linux/kernel/irq/manage.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
   4 * Copyright (C) 2005-2006 Thomas Gleixner
   5 *
   6 * This file contains driver APIs to the irq subsystem.
   7 */
   8
   9#define pr_fmt(fmt) "genirq: " fmt
  10
  11#include <linux/irq.h>
  12#include <linux/kthread.h>
  13#include <linux/module.h>
  14#include <linux/random.h>
  15#include <linux/interrupt.h>
  16#include <linux/slab.h>
  17#include <linux/sched.h>
  18#include <linux/sched/rt.h>
  19#include <linux/sched/task.h>
  20#include <uapi/linux/sched/types.h>
  21#include <linux/task_work.h>
  22
  23#include "internals.h"
  24
  25#ifdef CONFIG_IRQ_FORCED_THREADING
  26__read_mostly bool force_irqthreads;
  27EXPORT_SYMBOL_GPL(force_irqthreads);
  28
  29static int __init setup_forced_irqthreads(char *arg)
  30{
  31        force_irqthreads = true;
  32        return 0;
  33}
  34early_param("threadirqs", setup_forced_irqthreads);
  35#endif
  36
  37static void __synchronize_hardirq(struct irq_desc *desc)
  38{
  39        bool inprogress;
  40
  41        do {
  42                unsigned long flags;
  43
  44                /*
  45                 * Wait until we're out of the critical section.  This might
  46                 * give the wrong answer due to the lack of memory barriers.
  47                 */
  48                while (irqd_irq_inprogress(&desc->irq_data))
  49                        cpu_relax();
  50
  51                /* Ok, that indicated we're done: double-check carefully. */
  52                raw_spin_lock_irqsave(&desc->lock, flags);
  53                inprogress = irqd_irq_inprogress(&desc->irq_data);
  54                raw_spin_unlock_irqrestore(&desc->lock, flags);
  55
  56                /* Oops, that failed? */
  57        } while (inprogress);
  58}
  59
  60/**
  61 *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
  62 *      @irq: interrupt number to wait for
  63 *
  64 *      This function waits for any pending hard IRQ handlers for this
  65 *      interrupt to complete before returning. If you use this
  66 *      function while holding a resource the IRQ handler may need you
  67 *      will deadlock. It does not take associated threaded handlers
  68 *      into account.
  69 *
  70 *      Do not use this for shutdown scenarios where you must be sure
  71 *      that all parts (hardirq and threaded handler) have completed.
  72 *
  73 *      Returns: false if a threaded handler is active.
  74 *
  75 *      This function may be called - with care - from IRQ context.
  76 */
  77bool synchronize_hardirq(unsigned int irq)
  78{
  79        struct irq_desc *desc = irq_to_desc(irq);
  80
  81        if (desc) {
  82                __synchronize_hardirq(desc);
  83                return !atomic_read(&desc->threads_active);
  84        }
  85
  86        return true;
  87}
  88EXPORT_SYMBOL(synchronize_hardirq);
  89
  90/**
  91 *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
  92 *      @irq: interrupt number to wait for
  93 *
  94 *      This function waits for any pending IRQ handlers for this interrupt
  95 *      to complete before returning. If you use this function while
  96 *      holding a resource the IRQ handler may need you will deadlock.
  97 *
  98 *      This function may be called - with care - from IRQ context.
  99 */
 100void synchronize_irq(unsigned int irq)
 101{
 102        struct irq_desc *desc = irq_to_desc(irq);
 103
 104        if (desc) {
 105                __synchronize_hardirq(desc);
 106                /*
 107                 * We made sure that no hardirq handler is
 108                 * running. Now verify that no threaded handlers are
 109                 * active.
