linux/include/linux/skbuff.h
<<
>>
Prefs
   1/*
   2 *      Definitions for the 'struct sk_buff' memory handlers.
   3 *
   4 *      Authors:
   5 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
   6 *              Florian La Roche, <rzsfl@rz.uni-sb.de>
   7 *
   8 *      This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 */
  13
  14#ifndef _LINUX_SKBUFF_H
  15#define _LINUX_SKBUFF_H
  16
  17#include <linux/kernel.h>
  18#include <linux/compiler.h>
  19#include <linux/time.h>
  20#include <linux/bug.h>
  21#include <linux/cache.h>
  22#include <linux/rbtree.h>
  23#include <linux/socket.h>
  24#include <linux/refcount.h>
  25
  26#include <linux/atomic.h>
  27#include <asm/types.h>
  28#include <linux/spinlock.h>
  29#include <linux/net.h>
  30#include <linux/textsearch.h>
  31#include <net/checksum.h>
  32#include <linux/rcupdate.h>
  33#include <linux/hrtimer.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/netdev_features.h>
  36#include <linux/sched.h>
  37#include <linux/sched/clock.h>
  38#include <net/flow_dissector.h>
  39#include <linux/splice.h>
  40#include <linux/in6.h>
  41#include <linux/if_packet.h>
  42#include <net/flow.h>
  43
  44/* The interface for checksum offload between the stack and networking drivers
  45 * is as follows...
  46 *
  47 * A. IP checksum related features
  48 *
  49 * Drivers advertise checksum offload capabilities in the features of a device.
  50 * From the stack's point of view these are capabilities offered by the driver,
  51 * a driver typically only advertises features that it is capable of offloading
  52 * to its device.
  53 *
  54 * The checksum related features are:
  55 *
  56 *      NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
  57 *                        IP (one's complement) checksum for any combination
  58 *                        of protocols or protocol layering. The checksum is
  59 *                        computed and set in a packet per the CHECKSUM_PARTIAL
  60 *                        interface (see below).
  61 *
  62 *      NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
  63 *                        TCP or UDP packets over IPv4. These are specifically
  64 *                        unencapsulated packets of the form IPv4|TCP or
  65 *                        IPv4|UDP where the Protocol field in the IPv4 header
  66 *                        is TCP or UDP. The IPv4 header may contain IP options
  67 *                        This feature cannot be set in features for a device
  68 *                        with NETIF_F_HW_CSUM also set. This feature is being
  69 *                        DEPRECATED (see below).
  70 *
  71 *      NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
  72 *                        TCP or UDP packets over IPv6. These are specifically
  73 *                        unencapsulated packets of the form IPv6|TCP or
  74 *                        IPv4|UDP where the Next Header field in the IPv6
  75 *                        header is either TCP or UDP. IPv6 extension headers
  76 *                        are not supported with this feature. This feature
  77 *                        cannot be set in features for a device with
  78 *                        NETIF_F_HW_CSUM also set. This feature is being
  79 *                        DEPRECATED (see below).
  80 *
  81 *      NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
  82 *                       This flag is used only used to disable the RX checksum
  83 *                       feature for a device. The stack will accept receive
  84 *                       checksum indication in packets received on a device
  85 *                       regardless of whether NETIF_F_RXCSUM is set.
  86 *
  87 * B. Checksumming of received packets by device. Indication of checksum
  88 *    verification is in set skb->ip_summed. Possible values are:
  89 *
  90 * CHECKSUM_NONE:
  91 *
  92 *   Device did not checksum this packet e.g. due to lack of capabilities.
  93 *   The packet contains full (though not verified) checksum in packet but
  94 *   not in skb->csum. Thus, skb->csum is undefined in this case.
  95 *
  96 * CHECKSUM_UNNECESSARY:
  97 *
  98 *   The hardware you're dealing with doesn't calculate the full checksum
  99 *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
 100 *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
 101 *   if their checksums are okay. skb->csum is still undefined in this case
 102 *   though. A driver or device must never modify the checksum field in the
 103 *   packet even if checksum is verified.
 104 *
 105 *   CHECKSUM_UNNECESSARY is applicable to following protocols:
 106 *     TCP: IPv6 and IPv4.
 107 *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
 108 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
 109 *       may perform further validation in this case.
 110 *     GRE: only if the checksum is present in the header.
 111 *     SCTP: indicates the CRC in SCTP header has been validated.
 112 *     FCOE: indicates the CRC in FC frame has been validated.
 113 *
 114 *   skb->csum_level indicates the number of consecutive checksums found in
 115 *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
 116 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
 117 *   and a device is able to verify the checksums for UDP (possibly zero),
 118 *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
 119 *   two. If the device were only able to verify the UDP checksum and not
 120 *   GRE, either because it doesn't support GRE checksum of because GRE
 121 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
 122 *   not considered in this case).
 123 *
 124 * CHECKSUM_COMPLETE:
 125 *
 126 *   This is the most generic way. The device supplied checksum of the _whole_
 127 *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
 128 *   hardware doesn't need to parse L3/L4 headers to implement this.
 129 *
 130 *   Notes:
 131 *   - Even if device supports only some protocols, but is able to produce
 132 *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
 133 *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
 134 *
 135 * CHECKSUM_PARTIAL:
 136 *
 137 *   A checksum is set up to be offloaded to a device as described in the
 138 *   output description for CHECKSUM_PARTIAL. This may occur on a packet
 139 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
 140 *   on the same host, or it may be set in the input path in GRO or remote
 141 *   checksum offload. For the purposes of checksum verification, the checksum
 142 *   referred to by skb->csum_start + skb->csum_offset and any preceding
 143 *   checksums in the packet are considered verified. Any checksums in the
 144 *   packet that are after the checksum being offloaded are not considered to
 145 *   be verified.
 146 *
 147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
 148 *    in the skb->ip_summed for a packet. Values are:
 149 *
 150 * CHECKSUM_PARTIAL:
 151 *
 152 *   The driver is required to checksum the packet as seen by hard_start_xmit()
 153 *   from skb->csum_start up to the end, and to record/write the checksum at
 154 *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
 155 *   csum_start and csum_offset values are valid values given the length and
 156 *   offset of the packet, however they should not attempt to validate that the
 157 *   checksum refers to a legitimate transport layer checksum-- it is the
 158 *   purview of the stack to validate that csum_start and csum_offset are set
 159 *   correctly.
 160 *
 161 *   When the stack requests checksum offload for a packet, the driver MUST
 162 *   ensure that the checksum is set correctly. A driver can either offload the
 163 *   checksum calculation to the device, or call skb_checksum_help (in the case
 164 *   that the device does not support offload for a particular checksum).
 165 *
 166 *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
 167 *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
 168 *   checksum offload capability.
 169 *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
 170 *   on network device checksumming capabilities: if a packet does not match
 171 *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
 172 *   csum_not_inet, see item D.) is called to resolve the checksum.
 173 *
 174 * CHECKSUM_NONE:
 175 *
 176 *   The skb was already checksummed by the protocol, or a checksum is not
 177 *   required.
 178 *
 179 * CHECKSUM_UNNECESSARY:
 180 *
 181 *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
 182 *   output.
 183 *
 184 * CHECKSUM_COMPLETE:
 185 *   Not used in checksum output. If a driver observes a packet with this value
 186 *   set in skbuff, if should treat as CHECKSUM_NONE being set.
 187 *
 188 * D. Non-IP checksum (CRC) offloads
 189 *
 190 *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
 191 *     offloading the SCTP CRC in a packet. To perform this offload the stack
 192 *     will set set csum_start and csum_offset accordingly, set ip_summed to
 193 *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
 194 *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
 195 *     A driver that supports both IP checksum offload and SCTP CRC32c offload
 196 *     must verify which offload is configured for a packet by testing the
 197 *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
 198 *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
 199 *
 200 *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
 201 *     offloading the FCOE CRC in a packet. To perform this offload the stack
 202 *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
 203 *     accordingly. Note the there is no indication in the skbuff that the
 204 *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
 205 *     both IP checksum offload and FCOE CRC offload must verify which offload
 206 *     is configured for a packet presumably by inspecting packet headers.
 207 *
 208 * E. Checksumming on output with GSO.
 209 *
 210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
 211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
 212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
 213 * part of the GSO operation is implied. If a checksum is being offloaded
 214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
 215 * are set to refer to the outermost checksum being offload (two offloaded
 216 * checksums are possible with UDP encapsulation).
 217 */
 218
 219/* Don't change this without changing skb_csum_unnecessary! */
 220#define CHECKSUM_NONE           0
 221#define CHECKSUM_UNNECESSARY    1
 222#define CHECKSUM_COMPLETE       2
 223#define CHECKSUM_PARTIAL        3
 224
 225/* Maximum value in skb->csum_level */
 226#define SKB_MAX_CSUM_LEVEL      3
 227
 228#define SKB_DATA_ALIGN(X)       ALIGN(X, SMP_CACHE_BYTES)
 229#define SKB_WITH_OVERHEAD(X)    \
 230        ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 231#define SKB_MAX_ORDER(X, ORDER) \
 232        SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
 233#define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
 234#define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
 235
 236/* return minimum truesize of one skb containing X bytes of data */
 237#define SKB_TRUESIZE(X) ((X) +                                          \
 238                         SKB_DATA_ALIGN(sizeof(struct sk_buff)) +       \
 239                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 240
 241struct net_device;
 242struct scatterlist;
 243struct pipe_inode_info;
 244struct iov_iter;
 245struct napi_struct;
 246
 247#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 248struct nf_conntrack {
 249        atomic_t use;
 250};
 251#endif
 252
 253#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 254struct nf_bridge_info {
 255        refcount_t              use;
 256        enum {
 257                BRNF_PROTO_UNCHANGED,
 258                BRNF_PROTO_8021Q,
 259                BRNF_PROTO_PPPOE
 260        } orig_proto:8;
 261        u8                      pkt_otherhost:1;
 262        u8                      in_prerouting:1;
 263        u8                      bridged_dnat:1;
 264        __u16                   frag_max_size;
 265        struct net_device       *physindev;
 266
 267        /* always valid & non-NULL from FORWARD on, for physdev match */
 268        struct net_device       *physoutdev;
 269        union {
 270                /* prerouting: detect dnat in orig/reply direction */
 271                __be32          ipv4_daddr;
 272                struct in6_addr ipv6_daddr;
 273
 274                /* after prerouting + nat detected: store original source
 275                 * mac since neigh resolution overwrites it, only used while
 276                 * skb is out in neigh layer.
 277                 */
 278                char neigh_header[8];
 279        };
 280};
 281#endif
 282
 283struct sk_buff_head {
 284        /* These two members must be first. */
 285        struct sk_buff  *next;
 286        struct sk_buff  *prev;
 287
 288        __u32           qlen;
 289        spinlock_t      lock;
 290};
 291
 292struct sk_buff;
 293
 294/* To allow 64K frame to be packed as single skb without frag_list we
 295 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
 296 * buffers which do not start on a page boundary.
 297 *
 298 * Since GRO uses frags we allocate at least 16 regardless of page
 299 * size.
 300 */
 301#if (65536/PAGE_SIZE + 1) < 16
 302#define MAX_SKB_FRAGS 16UL
 303#else
 304#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
 305#endif
 306extern int sysctl_max_skb_frags;
 307
 308/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
 309 * segment using its current segmentation instead.
 310 */
 311#define GSO_BY_FRAGS    0xFFFF
 312
 313typedef struct skb_frag_struct skb_frag_t;
 314
 315struct skb_frag_struct {
 316        struct {
 317                struct page *p;
 318        } page;
 319#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
 320        __u32 page_offset;
 321        __u32 size;
 322#else
 323        __u16 page_offset;
 324        __u16 size;
 325#endif
 326};
 327
 328static inline unsigned int skb_frag_size(const skb_frag_t *frag)
 329{
 330        return frag->size;
 331}
 332
 333static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
 334{
 335        frag->size = size;
 336}
 337
 338static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
 339{
 340        frag->size += delta;
 341}
 342
 343static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
 344{
 345        frag->size -= delta;
 346}
 347
 348static inline bool skb_frag_must_loop(struct page *p)
 349{
 350#if defined(CONFIG_HIGHMEM)
 351        if (PageHighMem(p))
 352                return true;
 353#endif
 354        return false;
 355}
 356
 357/**
 358 *      skb_frag_foreach_page - loop over pages in a fragment
 359 *
 360 *      @f:             skb frag to operate on
 361 *      @f_off:         offset from start of f->page.p
 362 *      @f_len:         length from f_off to loop over
 363 *      @p:             (temp var) current page
 364 *      @p_off:         (temp var) offset from start of current page,
 365 *                                 non-zero only on first page.
 366 *      @p_len:         (temp var) length in current page,
 367 *                                 < PAGE_SIZE only on first and last page.
 368 *      @copied:        (temp var) length so far, excluding current p_len.
 369 *
 370 *      A fragment can hold a compound page, in which case per-page
 371 *      operations, notably kmap_atomic, must be called for each
 372 *      regular page.
 373 */
 374#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
 375        for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),            \
 376             p_off = (f_off) & (PAGE_SIZE - 1),                         \
 377             p_len = skb_frag_must_loop(p) ?                            \
 378             min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,              \
 379             copied = 0;                                                \
 380             copied < f_len;                                            \
 381             copied += p_len, p++, p_off = 0,                           \
 382             p_len = min_t(u32, f_len - copied, PAGE_SIZE))             \
 383
 384#define HAVE_HW_TIME_STAMP
 385
 386/**
 387 * struct skb_shared_hwtstamps - hardware time stamps
 388 * @hwtstamp:   hardware time stamp transformed into duration
 389 *              since arbitrary point in time
 390 *
 391 * Software time stamps generated by ktime_get_real() are stored in
 392 * skb->tstamp.
 393 *
 394 * hwtstamps can only be compared against other hwtstamps from
 395 * the same device.
 396 *
 397 * This structure is attached to packets as part of the
 398 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 399 */
 400struct skb_shared_hwtstamps {
 401        ktime_t hwtstamp;
 402};
 403
 404/* Definitions for tx_flags in struct skb_shared_info */
 405enum {
 406        /* generate hardware time stamp */
 407        SKBTX_HW_TSTAMP = 1 << 0,
 408
 409        /* generate software time stamp when queueing packet to NIC */
 410        SKBTX_SW_TSTAMP = 1 << 1,
 411
 412        /* device driver is going to provide hardware time stamp */
 413        SKBTX_IN_PROGRESS = 1 << 2,
 414
 415        /* device driver supports TX zero-copy buffers */
 416        SKBTX_DEV_ZEROCOPY = 1 << 3,
 417
 418        /* generate wifi status information (where possible) */
 419        SKBTX_WIFI_STATUS = 1 << 4,
 420
 421        /* This indicates at least one fragment might be overwritten
 422         * (as in vmsplice(), sendfile() ...)
 423         * If we need to compute a TX checksum, we'll need to copy
 424         * all frags to avoid possible bad checksum
 425         */
 426        SKBTX_SHARED_FRAG = 1 << 5,
 427
 428        /* generate software time stamp when entering packet scheduling */
 429        SKBTX_SCHED_TSTAMP = 1 << 6,
 430};
 431
 432#define SKBTX_ZEROCOPY_FRAG     (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
 433#define SKBTX_ANY_SW_TSTAMP     (SKBTX_SW_TSTAMP    | \
 434                                 SKBTX_SCHED_TSTAMP)
 435#define SKBTX_ANY_TSTAMP        (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
 436
 437/*
 438 * The callback notifies userspace to release buffers when skb DMA is done in
 439 * lower device, the skb last reference should be 0 when calling this.
