linux/include/asm-generic/pgtable.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _ASM_GENERIC_PGTABLE_H
   3#define _ASM_GENERIC_PGTABLE_H
   4
   5#include <linux/pfn.h>
   6
   7#ifndef __ASSEMBLY__
   8#ifdef CONFIG_MMU
   9
  10#include <linux/mm_types.h>
  11#include <linux/bug.h>
  12#include <linux/errno.h>
  13
  14#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
  15        defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
  16#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
  17#endif
  18
  19/*
  20 * On almost all architectures and configurations, 0 can be used as the
  21 * upper ceiling to free_pgtables(): on many architectures it has the same
  22 * effect as using TASK_SIZE.  However, there is one configuration which
  23 * must impose a more careful limit, to avoid freeing kernel pgtables.
  24 */
  25#ifndef USER_PGTABLES_CEILING
  26#define USER_PGTABLES_CEILING   0UL
  27#endif
  28
  29#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  30extern int ptep_set_access_flags(struct vm_area_struct *vma,
  31                                 unsigned long address, pte_t *ptep,
  32                                 pte_t entry, int dirty);
  33#endif
  34
  35#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
  36#ifdef CONFIG_TRANSPARENT_HUGEPAGE
  37extern int pmdp_set_access_flags(struct vm_area_struct *vma,
  38                                 unsigned long address, pmd_t *pmdp,
  39                                 pmd_t entry, int dirty);
  40extern int pudp_set_access_flags(struct vm_area_struct *vma,
  41                                 unsigned long address, pud_t *pudp,
  42                                 pud_t entry, int dirty);
  43#else
  44static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
  45                                        unsigned long address, pmd_t *pmdp,
  46                                        pmd_t entry, int dirty)
  47{
  48        BUILD_BUG();
  49        return 0;
  50}
  51static inline int pudp_set_access_flags(struct vm_area_struct *vma,
  52                                        unsigned long address, pud_t *pudp,
  53                                        pud_t entry, int dirty)
  54{
  55        BUILD_BUG();
  56        return 0;
  57}
  58#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  59#endif
  60
  61#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  62static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
  63                                            unsigned long address,
  64                                            pte_t *ptep)
  65{
  66        pte_t pte = *ptep;
  67        int r = 1;
  68        if (!pte_young(pte))
  69                r = 0;
  70        else
  71                set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
  72        return r;
  73}
  74#endif
  75
  76#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
  77#ifdef CONFIG_TRANSPARENT_HUGEPAGE
  78static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  79                                            unsigned long address,
  80                                            pmd_t *pmdp)
  81{
  82        pmd_t pmd = *pmdp;
  83        int r = 1;
  84        if (!pmd_young(pmd))
  85                r = 0;
  86        else
  87                set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
  88        return r;
  89}
  90#else
  91static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  92                                            unsigned long address,
  93                                            pmd_t *pmdp)
  94{
  95        BUILD_BUG();
  96        return 0;
  97}
  98#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  99#endif
 100
 101#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 102int ptep_clear_flush_young(struct vm_area_struct *vma,
 103                           unsigned long address, pte_t *ptep);
 104#endif
 105
 106#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 107#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 108extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
 109                                  unsigned long address, pmd_t *pmdp);
 110#else
 111/*
 112 * Despite relevant to THP only, this API is called from generic rmap code
 113 * under PageTransHuge(), hence needs a dummy implementation for !THP
 114 */
 115static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
 116                                         unsigned long address, pmd_t *pmdp)
 117{
 118        BUILD_BUG();
 119        return 0;
 120}
 121#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 122#endif
 123
 124#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
 125static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 126                                       unsigned long address,
 127                                       pte_t *ptep)
 128{
 129        pte_t pte = *ptep;
 130        pte_clear(mm, address, ptep);
 131        return pte;
 132}
 133#endif
 134
 135#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 136#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
 137static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
 138                                            unsigned long address,
 139                                            pmd_t *pmdp)
 140{
 141        pmd_t pmd = *pmdp;
 142        pmd_clear(pmdp);
 143        return pmd;
 144}
 145#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
 146#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
 147static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
 148                                            unsigned long address,
 149                                            pud_t *pudp)
 150{
 151        pud_t pud = *pudp;
 152
 153        pud_clear(pudp);
 154        return pud;
 155}
 156#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
 157#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 158
 159#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 160#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
 161static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
 162                                            unsigned long address, pmd_t *pmdp,
 163                                            int full)
 164{
 165        return pmdp_huge_get_and_clear(mm, address, pmdp);
 166}
 167#endif
 168
 169#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
 170static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
 171                                            unsigned long address, pud_t *pudp,
 172                                            int full)
 173{
 174        return pudp_huge_get_and_clear(mm, address, pudp);
 175}
 176#endif
 177#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 178
 179#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 180static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
 181                                            unsigned long address, pte_t *ptep,
 182                                            int full)
 183{
 184        pte_t pte;
 185        pte = ptep_get_and_clear(mm, address, ptep);
 186        return pte;
 187}
 188#endif
 189
 190/*
 191 * Some architectures may be able to avoid expensive synchronization
 192 * primitives when modifications are made to PTE's which are already
 193 * not present, or in the process of an address space destruction.