 110                 */
 111                wait_event(desc->wait_for_threads,
 112                           !atomic_read(&desc->threads_active));
 113        }
 114}
 115EXPORT_SYMBOL(synchronize_irq);
 116
 117#ifdef CONFIG_SMP
 118cpumask_var_t irq_default_affinity;
 119
 120static bool __irq_can_set_affinity(struct irq_desc *desc)
 121{
 122        if (!desc || !irqd_can_balance(&desc->irq_data) ||
 123            !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
 124                return false;
 125        return true;
 126}
 127
 128/**
 129 *      irq_can_set_affinity - Check if the affinity of a given irq can be set
 130 *      @irq:           Interrupt to check
 131 *
 132 */
 133int irq_can_set_affinity(unsigned int irq)
 134{
 135        return __irq_can_set_affinity(irq_to_desc(irq));
 136}
 137
 138/**
 139 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
 140 * @irq:        Interrupt to check
 141 *
 142 * Like irq_can_set_affinity() above, but additionally checks for the
 143 * AFFINITY_MANAGED flag.
 144 */
 145bool irq_can_set_affinity_usr(unsigned int irq)
 146{
 147        struct irq_desc *desc = irq_to_desc(irq);
 148
 149        return __irq_can_set_affinity(desc) &&
 150                !irqd_affinity_is_managed(&desc->irq_data);
 151}
 152
 153/**
 154 *      irq_set_thread_affinity - Notify irq threads to adjust affinity
 155 *      @desc:          irq descriptor which has affitnity changed
 156 *
 157 *      We just set IRQTF_AFFINITY and delegate the affinity setting
 158 *      to the interrupt thread itself. We can not call
 159 *      set_cpus_allowed_ptr() here as we hold desc->lock and this
 160 *      code can be called from hard interrupt context.
 161 */
 162void irq_set_thread_affinity(struct irq_desc *desc)
 163{
 164        struct irqaction *action;
 165
 166        for_each_action_of_desc(desc, action)
 167                if (action->thread)
 168                        set_bit(IRQTF_AFFINITY, &action->thread_flags);
 169}
 170
 171static void irq_validate_effective_affinity(struct irq_data *data)
 172{
 173#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
 174        const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
 175        struct irq_chip *chip = irq_data_get_irq_chip(data);
 176
 177        if (!cpumask_empty(m))
 178                return;
 179        pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
 180                     chip->name, data->irq);
 181#endif
 182}
 183
 184int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
 185                        bool force)
 186{
 187        struct irq_desc *desc = irq_data_to_desc(data);
 188        struct irq_chip *chip = irq_data_get_irq_chip(data);
 189        int ret;
 190
 191        if (!chip || !chip->irq_set_affinity)
 192                return -EINVAL;
 193
 194        ret = chip->irq_set_affinity(data, mask, force);
 195        switch (ret) {
 196        case IRQ_SET_MASK_OK:
 197        case IRQ_SET_MASK_OK_DONE:
 198                cpumask_copy(desc->irq_common_data.affinity, mask);
 199        case IRQ_SET_MASK_OK_NOCOPY:
 200                irq_validate_effective_affinity(data);
 201                irq_set_thread_affinity(desc);
 202                ret = 0;
 203        }
 204
 205        return ret;
 206}
 207
 208#ifdef CONFIG_GENERIC_PENDING_IRQ
 209static inline int irq_set_affinity_pending(struct irq_data *data,
 210                                           const struct cpumask *dest)
 211{
 212        struct irq_desc *desc = irq_data_to_desc(data);
 213
 214        irqd_set_move_pending(data);
 215        irq_copy_pending(desc, dest);
 216        return 0;
 217}
 218#else
 219static inline int irq_set_affinity_pending(struct irq_data *data,
 220                                           const struct cpumask *dest)
 221{
 222        return -EBUSY;
 223}
 224#endif
 225
 226static int irq_try_set_affinity(struct irq_data *data,
 227                                const struct cpumask *dest, bool force)
 228{
 229        int ret = irq_do_set_affinity(data, dest, force);
 230
 231        /*
 232         * In case that the underlying vector management is busy and the
 233         * architecture supports the generic pending mechanism then utilize
 234         * this to avoid returning an error to user space.