 440 * The zerocopy_success argument is true if zero copy transmit occurred,
 441 * false on data copy or out of memory error caused by data copy attempt.
 442 * The ctx field is used to track device context.
 443 * The desc field is used to track userspace buffer index.
 444 */
 445struct ubuf_info {
 446        void (*callback)(struct ubuf_info *, bool zerocopy_success);
 447        union {
 448                struct {
 449                        unsigned long desc;
 450                        void *ctx;
 451                };
 452                struct {
 453                        u32 id;
 454                        u16 len;
 455                        u16 zerocopy:1;
 456                        u32 bytelen;
 457                };
 458        };
 459        refcount_t refcnt;
 460
 461        struct mmpin {
 462                struct user_struct *user;
 463                unsigned int num_pg;
 464        } mmp;
 465};
 466
 467#define skb_uarg(SKB)   ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
 468
 469int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
 470void mm_unaccount_pinned_pages(struct mmpin *mmp);
 471
 472struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
 473struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
 474                                        struct ubuf_info *uarg);
 475
 476static inline void sock_zerocopy_get(struct ubuf_info *uarg)
 477{
 478        refcount_inc(&uarg->refcnt);
 479}
 480
 481void sock_zerocopy_put(struct ubuf_info *uarg);
 482void sock_zerocopy_put_abort(struct ubuf_info *uarg);
 483
 484void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
 485
 486int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
 487                             struct msghdr *msg, int len,
 488                             struct ubuf_info *uarg);
 489
 490/* This data is invariant across clones and lives at
 491 * the end of the header data, ie. at skb->end.
 492 */
 493struct skb_shared_info {
 494        __u8            __unused;
 495        __u8            meta_len;
 496        __u8            nr_frags;
 497        __u8            tx_flags;
 498        unsigned short  gso_size;
 499        /* Warning: this field is not always filled in (UFO)! */
 500        unsigned short  gso_segs;
 501        struct sk_buff  *frag_list;
 502        struct skb_shared_hwtstamps hwtstamps;
 503        unsigned int    gso_type;
 504        u32             tskey;
 505
 506        /*
 507         * Warning : all fields before dataref are cleared in __alloc_skb()
 508         */
 509        atomic_t        dataref;
 510
 511        /* Intermediate layers must ensure that destructor_arg
 512         * remains valid until skb destructor */
 513        void *          destructor_arg;
 514
 515        /* must be last field, see pskb_expand_head() */
 516        skb_frag_t      frags[MAX_SKB_FRAGS];
 517};
 518
 519/* We divide dataref into two halves.  The higher 16 bits hold references
 520 * to the payload part of skb->data.  The lower 16 bits hold references to
 521 * the entire skb->data.  A clone of a headerless skb holds the length of
 522 * the header in skb->hdr_len.
 523 *
 524 * All users must obey the rule that the skb->data reference count must be
 525 * greater than or equal to the payload reference count.
 526 *
 527 * Holding a reference to the payload part means that the user does not
 528 * care about modifications to the header part of skb->data.
 529 */
 530#define SKB_DATAREF_SHIFT 16
 531#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
 532
 533
 534enum {
 535        SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
 536        SKB_FCLONE_ORIG,        /* orig skb (from fclone_cache) */
 537        SKB_FCLONE_CLONE,       /* companion fclone skb (from fclone_cache) */
 538};
 539
 540enum {
 541        SKB_GSO_TCPV4 = 1 << 0,
 542
 543        /* This indicates the skb is from an untrusted source. */
 544        SKB_GSO_DODGY = 1 << 1,
 545
 546        /* This indicates the tcp segment has CWR set. */
 547        SKB_GSO_TCP_ECN = 1 << 2,
 548
 549        SKB_GSO_TCP_FIXEDID = 1 << 3,
 550
 551        SKB_GSO_TCPV6 = 1 << 4,
 552
 553        SKB_GSO_FCOE = 1 << 5,
 554
 555        SKB_GSO_GRE = 1 << 6,
 556
 557        SKB_GSO_GRE_CSUM = 1 << 7,
 558
 559        SKB_GSO_IPXIP4 = 1 << 8,
 560
 561        SKB_GSO_IPXIP6 = 1 << 9,
 562
 563        SKB_GSO_UDP_TUNNEL = 1 << 10,
 564
 565        SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
 566
 567        SKB_GSO_PARTIAL = 1 << 12,
 568
 569        SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
 570
 571        SKB_GSO_SCTP = 1 << 14,
 572
 573        SKB_GSO_ESP = 1 << 15,
 574
 575        SKB_GSO_UDP = 1 << 16,
 576
 577        SKB_GSO_UDP_L4 = 1 << 17,
 578};
 579
 580#if BITS_PER_LONG > 32
 581#define NET_SKBUFF_DATA_USES_OFFSET 1
 582#endif
 583
 584#ifdef NET_SKBUFF_DATA_USES_OFFSET
 585typedef unsigned int sk_buff_data_t;
 586#else
 587typedef unsigned char *sk_buff_data_t;
 588#endif
 589
 590/** 
 591 *      struct sk_buff - socket buffer
 592 *      @next: Next buffer in list
 593 *      @prev: Previous buffer in list
 594 *      @tstamp: Time we arrived/left
 595 *      @rbnode: RB tree node, alternative to next/prev for netem/tcp
 596 *      @sk: Socket we are owned by
 597 *      @dev: Device we arrived on/are leaving by
 598 *      @cb: Control buffer. Free for use by every layer. Put private vars here
 599 *      @_skb_refdst: destination entry (with norefcount bit)
 600 *      @sp: the security path, used for xfrm
 601 *      @len: Length of actual data
 602 *      @data_len: Data length
 603 *      @mac_len: Length of link layer header
 604 *      @hdr_len: writable header length of cloned skb
 605 *      @csum: Checksum (must include start/offset pair)
 606 *      @csum_start: Offset from skb->head where checksumming should start
 607 *      @csum_offset: Offset from csum_start where checksum should be stored
 608 *      @priority: Packet queueing priority
 609 *      @ignore_df: allow local fragmentation
 610 *      @cloned: Head may be cloned (check refcnt to be sure)
 611 *      @ip_summed: Driver fed us an IP checksum
 612 *      @nohdr: Payload reference only, must not modify header
 613 *      @pkt_type: Packet class
 614 *      @fclone: skbuff clone status
 615 *      @ipvs_property: skbuff is owned by ipvs
 616 *      @tc_skip_classify: do not classify packet. set by IFB device
 617 *      @tc_at_ingress: used within tc_classify to distinguish in/egress
 618 *      @tc_redirected: packet was redirected by a tc action
 619 *      @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
 620 *      @peeked: this packet has been seen already, so stats have been
 621 *              done for it, don't do them again
 622 *      @nf_trace: netfilter packet trace flag
 623 *      @protocol: Packet protocol from driver
 624 *      @destructor: Destruct function
 625 *      @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
 626 *      @_nfct: Associated connection, if any (with nfctinfo bits)
 627 *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
 628 *      @skb_iif: ifindex of device we arrived on
 629 *      @tc_index: Traffic control index
 630 *      @hash: the packet hash
 631 *      @queue_mapping: Queue mapping for multiqueue devices
 632 *      @xmit_more: More SKBs are pending for this queue
 633 *      @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
 634 *      @ndisc_nodetype: router type (from link layer)
 635 *      @ooo_okay: allow the mapping of a socket to a queue to be changed
 636 *      @l4_hash: indicate hash is a canonical 4-tuple hash over transport
 637 *              ports.
 638 *      @sw_hash: indicates hash was computed in software stack
 639 *      @wifi_acked_valid: wifi_acked was set
 640 *      @wifi_acked: whether frame was acked on wifi or not
 641 *      @no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
 642 *      @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
 643 *      @dst_pending_confirm: need to confirm neighbour
 644  *     @napi_id: id of the NAPI struct this skb came from
 645 *      @secmark: security marking
 646 *      @mark: Generic packet mark
 647 *      @vlan_proto: vlan encapsulation protocol
 648 *      @vlan_tci: vlan tag control information
 649 *      @inner_protocol: Protocol (encapsulation)
 650 *      @inner_transport_header: Inner transport layer header (encapsulation)
 651 *      @inner_network_header: Network layer header (encapsulation)
 652 *      @inner_mac_header: Link layer header (encapsulation)
 653 *      @transport_header: Transport layer header
 654 *      @network_header: Network layer header
 655 *      @mac_header: Link layer header
 656 *      @tail: Tail pointer
 657 *      @end: End pointer
 658 *      @head: Head of buffer
 659 *      @data: Data head pointer
 660 *      @truesize: Buffer size
 661 *      @users: User count - see {datagram,tcp}.c
 662 */
 663
 664struct sk_buff {
 665        union {
 666                struct {
 667                        /* These two members must be first. */
 668                        struct sk_buff          *next;
 669                        struct sk_buff          *prev;
 670
 671                        union {
 672                                struct net_device       *dev;
 673                                /* Some protocols might use this space to store information,
 674                                 * while device pointer would be NULL.
 675                                 * UDP receive path is one user.
 676                                 */
 677                                unsigned long           dev_scratch;
 678                                int                     ip_defrag_offset;
 679                        };
 680                };
 681                struct rb_node  rbnode; /* used in netem & tcp stack */
 682        };
 683        struct sock             *sk;
 684
 685        union {
 686                ktime_t         tstamp;
 687                u64             skb_mstamp;
 688        };
 689        /*
 690         * This is the control buffer. It is free to use for every
 691         * layer. Please put your private variables there. If you
 692         * want to keep them across layers you have to do a skb_clone()
 693         * first. This is owned by whoever has the skb queued ATM.
 694         */
 695        char                    cb[48] __aligned(8);
 696
 697        union {
 698                struct {
 699                        unsigned long   _skb_refdst;
 700                        void            (*destructor)(struct sk_buff *skb);
 701                };
 702                struct list_head        tcp_tsorted_anchor;
 703        };
 704
 705#ifdef CONFIG_XFRM
 706        struct  sec_path        *sp;
 707#endif
 708#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 709        unsigned long            _nfct;
 710#endif
 711#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 712        struct nf_bridge_info   *nf_bridge;
 713#endif
 714        unsigned int            len,
 715                                data_len;
 716        __u16                   mac_len,
 717                                hdr_len;
 718
 719        /* Following fields are _not_ copied in __copy_skb_header()
 720         * Note that queue_mapping is here mostly to fill a hole.
 721         */
 722        __u16                   queue_mapping;
 723
 724/* if you move cloned around you also must adapt those constants */
 725#ifdef __BIG_ENDIAN_BITFIELD
 726#define CLONED_MASK     (1 << 7)
 727#else
 728#define CLONED_MASK     1
 729#endif
 730#define CLONED_OFFSET()         offsetof(struct sk_buff, __cloned_offset)
 731
 732        __u8                    __cloned_offset[0];
 733        __u8                    cloned:1,
 734                                nohdr:1,
 735                                fclone:2,
 736                                peeked:1,
 737                                head_frag:1,
 738                                xmit_more:1,
 739                                pfmemalloc:1;
 740
 741        /* fields enclosed in headers_start/headers_end are copied
 742         * using a single memcpy() in __copy_skb_header()
 743         */
 744        /* private: */
 745        __u32                   headers_start[0];
 746        /* public: */
 747
 748/* if you move pkt_type around you also must adapt those constants */
 749#ifdef __BIG_ENDIAN_BITFIELD
 750#define PKT_TYPE_MAX    (7 << 5)
 751#else
 752#define PKT_TYPE_MAX    7
 753#endif
 754#define PKT_TYPE_OFFSET()       offsetof(struct sk_buff, __pkt_type_offset)
 755
 756        __u8                    __pkt_type_offset[0];
 757        __u8                    pkt_type:3;
 758        __u8                    ignore_df:1;
 759        __u8                    nf_trace:1;
 760        __u8                    ip_summed:2;
 761        __u8                    ooo_okay:1;
 762
 763        __u8                    l4_hash:1;
 764        __u8                    sw_hash:1;
 765        __u8                    wifi_acked_valid:1;
 766        __u8                    wifi_acked:1;
 767        __u8                    no_fcs:1;
 768        /* Indicates the inner headers are valid in the skbuff. */
 769        __u8                    encapsulation:1;
 770        __u8                    encap_hdr_csum:1;
 771        __u8                    csum_valid:1;
 772
 773        __u8                    csum_complete_sw:1;
 774        __u8                    csum_level:2;
 775        __u8                    csum_not_inet:1;
 776        __u8                    dst_pending_confirm:1;
 777#ifdef CONFIG_IPV6_NDISC_NODETYPE
 778        __u8                    ndisc_nodetype:2;
 779#endif
 780        __u8                    ipvs_property:1;
 781
 782        __u8                    inner_protocol_type:1;
 783        __u8                    remcsum_offload:1;
 784#ifdef CONFIG_NET_SWITCHDEV
 785        __u8                    offload_fwd_mark:1;
 786        __u8                    offload_mr_fwd_mark:1;
 787#endif
 788#ifdef CONFIG_NET_CLS_ACT
 789        __u8                    tc_skip_classify:1;
 790        __u8                    tc_at_ingress:1;
 791        __u8                    tc_redirected:1;
 792        __u8                    tc_from_ingress:1;
 793#endif
 794
 795#ifdef CONFIG_NET_SCHED
 796        __u16                   tc_index;       /* traffic control index */
 797#endif
 798
 799        union {
 800                __wsum          csum;
 801                struct {
 802                        __u16   csum_start;
 803                        __u16   csum_offset;
 804                };
 805        };
 806        __u32                   priority;
 807        int                     skb_iif;
 808        __u32                   hash;
 809        __be16                  vlan_proto;
 810        __u16                   vlan_tci;
 811#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
 812        union {
 813                unsigned int    napi_id;
 814                unsigned int    sender_cpu;
 815        };
 816#endif
 817#ifdef CONFIG_NETWORK_SECMARK
 818        __u32           secmark;
 819#endif
 820
 821        union {
 822                __u32           mark;
 823                __u32           reserved_tailroom;
 824        };
 825
 826        union {
 827                __be16          inner_protocol;
 828                __u8            inner_ipproto;
 829        };
 830
 831        __u16                   inner_transport_header;
 832        __u16                   inner_network_header;
 833        __u16                   inner_mac_header;
 834
 835        __be16                  protocol;
 836        __u16                   transport_header;
 837        __u16                   network_header;
 838        __u16                   mac_header;
 839
 840        /* private: */
 841        __u32                   headers_end[0];
 842        /* public: */
 843
 844        /* These elements must be at the end, see alloc_skb() for details.  */
 845        sk_buff_data_t          tail;
 846        sk_buff_data_t          end;
 847        unsigned char           *head,
 848                                *data;
 849        unsigned int            truesize;
 850        refcount_t              users;
 851};
 852
 853#ifdef __KERNEL__
 854/*
 855 *      Handling routines are only of interest to the kernel
 856 */
 857
 858#define SKB_ALLOC_FCLONE        0x01
 859#define SKB_ALLOC_RX            0x02
 860#define SKB_ALLOC_NAPI          0x04
 861
 862/* Returns true if the skb was allocated from PFMEMALLOC reserves */
 863static inline bool skb_pfmemalloc(const struct sk_buff *skb)
 864{
 865        return unlikely(skb->pfmemalloc);
 866}
 867
 868/*
 869 * skb might have a dst pointer attached, refcounted or not.