 194 */
 195#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
 196static inline void pte_clear_not_present_full(struct mm_struct *mm,
 197                                              unsigned long address,
 198                                              pte_t *ptep,
 199                                              int full)
 200{
 201        pte_clear(mm, address, ptep);
 202}
 203#endif
 204
 205#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
 206extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
 207                              unsigned long address,
 208                              pte_t *ptep);
 209#endif
 210
 211#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
 212extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
 213                              unsigned long address,
 214                              pmd_t *pmdp);
 215extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
 216                              unsigned long address,
 217                              pud_t *pudp);
 218#endif
 219
 220#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
 221struct mm_struct;
 222static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
 223{
 224        pte_t old_pte = *ptep;
 225        set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
 226}
 227#endif
 228
 229#ifndef pte_savedwrite
 230#define pte_savedwrite pte_write
 231#endif
 232
 233#ifndef pte_mk_savedwrite
 234#define pte_mk_savedwrite pte_mkwrite
 235#endif
 236
 237#ifndef pte_clear_savedwrite
 238#define pte_clear_savedwrite pte_wrprotect
 239#endif
 240
 241#ifndef pmd_savedwrite
 242#define pmd_savedwrite pmd_write
 243#endif
 244
 245#ifndef pmd_mk_savedwrite
 246#define pmd_mk_savedwrite pmd_mkwrite
 247#endif
 248
 249#ifndef pmd_clear_savedwrite
 250#define pmd_clear_savedwrite pmd_wrprotect
 251#endif
 252
 253#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
 254#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 255static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 256                                      unsigned long address, pmd_t *pmdp)
 257{
 258        pmd_t old_pmd = *pmdp;
 259        set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
 260}
 261#else
 262static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 263                                      unsigned long address, pmd_t *pmdp)
 264{
 265        BUILD_BUG();
 266}
 267#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 268#endif
 269#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
 270#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 271static inline void pudp_set_wrprotect(struct mm_struct *mm,
 272                                      unsigned long address, pud_t *pudp)
 273{
 274        pud_t old_pud = *pudp;
 275
 276        set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
 277}
 278#else
 279static inline void pudp_set_wrprotect(struct mm_struct *mm,
 280                                      unsigned long address, pud_t *pudp)
 281{
 282        BUILD_BUG();
 283}
 284#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 285#endif
 286
 287#ifndef pmdp_collapse_flush
 288#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 289extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 290                                 unsigned long address, pmd_t *pmdp);
 291#else
 292static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 293                                        unsigned long address,
 294                                        pmd_t *pmdp)
 295{
 296        BUILD_BUG();
 297        return *pmdp;
 298}
 299#define pmdp_collapse_flush pmdp_collapse_flush
 300#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 301#endif
 302
 303#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
 304extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 305                                       pgtable_t pgtable);
 306#endif
 307
 308#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
 309extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
 310#endif
 311
 312#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 313/*
 314 * This is an implementation of pmdp_establish() that is only suitable for an
 315 * architecture that doesn't have hardware dirty/accessed bits. In this case we
 316 * can't race with CPU which sets these bits and non-atomic aproach is fine.