 235         */
 236        if (ret == -EBUSY && !force)
 237                ret = irq_set_affinity_pending(data, dest);
 238        return ret;
 239}
 240
 241int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
 242                            bool force)
 243{
 244        struct irq_chip *chip = irq_data_get_irq_chip(data);
 245        struct irq_desc *desc = irq_data_to_desc(data);
 246        int ret = 0;
 247
 248        if (!chip || !chip->irq_set_affinity)
 249                return -EINVAL;
 250
 251        if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
 252                ret = irq_try_set_affinity(data, mask, force);
 253        } else {
 254                irqd_set_move_pending(data);
 255                irq_copy_pending(desc, mask);
 256        }
 257
 258        if (desc->affinity_notify) {
 259                kref_get(&desc->affinity_notify->kref);
 260                schedule_work(&desc->affinity_notify->work);
 261        }
 262        irqd_set(data, IRQD_AFFINITY_SET);
 263
 264        return ret;
 265}
 266
 267int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
 268{
 269        struct irq_desc *desc = irq_to_desc(irq);
 270        unsigned long flags;
 271        int ret;
 272
 273        if (!desc)
 274                return -EINVAL;
 275
 276        raw_spin_lock_irqsave(&desc->lock, flags);
 277        ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
 278        raw_spin_unlock_irqrestore(&desc->lock, flags);
 279        return ret;
 280}
 281
 282int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
 283{
 284        unsigned long flags;
 285        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 286
 287        if (!desc)
 288                return -EINVAL;
 289        desc->affinity_hint = m;
 290        irq_put_desc_unlock(desc, flags);
 291        /* set the initial affinity to prevent every interrupt being on CPU0 */
 292        if (m)
 293                __irq_set_affinity(irq, m, false);
 294        return 0;
 295}
 296EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
 297
 298static void irq_affinity_notify(struct work_struct *work)
 299{
 300        struct irq_affinity_notify *notify =
 301                container_of(work, struct irq_affinity_notify, work);
 302        struct irq_desc *desc = irq_to_desc(notify->irq);
 303        cpumask_var_t cpumask;
 304        unsigned long flags;
 305
 306        if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
 307                goto out;
 308
 309        raw_spin_lock_irqsave(&desc->lock, flags);
 310        if (irq_move_pending(&desc->irq_data))
 311                irq_get_pending(cpumask, desc);
 312        else
 313                cpumask_copy(cpumask, desc->irq_common_data.affinity);
 314        raw_spin_unlock_irqrestore(&desc->lock, flags);
 315
 316        notify->notify(notify, cpumask);
 317
 318        free_cpumask_var(cpumask);
 319out:
 320        kref_put(&notify->kref, notify->release);
 321}
 322
 323/**
 324 *      irq_set_affinity_notifier - control notification of IRQ affinity changes
 325 *      @irq:           Interrupt for which to enable/disable notification
 326 *      @notify:        Context for notification, or %NULL to disable
 327 *                      notification.  Function pointers must be initialised;
 328 *                      the other fields will be initialised by this function.
 329 *
 330 *      Must be called in process context.  Notification may only be enabled
 331 *      after the IRQ is allocated and must be disabled before the IRQ is
 332 *      freed using free_irq().
 333 */
 334int
 335irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
 336{
 337        struct irq_desc *desc = irq_to_desc(irq);
 338        struct irq_affinity_notify *old_notify;
 339        unsigned long flags;
 340
 341        /* The release function is promised process context */
 342        might_sleep();
 343
 344        if (!desc)
 345                return -EINVAL;
 346
 347        /* Complete initialisation of *notify */
 348        if (notify) {
 349                notify->irq = irq;
 350                kref_init(&notify->kref);
 351                INIT_WORK(&notify->work, irq_affinity_notify);
 352        }
 353
 354        raw_spin_lock_irqsave(&desc->lock, flags);
 355        old_notify = desc->affinity_notify;
 356        desc->affinity_notify = notify;
 357        raw_spin_unlock_irqrestore(&desc->lock, flags);
 358
 359        if (old_notify)
 360                kref_put(&old_notify->kref, old_notify->release);
 361
 362        return 0;
 363}
 364EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
 365
 366#ifndef CONFIG_AUTO_IRQ_AFFINITY
 367/*
 368 * Generic version of the affinity autoselector.