 870 * _skb_refdst low order bit is set if refcount was _not_ taken
 871 */
 872#define SKB_DST_NOREF   1UL
 873#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
 874
 875#define SKB_NFCT_PTRMASK        ~(7UL)
 876/**
 877 * skb_dst - returns skb dst_entry
 878 * @skb: buffer
 879 *
 880 * Returns skb dst_entry, regardless of reference taken or not.
 881 */
 882static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
 883{
 884        /* If refdst was not refcounted, check we still are in a 
 885         * rcu_read_lock section
 886         */
 887        WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
 888                !rcu_read_lock_held() &&
 889                !rcu_read_lock_bh_held());
 890        return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
 891}
 892
 893/**
 894 * skb_dst_set - sets skb dst
 895 * @skb: buffer
 896 * @dst: dst entry
 897 *
 898 * Sets skb dst, assuming a reference was taken on dst and should
 899 * be released by skb_dst_drop()
 900 */
 901static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
 902{
 903        skb->_skb_refdst = (unsigned long)dst;
 904}
 905
 906/**
 907 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
 908 * @skb: buffer
 909 * @dst: dst entry
 910 *
 911 * Sets skb dst, assuming a reference was not taken on dst.
 912 * If dst entry is cached, we do not take reference and dst_release
 913 * will be avoided by refdst_drop. If dst entry is not cached, we take
 914 * reference, so that last dst_release can destroy the dst immediately.
 915 */
 916static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
 917{
 918        WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
 919        skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
 920}
 921
 922/**
 923 * skb_dst_is_noref - Test if skb dst isn't refcounted
 924 * @skb: buffer
 925 */
 926static inline bool skb_dst_is_noref(const struct sk_buff *skb)
 927{
 928        return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
 929}
 930
 931static inline struct rtable *skb_rtable(const struct sk_buff *skb)
 932{
 933        return (struct rtable *)skb_dst(skb);
 934}
 935
 936/* For mangling skb->pkt_type from user space side from applications
 937 * such as nft, tc, etc, we only allow a conservative subset of
 938 * possible pkt_types to be set.
 939*/
 940static inline bool skb_pkt_type_ok(u32 ptype)
 941{
 942        return ptype <= PACKET_OTHERHOST;
 943}
 944
 945static inline unsigned int skb_napi_id(const struct sk_buff *skb)
 946{
 947#ifdef CONFIG_NET_RX_BUSY_POLL
 948        return skb->napi_id;
 949#else
 950        return 0;
 951#endif
 952}
 953
 954/* decrement the reference count and return true if we can free the skb */
 955static inline bool skb_unref(struct sk_buff *skb)
 956{
 957        if (unlikely(!skb))
 958                return false;
 959        if (likely(refcount_read(&skb->users) == 1))
 960                smp_rmb();
 961        else if (likely(!refcount_dec_and_test(&skb->users)))
 962                return false;
 963
 964        return true;
 965}
 966
 967void skb_release_head_state(struct sk_buff *skb);
 968void kfree_skb(struct sk_buff *skb);
 969void kfree_skb_list(struct sk_buff *segs);
 970void skb_tx_error(struct sk_buff *skb);
 971void consume_skb(struct sk_buff *skb);
 972void __consume_stateless_skb(struct sk_buff *skb);
 973void  __kfree_skb(struct sk_buff *skb);
 974extern struct kmem_cache *skbuff_head_cache;
 975
 976void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
 977bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
 978                      bool *fragstolen, int *delta_truesize);
 979
 980struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
 981                            int node);
 982struct sk_buff *__build_skb(void *data, unsigned int frag_size);
 983struct sk_buff *build_skb(void *data, unsigned int frag_size);
 984static inline struct sk_buff *alloc_skb(unsigned int size,
 985                                        gfp_t priority)
 986{
 987        return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
 988}
 989
 990struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
 991                                     unsigned long data_len,
 992                                     int max_page_order,
 993                                     int *errcode,
 994                                     gfp_t gfp_mask);
 995
 996/* Layout of fast clones : [skb1][skb2][fclone_ref] */
 997struct sk_buff_fclones {
 998        struct sk_buff  skb1;
 999
1000        struct sk_buff  skb2;
1001
1002        refcount_t      fclone_ref;
1003};
1004
1005/**
1006 *      skb_fclone_busy - check if fclone is busy
1007 *      @sk: socket
1008 *      @skb: buffer
1009 *
1010 * Returns true if skb is a fast clone, and its clone is not freed.
1011 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1012 * so we also check that this didnt happen.
1013 */
1014static inline bool skb_fclone_busy(const struct sock *sk,
1015                                   const struct sk_buff *skb)
1016{
1017        const struct sk_buff_fclones *fclones;
1018
1019        fclones = container_of(skb, struct sk_buff_fclones, skb1);
1020
1021        return skb->fclone == SKB_FCLONE_ORIG &&
1022               refcount_read(&fclones->fclone_ref) > 1 &&
1023               fclones->skb2.sk == sk;
1024}
1025
1026static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1027                                               gfp_t priority)
1028{
1029        return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1030}
1031
1032struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1033int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1034struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1035void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1036struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1037struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1038                                   gfp_t gfp_mask, bool fclone);
1039static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1040                                          gfp_t gfp_mask)
1041{
1042        return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1043}
1044
1045int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1046struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1047                                     unsigned int headroom);
1048struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1049                                int newtailroom, gfp_t priority);
1050int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1051                                     int offset, int len);
1052int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1053                              int offset, int len);
1054int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1055int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1056
1057/**
1058 *      skb_pad                 -       zero pad the tail of an skb
1059 *      @skb: buffer to pad
1060 *      @pad: space to pad
1061 *
1062 *      Ensure that a buffer is followed by a padding area that is zero
1063 *      filled. Used by network drivers which may DMA or transfer data
1064 *      beyond the buffer end onto the wire.
1065 *
1066 *      May return error in out of memory cases. The skb is freed on error.
1067 */
1068static inline int skb_pad(struct sk_buff *skb, int pad)
1069{
1070        return __skb_pad(skb, pad, true);
1071}
1072#define dev_kfree_skb(a)        consume_skb(a)
1073
1074int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1075                            int getfrag(void *from, char *to, int offset,
1076                                        int len, int odd, struct sk_buff *skb),
1077                            void *from, int length);
1078
1079int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1080                         int offset, size_t size);
1081
1082struct skb_seq_state {
1083        __u32           lower_offset;
1084        __u32           upper_offset;
1085        __u32           frag_idx;
1086        __u32           stepped_offset;
1087        struct sk_buff  *root_skb;
1088        struct sk_buff  *cur_skb;
1089        __u8            *frag_data;
1090};
1091
1092void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1093                          unsigned int to, struct skb_seq_state *st);
1094unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1095                          struct skb_seq_state *st);
1096void skb_abort_seq_read(struct skb_seq_state *st);
1097
1098unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1099                           unsigned int to, struct ts_config *config);
1100
1101/*
1102 * Packet hash types specify the type of hash in skb_set_hash.
1103 *
1104 * Hash types refer to the protocol layer addresses which are used to
1105 * construct a packet's hash. The hashes are used to differentiate or identify
1106 * flows of the protocol layer for the hash type. Hash types are either
1107 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1108 *
1109 * Properties of hashes:
1110 *
1111 * 1) Two packets in different flows have different hash values
1112 * 2) Two packets in the same flow should have the same hash value
1113 *
1114 * A hash at a higher layer is considered to be more specific. A driver should
1115 * set the most specific hash possible.
1116 *
1117 * A driver cannot indicate a more specific hash than the layer at which a hash
1118 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1119 *
1120 * A driver may indicate a hash level which is less specific than the
1121 * actual layer the hash was computed on. For instance, a hash computed
1122 * at L4 may be considered an L3 hash. This should only be done if the
1123 * driver can't unambiguously determine that the HW computed the hash at
1124 * the higher layer. Note that the "should" in the second property above
1125 * permits this.
1126 */
1127enum pkt_hash_types {
1128        PKT_HASH_TYPE_NONE,     /* Undefined type */
1129        PKT_HASH_TYPE_L2,       /* Input: src_MAC, dest_MAC */
1130        PKT_HASH_TYPE_L3,       /* Input: src_IP, dst_IP */
1131        PKT_HASH_TYPE_L4,       /* Input: src_IP, dst_IP, src_port, dst_port */
1132};
1133
1134static inline void skb_clear_hash(struct sk_buff *skb)
1135{
1136        skb->hash = 0;
1137        skb->sw_hash = 0;
1138        skb->l4_hash = 0;
1139}
1140
1141static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1142{
1143        if (!skb->l4_hash)
1144                skb_clear_hash(skb);
1145}
1146
1147static inline void
1148__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1149{
1150        skb->l4_hash = is_l4;
1151        skb->sw_hash = is_sw;
1152        skb->hash = hash;
1153}
1154
1155static inline void
1156skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1157{
1158        /* Used by drivers to set hash from HW */
1159        __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1160}
1161
1162static inline void
1163__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1164{
1165        __skb_set_hash(skb, hash, true, is_l4);
1166}
1167
1168void __skb_get_hash(struct sk_buff *skb);
1169u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1170u32 skb_get_poff(const struct sk_buff *skb);
1171u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1172                   const struct flow_keys_basic *keys, int hlen);
1173__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1174                            void *data, int hlen_proto);
1175
1176static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1177                                        int thoff, u8 ip_proto)
1178{
1179        return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1180}
1181
1182void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1183                             const struct flow_dissector_key *key,
1184                             unsigned int key_count);
1185
1186bool __skb_flow_dissect(const struct sk_buff *skb,
1187                        struct flow_dissector *flow_dissector,
1188                        void *target_container,
1189                        void *data, __be16 proto, int nhoff, int hlen,
1190                        unsigned int flags);
1191
1192static inline bool skb_flow_dissect(const struct sk_buff *skb,
1193                                    struct flow_dissector *flow_dissector,
1194                                    void *target_container, unsigned int flags)
1195{
1196        return __skb_flow_dissect(skb, flow_dissector, target_container,
1197                                  NULL, 0, 0, 0, flags);
1198}
1199
1200static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1201                                              struct flow_keys *flow,
1202                                              unsigned int flags)
1203{
1204        memset(flow, 0, sizeof(*flow));
1205        return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1206                                  NULL, 0, 0, 0, flags);
1207}
1208
1209static inline bool
1210skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1211                                 struct flow_keys_basic *flow, void *data,
1212                                 __be16 proto, int nhoff, int hlen,
1213                                 unsigned int flags)
1214{
1215        memset(flow, 0, sizeof(*flow));
1216        return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
1217                                  data, proto, nhoff, hlen, flags);
1218}
1219
1220void
1221skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1222                             struct flow_dissector *flow_dissector,
1223                             void *target_container);
1224
1225static inline __u32 skb_get_hash(struct sk_buff *skb)
1226{
1227        if (!skb->l4_hash && !skb->sw_hash)
1228                __skb_get_hash(skb);
1229
1230        return skb->hash;
1231}
1232
1233static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1234{
1235        if (!skb->l4_hash && !skb->sw_hash) {
1236                struct flow_keys keys;
1237                __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1238
1239                __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1240        }
1241
1242        return skb->hash;
1243}
1244
1245__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1246
1247static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1248{
1249        return skb->hash;
1250}
1251
1252static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1253{
1254        to->hash = from->hash;
1255        to->sw_hash = from->sw_hash;
1256        to->l4_hash = from->l4_hash;
1257};
1258
1259#ifdef NET_SKBUFF_DATA_USES_OFFSET
1260static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1261{
1262        return skb->head + skb->end;
1263}
1264
1265static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1266{
1267        return skb->end;
1268}
1269#else
1270static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1271{
1272        return skb->end;
1273}
1274
1275static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1276{
1277        return skb->end - skb->head;
1278}
1279#endif
1280
1281/* Internal */
1282#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1283
1284static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1285{
1286        return &skb_shinfo(skb)->hwtstamps;
1287}
1288
1289static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1290{
1291        bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1292
1293        return is_zcopy ? skb_uarg(skb) : NULL;
1294}
1295
1296static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1297{
1298        if (skb && uarg && !skb_zcopy(skb)) {
1299                sock_zerocopy_get(uarg);
1300                skb_shinfo(skb)->destructor_arg = uarg;
1301                skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1302        }
1303}
1304
1305/* Release a reference on a zerocopy structure */
1306static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1307{
1308        struct ubuf_info *uarg = skb_zcopy(skb);
1309
1310        if (uarg) {
1311                if (uarg->callback == sock_zerocopy_callback) {
1312                        uarg->zerocopy = uarg->zerocopy && zerocopy;
1313                        sock_zerocopy_put(uarg);
1314                } else {
1315                        uarg->callback(uarg, zerocopy);
1316                }
1317
1318                skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1319        }
1320}
1321
1322/* Abort a zerocopy operation and revert zckey on error in send syscall */
1323static inline void skb_zcopy_abort(struct sk_buff *skb)
1324{
1325        struct ubuf_info *uarg = skb_zcopy(skb);
1326
1327        if (uarg) {
1328                sock_zerocopy_put_abort(uarg);
1329                skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1330        }
1331}
1332
1333/**
1334 *      skb_queue_empty - check if a queue is empty
1335 *      @list: queue head
1336 *
1337 *      Returns true if the queue is empty, false otherwise.
1338 */
1339static inline int skb_queue_empty(const struct sk_buff_head *list)
1340{
1341        return list->next == (const struct sk_buff *) list;
1342}
1343
1344/**
1345 *      skb_queue_is_last - check if skb is the last entry in the queue
1346 *      @list: queue head
1347 *      @skb: buffer
1348 *
1349 *      Returns true if @skb is the last buffer on the list.
1350 */
1351static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1352                                     const struct sk_buff *skb)
1353{
1354        return skb->next == (const struct sk_buff *) list;
1355}
1356
1357/**
1358 *      skb_queue_is_first - check if skb is the first entry in the queue
1359 *      @list: queue head
1360 *      @skb: buffer
1361 *
1362 *      Returns true if @skb is the first buffer on the list.
1363 */
1364static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1365                                      const struct sk_buff *skb)
1366{
1367        return skb->prev == (const struct sk_buff *) list;
1368}
1369
1370/**
1371 *      skb_queue_next - return the next packet in the queue
1372 *      @list: queue head
1373 *      @skb: current buffer
1374 *
1375 *      Return the next packet in @list after @skb.  It is only valid to
1376 *      call this if skb_queue_is_last() evaluates to false.
1377 */
1378static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1379                                             const struct sk_buff *skb)
1380{
1381        /* This BUG_ON may seem severe, but if we just return then we
1382         * are going to dereference garbage.
1383         */
1384        BUG_ON(skb_queue_is_last(list, skb));
1385        return skb->next;
1386}
1387
1388/**
1389 *      skb_queue_prev - return the prev packet in the queue
1390 *      @list: queue head
1391 *      @skb: current buffer
1392 *
1393 *      Return the prev packet in @list before @skb.  It is only valid to
1394 *      call this if skb_queue_is_first() evaluates to false.
1395 */
1396static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1397                                             const struct sk_buff *skb)
1398{
1399        /* This BUG_ON may seem severe, but if we just return then we
1400         * are going to dereference garbage.
1401         */
1402        BUG_ON(skb_queue_is_first(list, skb));
1403        return skb->prev;
1404}
1405
1406/**
1407 *      skb_get - reference buffer
1408 *      @skb: buffer to reference
1409 *
1410 *      Makes another reference to a socket buffer and returns a pointer
1411 *      to the buffer.
