/*
3721 * Check to make sure the grant write head didn't just over lap the tail.  If
3722 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3723 * the cycles differ by exactly one and check the byte count.
3724 *
3725 * This check is run unlocked, so can give false positives. Rather than assert
3726 * on failures, use a warn-once flag and a panic tag to allow the admin to
3727 * determine if they want to panic the machine when such an error occurs. For
3728 * debug kernels this will have the same effect as using an assert but, unlinke
3729 * an assert, it can be turned off at runtime.
3730 */
3731STATIC void
3732xlog_verify_grant_tail(
3733        struct xlog     *log)
3734{
3735        int             tail_cycle, tail_blocks;
3736        int             cycle, space;
3737
3738        xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3739        xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3740        if (tail_cycle != cycle) {
3741                if (cycle - 1 != tail_cycle &&
3742                    !(log->l_flags & XLOG_TAIL_WARN)) {
3743                        xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3744                                "%s: cycle - 1 != tail_cycle", __func__);
3745                        log->l_flags |= XLOG_TAIL_WARN;
3746                }
3747
3748                if (space > BBTOB(tail_blocks) &&
3749                    !(log->l_flags & XLOG_TAIL_WARN)) {
3750                        xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3751                                "%s: space > BBTOB(tail_blocks)", __func__);
3752                        log->l_flags |= XLOG_TAIL_WARN;
3753                }
3754        }
3755}
3756
3757/* check if it will fit */
3758STATIC void
3759xlog_verify_tail_lsn(
3760        struct xlog             *log,
3761        struct xlog_in_core     *iclog,
3762        xfs_lsn_t               tail_lsn)
3763{
3764    int blocks;
3765
3766    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3767        blocks =
3768            log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3769        if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3770                xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3771    } else {
3772        ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3773
3774        if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3775                xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3776
3777        blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3778        if (blocks < BTOBB(iclog->ic_offset) + 1)
3779                xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3780    }
3781}       /* xlog_verify_tail_lsn */
3782
3783/*
3784 * Perform a number of checks on the iclog before writing to disk.
3785 *
3786 * 1. Make sure the iclogs are still circular
3787 * 2. Make sure we have a good magic number
3788 * 3. Make sure we don't have magic numbers in the data
3789 * 4. Check fields of each log operation header for:
3790 *      A. Valid client identifier
3791 *      B. tid ptr value falls in valid ptr space (user space code)
3792 *      C. Length in log record header is correct according to the
3793 *              individual operation headers within record.
3794 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3795 *      log, check the preceding blocks of the physical log to make sure all
3796 *      the cycle numbers agree with the current cycle number.
3797 */
3798STATIC void
3799xlog_verify_iclog(
3800        struct xlog             *log,
3801        struct xlog_in_core     *iclog,
3802        int                     count,
3803        bool                    syncing)
3804{
3805        xlog_op_header_t        *ophead;
3806        xlog_in_core_t          *icptr;
3807        xlog_in_core_2_t        *xhdr;
3808        void                    *base_ptr, *ptr, *p;
3809        ptrdiff_t               field_offset;
3810        uint8_t                 clientid;
3811        int                     len, i, j, k, op_len;
3812        int                     idx;
3813
3814        /* check validity of iclog pointers */
3815        spin_lock(&log->l_icloglock);
3816        icptr = log->l_iclog;
3817        for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3818                ASSERT(icptr);
3819
3820        if (icptr != log->l_iclog)
3821                xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3822        spin_unlock(&log->l_icloglock);
3823
3824        /* check log magic numbers */
3825        if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3826                xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3827
3828        base_ptr = ptr = &iclog->ic_header;
3829        p = &iclog->ic_header;
3830        for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3831                if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3832                        xfs_emerg(log->l_mp, "%s: unexpected magic num",
3833                                __func__);
3834        }
3835
3836        /* check fields */
3837        len = be32_to_cpu(iclog->ic_header.h_num_logops);
3838        base_ptr = ptr = iclog->ic_datap;
3839        ophead = ptr;
3840        xhdr = iclog->ic_data;
3841        for (i = 0; i < len; i++) {
3842                ophead = ptr;
3843
3844                /* clientid is only 1 byte */
3845                p = &ophead->oh_clientid;
3846                field_offset = p - base_ptr;