 369 */
 370int irq_setup_affinity(struct irq_desc *desc)
 371{
 372        struct cpumask *set = irq_default_affinity;
 373        int ret, node = irq_desc_get_node(desc);
 374        static DEFINE_RAW_SPINLOCK(mask_lock);
 375        static struct cpumask mask;
 376
 377        /* Excludes PER_CPU and NO_BALANCE interrupts */
 378        if (!__irq_can_set_affinity(desc))
 379                return 0;
 380
 381        raw_spin_lock(&mask_lock);
 382        /*
 383         * Preserve the managed affinity setting and a userspace affinity
 384         * setup, but make sure that one of the targets is online.
 385         */
 386        if (irqd_affinity_is_managed(&desc->irq_data) ||
 387            irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
 388                if (cpumask_intersects(desc->irq_common_data.affinity,
 389                                       cpu_online_mask))
 390                        set = desc->irq_common_data.affinity;
 391                else
 392                        irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
 393        }
 394
 395        cpumask_and(&mask, cpu_online_mask, set);
 396        if (node != NUMA_NO_NODE) {
 397                const struct cpumask *nodemask = cpumask_of_node(node);
 398
 399                /* make sure at least one of the cpus in nodemask is online */
 400                if (cpumask_intersects(&mask, nodemask))
 401                        cpumask_and(&mask, &mask, nodemask);
 402        }
 403        ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
 404        raw_spin_unlock(&mask_lock);
 405        return ret;
 406}
 407#else
 408/* Wrapper for ALPHA specific affinity selector magic */
 409int irq_setup_affinity(struct irq_desc *desc)
 410{
 411        return irq_select_affinity(irq_desc_get_irq(desc));
 412}
 413#endif
 414
 415/*
 416 * Called when a bogus affinity is set via /proc/irq
 417 */
 418int irq_select_affinity_usr(unsigned int irq)
 419{
 420        struct irq_desc *desc = irq_to_desc(irq);
 421        unsigned long flags;
 422        int ret;
 423
 424        raw_spin_lock_irqsave(&desc->lock, flags);
 425        ret = irq_setup_affinity(desc);
 426        raw_spin_unlock_irqrestore(&desc->lock, flags);
 427        return ret;
 428}
 429#endif
 430
 431/**
 432 *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
 433 *      @irq: interrupt number to set affinity
 434 *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
 435 *                  specific data for percpu_devid interrupts
 436 *
 437 *      This function uses the vCPU specific data to set the vCPU
 438 *      affinity for an irq. The vCPU specific data is passed from
 439 *      outside, such as KVM. One example code path is as below:
 440 *      KVM -> IOMMU -> irq_set_vcpu_affinity().
 441 */
 442int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
 443{
 444        unsigned long flags;
 445        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 446        struct irq_data *data;
 447        struct irq_chip *chip;
 448        int ret = -ENOSYS;
 449
 450        if (!desc)
 451                return -EINVAL;
 452
 453        data = irq_desc_get_irq_data(desc);
 454        do {
 455                chip = irq_data_get_irq_chip(data);
 456                if (chip && chip->irq_set_vcpu_affinity)
 457                        break;
 458#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
 459                data = data->parent_data;
 460#else
 461                data = NULL;
 462#endif
 463        } while (data);
 464
 465        if (data)
 466                ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
 467        irq_put_desc_unlock(desc, flags);
 468
 469        return ret;
 470}
 471EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
 472
 473void __disable_irq(struct irq_desc *desc)
 474{
 475        if (!desc->depth++)
 476                irq_disable(desc);
 477}
 478
 479static int __disable_irq_nosync(unsigned int irq)
 480{
 481        unsigned long flags;
 482        struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 483
 484        if (!desc)
 485                return -EINVAL;
 486        __disable_irq(desc);
 487        irq_put_desc_busunlock(desc, flags);
 488        return 0;
 489}
 490
 491/**
 492 *      disable_irq_nosync - disable an irq without waiting
 493 *      @irq: Interrupt to disable
 494 *
 495 *      Disable the selected interrupt line.  Disables and Enables are
 496 *      nested.
 497 *      Unlike disable_irq(), this function does not ensure existing
 498 *      instances of the IRQ handler have completed before returning.