 317 */
 318static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
 319                unsigned long address, pmd_t *pmdp, pmd_t pmd)
 320{
 321        pmd_t old_pmd = *pmdp;
 322        set_pmd_at(vma->vm_mm, address, pmdp, pmd);
 323        return old_pmd;
 324}
 325#endif
 326
 327#ifndef __HAVE_ARCH_PMDP_INVALIDATE
 328extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
 329                            pmd_t *pmdp);
 330#endif
 331
 332#ifndef __HAVE_ARCH_PTE_SAME
 333static inline int pte_same(pte_t pte_a, pte_t pte_b)
 334{
 335        return pte_val(pte_a) == pte_val(pte_b);
 336}
 337#endif
 338
 339#ifndef __HAVE_ARCH_PTE_UNUSED
 340/*
 341 * Some architectures provide facilities to virtualization guests
 342 * so that they can flag allocated pages as unused. This allows the
 343 * host to transparently reclaim unused pages. This function returns
 344 * whether the pte's page is unused.
 345 */
 346static inline int pte_unused(pte_t pte)
 347{
 348        return 0;
 349}
 350#endif
 351
 352#ifndef pte_access_permitted
 353#define pte_access_permitted(pte, write) \
 354        (pte_present(pte) && (!(write) || pte_write(pte)))
 355#endif
 356
 357#ifndef pmd_access_permitted
 358#define pmd_access_permitted(pmd, write) \
 359        (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
 360#endif
 361
 362#ifndef pud_access_permitted
 363#define pud_access_permitted(pud, write) \
 364        (pud_present(pud) && (!(write) || pud_write(pud)))
 365#endif
 366
 367#ifndef p4d_access_permitted
 368#define p4d_access_permitted(p4d, write) \
 369        (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
 370#endif
 371
 372#ifndef pgd_access_permitted
 373#define pgd_access_permitted(pgd, write) \
 374        (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
 375#endif
 376
 377#ifndef __HAVE_ARCH_PMD_SAME
 378#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 379static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
 380{
 381        return pmd_val(pmd_a) == pmd_val(pmd_b);
 382}
 383
 384static inline int pud_same(pud_t pud_a, pud_t pud_b)
 385{
 386        return pud_val(pud_a) == pud_val(pud_b);
 387}
 388#else /* CONFIG_TRANSPARENT_HUGEPAGE */
 389static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
 390{
 391        BUILD_BUG();
 392        return 0;
 393}
 394
 395static inline int pud_same(pud_t pud_a, pud_t pud_b)
 396{
 397        BUILD_BUG();
 398        return 0;
 399}
 400#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 401#endif
 402
 403#ifndef __HAVE_ARCH_DO_SWAP_PAGE
 404/*
 405 * Some architectures support metadata associated with a page. When a
 406 * page is being swapped out, this metadata must be saved so it can be
 407 * restored when the page is swapped back in. SPARC M7 and newer
 408 * processors support an ADI (Application Data Integrity) tag for the
 409 * page as metadata for the page. arch_do_swap_page() can restore this
 410 * metadata when a page is swapped back in.
 411 */
 412static inline void arch_do_swap_page(struct mm_struct *mm,
 413                                     struct vm_area_struct *vma,
 414                                     unsigned long addr,
 415                                     pte_t pte, pte_t oldpte)
 416{
 417
 418}
 419#endif
 420
 421#ifndef __HAVE_ARCH_UNMAP_ONE
 422/*
 423 * Some architectures support metadata associated with a page. When a
 424 * page is being swapped out, this metadata must be saved so it can be
 425 * restored when the page is swapped back in. SPARC M7 and newer
 426 * processors support an ADI (Application Data Integrity) tag for the
 427 * page as metadata for the page. arch_unmap_one() can save this
 428 * metadata on a swap-out of a page.