1412 */
1413static inline struct sk_buff *skb_get(struct sk_buff *skb)
1414{
1415        refcount_inc(&skb->users);
1416        return skb;
1417}
1418
1419/*
1420 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1421 */
1422
1423/**
1424 *      skb_cloned - is the buffer a clone
1425 *      @skb: buffer to check
1426 *
1427 *      Returns true if the buffer was generated with skb_clone() and is
1428 *      one of multiple shared copies of the buffer. Cloned buffers are
1429 *      shared data so must not be written to under normal circumstances.
1430 */
1431static inline int skb_cloned(const struct sk_buff *skb)
1432{
1433        return skb->cloned &&
1434               (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1435}
1436
1437static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1438{
1439        might_sleep_if(gfpflags_allow_blocking(pri));
1440
1441        if (skb_cloned(skb))
1442                return pskb_expand_head(skb, 0, 0, pri);
1443
1444        return 0;
1445}
1446
1447/**
1448 *      skb_header_cloned - is the header a clone
1449 *      @skb: buffer to check
1450 *
1451 *      Returns true if modifying the header part of the buffer requires
1452 *      the data to be copied.
1453 */
1454static inline int skb_header_cloned(const struct sk_buff *skb)
1455{
1456        int dataref;
1457
1458        if (!skb->cloned)
1459                return 0;
1460
1461        dataref = atomic_read(&skb_shinfo(skb)->dataref);
1462        dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1463        return dataref != 1;
1464}
1465
1466static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1467{
1468        might_sleep_if(gfpflags_allow_blocking(pri));
1469
1470        if (skb_header_cloned(skb))
1471                return pskb_expand_head(skb, 0, 0, pri);
1472
1473        return 0;
1474}
1475
1476/**
1477 *      __skb_header_release - release reference to header
1478 *      @skb: buffer to operate on
1479 */
1480static inline void __skb_header_release(struct sk_buff *skb)
1481{
1482        skb->nohdr = 1;
1483        atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1484}
1485
1486
1487/**
1488 *      skb_shared - is the buffer shared
1489 *      @skb: buffer to check
1490 *
1491 *      Returns true if more than one person has a reference to this
1492 *      buffer.
1493 */
1494static inline int skb_shared(const struct sk_buff *skb)
1495{
1496        return refcount_read(&skb->users) != 1;
1497}
1498
1499/**
1500 *      skb_share_check - check if buffer is shared and if so clone it
1501 *      @skb: buffer to check
1502 *      @pri: priority for memory allocation
1503 *
1504 *      If the buffer is shared the buffer is cloned and the old copy
1505 *      drops a reference. A new clone with a single reference is returned.
1506 *      If the buffer is not shared the original buffer is returned. When
1507 *      being called from interrupt status or with spinlocks held pri must
1508 *      be GFP_ATOMIC.
1509 *
1510 *      NULL is returned on a memory allocation failure.
1511 */
1512static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1513{
1514        might_sleep_if(gfpflags_allow_blocking(pri));
1515        if (skb_shared(skb)) {
1516                struct sk_buff *nskb = skb_clone(skb, pri);
1517
1518                if (likely(nskb))
1519                        consume_skb(skb);
1520                else
1521                        kfree_skb(skb);
1522                skb = nskb;
1523        }
1524        return skb;
1525}
1526
1527/*
1528 *      Copy shared buffers into a new sk_buff. We effectively do COW on
1529 *      packets to handle cases where we have a local reader and forward
1530 *      and a couple of other messy ones. The normal one is tcpdumping
1531 *      a packet thats being forwarded.
1532 */
1533
1534/**
1535 *      skb_unshare - make a copy of a shared buffer
1536 *      @skb: buffer to check
1537 *      @pri: priority for memory allocation
1538 *
1539 *      If the socket buffer is a clone then this function creates a new
1540 *      copy of the data, drops a reference count on the old copy and returns
1541 *      the new copy with the reference count at 1. If the buffer is not a clone
1542 *      the original buffer is returned. When called with a spinlock held or
1543 *      from interrupt state @pri must be %GFP_ATOMIC
1544 *
1545 *      %NULL is returned on a memory allocation failure.
1546 */
1547static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1548                                          gfp_t pri)
1549{
1550        might_sleep_if(gfpflags_allow_blocking(pri));
1551        if (skb_cloned(skb)) {
1552                struct sk_buff *nskb = skb_copy(skb, pri);
1553
1554                /* Free our shared copy */
1555                if (likely(nskb))
1556                        consume_skb(skb);
1557                else
1558                        kfree_skb(skb);
1559                skb = nskb;
1560        }
1561        return skb;
1562}
1563
1564/**
1565 *      skb_peek - peek at the head of an &sk_buff_head
1566 *      @list_: list to peek at
1567 *
1568 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1569 *      be careful with this one. A peek leaves the buffer on the
1570 *      list and someone else may run off with it. You must hold
1571 *      the appropriate locks or have a private queue to do this.
1572 *
1573 *      Returns %NULL for an empty list or a pointer to the head element.
1574 *      The reference count is not incremented and the reference is therefore
1575 *      volatile. Use with caution.
1576 */
1577static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1578{
1579        struct sk_buff *skb = list_->next;
1580
1581        if (skb == (struct sk_buff *)list_)
1582                skb = NULL;
1583        return skb;
1584}
1585
1586/**
1587 *      skb_peek_next - peek skb following the given one from a queue
1588 *      @skb: skb to start from
1589 *      @list_: list to peek at
1590 *
1591 *      Returns %NULL when the end of the list is met or a pointer to the
1592 *      next element. The reference count is not incremented and the
1593 *      reference is therefore volatile. Use with caution.
1594 */
1595static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1596                const struct sk_buff_head *list_)
1597{
1598        struct sk_buff *next = skb->next;
1599
1600        if (next == (struct sk_buff *)list_)
1601                next = NULL;
1602        return next;
1603}
1604
1605/**
1606 *      skb_peek_tail - peek at the tail of an &sk_buff_head
1607 *      @list_: list to peek at
1608 *
1609 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1610 *      be careful with this one. A peek leaves the buffer on the
1611 *      list and someone else may run off with it. You must hold
1612 *      the appropriate locks or have a private queue to do this.
1613 *
1614 *      Returns %NULL for an empty list or a pointer to the tail element.
1615 *      The reference count is not incremented and the reference is therefore
1616 *      volatile. Use with caution.
1617 */
1618static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1619{
1620        struct sk_buff *skb = list_->prev;
1621
1622        if (skb == (struct sk_buff *)list_)
1623                skb = NULL;
1624        return skb;
1625
1626}
1627
1628/**
1629 *      skb_queue_len   - get queue length
1630 *      @list_: list to measure
1631 *
1632 *      Return the length of an &sk_buff queue.
1633 */
1634static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1635{
1636        return list_->qlen;
1637}
1638
1639/**
1640 *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1641 *      @list: queue to initialize
1642 *
1643 *      This initializes only the list and queue length aspects of
1644 *      an sk_buff_head object.  This allows to initialize the list
1645 *      aspects of an sk_buff_head without reinitializing things like
1646 *      the spinlock.  It can also be used for on-stack sk_buff_head
1647 *      objects where the spinlock is known to not be used.
1648 */
1649static inline void __skb_queue_head_init(struct sk_buff_head *list)
1650{
1651        list->prev = list->next = (struct sk_buff *)list;
1652        list->qlen = 0;
1653}
1654
1655/*
1656 * This function creates a split out lock class for each invocation;
1657 * this is needed for now since a whole lot of users of the skb-queue
1658 * infrastructure in drivers have different locking usage (in hardirq)
1659 * than the networking core (in softirq only). In the long run either the
1660 * network layer or drivers should need annotation to consolidate the
1661 * main types of usage into 3 classes.
1662 */
1663static inline void skb_queue_head_init(struct sk_buff_head *list)
1664{
1665        spin_lock_init(&list->lock);
1666        __skb_queue_head_init(list);
1667}
1668
1669static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1670                struct lock_class_key *class)
1671{
1672        skb_queue_head_init(list);
1673        lockdep_set_class(&list->lock, class);
1674}
1675
1676/*
1677 *      Insert an sk_buff on a list.
1678 *
1679 *      The "__skb_xxxx()" functions are the non-atomic ones that
1680 *      can only be called with interrupts disabled.
1681 */
1682void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1683                struct sk_buff_head *list);
1684static inline void __skb_insert(struct sk_buff *newsk,
1685                                struct sk_buff *prev, struct sk_buff *next,
1686                                struct sk_buff_head *list)
1687{
1688        newsk->next = next;
1689        newsk->prev = prev;
1690        next->prev  = prev->next = newsk;
1691        list->qlen++;
1692}
1693
1694static inline void __skb_queue_splice(const struct sk_buff_head *list,
1695                                      struct sk_buff *prev,
1696                                      struct sk_buff *next)
1697{
1698        struct sk_buff *first = list->next;
1699        struct sk_buff *last = list->prev;
1700
1701        first->prev = prev;
1702        prev->next = first;
1703
1704        last->next = next;
1705        next->prev = last;
1706}
1707
1708/**
1709 *      skb_queue_splice - join two skb lists, this is designed for stacks
1710 *      @list: the new list to add
1711 *      @head: the place to add it in the first list
1712 */
1713static inline void skb_queue_splice(const struct sk_buff_head *list,
1714                                    struct sk_buff_head *head)
1715{
1716        if (!skb_queue_empty(list)) {
1717                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1718                head->qlen += list->qlen;
1719        }
1720}
1721
1722/**
1723 *      skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1724 *      @list: the new list to add
1725 *      @head: the place to add it in the first list
1726 *
1727 *      The list at @list is reinitialised
1728 */
1729static inline void skb_queue_splice_init(struct sk_buff_head *list,
1730                                         struct sk_buff_head *head)
1731{
1732        if (!skb_queue_empty(list)) {
1733                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1734                head->qlen += list->qlen;
1735                __skb_queue_head_init(list);
1736        }
1737}
1738
1739/**
1740 *      skb_queue_splice_tail - join two skb lists, each list being a queue
1741 *      @list: the new list to add
1742 *      @head: the place to add it in the first list
1743 */
1744static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1745                                         struct sk_buff_head *head)
1746{
1747        if (!skb_queue_empty(list)) {
1748                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1749                head->qlen += list->qlen;
1750        }
1751}
1752
1753/**
1754 *      skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1755 *      @list: the new list to add
1756 *      @head: the place to add it in the first list
1757 *
1758 *      Each of the lists is a queue.
1759 *      The list at @list is reinitialised
1760 */
1761static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1762                                              struct sk_buff_head *head)
1763{
1764        if (!skb_queue_empty(list)) {
1765                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1766                head->qlen += list->qlen;
1767                __skb_queue_head_init(list);
1768        }
1769}
1770
1771/**
1772 *      __skb_queue_after - queue a buffer at the list head
1773 *      @list: list to use
1774 *      @prev: place after this buffer
1775 *      @newsk: buffer to queue
1776 *
1777 *      Queue a buffer int the middle of a list. This function takes no locks
1778 *      and you must therefore hold required locks before calling it.
1779 *
1780 *      A buffer cannot be placed on two lists at the same time.
1781 */
1782static inline void __skb_queue_after(struct sk_buff_head *list,
1783                                     struct sk_buff *prev,
1784                                     struct sk_buff *newsk)
1785{
1786        __skb_insert(newsk, prev, prev->next, list);
1787}
1788
1789void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1790                struct sk_buff_head *list);
1791
1792static inline void __skb_queue_before(struct sk_buff_head *list,
1793                                      struct sk_buff *next,
1794                                      struct sk_buff *newsk)
1795{
1796        __skb_insert(newsk, next->prev, next, list);
1797}
1798
1799/**
1800 *      __skb_queue_head - queue a buffer at the list head
1801 *      @list: list to use
1802 *      @newsk: buffer to queue
1803 *
1804 *      Queue a buffer at the start of a list. This function takes no locks
1805 *      and you must therefore hold required locks before calling it.
1806 *
1807 *      A buffer cannot be placed on two lists at the same time.
1808 */
1809void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1810static inline void __skb_queue_head(struct sk_buff_head *list,
1811                                    struct sk_buff *newsk)
1812{
1813        __skb_queue_after(list, (struct sk_buff *)list, newsk);
1814}
1815
1816/**
1817 *      __skb_queue_tail - queue a buffer at the list tail
1818 *      @list: list to use
1819 *      @newsk: buffer to queue
1820 *
1821 *      Queue a buffer at the end of a list. This function takes no locks
1822 *      and you must therefore hold required locks before calling it.
1823 *
1824 *      A buffer cannot be placed on two lists at the same time.
1825 */
1826void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1827static inline void __skb_queue_tail(struct sk_buff_head *list,
1828                                   struct sk_buff *newsk)
1829{
1830        __skb_queue_before(list, (struct sk_buff *)list, newsk);
1831}
1832
1833/*
1834 * remove sk_buff from list. _Must_ be called atomically, and with
1835 * the list known..
1836 */
1837void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1838static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1839{
1840        struct sk_buff *next, *prev;
1841
1842        list->qlen--;
1843        next       = skb->next;
1844        prev       = skb->prev;
1845        skb->next  = skb->prev = NULL;
1846        next->prev = prev;
1847        prev->next = next;
1848}
1849
1850/**
1851 *      __skb_dequeue - remove from the head of the queue
1852 *      @list: list to dequeue from
1853 *
1854 *      Remove the head of the list. This function does not take any locks
1855 *      so must be used with appropriate locks held only. The head item is
1856 *      returned or %NULL if the list is empty.
1857 */
1858struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1859static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1860{
1861        struct sk_buff *skb = skb_peek(list);
1862        if (skb)
1863                __skb_unlink(skb, list);
1864        return skb;
1865}
1866
1867/**
1868 *      __skb_dequeue_tail - remove from the tail of the queue
1869 *      @list: list to dequeue from
1870 *
1871 *      Remove the tail of the list. This function does not take any locks
1872 *      so must be used with appropriate locks held only. The tail item is
1873 *      returned or %NULL if the list is empty.
1874 */
1875struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1876static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1877{
1878        struct sk_buff *skb = skb_peek_tail(list);
1879        if (skb)
1880                __skb_unlink(skb, list);
1881        return skb;
1882}
1883
1884
1885static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1886{
1887        return skb->data_len;
1888}
1889
1890static inline unsigned int skb_headlen(const struct sk_buff *skb)
1891{
1892        return skb->len - skb->data_len;
1893}
1894
1895static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1896{
1897        unsigned int i, len = 0;
1898
1899        for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1900                len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1901        return len;
1902}
1903
1904static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1905{
1906        return skb_headlen(skb) + __skb_pagelen(skb);
1907}
1908
1909/**
1910 * __skb_fill_page_desc - initialise a paged fragment in an skb
1911 * @skb: buffer containing fragment to be initialised
1912 * @i: paged fragment index to initialise
1913 * @page: the page to use for this fragment
1914 * @off: the offset to the data with @page
1915 * @size: the length of the data
1916 *
1917 * Initialises the @i'th fragment of @skb to point to &size bytes at
1918 * offset @off within @page.
1919 *
1920 * Does not take any additional reference on the fragment.
1921 */
1922static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1923                                        struct page *page, int off, int size)
1924{
1925        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1926
1927        /*
1928         * Propagate page pfmemalloc to the skb if we can. The problem is
1929         * that not all callers have unique ownership of the page but rely
1930         * on page_is_pfmemalloc doing the right thing(tm).