 499 *
 500 *      This function may be called from IRQ context.
 501 */
 502void disable_irq_nosync(unsigned int irq)
 503{
 504        __disable_irq_nosync(irq);
 505}
 506EXPORT_SYMBOL(disable_irq_nosync);
 507
 508/**
 509 *      disable_irq - disable an irq and wait for completion
 510 *      @irq: Interrupt to disable
 511 *
 512 *      Disable the selected interrupt line.  Enables and Disables are
 513 *      nested.
 514 *      This function waits for any pending IRQ handlers for this interrupt
 515 *      to complete before returning. If you use this function while
 516 *      holding a resource the IRQ handler may need you will deadlock.
 517 *
 518 *      This function may be called - with care - from IRQ context.
 519 */
 520void disable_irq(unsigned int irq)
 521{
 522        if (!__disable_irq_nosync(irq))
 523                synchronize_irq(irq);
 524}
 525EXPORT_SYMBOL(disable_irq);
 526
 527/**
 528 *      disable_hardirq - disables an irq and waits for hardirq completion
 529 *      @irq: Interrupt to disable
 530 *
 531 *      Disable the selected interrupt line.  Enables and Disables are
 532 *      nested.
 533 *      This function waits for any pending hard IRQ handlers for this
 534 *      interrupt to complete before returning. If you use this function while
 535 *      holding a resource the hard IRQ handler may need you will deadlock.
 536 *
 537 *      When used to optimistically disable an interrupt from atomic context
 538 *      the return value must be checked.
 539 *
 540 *      Returns: false if a threaded handler is active.
 541 *
 542 *      This function may be called - with care - from IRQ context.
 543 */
 544bool disable_hardirq(unsigned int irq)
 545{
 546        if (!__disable_irq_nosync(irq))
 547                return synchronize_hardirq(irq);
 548
 549        return false;
 550}
 551EXPORT_SYMBOL_GPL(disable_hardirq);
 552
 553void __enable_irq(struct irq_desc *desc)
 554{
 555        switch (desc->depth) {
 556        case 0:
 557 err_out:
 558                WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
 559                     irq_desc_get_irq(desc));
 560                break;
 561        case 1: {
 562                if (desc->istate & IRQS_SUSPENDED)
 563                        goto err_out;
 564                /* Prevent probing on this irq: */
 565                irq_settings_set_noprobe(desc);
 566                /*
 567                 * Call irq_startup() not irq_enable() here because the
 568                 * interrupt might be marked NOAUTOEN. So irq_startup()
 569                 * needs to be invoked when it gets enabled the first
 570                 * time. If it was already started up, then irq_startup()
 571                 * will invoke irq_enable() under the hood.
 572                 */
 573                irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
 574                break;
 575        }
 576        default:
 577                desc->depth--;
 578        }
 579}
 580
 581/**
 582 *      enable_irq - enable handling of an irq
 583 *      @irq: Interrupt to enable
 584 *
 585 *      Undoes the effect of one call to disable_irq().  If this
 586 *      matches the last disable, processing of interrupts on this
 587 *      IRQ line is re-enabled.
 588 *
 589 *      This function may be called from IRQ context only when
 590 *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
 591 */
 592void enable_irq(unsigned int irq)
 593{
 594        unsigned long flags;
 595        struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 596
 597        if (!desc)
 598                return;
 599        if (WARN(!desc->irq_data.chip,
 600                 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
 601                goto out;
 602
 603        __enable_irq(desc);
 604out:
 605        irq_put_desc_busunlock(desc, flags);
 606}
 607EXPORT_SYMBOL(enable_irq);
 608
 609static int set_irq_wake_real(unsigned int irq, unsigned int on)
 610{
 611        struct irq_desc *desc = irq_to_desc(irq);
 612        int ret = -ENXIO;
 613
 614        if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
 615                return 0;
 616
 617        if (desc->irq_data.chip->irq_set_wake)
 618                ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
 619
 620        return ret;
 621}
 622
 623/**
 624 *      irq_set_irq_wake - control irq power management wakeup
 625 *      @irq:   interrupt to control
 626 *      @on:    enable/disable power management wakeup
 627 *
 628 *      Enable/disable power management wakeup mode, which is
 629 *      disabled by default.  Enables and disables must match,
 630 *      just as they match for non-wakeup mode support.