 429 */
 430static inline int arch_unmap_one(struct mm_struct *mm,
 431                                  struct vm_area_struct *vma,
 432                                  unsigned long addr,
 433                                  pte_t orig_pte)
 434{
 435        return 0;
 436}
 437#endif
 438
 439#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
 440#define pgd_offset_gate(mm, addr)       pgd_offset(mm, addr)
 441#endif
 442
 443#ifndef __HAVE_ARCH_MOVE_PTE
 444#define move_pte(pte, prot, old_addr, new_addr) (pte)
 445#endif
 446
 447#ifndef pte_accessible
 448# define pte_accessible(mm, pte)        ((void)(pte), 1)
 449#endif
 450
 451#ifndef flush_tlb_fix_spurious_fault
 452#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
 453#endif
 454
 455#ifndef pgprot_noncached
 456#define pgprot_noncached(prot)  (prot)
 457#endif
 458
 459#ifndef pgprot_writecombine
 460#define pgprot_writecombine pgprot_noncached
 461#endif
 462
 463#ifndef pgprot_writethrough
 464#define pgprot_writethrough pgprot_noncached
 465#endif
 466
 467#ifndef pgprot_device
 468#define pgprot_device pgprot_noncached
 469#endif
 470
 471#ifndef pgprot_modify
 472#define pgprot_modify pgprot_modify
 473static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
 474{
 475        if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
 476                newprot = pgprot_noncached(newprot);
 477        if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
 478                newprot = pgprot_writecombine(newprot);
 479        if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
 480                newprot = pgprot_device(newprot);
 481        return newprot;
 482}
 483#endif
 484
 485/*
 486 * When walking page tables, get the address of the next boundary,
 487 * or the end address of the range if that comes earlier.  Although no
 488 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
 489 */
 490
 491#define pgd_addr_end(addr, end)                                         \
 492({      unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;  \
 493        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 494})
 495
 496#ifndef p4d_addr_end
 497#define p4d_addr_end(addr, end)                                         \
 498({      unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;      \
 499        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 500})
 501#endif
 502
 503#ifndef pud_addr_end
 504#define pud_addr_end(addr, end)                                         \
 505({      unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;      \
 506        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 507})
 508#endif
 509
 510#ifndef pmd_addr_end
 511#define pmd_addr_end(addr, end)                                         \
 512({      unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;      \
 513        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 514})
 515#endif
 516
 517/*
 518 * When walking page tables, we usually want to skip any p?d_none entries;
 519 * and any p?d_bad entries - reporting the error before resetting to none.
 520 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
 521 */
 522void pgd_clear_bad(pgd_t *);
 523void p4d_clear_bad(p4d_t *);
 524void pud_clear_bad(pud_t *);
 525void pmd_clear_bad(pmd_t *);
 526
 527static inline int pgd_none_or_clear_bad(pgd_t *pgd)
 528{
 529        if (pgd_none(*pgd))
 530                return 1;
 531        if (unlikely(pgd_bad(*pgd))) {
 532                pgd_clear_bad(pgd);
 533                return 1;
 534        }
 535        return 0;
 536}
 537
 538static inline int p4d_none_or_clear_bad(p4d_t *p4d)
 539{
 540        if (p4d_none(*p4d))
 541                return 1;
 542        if (unlikely(p4d_bad(*p4d))) {
 543                p4d_clear_bad(p4d);
 544                return 1;
 545        }
 546        return 0;
 547}
 548
 549static inline int pud_none_or_clear_bad(pud_t *pud)
 550{
 551        if (pud_none(*pud))
 552                return 1;
 553        if (unlikely(pud_bad(*pud))) {
 554                pud_clear_bad(pud);
 555                return 1;
 556        }
 557        return 0;
 558}
 559
 560static inline int pmd_none_or_clear_bad(pmd_t *pmd)
 561{
 562        if (pmd_none(*pmd))
 563                return 1;
 564        if (unlikely(pmd_bad(*pmd))) {
 565                pmd_clear_bad(pmd);
 566                return 1;
 567        }
 568        return 0;
 569}
 570
 571static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
 572                                             unsigned long addr,
 573                                             pte_t *ptep)
 574{
 575        /*
 576         * Get the current pte state, but zero it out to make it
 577         * non-present, preventing the hardware from asynchronously
 578         * updating it.