3847                if (!syncing || (field_offset & 0x1ff)) {
3848                        clientid = ophead->oh_clientid;
3849                } else {
3850                        idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3851                        if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3852                                j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3853                                k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3854                                clientid = xlog_get_client_id(
3855                                        xhdr[j].hic_xheader.xh_cycle_data[k]);
3856                        } else {
3857                                clientid = xlog_get_client_id(
3858                                        iclog->ic_header.h_cycle_data[idx]);
3859                        }
3860                }
3861                if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3862                        xfs_warn(log->l_mp,
3863                                "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3864                                __func__, clientid, ophead,
3865                                (unsigned long)field_offset);
3866
3867                /* check length */
3868                p = &ophead->oh_len;
3869                field_offset = p - base_ptr;
3870                if (!syncing || (field_offset & 0x1ff)) {
3871                        op_len = be32_to_cpu(ophead->oh_len);
3872                } else {
3873                        idx = BTOBBT((uintptr_t)&ophead->oh_len -
3874                                    (uintptr_t)iclog->ic_datap);
3875                        if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3876                                j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3877                                k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3878                                op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3879                        } else {
3880                                op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3881                        }
3882                }
3883                ptr += sizeof(xlog_op_header_t) + op_len;
3884        }
3885}       /* xlog_verify_iclog */
3886#endif
3887
3888/*
3889 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3890 */
3891STATIC int
3892xlog_state_ioerror(
3893        struct xlog     *log)
3894{
3895        xlog_in_core_t  *iclog, *ic;
3896
3897        iclog = log->l_iclog;
3898        if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3899                /*
3900                 * Mark all the incore logs IOERROR.
3901                 * From now on, no log flushes will result.
3902                 */
3903                ic = iclog;
3904                do {
3905                        ic->ic_state = XLOG_STATE_IOERROR;
3906                        ic = ic->ic_next;
3907                } while (ic != iclog);
3908                return 0;
3909        }
3910        /*
3911         * Return non-zero, if state transition has already happened.
3912         */
3913        return 1;
3914}
3915
3916/*
3917 * This is called from xfs_force_shutdown, when we're forcibly
3918 * shutting down the filesystem, typically because of an IO error.
3919 * Our main objectives here are to make sure that:
3920 *      a. if !logerror, flush the logs to disk. Anything modified
3921 *         after this is ignored.
3922 *      b. the filesystem gets marked 'SHUTDOWN' for all interested
3923 *         parties to find out, 'atomically'.
3924 *      c. those who're sleeping on log reservations, pinned objects and
3925 *          other resources get woken up, and be told the bad news.
3926 *      d. nothing new gets queued up after (b) and (c) are done.
3927 *
3928 * Note: for the !logerror case we need to flush the regions held in memory out
3929 * to disk first. This needs to be done before the log is marked as shutdown,
3930 * otherwise the iclog writes will fail.
3931 */
3932int
3933xfs_log_force_umount(
3934        struct xfs_mount        *mp,
3935        int                     logerror)
3936{
3937        struct xlog     *log;
3938        int             retval;
3939
3940        log = mp->m_log;
3941
3942        /*
3943         * If this happens during log recovery, don't worry about
3944         * locking; the log isn't open for business yet.
3945         */
3946        if (!log ||
3947            log->l_flags & XLOG_ACTIVE_RECOVERY) {
3948                mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3949                if (mp->m_sb_bp)
3950                        mp->m_sb_bp->b_flags |= XBF_DONE;
3951                return 0;
3952        }
3953
3954        /*
3955         * Somebody could've already done the hard work for us.
3956         * No need to get locks for this.
3957         */
3958        if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3959                ASSERT(XLOG_FORCED_SHUTDOWN(log));
3960                return 1;
3961        }
3962
3963        /*
3964         * Flush all the completed transactions to disk before marking the log
3965         * being shut down. We need to do it in this order to ensure that
3966         * completed operations are safely on disk before we shut down, and that
3967         * we don't have to issue any buffer IO after the shutdown flags are set
3968         * to guarantee this.