 631 *
 632 *      Wakeup mode lets this IRQ wake the system from sleep
 633 *      states like "suspend to RAM".
 634 */
 635int irq_set_irq_wake(unsigned int irq, unsigned int on)
 636{
 637        unsigned long flags;
 638        struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 639        int ret = 0;
 640
 641        if (!desc)
 642                return -EINVAL;
 643
 644        /* wakeup-capable irqs can be shared between drivers that
 645         * don't need to have the same sleep mode behaviors.
 646         */
 647        if (on) {
 648                if (desc->wake_depth++ == 0) {
 649                        ret = set_irq_wake_real(irq, on);
 650                        if (ret)
 651                                desc->wake_depth = 0;
 652                        else
 653                                irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
 654                }
 655        } else {
 656                if (desc->wake_depth == 0) {
 657                        WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
 658                } else if (--desc->wake_depth == 0) {
 659                        ret = set_irq_wake_real(irq, on);
 660                        if (ret)
 661                                desc->wake_depth = 1;
 662                        else
 663                                irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
 664                }
 665        }
 666        irq_put_desc_busunlock(desc, flags);
 667        return ret;
 668}
 669EXPORT_SYMBOL(irq_set_irq_wake);
 670
 671/*
 672 * Internal function that tells the architecture code whether a
 673 * particular irq has been exclusively allocated or is available
 674 * for driver use.
 675 */
 676int can_request_irq(unsigned int irq, unsigned long irqflags)
 677{
 678        unsigned long flags;
 679        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 680        int canrequest = 0;
 681
 682        if (!desc)
 683                return 0;
 684
 685        if (irq_settings_can_request(desc)) {
 686                if (!desc->action ||
 687                    irqflags & desc->action->flags & IRQF_SHARED)
 688                        canrequest = 1;
 689        }
 690        irq_put_desc_unlock(desc, flags);
 691        return canrequest;
 692}
 693
 694int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
 695{
 696        struct irq_chip *chip = desc->irq_data.chip;
 697        int ret, unmask = 0;
 698
 699        if (!chip || !chip->irq_set_type) {
 700                /*
 701                 * IRQF_TRIGGER_* but the PIC does not support multiple
 702                 * flow-types?
 703                 */
 704                pr_debug("No set_type function for IRQ %d (%s)\n",
 705                         irq_desc_get_irq(desc),
 706                         chip ? (chip->name ? : "unknown") : "unknown");
 707                return 0;
 708        }
 709
 710        if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
 711                if (!irqd_irq_masked(&desc->irq_data))
 712                        mask_irq(desc);
 713                if (!irqd_irq_disabled(&desc->irq_data))
 714                        unmask = 1;
 715        }
 716
 717        /* Mask all flags except trigger mode */
 718        flags &= IRQ_TYPE_SENSE_MASK;
 719        ret = chip->irq_set_type(&desc->irq_data, flags);
 720
 721        switch (ret) {
 722        case IRQ_SET_MASK_OK:
 723        case IRQ_SET_MASK_OK_DONE:
 724                irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
 725                irqd_set(&desc->irq_data, flags);
 726
 727        case IRQ_SET_MASK_OK_NOCOPY:
 728                flags = irqd_get_trigger_type(&desc->irq_data);
 729                irq_settings_set_trigger_mask(desc, flags);
 730                irqd_clear(&desc->irq_data, IRQD_LEVEL);
 731                irq_settings_clr_level(desc);
 732                if (flags & IRQ_TYPE_LEVEL_MASK) {
 733                        irq_settings_set_level(desc);
 734                        irqd_set(&desc->irq_data, IRQD_LEVEL);
 735                }
 736
 737                ret = 0;
 738                break;
 739        default:
 740                pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
 741                       flags, irq_desc_get_irq(desc), chip->irq_set_type);
 742        }
 743        if (unmask)
 744                unmask_irq(desc);
 745        return ret;
 746}
 747
 748#ifdef CONFIG_HARDIRQS_SW_RESEND
 749int irq_set_parent(int irq, int parent_irq)
 750{
 751        unsigned long flags;
 752        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 753
 754        if (!desc)
 755                return -EINVAL;
 756
 757        desc->parent_irq = parent_irq;
 758
 759        irq_put_desc_unlock(desc, flags);
 760        return 0;
 761}
 762EXPORT_SYMBOL_GPL(irq_set_parent);
 763#endif
 764
 765/*
 766 * Default primary interrupt handler for threaded interrupts. Is
 767 * assigned as primary handler when request_threaded_irq is called
 768 * with handler == NULL. Useful for oneshot interrupts.