1931         */
1932        frag->page.p              = page;
1933        frag->page_offset         = off;
1934        skb_frag_size_set(frag, size);
1935
1936        page = compound_head(page);
1937        if (page_is_pfmemalloc(page))
1938                skb->pfmemalloc = true;
1939}
1940
1941/**
1942 * skb_fill_page_desc - initialise a paged fragment in an skb
1943 * @skb: buffer containing fragment to be initialised
1944 * @i: paged fragment index to initialise
1945 * @page: the page to use for this fragment
1946 * @off: the offset to the data with @page
1947 * @size: the length of the data
1948 *
1949 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1950 * @skb to point to @size bytes at offset @off within @page. In
1951 * addition updates @skb such that @i is the last fragment.
1952 *
1953 * Does not take any additional reference on the fragment.
1954 */
1955static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1956                                      struct page *page, int off, int size)
1957{
1958        __skb_fill_page_desc(skb, i, page, off, size);
1959        skb_shinfo(skb)->nr_frags = i + 1;
1960}
1961
1962void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1963                     int size, unsigned int truesize);
1964
1965void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1966                          unsigned int truesize);
1967
1968#define SKB_PAGE_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->nr_frags)
1969#define SKB_FRAG_ASSERT(skb)    BUG_ON(skb_has_frag_list(skb))
1970#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1971
1972#ifdef NET_SKBUFF_DATA_USES_OFFSET
1973static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1974{
1975        return skb->head + skb->tail;
1976}
1977
1978static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1979{
1980        skb->tail = skb->data - skb->head;
1981}
1982
1983static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1984{
1985        skb_reset_tail_pointer(skb);
1986        skb->tail += offset;
1987}
1988
1989#else /* NET_SKBUFF_DATA_USES_OFFSET */
1990static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1991{
1992        return skb->tail;
1993}
1994
1995static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1996{
1997        skb->tail = skb->data;
1998}
1999
2000static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2001{
2002        skb->tail = skb->data + offset;
2003}
2004
2005#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2006
2007/*
2008 *      Add data to an sk_buff
2009 */
2010void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2011void *skb_put(struct sk_buff *skb, unsigned int len);
2012static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2013{
2014        void *tmp = skb_tail_pointer(skb);
2015        SKB_LINEAR_ASSERT(skb);
2016        skb->tail += len;
2017        skb->len  += len;
2018        return tmp;
2019}
2020
2021static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2022{
2023        void *tmp = __skb_put(skb, len);
2024
2025        memset(tmp, 0, len);
2026        return tmp;
2027}
2028
2029static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2030                                   unsigned int len)
2031{
2032        void *tmp = __skb_put(skb, len);
2033
2034        memcpy(tmp, data, len);
2035        return tmp;
2036}
2037
2038static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2039{
2040        *(u8 *)__skb_put(skb, 1) = val;
2041}
2042
2043static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2044{
2045        void *tmp = skb_put(skb, len);
2046
2047        memset(tmp, 0, len);
2048
2049        return tmp;
2050}
2051
2052static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2053                                 unsigned int len)
2054{
2055        void *tmp = skb_put(skb, len);
2056
2057        memcpy(tmp, data, len);
2058
2059        return tmp;
2060}
2061
2062static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2063{
2064        *(u8 *)skb_put(skb, 1) = val;
2065}
2066
2067void *skb_push(struct sk_buff *skb, unsigned int len);
2068static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2069{
2070        skb->data -= len;
2071        skb->len  += len;
2072        return skb->data;
2073}
2074
2075void *skb_pull(struct sk_buff *skb, unsigned int len);
2076static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2077{
2078        skb->len -= len;
2079        BUG_ON(skb->len < skb->data_len);
2080        return skb->data += len;
2081}
2082
2083static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2084{
2085        return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2086}
2087
2088void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2089
2090static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2091{
2092        if (len > skb_headlen(skb) &&
2093            !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2094                return NULL;
2095        skb->len -= len;
2096        return skb->data += len;
2097}
2098
2099static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2100{
2101        return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2102}
2103
2104static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2105{
2106        if (likely(len <= skb_headlen(skb)))
2107                return 1;
2108        if (unlikely(len > skb->len))
2109                return 0;
2110        return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2111}
2112
2113void skb_condense(struct sk_buff *skb);
2114
2115/**
2116 *      skb_headroom - bytes at buffer head
2117 *      @skb: buffer to check
2118 *
2119 *      Return the number of bytes of free space at the head of an &sk_buff.
2120 */
2121static inline unsigned int skb_headroom(const struct sk_buff *skb)
2122{
2123        return skb->data - skb->head;
2124}
2125
2126/**
2127 *      skb_tailroom - bytes at buffer end
2128 *      @skb: buffer to check
2129 *
2130 *      Return the number of bytes of free space at the tail of an sk_buff
2131 */
2132static inline int skb_tailroom(const struct sk_buff *skb)
2133{
2134        return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2135}
2136
2137/**
2138 *      skb_availroom - bytes at buffer end
2139 *      @skb: buffer to check
2140 *
2141 *      Return the number of bytes of free space at the tail of an sk_buff
2142 *      allocated by sk_stream_alloc()
2143 */
2144static inline int skb_availroom(const struct sk_buff *skb)
2145{
2146        if (skb_is_nonlinear(skb))
2147                return 0;
2148
2149        return skb->end - skb->tail - skb->reserved_tailroom;
2150}
2151
2152/**
2153 *      skb_reserve - adjust headroom
2154 *      @skb: buffer to alter
2155 *      @len: bytes to move
2156 *
2157 *      Increase the headroom of an empty &sk_buff by reducing the tail
2158 *      room. This is only allowed for an empty buffer.
2159 */
2160static inline void skb_reserve(struct sk_buff *skb, int len)
2161{
2162        skb->data += len;
2163        skb->tail += len;
2164}
2165
2166/**
2167 *      skb_tailroom_reserve - adjust reserved_tailroom
2168 *      @skb: buffer to alter
2169 *      @mtu: maximum amount of headlen permitted
2170 *      @needed_tailroom: minimum amount of reserved_tailroom
2171 *
2172 *      Set reserved_tailroom so that headlen can be as large as possible but
2173 *      not larger than mtu and tailroom cannot be smaller than
2174 *      needed_tailroom.
2175 *      The required headroom should already have been reserved before using
2176 *      this function.
2177 */
2178static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2179                                        unsigned int needed_tailroom)
2180{
2181        SKB_LINEAR_ASSERT(skb);
2182        if (mtu < skb_tailroom(skb) - needed_tailroom)
2183                /* use at most mtu */
2184                skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2185        else
2186                /* use up to all available space */
2187                skb->reserved_tailroom = needed_tailroom;
2188}
2189
2190#define ENCAP_TYPE_ETHER        0
2191#define ENCAP_TYPE_IPPROTO      1
2192
2193static inline void skb_set_inner_protocol(struct sk_buff *skb,
2194                                          __be16 protocol)
2195{
2196        skb->inner_protocol = protocol;
2197        skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2198}
2199
2200static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2201                                         __u8 ipproto)
2202{
2203        skb->inner_ipproto = ipproto;
2204        skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2205}
2206
2207static inline void skb_reset_inner_headers(struct sk_buff *skb)
2208{
2209        skb->inner_mac_header = skb->mac_header;
2210        skb->inner_network_header = skb->network_header;
2211        skb->inner_transport_header = skb->transport_header;
2212}
2213
2214static inline void skb_reset_mac_len(struct sk_buff *skb)
2215{
2216        skb->mac_len = skb->network_header - skb->mac_header;
2217}
2218
2219static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2220                                                        *skb)
2221{
2222        return skb->head + skb->inner_transport_header;
2223}
2224
2225static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2226{
2227        return skb_inner_transport_header(skb) - skb->data;
2228}
2229
2230static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2231{
2232        skb->inner_transport_header = skb->data - skb->head;
2233}
2234
2235static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2236                                                   const int offset)
2237{
2238        skb_reset_inner_transport_header(skb);
2239        skb->inner_transport_header += offset;
2240}
2241
2242static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2243{
2244        return skb->head + skb->inner_network_header;
2245}
2246
2247static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2248{
2249        skb->inner_network_header = skb->data - skb->head;
2250}
2251
2252static inline void skb_set_inner_network_header(struct sk_buff *skb,
2253                                                const int offset)
2254{
2255        skb_reset_inner_network_header(skb);
2256        skb->inner_network_header += offset;
2257}
2258
2259static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2260{
2261        return skb->head + skb->inner_mac_header;
2262}
2263
2264static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2265{
2266        skb->inner_mac_header = skb->data - skb->head;
2267}
2268
2269static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2270                                            const int offset)
2271{
2272        skb_reset_inner_mac_header(skb);
2273        skb->inner_mac_header += offset;
2274}
2275static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2276{
2277        return skb->transport_header != (typeof(skb->transport_header))~0U;
2278}
2279
2280static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2281{
2282        return skb->head + skb->transport_header;
2283}
2284
2285static inline void skb_reset_transport_header(struct sk_buff *skb)
2286{
2287        skb->transport_header = skb->data - skb->head;
2288}
2289
2290static inline void skb_set_transport_header(struct sk_buff *skb,
2291                                            const int offset)
2292{
2293        skb_reset_transport_header(skb);
2294        skb->transport_header += offset;
2295}
2296
2297static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2298{
2299        return skb->head + skb->network_header;
2300}
2301
2302static inline void skb_reset_network_header(struct sk_buff *skb)
2303{
2304        skb->network_header = skb->data - skb->head;
2305}
2306
2307static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2308{
2309        skb_reset_network_header(skb);
2310        skb->network_header += offset;
2311}
2312
2313static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2314{
2315        return skb->head + skb->mac_header;
2316}
2317
2318static inline int skb_mac_offset(const struct sk_buff *skb)
2319{
2320        return skb_mac_header(skb) - skb->data;
2321}
2322
2323static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2324{
2325        return skb->network_header - skb->mac_header;
2326}
2327
2328static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2329{
2330        return skb->mac_header != (typeof(skb->mac_header))~0U;
2331}
2332
2333static inline void skb_reset_mac_header(struct sk_buff *skb)
2334{
2335        skb->mac_header = skb->data - skb->head;
2336}
2337
2338static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2339{
2340        skb_reset_mac_header(skb);
2341        skb->mac_header += offset;
2342}
2343
2344static inline void skb_pop_mac_header(struct sk_buff *skb)
2345{
2346        skb->mac_header = skb->network_header;
2347}
2348
2349static inline void skb_probe_transport_header(struct sk_buff *skb,
2350                                              const int offset_hint)
2351{
2352        struct flow_keys_basic keys;
2353
2354        if (skb_transport_header_was_set(skb))
2355                return;
2356
2357        if (skb_flow_dissect_flow_keys_basic(skb, &keys, 0, 0, 0, 0, 0))
2358                skb_set_transport_header(skb, keys.control.thoff);
2359        else
2360                skb_set_transport_header(skb, offset_hint);
2361}
2362
2363static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2364{
2365        if (skb_mac_header_was_set(skb)) {
2366                const unsigned char *old_mac = skb_mac_header(skb);
2367
2368                skb_set_mac_header(skb, -skb->mac_len);
2369                memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2370        }
2371}
2372
2373static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2374{
2375        return skb->csum_start - skb_headroom(skb);
2376}
2377
2378static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2379{
2380        return skb->head + skb->csum_start;
2381}
2382
2383static inline int skb_transport_offset(const struct sk_buff *skb)
2384{
2385        return skb_transport_header(skb) - skb->data;
2386}
2387
2388static inline u32 skb_network_header_len(const struct sk_buff *skb)
2389{
2390        return skb->transport_header - skb->network_header;
2391}
2392
2393static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2394{
2395        return skb->inner_transport_header - skb->inner_network_header;
2396}
2397
2398static inline int skb_network_offset(const struct sk_buff *skb)
2399{
2400        return skb_network_header(skb) - skb->data;
2401}
2402
2403static inline int skb_inner_network_offset(const struct sk_buff *skb)
2404{
2405        return skb_inner_network_header(skb) - skb->data;
2406}
2407
2408static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2409{
2410        return pskb_may_pull(skb, skb_network_offset(skb) + len);
2411}
2412
2413/*
2414 * CPUs often take a performance hit when accessing unaligned memory
2415 * locations. The actual performance hit varies, it can be small if the
2416 * hardware handles it or large if we have to take an exception and fix it
2417 * in software.
2418 *
2419 * Since an ethernet header is 14 bytes network drivers often end up with
2420 * the IP header at an unaligned offset. The IP header can be aligned by
2421 * shifting the start of the packet by 2 bytes. Drivers should do this
2422 * with:
2423 *
2424 * skb_reserve(skb, NET_IP_ALIGN);
2425 *
2426 * The downside to this alignment of the IP header is that the DMA is now
2427 * unaligned. On some architectures the cost of an unaligned DMA is high
2428 * and this cost outweighs the gains made by aligning the IP header.
2429 *
2430 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2431 * to be overridden.
2432 */
2433#ifndef NET_IP_ALIGN
2434#define NET_IP_ALIGN    2
2435#endif
2436
2437/*
2438 * The networking layer reserves some headroom in skb data (via
2439 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2440 * the header has to grow. In the default case, if the header has to grow
2441 * 32 bytes or less we avoid the reallocation.
2442 *
2443 * Unfortunately this headroom changes the DMA alignment of the resulting
2444 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2445 * on some architectures. An architecture can override this value,
2446 * perhaps setting it to a cacheline in size (since that will maintain
2447 * cacheline alignment of the DMA). It must be a power of 2.
2448 *
2449 * Various parts of the networking layer expect at least 32 bytes of
2450 * headroom, you should not reduce this.
2451 *
2452 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2453 * to reduce average number of cache lines per packet.
2454 * get_rps_cpus() for example only access one 64 bytes aligned block :
2455 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2456 */
2457#ifndef NET_SKB_PAD
2458#define NET_SKB_PAD     max(32, L1_CACHE_BYTES)
2459#endif
2460
2461int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2462
2463static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2464{
2465        if (unlikely(skb_is_nonlinear(skb))) {
2466                WARN_ON(1);
2467                return;
2468        }
2469        skb->len = len;
2470        skb_set_tail_pointer(skb, len);
2471}
2472
2473static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2474{
2475        __skb_set_length(skb, len);
2476}
2477
2478void skb_trim(struct sk_buff *skb, unsigned int len);
2479
2480static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2481{
2482        if (skb->data_len)
2483                return ___pskb_trim(skb, len);
2484        __skb_trim(skb, len);
2485        return 0;
2486}
2487
2488static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2489{
2490        return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2491}
2492
2493/**
2494 *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2495 *      @skb: buffer to alter
2496 *      @len: new length
2497 *
2498 *      This is identical to pskb_trim except that the caller knows that
2499 *      the skb is not cloned so we should never get an error due to out-
2500 *      of-memory.
2501 */
2502static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2503{
2504        int err = pskb_trim(skb, len);
2505        BUG_ON(err);
2506}
2507
2508static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2509{
2510        unsigned int diff = len - skb->len;
2511
2512        if (skb_tailroom(skb) < diff) {
2513                int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2514                                           GFP_ATOMIC);
2515                if (ret)
2516                        return ret;
2517        }
2518        __skb_set_length(skb, len);
2519        return 0;
2520}
2521
2522/**
2523 *      skb_orphan - orphan a buffer
2524 *      @skb: buffer to orphan
2525 *
2526 *      If a buffer currently has an owner then we call the owner's
2527 *      destructor function and make the @skb unowned. The buffer continues
2528 *      to exist but is no longer charged to its former owner.