 579         */
 580        return ptep_get_and_clear(mm, addr, ptep);
 581}
 582
 583static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
 584                                             unsigned long addr,
 585                                             pte_t *ptep, pte_t pte)
 586{
 587        /*
 588         * The pte is non-present, so there's no hardware state to
 589         * preserve.
 590         */
 591        set_pte_at(mm, addr, ptep, pte);
 592}
 593
 594#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
 595/*
 596 * Start a pte protection read-modify-write transaction, which
 597 * protects against asynchronous hardware modifications to the pte.
 598 * The intention is not to prevent the hardware from making pte
 599 * updates, but to prevent any updates it may make from being lost.
 600 *
 601 * This does not protect against other software modifications of the
 602 * pte; the appropriate pte lock must be held over the transation.
 603 *
 604 * Note that this interface is intended to be batchable, meaning that
 605 * ptep_modify_prot_commit may not actually update the pte, but merely
 606 * queue the update to be done at some later time.  The update must be
 607 * actually committed before the pte lock is released, however.
 608 */
 609static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
 610                                           unsigned long addr,
 611                                           pte_t *ptep)
 612{
 613        return __ptep_modify_prot_start(mm, addr, ptep);
 614}
 615
 616/*
 617 * Commit an update to a pte, leaving any hardware-controlled bits in
 618 * the PTE unmodified.
 619 */
 620static inline void ptep_modify_prot_commit(struct mm_struct *mm,
 621                                           unsigned long addr,
 622                                           pte_t *ptep, pte_t pte)
 623{
 624        __ptep_modify_prot_commit(mm, addr, ptep, pte);
 625}
 626#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
 627#endif /* CONFIG_MMU */
 628
 629/*
 630 * No-op macros that just return the current protection value. Defined here
 631 * because these macros can be used used even if CONFIG_MMU is not defined.
 632 */
 633#ifndef pgprot_encrypted
 634#define pgprot_encrypted(prot)  (prot)
 635#endif
 636
 637#ifndef pgprot_decrypted
 638#define pgprot_decrypted(prot)  (prot)
 639#endif
 640
 641/*
 642 * A facility to provide lazy MMU batching.  This allows PTE updates and
 643 * page invalidations to be delayed until a call to leave lazy MMU mode
 644 * is issued.  Some architectures may benefit from doing this, and it is
 645 * beneficial for both shadow and direct mode hypervisors, which may batch
 646 * the PTE updates which happen during this window.  Note that using this
 647 * interface requires that read hazards be removed from the code.  A read
 648 * hazard could result in the direct mode hypervisor case, since the actual
 649 * write to the page tables may not yet have taken place, so reads though
 650 * a raw PTE pointer after it has been modified are not guaranteed to be
 651 * up to date.  This mode can only be entered and left under the protection of
 652 * the page table locks for all page tables which may be modified.  In the UP
 653 * case, this is required so that preemption is disabled, and in the SMP case,
 654 * it must synchronize the delayed page table writes properly on other CPUs.
 655 */
 656#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
 657#define arch_enter_lazy_mmu_mode()      do {} while (0)
 658#define arch_leave_lazy_mmu_mode()      do {} while (0)
 659#define arch_flush_lazy_mmu_mode()      do {} while (0)
 660#endif
 661
 662/*
 663 * A facility to provide batching of the reload of page tables and
 664 * other process state with the actual context switch code for
 665 * paravirtualized guests.  By convention, only one of the batched
 666 * update (lazy) modes (CPU, MMU) should be active at any given time,
 667 * entry should never be nested, and entry and exits should always be
 668 * paired.  This is for sanity of maintaining and reasoning about the
 669 * kernel code.  In this case, the exit (end of the context switch) is
 670 * in architecture-specific code, and so doesn't need a generic
 671 * definition.