 769 */
 770static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
 771{
 772        return IRQ_WAKE_THREAD;
 773}
 774
 775/*
 776 * Primary handler for nested threaded interrupts. Should never be
 777 * called.
 778 */
 779static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
 780{
 781        WARN(1, "Primary handler called for nested irq %d\n", irq);
 782        return IRQ_NONE;
 783}
 784
 785static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
 786{
 787        WARN(1, "Secondary action handler called for irq %d\n", irq);
 788        return IRQ_NONE;
 789}
 790
 791static int irq_wait_for_interrupt(struct irqaction *action)
 792{
 793        set_current_state(TASK_INTERRUPTIBLE);
 794
 795        while (!kthread_should_stop()) {
 796
 797                if (test_and_clear_bit(IRQTF_RUNTHREAD,
 798                                       &action->thread_flags)) {
 799                        __set_current_state(TASK_RUNNING);
 800                        return 0;
 801                }
 802                schedule();
 803                set_current_state(TASK_INTERRUPTIBLE);
 804        }
 805        __set_current_state(TASK_RUNNING);
 806        return -1;
 807}
 808
 809/*
 810 * Oneshot interrupts keep the irq line masked until the threaded
 811 * handler finished. unmask if the interrupt has not been disabled and
 812 * is marked MASKED.
 813 */
 814static void irq_finalize_oneshot(struct irq_desc *desc,
 815                                 struct irqaction *action)
 816{
 817        if (!(desc->istate & IRQS_ONESHOT) ||
 818            action->handler == irq_forced_secondary_handler)
 819                return;
 820again:
 821        chip_bus_lock(desc);
 822        raw_spin_lock_irq(&desc->lock);
 823
 824        /*
 825         * Implausible though it may be we need to protect us against
 826         * the following scenario:
 827         *
 828         * The thread is faster done than the hard interrupt handler
 829         * on the other CPU. If we unmask the irq line then the
 830         * interrupt can come in again and masks the line, leaves due
 831         * to IRQS_INPROGRESS and the irq line is masked forever.
 832         *
 833         * This also serializes the state of shared oneshot handlers
 834         * versus "desc->threads_onehsot |= action->thread_mask;" in
 835         * irq_wake_thread(). See the comment there which explains the
 836         * serialization.
 837         */
 838        if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
 839                raw_spin_unlock_irq(&desc->lock);
 840                chip_bus_sync_unlock(desc);
 841                cpu_relax();
 842                goto again;
 843        }
 844
 845        /*
 846         * Now check again, whether the thread should run. Otherwise
 847         * we would clear the threads_oneshot bit of this thread which
 848         * was just set.
 849         */
 850        if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
 851                goto out_unlock;
 852
 853        desc->threads_oneshot &= ~action->thread_mask;
 854
 855        if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
 856            irqd_irq_masked(&desc->irq_data))
 857                unmask_threaded_irq(desc);
 858
 859out_unlock:
 860        raw_spin_unlock_irq(&desc->lock);
 861        chip_bus_sync_unlock(desc);
 862}
 863
 864#ifdef CONFIG_SMP
 865/*
 866 * Check whether we need to change the affinity of the interrupt thread.