2529 */
2530static inline void skb_orphan(struct sk_buff *skb)
2531{
2532        if (skb->destructor) {
2533                skb->destructor(skb);
2534                skb->destructor = NULL;
2535                skb->sk         = NULL;
2536        } else {
2537                BUG_ON(skb->sk);
2538        }
2539}
2540
2541/**
2542 *      skb_orphan_frags - orphan the frags contained in a buffer
2543 *      @skb: buffer to orphan frags from
2544 *      @gfp_mask: allocation mask for replacement pages
2545 *
2546 *      For each frag in the SKB which needs a destructor (i.e. has an
2547 *      owner) create a copy of that frag and release the original
2548 *      page by calling the destructor.
2549 */
2550static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2551{
2552        if (likely(!skb_zcopy(skb)))
2553                return 0;
2554        if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2555                return 0;
2556        return skb_copy_ubufs(skb, gfp_mask);
2557}
2558
2559/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2560static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2561{
2562        if (likely(!skb_zcopy(skb)))
2563                return 0;
2564        return skb_copy_ubufs(skb, gfp_mask);
2565}
2566
2567/**
2568 *      __skb_queue_purge - empty a list
2569 *      @list: list to empty
2570 *
2571 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
2572 *      the list and one reference dropped. This function does not take the
2573 *      list lock and the caller must hold the relevant locks to use it.
2574 */
2575void skb_queue_purge(struct sk_buff_head *list);
2576static inline void __skb_queue_purge(struct sk_buff_head *list)
2577{
2578        struct sk_buff *skb;
2579        while ((skb = __skb_dequeue(list)) != NULL)
2580                kfree_skb(skb);
2581}
2582
2583void skb_rbtree_purge(struct rb_root *root);
2584
2585void *netdev_alloc_frag(unsigned int fragsz);
2586
2587struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2588                                   gfp_t gfp_mask);
2589
2590/**
2591 *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
2592 *      @dev: network device to receive on
2593 *      @length: length to allocate
2594 *
2595 *      Allocate a new &sk_buff and assign it a usage count of one. The
2596 *      buffer has unspecified headroom built in. Users should allocate
2597 *      the headroom they think they need without accounting for the
2598 *      built in space. The built in space is used for optimisations.
2599 *
2600 *      %NULL is returned if there is no free memory. Although this function
2601 *      allocates memory it can be called from an interrupt.
2602 */
2603static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2604                                               unsigned int length)
2605{
2606        return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2607}
2608
2609/* legacy helper around __netdev_alloc_skb() */
2610static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2611                                              gfp_t gfp_mask)
2612{
2613        return __netdev_alloc_skb(NULL, length, gfp_mask);
2614}
2615
2616/* legacy helper around netdev_alloc_skb() */
2617static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2618{
2619        return netdev_alloc_skb(NULL, length);
2620}
2621
2622
2623static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2624                unsigned int length, gfp_t gfp)
2625{
2626        struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2627
2628        if (NET_IP_ALIGN && skb)
2629                skb_reserve(skb, NET_IP_ALIGN);
2630        return skb;
2631}
2632
2633static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2634                unsigned int length)
2635{
2636        return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2637}
2638
2639static inline void skb_free_frag(void *addr)
2640{
2641        page_frag_free(addr);
2642}
2643
2644void *napi_alloc_frag(unsigned int fragsz);
2645struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2646                                 unsigned int length, gfp_t gfp_mask);
2647static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2648                                             unsigned int length)
2649{
2650        return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2651}
2652void napi_consume_skb(struct sk_buff *skb, int budget);
2653
2654void __kfree_skb_flush(void);
2655void __kfree_skb_defer(struct sk_buff *skb);
2656
2657/**
2658 * __dev_alloc_pages - allocate page for network Rx
2659 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2660 * @order: size of the allocation
2661 *
2662 * Allocate a new page.
2663 *
2664 * %NULL is returned if there is no free memory.
2665*/
2666static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2667                                             unsigned int order)
2668{
2669        /* This piece of code contains several assumptions.
2670         * 1.  This is for device Rx, therefor a cold page is preferred.
2671         * 2.  The expectation is the user wants a compound page.
2672         * 3.  If requesting a order 0 page it will not be compound
2673         *     due to the check to see if order has a value in prep_new_page
2674         * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2675         *     code in gfp_to_alloc_flags that should be enforcing this.
2676         */
2677        gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2678
2679        return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2680}
2681
2682static inline struct page *dev_alloc_pages(unsigned int order)
2683{
2684        return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2685}
2686
2687/**
2688 * __dev_alloc_page - allocate a page for network Rx
2689 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2690 *
2691 * Allocate a new page.
2692 *
2693 * %NULL is returned if there is no free memory.
2694 */
2695static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2696{
2697        return __dev_alloc_pages(gfp_mask, 0);
2698}
2699
2700static inline struct page *dev_alloc_page(void)
2701{
2702        return dev_alloc_pages(0);
2703}
2704
2705/**
2706 *      skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2707 *      @page: The page that was allocated from skb_alloc_page
2708 *      @skb: The skb that may need pfmemalloc set
2709 */
2710static inline void skb_propagate_pfmemalloc(struct page *page,
2711                                             struct sk_buff *skb)
2712{
2713        if (page_is_pfmemalloc(page))
2714                skb->pfmemalloc = true;
2715}
2716
2717/**
2718 * skb_frag_page - retrieve the page referred to by a paged fragment
2719 * @frag: the paged fragment
2720 *
2721 * Returns the &struct page associated with @frag.
2722 */
2723static inline struct page *skb_frag_page(const skb_frag_t *frag)
2724{
2725        return frag->page.p;
2726}
2727
2728/**
2729 * __skb_frag_ref - take an addition reference on a paged fragment.
2730 * @frag: the paged fragment
2731 *
2732 * Takes an additional reference on the paged fragment @frag.
2733 */
2734static inline void __skb_frag_ref(skb_frag_t *frag)
2735{
2736        get_page(skb_frag_page(frag));
2737}
2738
2739/**
2740 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2741 * @skb: the buffer
2742 * @f: the fragment offset.
2743 *
2744 * Takes an additional reference on the @f'th paged fragment of @skb.
2745 */
2746static inline void skb_frag_ref(struct sk_buff *skb, int f)
2747{
2748        __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2749}
2750
2751/**
2752 * __skb_frag_unref - release a reference on a paged fragment.
2753 * @frag: the paged fragment
2754 *
2755 * Releases a reference on the paged fragment @frag.
2756 */
2757static inline void __skb_frag_unref(skb_frag_t *frag)
2758{
2759        put_page(skb_frag_page(frag));
2760}
2761
2762/**
2763 * skb_frag_unref - release a reference on a paged fragment of an skb.
2764 * @skb: the buffer
2765 * @f: the fragment offset
2766 *
2767 * Releases a reference on the @f'th paged fragment of @skb.
2768 */
2769static inline void skb_frag_unref(struct sk_buff *skb, int f)
2770{
2771        __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2772}
2773
2774/**
2775 * skb_frag_address - gets the address of the data contained in a paged fragment
2776 * @frag: the paged fragment buffer
2777 *
2778 * Returns the address of the data within @frag. The page must already
2779 * be mapped.
2780 */
2781static inline void *skb_frag_address(const skb_frag_t *frag)
2782{
2783        return page_address(skb_frag_page(frag)) + frag->page_offset;
2784}
2785
2786/**
2787 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2788 * @frag: the paged fragment buffer
2789 *
2790 * Returns the address of the data within @frag. Checks that the page
2791 * is mapped and returns %NULL otherwise.
2792 */
2793static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2794{
2795        void *ptr = page_address(skb_frag_page(frag));
2796        if (unlikely(!ptr))
2797                return NULL;
2798
2799        return ptr + frag->page_offset;
2800}
2801
2802/**
2803 * __skb_frag_set_page - sets the page contained in a paged fragment
2804 * @frag: the paged fragment
2805 * @page: the page to set
2806 *
2807 * Sets the fragment @frag to contain @page.
2808 */
2809static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2810{
2811        frag->page.p = page;
2812}
2813
2814/**
2815 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2816 * @skb: the buffer
2817 * @f: the fragment offset
2818 * @page: the page to set
2819 *
2820 * Sets the @f'th fragment of @skb to contain @page.
2821 */
2822static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2823                                     struct page *page)
2824{
2825        __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2826}
2827
2828bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2829
2830/**
2831 * skb_frag_dma_map - maps a paged fragment via the DMA API
2832 * @dev: the device to map the fragment to
2833 * @frag: the paged fragment to map
2834 * @offset: the offset within the fragment (starting at the
2835 *          fragment's own offset)
2836 * @size: the number of bytes to map
2837 * @dir: the direction of the mapping (``PCI_DMA_*``)
2838 *
2839 * Maps the page associated with @frag to @device.
2840 */
2841static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2842                                          const skb_frag_t *frag,
2843                                          size_t offset, size_t size,
2844                                          enum dma_data_direction dir)
2845{
2846        return dma_map_page(dev, skb_frag_page(frag),
2847                            frag->page_offset + offset, size, dir);
2848}
2849
2850static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2851                                        gfp_t gfp_mask)
2852{
2853        return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2854}
2855
2856
2857static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2858                                                  gfp_t gfp_mask)
2859{
2860        return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2861}
2862
2863
2864/**
2865 *      skb_clone_writable - is the header of a clone writable
2866 *      @skb: buffer to check
2867 *      @len: length up to which to write
2868 *
2869 *      Returns true if modifying the header part of the cloned buffer
2870 *      does not requires the data to be copied.
2871 */
2872static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2873{
2874        return !skb_header_cloned(skb) &&
2875               skb_headroom(skb) + len <= skb->hdr_len;
2876}
2877
2878static inline int skb_try_make_writable(struct sk_buff *skb,
2879                                        unsigned int write_len)
2880{
2881        return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2882               pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2883}
2884
2885static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2886                            int cloned)
2887{
2888        int delta = 0;
2889
2890        if (headroom > skb_headroom(skb))
2891                delta = headroom - skb_headroom(skb);
2892
2893        if (delta || cloned)
2894                return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2895                                        GFP_ATOMIC);
2896        return 0;
2897}
2898
2899/**
2900 *      skb_cow - copy header of skb when it is required
2901 *      @skb: buffer to cow
2902 *      @headroom: needed headroom
2903 *
2904 *      If the skb passed lacks sufficient headroom or its data part
2905 *      is shared, data is reallocated. If reallocation fails, an error
2906 *      is returned and original skb is not changed.
2907 *
2908 *      The result is skb with writable area skb->head...skb->tail
2909 *      and at least @headroom of space at head.
2910 */
2911static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2912{
2913        return __skb_cow(skb, headroom, skb_cloned(skb));
2914}
2915
2916/**
2917 *      skb_cow_head - skb_cow but only making the head writable
2918 *      @skb: buffer to cow
2919 *      @headroom: needed headroom
2920 *
2921 *      This function is identical to skb_cow except that we replace the
2922 *      skb_cloned check by skb_header_cloned.  It should be used when
2923 *      you only need to push on some header and do not need to modify
2924 *      the data.
2925 */
2926static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2927{
2928        return __skb_cow(skb, headroom, skb_header_cloned(skb));
2929}
2930
2931/**
2932 *      skb_padto       - pad an skbuff up to a minimal size
2933 *      @skb: buffer to pad
2934 *      @len: minimal length
2935 *
2936 *      Pads up a buffer to ensure the trailing bytes exist and are
2937 *      blanked. If the buffer already contains sufficient data it
2938 *      is untouched. Otherwise it is extended. Returns zero on
2939 *      success. The skb is freed on error.
2940 */
2941static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2942{
2943        unsigned int size = skb->len;
2944        if (likely(size >= len))
2945                return 0;
2946        return skb_pad(skb, len - size);
2947}
2948
2949/**
2950 *      skb_put_padto - increase size and pad an skbuff up to a minimal size
2951 *      @skb: buffer to pad
2952 *      @len: minimal length
2953 *      @free_on_error: free buffer on error
2954 *
2955 *      Pads up a buffer to ensure the trailing bytes exist and are
2956 *      blanked. If the buffer already contains sufficient data it
2957 *      is untouched. Otherwise it is extended. Returns zero on
2958 *      success. The skb is freed on error if @free_on_error is true.
2959 */
2960static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2961                                  bool free_on_error)
2962{
2963        unsigned int size = skb->len;
2964
2965        if (unlikely(size < len)) {
2966                len -= size;
2967                if (__skb_pad(skb, len, free_on_error))
2968                        return -ENOMEM;
2969                __skb_put(skb, len);
2970        }
2971        return 0;
2972}
2973
2974/**
2975 *      skb_put_padto - increase size and pad an skbuff up to a minimal size
2976 *      @skb: buffer to pad
2977 *      @len: minimal length
2978 *
2979 *      Pads up a buffer to ensure the trailing bytes exist and are
2980 *      blanked. If the buffer already contains sufficient data it
2981 *      is untouched. Otherwise it is extended. Returns zero on
2982 *      success. The skb is freed on error.
2983 */
2984static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2985{
2986        return __skb_put_padto(skb, len, true);
2987}
2988
2989static inline int skb_add_data(struct sk_buff *skb,
2990                               struct iov_iter *from, int copy)
2991{
2992        const int off = skb->len;
2993
2994        if (skb->ip_summed == CHECKSUM_NONE) {
2995                __wsum csum = 0;
2996                if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
2997                                                 &csum, from)) {
2998                        skb->csum = csum_block_add(skb->csum, csum, off);
2999                        return 0;
3000                }
3001        } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3002                return 0;
3003
3004        __skb_trim(skb, off);
3005        return -EFAULT;
3006}
3007
3008static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3009                                    const struct page *page, int off)
3010{
3011        if (skb_zcopy(skb))
3012                return false;
3013        if (i) {
3014                const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3015
3016                return page == skb_frag_page(frag) &&
3017                       off == frag->page_offset + skb_frag_size(frag);
3018        }
3019        return false;
3020}
3021
3022static inline int __skb_linearize(struct sk_buff *skb)
3023{
3024        return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3025}
3026
3027/**
3028 *      skb_linearize - convert paged skb to linear one
3029 *      @skb: buffer to linarize
3030 *
3031 *      If there is no free memory -ENOMEM is returned, otherwise zero
3032 *      is returned and the old skb data released.
3033 */
3034static inline int skb_linearize(struct sk_buff *skb)
3035{
3036        return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3037}
3038
3039/**
3040 * skb_has_shared_frag - can any frag be overwritten
3041 * @skb: buffer to test
3042 *
3043 * Return true if the skb has at least one frag that might be modified
3044 * by an external entity (as in vmsplice()/sendfile())
3045 */
3046static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3047{
3048        return skb_is_nonlinear(skb) &&
3049               skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3050}
3051
3052/**
3053 *      skb_linearize_cow - make sure skb is linear and writable
3054 *      @skb: buffer to process
3055 *
3056 *      If there is no free memory -ENOMEM is returned, otherwise zero
3057 *      is returned and the old skb data released.
3058 */
3059static inline int skb_linearize_cow(struct sk_buff *skb)
3060{
3061        return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3062               __skb_linearize(skb) : 0;
3063}
3064
3065static __always_inline void
3066__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3067                     unsigned int off)
3068{
3069        if (skb->ip_summed == CHECKSUM_COMPLETE)
3070                skb->csum = csum_block_sub(skb->csum,
3071                                           csum_partial(start, len, 0), off);
3072        else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3073                 skb_checksum_start_offset(skb) < 0)
3074                skb->ip_summed = CHECKSUM_NONE;
3075}
3076
3077/**
3078 *      skb_postpull_rcsum - update checksum for received skb after pull
3079 *      @skb: buffer to update
3080 *      @start: start of data before pull
3081 *      @len: length of data pulled
3082 *
3083 *      After doing a pull on a received packet, you need to call this to
3084 *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3085 *      CHECKSUM_NONE so that it can be recomputed from scratch.