 672 */
 673#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
 674#define arch_start_context_switch(prev) do {} while (0)
 675#endif
 676
 677#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
 678#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
 679static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
 680{
 681        return pmd;
 682}
 683
 684static inline int pmd_swp_soft_dirty(pmd_t pmd)
 685{
 686        return 0;
 687}
 688
 689static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
 690{
 691        return pmd;
 692}
 693#endif
 694#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
 695static inline int pte_soft_dirty(pte_t pte)
 696{
 697        return 0;
 698}
 699
 700static inline int pmd_soft_dirty(pmd_t pmd)
 701{
 702        return 0;
 703}
 704
 705static inline pte_t pte_mksoft_dirty(pte_t pte)
 706{
 707        return pte;
 708}
 709
 710static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
 711{
 712        return pmd;
 713}
 714
 715static inline pte_t pte_clear_soft_dirty(pte_t pte)
 716{
 717        return pte;
 718}
 719
 720static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
 721{
 722        return pmd;
 723}
 724
 725static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
 726{
 727        return pte;
 728}
 729
 730static inline int pte_swp_soft_dirty(pte_t pte)
 731{
 732        return 0;
 733}
 734
 735static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
 736{
 737        return pte;
 738}
 739
 740static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
 741{
 742        return pmd;
 743}
 744
 745static inline int pmd_swp_soft_dirty(pmd_t pmd)
 746{
 747        return 0;
 748}
 749
 750static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
 751{
 752        return pmd;
 753}
 754#endif
 755
 756#ifndef __HAVE_PFNMAP_TRACKING
 757/*
 758 * Interfaces that can be used by architecture code to keep track of
 759 * memory type of pfn mappings specified by the remap_pfn_range,
 760 * vm_insert_pfn.
 761 */
 762
 763/*
 764 * track_pfn_remap is called when a _new_ pfn mapping is being established
 765 * by remap_pfn_range() for physical range indicated by pfn and size.
 766 */
 767static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
 768                                  unsigned long pfn, unsigned long addr,
 769                                  unsigned long size)
 770{
 771        return 0;
 772}
 773
 774/*
 775 * track_pfn_insert is called when a _new_ single pfn is established
 776 * by vm_insert_pfn().
 777 */
 778static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
 779                                    pfn_t pfn)
 780{
 781}
 782
 783/*
 784 * track_pfn_copy is called when vma that is covering the pfnmap gets
 785 * copied through copy_page_range().
 786 */
 787static inline int track_pfn_copy(struct vm_area_struct *vma)
 788{
 789        return 0;
 790}
 791
 792/*
 793 * untrack_pfn is called while unmapping a pfnmap for a region.
 794 * untrack can be called for a specific region indicated by pfn and size or
 795 * can be for the entire vma (in which case pfn, size are zero).
 796 */
 797static inline void untrack_pfn(struct vm_area_struct *vma,
 798                               unsigned long pfn, unsigned long size)
 799{
 800}
 801
 802/*
 803 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
 804 */
 805static inline void untrack_pfn_moved(struct vm_area_struct *vma)
 806{
 807}
 808#else
 809extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
 810                           unsigned long pfn, unsigned long addr,
 811                           unsigned long size);
 812extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
 813                             pfn_t pfn);
 814extern int track_pfn_copy(struct vm_area_struct *vma);
 815extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
 816                        unsigned long size);
 817extern void untrack_pfn_moved(struct vm_area_struct *vma);
 818#endif
 819
 820#ifdef __HAVE_COLOR_ZERO_PAGE
 821static inline int is_zero_pfn(unsigned long pfn)
 822{
 823        extern unsigned long zero_pfn;
 824        unsigned long offset_from_zero_pfn = pfn - zero_pfn;
 825        return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
 826}
 827
 828#define my_zero_pfn(addr)       page_to_pfn(ZERO_PAGE(addr))
 829
 830#else
 831static inline int is_zero_pfn(unsigned long pfn)
 832{
 833        extern unsigned long zero_pfn;
 834        return pfn == zero_pfn;
 835}
 836
 837static inline unsigned long my_zero_pfn(unsigned long addr)
 838{
 839        extern unsigned long zero_pfn;
 840        return zero_pfn;
 841}
 842#endif
 843
 844#ifdef CONFIG_MMU
 845
 846#ifndef CONFIG_TRANSPARENT_HUGEPAGE
 847static inline int pmd_trans_huge(pmd_t pmd)
 848{
 849        return 0;
 850}
 851#ifndef pmd_write
 852static inline int pmd_write(pmd_t pmd)
 853{
 854        BUG();
 855        return 0;
 856}
 857#endif /* pmd_write */
 858#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 859
 860#ifndef pud_write
 861static inline int pud_write(pud_t pud)
 862{
 863        BUG();
 864        return 0;
 865}
 866#endif /* pud_write */
 867
 868#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
 869        (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
 870         !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
 871static inline int pud_trans_huge(pud_t pud)
 872{
 873        return 0;
 874}
 875#endif
 876
 877#ifndef pmd_read_atomic
 878static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
 879{
 880        /*
 881         * Depend on compiler for an atomic pmd read. NOTE: this is
 882         * only going to work, if the pmdval_t isn't larger than
 883         * an unsigned long.