3969         */
3970        if (!logerror)
3971                xfs_log_force(mp, XFS_LOG_SYNC);
3972
3973        /*
3974         * mark the filesystem and the as in a shutdown state and wake
3975         * everybody up to tell them the bad news.
3976         */
3977        spin_lock(&log->l_icloglock);
3978        mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3979        if (mp->m_sb_bp)
3980                mp->m_sb_bp->b_flags |= XBF_DONE;
3981
3982        /*
3983         * Mark the log and the iclogs with IO error flags to prevent any
3984         * further log IO from being issued or completed.
3985         */
3986        log->l_flags |= XLOG_IO_ERROR;
3987        retval = xlog_state_ioerror(log);
3988        spin_unlock(&log->l_icloglock);
3989
3990        /*
3991         * We don't want anybody waiting for log reservations after this. That
3992         * means we have to wake up everybody queued up on reserveq as well as
3993         * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3994         * we don't enqueue anything once the SHUTDOWN flag is set, and this
3995         * action is protected by the grant locks.
3996         */
3997        xlog_grant_head_wake_all(&log->l_reserve_head);
3998        xlog_grant_head_wake_all(&log->l_write_head);
3999
4000        /*
4001         * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4002         * as if the log writes were completed. The abort handling in the log
4003         * item committed callback functions will do this again under lock to
4004         * avoid races.
4005         */
4006        wake_up_all(&log->l_cilp->xc_commit_wait);
4007        xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4008
4009#ifdef XFSERRORDEBUG
4010        {
4011                xlog_in_core_t  *iclog;
4012
4013                spin_lock(&log->l_icloglock);
4014                iclog = log->l_iclog;
4015                do {
4016                        ASSERT(iclog->ic_callback == 0);
4017                        iclog = iclog->ic_next;
4018                } while (iclog != log->l_iclog);
4019                spin_unlock(&log->l_icloglock);
4020        }
4021#endif
4022        /* return non-zero if log IOERROR transition had already happened */
4023        return retval;
4024}
4025
4026STATIC int
4027xlog_iclogs_empty(
4028        struct xlog     *log)
4029{
4030        xlog_in_core_t  *iclog;
4031
4032        iclog = log->l_iclog;
4033        do {
4034                /* endianness does not matter here, zero is zero in
4035                 * any language.
4036                 */
4037                if (iclog->ic_header.h_num_logops)
4038                        return 0;
4039                iclog = iclog->ic_next;
4040        } while (iclog != log->l_iclog);
4041        return 1;
4042}
4043
4044/*
4045 * Verify that an LSN stamped into a piece of metadata is valid. This is
4046 * intended for use in read verifiers on v5 superblocks.
4047 */
4048bool
4049xfs_log_check_lsn(
4050        struct xfs_mount        *mp,
4051        xfs_lsn_t               lsn)
4052{
4053        struct xlog             *log = mp->m_log;
4054        bool                    valid;
4055
4056        /*
4057         * norecovery mode skips mount-time log processing and unconditionally
4058         * resets the in-core LSN. We can't validate in this mode, but
4059         * modifications are not allowed anyways so just return true.
4060         */
4061        if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4062                return true;
4063
4064        /*
4065         * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4066         * handled by recovery and thus safe to ignore here.
4067         */
4068        if (lsn == NULLCOMMITLSN)
4069                return true;
4070
4071        valid = xlog_valid_lsn(mp->m_log, lsn);
4072
4073        /* warn the user about what's gone wrong before verifier failure */
4074        if (!valid) {
4075                spin_lock(&log->l_icloglock);
4076                xfs_warn(mp,
4077"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4078"Please unmount and run xfs_repair (>= v4.3) to resolve.",
4079                         CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4080                         log->l_curr_cycle, log->l_curr_block);
4081                spin_unlock(&log->l_icloglock);
4082        }
4083
4084        return valid;
4085}
4086