3086 */
3087static inline void skb_postpull_rcsum(struct sk_buff *skb,
3088                                      const void *start, unsigned int len)
3089{
3090        __skb_postpull_rcsum(skb, start, len, 0);
3091}
3092
3093static __always_inline void
3094__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3095                     unsigned int off)
3096{
3097        if (skb->ip_summed == CHECKSUM_COMPLETE)
3098                skb->csum = csum_block_add(skb->csum,
3099                                           csum_partial(start, len, 0), off);
3100}
3101
3102/**
3103 *      skb_postpush_rcsum - update checksum for received skb after push
3104 *      @skb: buffer to update
3105 *      @start: start of data after push
3106 *      @len: length of data pushed
3107 *
3108 *      After doing a push on a received packet, you need to call this to
3109 *      update the CHECKSUM_COMPLETE checksum.
3110 */
3111static inline void skb_postpush_rcsum(struct sk_buff *skb,
3112                                      const void *start, unsigned int len)
3113{
3114        __skb_postpush_rcsum(skb, start, len, 0);
3115}
3116
3117void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3118
3119/**
3120 *      skb_push_rcsum - push skb and update receive checksum
3121 *      @skb: buffer to update
3122 *      @len: length of data pulled
3123 *
3124 *      This function performs an skb_push on the packet and updates
3125 *      the CHECKSUM_COMPLETE checksum.  It should be used on
3126 *      receive path processing instead of skb_push unless you know
3127 *      that the checksum difference is zero (e.g., a valid IP header)
3128 *      or you are setting ip_summed to CHECKSUM_NONE.
3129 */
3130static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3131{
3132        skb_push(skb, len);
3133        skb_postpush_rcsum(skb, skb->data, len);
3134        return skb->data;
3135}
3136
3137int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3138/**
3139 *      pskb_trim_rcsum - trim received skb and update checksum
3140 *      @skb: buffer to trim
3141 *      @len: new length
3142 *
3143 *      This is exactly the same as pskb_trim except that it ensures the
3144 *      checksum of received packets are still valid after the operation.
3145 */
3146
3147static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3148{
3149        if (likely(len >= skb->len))
3150                return 0;
3151        return pskb_trim_rcsum_slow(skb, len);
3152}
3153
3154static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3155{
3156        if (skb->ip_summed == CHECKSUM_COMPLETE)
3157                skb->ip_summed = CHECKSUM_NONE;
3158        __skb_trim(skb, len);
3159        return 0;
3160}
3161
3162static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3163{
3164        if (skb->ip_summed == CHECKSUM_COMPLETE)
3165                skb->ip_summed = CHECKSUM_NONE;
3166        return __skb_grow(skb, len);
3167}
3168
3169#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3170#define skb_rb_first(root) rb_to_skb(rb_first(root))
3171#define skb_rb_last(root)  rb_to_skb(rb_last(root))
3172#define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3173#define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3174
3175#define skb_queue_walk(queue, skb) \
3176                for (skb = (queue)->next;                                       \
3177                     skb != (struct sk_buff *)(queue);                          \
3178                     skb = skb->next)
3179
3180#define skb_queue_walk_safe(queue, skb, tmp)                                    \
3181                for (skb = (queue)->next, tmp = skb->next;                      \
3182                     skb != (struct sk_buff *)(queue);                          \
3183                     skb = tmp, tmp = skb->next)
3184
3185#define skb_queue_walk_from(queue, skb)                                         \
3186                for (; skb != (struct sk_buff *)(queue);                        \
3187                     skb = skb->next)
3188
3189#define skb_rbtree_walk(skb, root)                                              \
3190                for (skb = skb_rb_first(root); skb != NULL;                     \
3191                     skb = skb_rb_next(skb))
3192
3193#define skb_rbtree_walk_from(skb)                                               \
3194                for (; skb != NULL;                                             \
3195                     skb = skb_rb_next(skb))
3196
3197#define skb_rbtree_walk_from_safe(skb, tmp)                                     \
3198                for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);      \
3199                     skb = tmp)
3200
3201#define skb_queue_walk_from_safe(queue, skb, tmp)                               \
3202                for (tmp = skb->next;                                           \
3203                     skb != (struct sk_buff *)(queue);                          \
3204                     skb = tmp, tmp = skb->next)
3205
3206#define skb_queue_reverse_walk(queue, skb) \
3207                for (skb = (queue)->prev;                                       \
3208                     skb != (struct sk_buff *)(queue);                          \
3209                     skb = skb->prev)
3210
3211#define skb_queue_reverse_walk_safe(queue, skb, tmp)                            \
3212                for (skb = (queue)->prev, tmp = skb->prev;                      \
3213                     skb != (struct sk_buff *)(queue);                          \
3214                     skb = tmp, tmp = skb->prev)
3215
3216#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)                       \
3217                for (tmp = skb->prev;                                           \
3218                     skb != (struct sk_buff *)(queue);                          \
3219                     skb = tmp, tmp = skb->prev)
3220
3221static inline bool skb_has_frag_list(const struct sk_buff *skb)
3222{
3223        return skb_shinfo(skb)->frag_list != NULL;
3224}
3225
3226static inline void skb_frag_list_init(struct sk_buff *skb)
3227{
3228        skb_shinfo(skb)->frag_list = NULL;
3229}
3230
3231#define skb_walk_frags(skb, iter)       \
3232        for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3233
3234
3235int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3236                                const struct sk_buff *skb);
3237struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3238                                          struct sk_buff_head *queue,
3239                                          unsigned int flags,
3240                                          void (*destructor)(struct sock *sk,
3241                                                           struct sk_buff *skb),
3242                                          int *peeked, int *off, int *err,
3243                                          struct sk_buff **last);
3244struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3245                                        void (*destructor)(struct sock *sk,
3246                                                           struct sk_buff *skb),
3247                                        int *peeked, int *off, int *err,
3248                                        struct sk_buff **last);
3249struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3250                                    void (*destructor)(struct sock *sk,
3251                                                       struct sk_buff *skb),
3252                                    int *peeked, int *off, int *err);
3253struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3254                                  int *err);
3255__poll_t datagram_poll(struct file *file, struct socket *sock,
3256                           struct poll_table_struct *wait);
3257int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3258                           struct iov_iter *to, int size);
3259static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3260                                        struct msghdr *msg, int size)
3261{
3262        return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3263}
3264int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3265                                   struct msghdr *msg);
3266int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3267                                 struct iov_iter *from, int len);
3268int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3269void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3270void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3271static inline void skb_free_datagram_locked(struct sock *sk,
3272                                            struct sk_buff *skb)
3273{
3274        __skb_free_datagram_locked(sk, skb, 0);
3275}
3276int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3277int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3278int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3279__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3280                              int len, __wsum csum);
3281int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3282                    struct pipe_inode_info *pipe, unsigned int len,
3283                    unsigned int flags);
3284int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3285                         int len);
3286int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3287void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3288unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3289int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3290                 int len, int hlen);
3291void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3292int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3293void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3294bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3295bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3296struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3297struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3298int skb_ensure_writable(struct sk_buff *skb, int write_len);
3299int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3300int skb_vlan_pop(struct sk_buff *skb);
3301int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3302struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3303                             gfp_t gfp);
3304
3305static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3306{
3307        return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3308}
3309
3310static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3311{
3312        return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3313}
3314
3315struct skb_checksum_ops {
3316        __wsum (*update)(const void *mem, int len, __wsum wsum);
3317        __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3318};
3319
3320extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3321
3322__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3323                      __wsum csum, const struct skb_checksum_ops *ops);
3324__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3325                    __wsum csum);
3326
3327static inline void * __must_check
3328__skb_header_pointer(const struct sk_buff *skb, int offset,
3329                     int len, void *data, int hlen, void *buffer)
3330{
3331        if (hlen - offset >= len)
3332                return data + offset;
3333
3334        if (!skb ||
3335            skb_copy_bits(skb, offset, buffer, len) < 0)
3336                return NULL;
3337
3338        return buffer;
3339}
3340
3341static inline void * __must_check
3342skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3343{
3344        return __skb_header_pointer(skb, offset, len, skb->data,
3345                                    skb_headlen(skb), buffer);
3346}
3347
3348/**
3349 *      skb_needs_linearize - check if we need to linearize a given skb
3350 *                            depending on the given device features.
3351 *      @skb: socket buffer to check
3352 *      @features: net device features
3353 *
3354 *      Returns true if either:
3355 *      1. skb has frag_list and the device doesn't support FRAGLIST, or
3356 *      2. skb is fragmented and the device does not support SG.
3357 */
3358static inline bool skb_needs_linearize(struct sk_buff *skb,
3359                                       netdev_features_t features)
3360{
3361        return skb_is_nonlinear(skb) &&
3362               ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3363                (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3364}
3365
3366static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3367                                             void *to,
3368                                             const unsigned int len)
3369{
3370        memcpy(to, skb->data, len);
3371}
3372
3373static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3374                                                    const int offset, void *to,
3375                                                    const unsigned int len)
3376{
3377        memcpy(to, skb->data + offset, len);
3378}
3379
3380static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3381                                           const void *from,
3382                                           const unsigned int len)
3383{
3384        memcpy(skb->data, from, len);
3385}
3386
3387static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3388                                                  const int offset,
3389                                                  const void *from,
3390                                                  const unsigned int len)
3391{
3392        memcpy(skb->data + offset, from, len);
3393}
3394
3395void skb_init(void);
3396
3397static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3398{
3399        return skb->tstamp;
3400}
3401
3402/**
3403 *      skb_get_timestamp - get timestamp from a skb
3404 *      @skb: skb to get stamp from
3405 *      @stamp: pointer to struct timeval to store stamp in
3406 *
3407 *      Timestamps are stored in the skb as offsets to a base timestamp.
3408 *      This function converts the offset back to a struct timeval and stores
3409 *      it in stamp.
3410 */
3411static inline void skb_get_timestamp(const struct sk_buff *skb,
3412                                     struct timeval *stamp)
3413{
3414        *stamp = ktime_to_timeval(skb->tstamp);
3415}
3416
3417static inline void skb_get_timestampns(const struct sk_buff *skb,
3418                                       struct timespec *stamp)
3419{
3420        *stamp = ktime_to_timespec(skb->tstamp);
3421}
3422
3423static inline void __net_timestamp(struct sk_buff *skb)
3424{
3425        skb->tstamp = ktime_get_real();
3426}
3427
3428static inline ktime_t net_timedelta(ktime_t t)
3429{
3430        return ktime_sub(ktime_get_real(), t);
3431}
3432
3433static inline ktime_t net_invalid_timestamp(void)
3434{
3435        return 0;
3436}
3437
3438static inline u8 skb_metadata_len(const struct sk_buff *skb)
3439{
3440        return skb_shinfo(skb)->meta_len;
3441}
3442
3443static inline void *skb_metadata_end(const struct sk_buff *skb)
3444{
3445        return skb_mac_header(skb);
3446}
3447
3448static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3449                                          const struct sk_buff *skb_b,
3450                                          u8 meta_len)
3451{
3452        const void *a = skb_metadata_end(skb_a);
3453        const void *b = skb_metadata_end(skb_b);
3454        /* Using more efficient varaiant than plain call to memcmp(). */
3455#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3456        u64 diffs = 0;
3457
3458        switch (meta_len) {
3459#define __it(x, op) (x -= sizeof(u##op))
3460#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3461        case 32: diffs |= __it_diff(a, b, 64);
3462        case 24: diffs |= __it_diff(a, b, 64);
3463        case 16: diffs |= __it_diff(a, b, 64);
3464        case  8: diffs |= __it_diff(a, b, 64);
3465                break;
3466        case 28: diffs |= __it_diff(a, b, 64);
3467        case 20: diffs |= __it_diff(a, b, 64);
3468        case 12: diffs |= __it_diff(a, b, 64);
3469        case  4: diffs |= __it_diff(a, b, 32);
3470                break;
3471        }
3472        return diffs;
3473#else
3474        return memcmp(a - meta_len, b - meta_len, meta_len);
3475#endif
3476}
3477
3478static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3479                                        const struct sk_buff *skb_b)
3480{
3481        u8 len_a = skb_metadata_len(skb_a);
3482        u8 len_b = skb_metadata_len(skb_b);
3483
3484        if (!(len_a | len_b))
3485                return false;
3486
3487        return len_a != len_b ?
3488               true : __skb_metadata_differs(skb_a, skb_b, len_a);
3489}
3490
3491static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3492{
3493        skb_shinfo(skb)->meta_len = meta_len;
3494}
3495
3496static inline void skb_metadata_clear(struct sk_buff *skb)
3497{
3498        skb_metadata_set(skb, 0);
3499}
3500
3501struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3502
3503#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3504
3505void skb_clone_tx_timestamp(struct sk_buff *skb);
3506bool skb_defer_rx_timestamp(struct sk_buff *skb);
3507
3508#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3509
3510static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3511{
3512}
3513
3514static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3515{
3516        return false;
3517}
3518
3519#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3520
3521/**
3522 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3523 *
3524 * PHY drivers may accept clones of transmitted packets for
3525 * timestamping via their phy_driver.txtstamp method. These drivers
3526 * must call this function to return the skb back to the stack with a
3527 * timestamp.
3528 *
3529 * @skb: clone of the the original outgoing packet
3530 * @hwtstamps: hardware time stamps
3531 *
3532 */
3533void skb_complete_tx_timestamp(struct sk_buff *skb,
3534                               struct skb_shared_hwtstamps *hwtstamps);
3535
3536void __skb_tstamp_tx(struct sk_buff *orig_skb,
3537                     struct skb_shared_hwtstamps *hwtstamps,
3538                     struct sock *sk, int tstype);
3539
3540/**
3541 * skb_tstamp_tx - queue clone of skb with send time stamps
3542 * @orig_skb:   the original outgoing packet
3543 * @hwtstamps:  hardware time stamps, may be NULL if not available
3544 *
3545 * If the skb has a socket associated, then this function clones the
3546 * skb (thus sharing the actual data and optional structures), stores
3547 * the optional hardware time stamping information (if non NULL) or
3548 * generates a software time stamp (otherwise), then queues the clone
3549 * to the error queue of the socket.  Errors are silently ignored.
3550 */
3551void skb_tstamp_tx(struct sk_buff *orig_skb,
3552                   struct skb_shared_hwtstamps *hwtstamps);
3553
3554/**
3555 * skb_tx_timestamp() - Driver hook for transmit timestamping
3556 *
3557 * Ethernet MAC Drivers should call this function in their hard_xmit()
3558 * function immediately before giving the sk_buff to the MAC hardware.
3559 *
3560 * Specifically, one should make absolutely sure that this function is
3561 * called before TX completion of this packet can trigger.  Otherwise
3562 * the packet could potentially already be freed.
3563 *
3564 * @skb: A socket buffer.
3565 */
3566static inline void skb_tx_timestamp(struct sk_buff *skb)
3567{
3568        skb_clone_tx_timestamp(skb);
3569        if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3570                skb_tstamp_tx(skb, NULL);
3571}
3572
3573/**
3574 * skb_complete_wifi_ack - deliver skb with wifi status
3575 *
3576 * @skb: the original outgoing packet
3577 * @acked: ack status
3578 *
3579 */
3580void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3581
3582__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3583__sum16 __skb_checksum_complete(struct sk_buff *skb);
3584
3585static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3586{
3587        return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3588                skb->csum_valid ||
3589                (skb->ip_summed == CHECKSUM_PARTIAL &&
3590                 skb_checksum_start_offset(skb) >= 0));
3591}
3592
3593/**
3594 *      skb_checksum_complete - Calculate checksum of an entire packet
3595 *      @skb: packet to process
3596 *
3597 *      This function calculates the checksum over the entire packet plus
3598 *      the value of skb->csum.  The latter can be used to supply the
3599 *      checksum of a pseudo header as used by TCP/UDP.  It returns the
3600 *      checksum.