 884         */
 885        return *pmdp;
 886}
 887#endif
 888
 889#ifndef arch_needs_pgtable_deposit
 890#define arch_needs_pgtable_deposit() (false)
 891#endif
 892/*
 893 * This function is meant to be used by sites walking pagetables with
 894 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
 895 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
 896 * into a null pmd and the transhuge page fault can convert a null pmd
 897 * into an hugepmd or into a regular pmd (if the hugepage allocation
 898 * fails). While holding the mmap_sem in read mode the pmd becomes
 899 * stable and stops changing under us only if it's not null and not a
 900 * transhuge pmd. When those races occurs and this function makes a
 901 * difference vs the standard pmd_none_or_clear_bad, the result is
 902 * undefined so behaving like if the pmd was none is safe (because it
 903 * can return none anyway). The compiler level barrier() is critically
 904 * important to compute the two checks atomically on the same pmdval.
 905 *
 906 * For 32bit kernels with a 64bit large pmd_t this automatically takes
 907 * care of reading the pmd atomically to avoid SMP race conditions
 908 * against pmd_populate() when the mmap_sem is hold for reading by the
 909 * caller (a special atomic read not done by "gcc" as in the generic
 910 * version above, is also needed when THP is disabled because the page
 911 * fault can populate the pmd from under us).
 912 */
 913static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
 914{
 915        pmd_t pmdval = pmd_read_atomic(pmd);
 916        /*
 917         * The barrier will stabilize the pmdval in a register or on
 918         * the stack so that it will stop changing under the code.
 919         *
 920         * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
 921         * pmd_read_atomic is allowed to return a not atomic pmdval
 922         * (for example pointing to an hugepage that has never been
 923         * mapped in the pmd). The below checks will only care about
 924         * the low part of the pmd with 32bit PAE x86 anyway, with the
 925         * exception of pmd_none(). So the important thing is that if
 926         * the low part of the pmd is found null, the high part will
 927         * be also null or the pmd_none() check below would be
 928         * confused.
 929         */
 930#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 931        barrier();
 932#endif
 933        /*
 934         * !pmd_present() checks for pmd migration entries
 935         *
 936         * The complete check uses is_pmd_migration_entry() in linux/swapops.h
 937         * But using that requires moving current function and pmd_trans_unstable()
 938         * to linux/swapops.h to resovle dependency, which is too much code move.
 939         *
 940         * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
 941         * because !pmd_present() pages can only be under migration not swapped
 942         * out.
 943         *
 944         * pmd_none() is preseved for future condition checks on pmd migration
 945         * entries and not confusing with this function name, although it is
 946         * redundant with !pmd_present().
 947         */
 948        if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
 949                (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
 950                return 1;
 951        if (unlikely(pmd_bad(pmdval))) {
 952                pmd_clear_bad(pmd);
 953                return 1;
 954        }
 955        return 0;
 956}
 957
 958/*
 959 * This is a noop if Transparent Hugepage Support is not built into
 960 * the kernel. Otherwise it is equivalent to
 961 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
 962 * places that already verified the pmd is not none and they want to
 963 * walk ptes while holding the mmap sem in read mode (write mode don't
 964 * need this). If THP is not enabled, the pmd can't go away under the
 965 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
 966 * run a pmd_trans_unstable before walking the ptes after
 967 * split_huge_page_pmd returns (because it may have run when the pmd
 968 * become null, but then a page fault can map in a THP and not a
 969 * regular page).