3601 *
3602 *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
3603 *      this function can be used to verify that checksum on received
3604 *      packets.  In that case the function should return zero if the
3605 *      checksum is correct.  In particular, this function will return zero
3606 *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3607 *      hardware has already verified the correctness of the checksum.
3608 */
3609static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3610{
3611        return skb_csum_unnecessary(skb) ?
3612               0 : __skb_checksum_complete(skb);
3613}
3614
3615static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3616{
3617        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3618                if (skb->csum_level == 0)
3619                        skb->ip_summed = CHECKSUM_NONE;
3620                else
3621                        skb->csum_level--;
3622        }
3623}
3624
3625static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3626{
3627        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3628                if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3629                        skb->csum_level++;
3630        } else if (skb->ip_summed == CHECKSUM_NONE) {
3631                skb->ip_summed = CHECKSUM_UNNECESSARY;
3632                skb->csum_level = 0;
3633        }
3634}
3635
3636/* Check if we need to perform checksum complete validation.
3637 *
3638 * Returns true if checksum complete is needed, false otherwise
3639 * (either checksum is unnecessary or zero checksum is allowed).
3640 */
3641static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3642                                                  bool zero_okay,
3643                                                  __sum16 check)
3644{
3645        if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3646                skb->csum_valid = 1;
3647                __skb_decr_checksum_unnecessary(skb);
3648                return false;
3649        }
3650
3651        return true;
3652}
3653
3654/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3655 * in checksum_init.
3656 */
3657#define CHECKSUM_BREAK 76
3658
3659/* Unset checksum-complete
3660 *
3661 * Unset checksum complete can be done when packet is being modified
3662 * (uncompressed for instance) and checksum-complete value is
3663 * invalidated.
3664 */
3665static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3666{
3667        if (skb->ip_summed == CHECKSUM_COMPLETE)
3668                skb->ip_summed = CHECKSUM_NONE;
3669}
3670
3671/* Validate (init) checksum based on checksum complete.
3672 *
3673 * Return values:
3674 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3675 *      case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3676 *      checksum is stored in skb->csum for use in __skb_checksum_complete
3677 *   non-zero: value of invalid checksum
3678 *
3679 */
3680static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3681                                                       bool complete,
3682                                                       __wsum psum)
3683{
3684        if (skb->ip_summed == CHECKSUM_COMPLETE) {
3685                if (!csum_fold(csum_add(psum, skb->csum))) {
3686                        skb->csum_valid = 1;
3687                        return 0;
3688                }
3689        }
3690
3691        skb->csum = psum;
3692
3693        if (complete || skb->len <= CHECKSUM_BREAK) {
3694                __sum16 csum;
3695
3696                csum = __skb_checksum_complete(skb);
3697                skb->csum_valid = !csum;
3698                return csum;
3699        }
3700
3701        return 0;
3702}
3703
3704static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3705{
3706        return 0;
3707}
3708
3709/* Perform checksum validate (init). Note that this is a macro since we only
3710 * want to calculate the pseudo header which is an input function if necessary.
3711 * First we try to validate without any computation (checksum unnecessary) and
3712 * then calculate based on checksum complete calling the function to compute
3713 * pseudo header.
3714 *
3715 * Return values:
3716 *   0: checksum is validated or try to in skb_checksum_complete
3717 *   non-zero: value of invalid checksum
3718 */
3719#define __skb_checksum_validate(skb, proto, complete,                   \
3720                                zero_okay, check, compute_pseudo)       \
3721({                                                                      \
3722        __sum16 __ret = 0;                                              \
3723        skb->csum_valid = 0;                                            \
3724        if (__skb_checksum_validate_needed(skb, zero_okay, check))      \
3725                __ret = __skb_checksum_validate_complete(skb,           \
3726                                complete, compute_pseudo(skb, proto));  \
3727        __ret;                                                          \
3728})
3729
3730#define skb_checksum_init(skb, proto, compute_pseudo)                   \
3731        __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3732
3733#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3734        __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3735
3736#define skb_checksum_validate(skb, proto, compute_pseudo)               \
3737        __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3738
3739#define skb_checksum_validate_zero_check(skb, proto, check,             \
3740                                         compute_pseudo)                \
3741        __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3742
3743#define skb_checksum_simple_validate(skb)                               \
3744        __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3745
3746static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3747{
3748        return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3749}
3750
3751static inline void __skb_checksum_convert(struct sk_buff *skb,
3752                                          __sum16 check, __wsum pseudo)
3753{
3754        skb->csum = ~pseudo;
3755        skb->ip_summed = CHECKSUM_COMPLETE;
3756}
3757
3758#define skb_checksum_try_convert(skb, proto, check, compute_pseudo)     \
3759do {                                                                    \
3760        if (__skb_checksum_convert_check(skb))                          \
3761                __skb_checksum_convert(skb, check,                      \
3762                                       compute_pseudo(skb, proto));     \
3763} while (0)
3764
3765static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3766                                              u16 start, u16 offset)
3767{
3768        skb->ip_summed = CHECKSUM_PARTIAL;
3769        skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3770        skb->csum_offset = offset - start;
3771}
3772
3773/* Update skbuf and packet to reflect the remote checksum offload operation.
3774 * When called, ptr indicates the starting point for skb->csum when
3775 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3776 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3777 */
3778static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3779                                       int start, int offset, bool nopartial)
3780{
3781        __wsum delta;
3782
3783        if (!nopartial) {
3784                skb_remcsum_adjust_partial(skb, ptr, start, offset);
3785                return;
3786        }
3787
3788         if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3789                __skb_checksum_complete(skb);
3790                skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3791        }
3792
3793        delta = remcsum_adjust(ptr, skb->csum, start, offset);
3794
3795        /* Adjust skb->csum since we changed the packet */
3796        skb->csum = csum_add(skb->csum, delta);
3797}
3798
3799static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3800{
3801#if IS_ENABLED(CONFIG_NF_CONNTRACK)
3802        return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3803#else
3804        return NULL;
3805#endif
3806}
3807
3808#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3809void nf_conntrack_destroy(struct nf_conntrack *nfct);
3810static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3811{
3812        if (nfct && atomic_dec_and_test(&nfct->use))
3813                nf_conntrack_destroy(nfct);
3814}
3815static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3816{
3817        if (nfct)
3818                atomic_inc(&nfct->use);
3819}
3820#endif
3821#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3822static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3823{
3824        if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3825                kfree(nf_bridge);
3826}
3827static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3828{
3829        if (nf_bridge)
3830                refcount_inc(&nf_bridge->use);
3831}
3832#endif /* CONFIG_BRIDGE_NETFILTER */
3833static inline void nf_reset(struct sk_buff *skb)
3834{
3835#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3836        nf_conntrack_put(skb_nfct(skb));
3837        skb->_nfct = 0;
3838#endif
3839#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3840        nf_bridge_put(skb->nf_bridge);
3841        skb->nf_bridge = NULL;
3842#endif
3843}
3844
3845static inline void nf_reset_trace(struct sk_buff *skb)
3846{
3847#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3848        skb->nf_trace = 0;
3849#endif
3850}
3851
3852static inline void ipvs_reset(struct sk_buff *skb)
3853{
3854#if IS_ENABLED(CONFIG_IP_VS)
3855        skb->ipvs_property = 0;
3856#endif
3857}
3858
3859/* Note: This doesn't put any conntrack and bridge info in dst. */
3860static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3861                             bool copy)
3862{
3863#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3864        dst->_nfct = src->_nfct;
3865        nf_conntrack_get(skb_nfct(src));
3866#endif
3867#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3868        dst->nf_bridge  = src->nf_bridge;
3869        nf_bridge_get(src->nf_bridge);
3870#endif
3871#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3872        if (copy)
3873                dst->nf_trace = src->nf_trace;
3874#endif
3875}
3876
3877static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3878{
3879#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3880        nf_conntrack_put(skb_nfct(dst));
3881#endif
3882#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3883        nf_bridge_put(dst->nf_bridge);
3884#endif
3885        __nf_copy(dst, src, true);
3886}
3887
3888#ifdef CONFIG_NETWORK_SECMARK
3889static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3890{
3891        to->secmark = from->secmark;
3892}
3893
3894static inline void skb_init_secmark(struct sk_buff *skb)
3895{
3896        skb->secmark = 0;
3897}
3898#else
3899static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3900{ }
3901
3902static inline void skb_init_secmark(struct sk_buff *skb)
3903{ }
3904#endif
3905
3906static inline bool skb_irq_freeable(const struct sk_buff *skb)
3907{
3908        return !skb->destructor &&
3909#if IS_ENABLED(CONFIG_XFRM)
3910                !skb->sp &&
3911#endif
3912                !skb_nfct(skb) &&
3913                !skb->_skb_refdst &&
3914                !skb_has_frag_list(skb);
3915}
3916
3917static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3918{
3919        skb->queue_mapping = queue_mapping;
3920}
3921
3922static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3923{
3924        return skb->queue_mapping;
3925}
3926
3927static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3928{
3929        to->queue_mapping = from->queue_mapping;
3930}
3931
3932static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3933{
3934        skb->queue_mapping = rx_queue + 1;
3935}
3936
3937static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3938{
3939        return skb->queue_mapping - 1;
3940}
3941
3942static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3943{
3944        return skb->queue_mapping != 0;
3945}
3946
3947static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3948{
3949        skb->dst_pending_confirm = val;
3950}
3951
3952static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3953{
3954        return skb->dst_pending_confirm != 0;
3955}
3956
3957static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3958{
3959#ifdef CONFIG_XFRM
3960        return skb->sp;
3961#else
3962        return NULL;
3963#endif
3964}
3965
3966/* Keeps track of mac header offset relative to skb->head.
3967 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3968 * For non-tunnel skb it points to skb_mac_header() and for
3969 * tunnel skb it points to outer mac header.
3970 * Keeps track of level of encapsulation of network headers.
3971 */
3972struct skb_gso_cb {
3973        union {
3974                int     mac_offset;
3975                int     data_offset;
3976        };
3977        int     encap_level;
3978        __wsum  csum;
3979        __u16   csum_start;
3980};
3981#define SKB_SGO_CB_OFFSET       32
3982#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3983
3984static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3985{
3986        return (skb_mac_header(inner_skb) - inner_skb->head) -
3987                SKB_GSO_CB(inner_skb)->mac_offset;
3988}
3989
3990static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3991{
3992        int new_headroom, headroom;
3993        int ret;
3994
3995        headroom = skb_headroom(skb);
3996        ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3997        if (ret)
3998                return ret;
3999
4000        new_headroom = skb_headroom(skb);
4001        SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4002        return 0;
4003}
4004
4005static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4006{
4007        /* Do not update partial checksums if remote checksum is enabled. */
4008        if (skb->remcsum_offload)
4009                return;
4010
4011        SKB_GSO_CB(skb)->csum = res;
4012        SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4013}
4014
4015/* Compute the checksum for a gso segment. First compute the checksum value
4016 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4017 * then add in skb->csum (checksum from csum_start to end of packet).
4018 * skb->csum and csum_start are then updated to reflect the checksum of the
4019 * resultant packet starting from the transport header-- the resultant checksum
4020 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4021 * header.
4022 */
4023static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4024{
4025        unsigned char *csum_start = skb_transport_header(skb);
4026        int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4027        __wsum partial = SKB_GSO_CB(skb)->csum;
4028
4029        SKB_GSO_CB(skb)->csum = res;
4030        SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4031
4032        return csum_fold(csum_partial(csum_start, plen, partial));
4033}
4034
4035static inline bool skb_is_gso(const struct sk_buff *skb)
4036{
4037        return skb_shinfo(skb)->gso_size;
4038}
4039
4040/* Note: Should be called only if skb_is_gso(skb) is true */
4041static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4042{
4043        return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4044}
4045
4046/* Note: Should be called only if skb_is_gso(skb) is true */
4047static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4048{
4049        return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4050}
4051
4052static inline void skb_gso_reset(struct sk_buff *skb)
4053{
4054        skb_shinfo(skb)->gso_size = 0;
4055        skb_shinfo(skb)->gso_segs = 0;
4056        skb_shinfo(skb)->gso_type = 0;
4057}
4058
4059static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4060                                         u16 increment)
4061{
4062        if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4063                return;
4064        shinfo->gso_size += increment;
4065}
4066
4067static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4068                                         u16 decrement)
4069{
4070        if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4071                return;
4072        shinfo->gso_size -= decrement;
4073}
4074
4075void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4076
4077static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4078{
4079        /* LRO sets gso_size but not gso_type, whereas if GSO is really
4080         * wanted then gso_type will be set. */
4081        const struct skb_shared_info *shinfo = skb_shinfo(skb);
4082
4083        if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4084            unlikely(shinfo->gso_type == 0)) {
4085                __skb_warn_lro_forwarding(skb);
4086                return true;
4087        }
4088        return false;
4089}
4090
4091static inline void skb_forward_csum(struct sk_buff *skb)
4092{
4093        /* Unfortunately we don't support this one.  Any brave souls? */
4094        if (skb->ip_summed == CHECKSUM_COMPLETE)
4095                skb->ip_summed = CHECKSUM_NONE;
4096}
4097
4098/**
4099 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4100 * @skb: skb to check
4101 *
4102 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4103 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4104 * use this helper, to document places where we make this assertion.
4105 */
4106static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4107{
4108#ifdef DEBUG
4109        BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4110#endif
4111}
4112
4113bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4114
4115int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4116struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4117                                     unsigned int transport_len,
4118                                     __sum16(*skb_chkf)(struct sk_buff *skb));
4119
4120/**
4121 * skb_head_is_locked - Determine if the skb->head is locked down
4122 * @skb: skb to check
4123 *
4124 * The head on skbs build around a head frag can be removed if they are
4125 * not cloned.  This function returns true if the skb head is locked down
4126 * due to either being allocated via kmalloc, or by being a clone with
4127 * multiple references to the head.
4128 */
4129static inline bool skb_head_is_locked(const struct sk_buff *skb)
4130{
4131        return !skb->head_frag || skb_cloned(skb);
4132}
4133
4134/* Local Checksum Offload.
4135 * Compute outer checksum based on the assumption that the
4136 * inner checksum will be offloaded later.
4137 * See Documentation/networking/checksum-offloads.txt for
4138 * explanation of how this works.
4139 * Fill in outer checksum adjustment (e.g. with sum of outer
4140 * pseudo-header) before calling.
4141 * Also ensure that inner checksum is in linear data area.
4142 */
4143static inline __wsum lco_csum(struct sk_buff *skb)
4144{
4145        unsigned char *csum_start = skb_checksum_start(skb);
4146        unsigned char *l4_hdr = skb_transport_header(skb);
4147        __wsum partial;
4148
4149        /* Start with complement of inner checksum adjustment */
4150        partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4151                                                    skb->csum_offset));
4152
4153        /* Add in checksum of our headers (incl. outer checksum
4154         * adjustment filled in by caller) and return result.
4155         */
4156        return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4157}
4158
4159#endif  /* __KERNEL__ */
4160#endif  /* _LINUX_SKBUFF_H */
4161