 970 */
 971static inline int pmd_trans_unstable(pmd_t *pmd)
 972{
 973#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 974        return pmd_none_or_trans_huge_or_clear_bad(pmd);
 975#else
 976        return 0;
 977#endif
 978}
 979
 980#ifndef CONFIG_NUMA_BALANCING
 981/*
 982 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
 983 * the only case the kernel cares is for NUMA balancing and is only ever set
 984 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
 985 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
 986 * is the responsibility of the caller to distinguish between PROT_NONE
 987 * protections and NUMA hinting fault protections.
 988 */
 989static inline int pte_protnone(pte_t pte)
 990{
 991        return 0;
 992}
 993
 994static inline int pmd_protnone(pmd_t pmd)
 995{
 996        return 0;
 997}
 998#endif /* CONFIG_NUMA_BALANCING */
 999
1000#endif /* CONFIG_MMU */
1001
1002#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1003
1004#ifndef __PAGETABLE_P4D_FOLDED
1005int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1006int p4d_clear_huge(p4d_t *p4d);
1007#else
1008static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1009{
1010        return 0;
1011}
1012static inline int p4d_clear_huge(p4d_t *p4d)
1013{
1014        return 0;
1015}
1016#endif /* !__PAGETABLE_P4D_FOLDED */
1017
1018int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1019int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1020int pud_clear_huge(pud_t *pud);
1021int pmd_clear_huge(pmd_t *pmd);
1022int pud_free_pmd_page(pud_t *pud);
1023int pmd_free_pte_page(pmd_t *pmd);
1024#else   /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1025static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1026{
1027        return 0;
1028}
1029static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1030{
1031        return 0;
1032}
1033static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1034{
1035        return 0;
1036}
1037static inline int p4d_clear_huge(p4d_t *p4d)
1038{
1039        return 0;
1040}
1041static inline int pud_clear_huge(pud_t *pud)
1042{
1043        return 0;
1044}
1045static inline int pmd_clear_huge(pmd_t *pmd)
1046{
1047        return 0;
1048}
1049static inline int pud_free_pmd_page(pud_t *pud)
1050{
1051        return 0;
1052}
1053static inline int pmd_free_pte_page(pmd_t *pmd)
1054{
1055        return 0;
1056}
1057#endif  /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1058
1059#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1060#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1061/*
1062 * ARCHes with special requirements for evicting THP backing TLB entries can
1063 * implement this. Otherwise also, it can help optimize normal TLB flush in
1064 * THP regime. stock flush_tlb_range() typically has optimization to nuke the
1065 * entire TLB TLB if flush span is greater than a threshold, which will
1066 * likely be true for a single huge page. Thus a single thp flush will
1067 * invalidate the entire TLB which is not desitable.
1068 * e.g. see arch/arc: flush_pmd_tlb_range
1069 */
1070#define flush_pmd_tlb_range(vma, addr, end)     flush_tlb_range(vma, addr, end)
1071#define flush_pud_tlb_range(vma, addr, end)     flush_tlb_range(vma, addr, end)
1072#else
1073#define flush_pmd_tlb_range(vma, addr, end)     BUILD_BUG()
1074#define flush_pud_tlb_range(vma, addr, end)     BUILD_BUG()
1075#endif
1076#endif
1077
1078struct file;
1079int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1080                        unsigned long size, pgprot_t *vma_prot);
1081
1082#ifndef CONFIG_X86_ESPFIX64
1083static inline void init_espfix_bsp(void) { }
1084#endif
1085
1086#endif /* !__ASSEMBLY__ */
1087
1088#ifndef io_remap_pfn_range
1089#define io_remap_pfn_range remap_pfn_range
1090#endif
1091
1092#ifndef has_transparent_hugepage
1093#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1094#define has_transparent_hugepage() 1
1095#else
1096#define has_transparent_hugepage() 0
1097#endif
1098#endif
1099
1100#endif /* _ASM_GENERIC_PGTABLE_H */
1101