 867 */
 868static void
 869irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
 870{
 871        cpumask_var_t mask;
 872        bool valid = true;
 873
 874        if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
 875                return;
 876
 877        /*
 878         * In case we are out of memory we set IRQTF_AFFINITY again and
 879         * try again next time
 880         */
 881        if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
 882                set_bit(IRQTF_AFFINITY, &action->thread_flags);
 883                return;
 884        }
 885
 886        raw_spin_lock_irq(&desc->lock);
 887        /*
 888         * This code is triggered unconditionally. Check the affinity
 889         * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
 890         */
 891        if (cpumask_available(desc->irq_common_data.affinity)) {
 892                const struct cpumask *m;
 893
 894                m = irq_data_get_effective_affinity_mask(&desc->irq_data);
 895                cpumask_copy(mask, m);
 896        } else {
 897                valid = false;
 898        }
 899        raw_spin_unlock_irq(&desc->lock);
 900
 901        if (valid)
 902                set_cpus_allowed_ptr(current, mask);
 903        free_cpumask_var(mask);
 904}
 905#else
 906static inline void
 907irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
 908#endif
 909
 910/*
 911 * Interrupts which are not explicitely requested as threaded
 912 * interrupts rely on the implicit bh/preempt disable of the hard irq
 913 * context. So we need to disable bh here to avoid deadlocks and other
 914 * side effects.
 915 */
 916static irqreturn_t
 917irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
 918{
 919        irqreturn_t ret;
 920
 921        local_bh_disable();
 922        ret = action->thread_fn(action->irq, action->dev_id);
 923        irq_finalize_oneshot(desc, action);
 924        local_bh_enable();
 925        return ret;
 926}
 927
 928/*
 929 * Interrupts explicitly requested as threaded interrupts want to be
 930 * preemtible - many of them need to sleep and wait for slow busses to
 931 * complete.
 932 */
 933static irqreturn_t irq_thread_fn(struct irq_desc *desc,
 934                struct irqaction *action)
 935{
 936        irqreturn_t ret;
 937
 938        ret = action->thread_fn(action->irq, action->dev_id);
 939        irq_finalize_oneshot(desc, action);
 940        return ret;
 941}
 942
 943static void wake_threads_waitq(struct irq_desc *desc)
 944{
 945        if (atomic_dec_and_test(&desc->threads_active))
 946                wake_up(&desc->wait_for_threads);
 947}
 948
 949static void irq_thread_dtor(struct callback_head *unused)
 950{
 951        struct task_struct *tsk = current;
 952        struct irq_desc *desc;
 953        struct irqaction *action;
 954
 955        if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
 956                return;
 957
 958        action = kthread_data(tsk);
 959
 960        pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
 961               tsk->comm, tsk->pid, action->irq);
 962
 963
 964        desc = irq_to_desc(action->irq);
 965        /*
 966         * If IRQTF_RUNTHREAD is set, we need to decrement
 967         * desc->threads_active and wake possible waiters.
 968         */
 969        if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
 970                wake_threads_waitq(desc);
 971
 972        /* Prevent a stale desc->threads_oneshot */
 973        irq_finalize_oneshot(desc, action);
 974}
 975
 976static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
 977{
 978        struct irqaction *secondary = action->secondary;
 979
 980        if (WARN_ON_ONCE(!secondary))
 981                return;
 982
 983        raw_spin_lock_irq(&desc->lock);
 984        __irq_wake_thread(desc, secondary);
 985        raw_spin_unlock_irq(&desc->lock);
 986}
 987
 988/*
 989 * Interrupt handler thread
 990 */
 991static int irq_thread(void *data)
 992{
 993        struct callback_head on_exit_work;
 994        struct irqaction *action = data;
 995        struct irq_desc *desc = irq_to_desc(action->irq);
 996        irqreturn_t (*handler_fn)(struct irq_desc *desc,
 997                        struct irqaction *action);
 998
 999        if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1000                                        &action->thread_flags))
1001                handler_fn = irq_forced_thread_fn;
1002        else
1003                handler_fn = irq_thread_fn;
1004
1005        init_task_work(&on_exit_work, irq_thread_dtor);
1006        task_work_add(current, &on_exit_work, false);
1007
1008        irq_thread_check_affinity(desc, action);
1009
1010        while (!irq_wait_for_interrupt(action)) {
1011                irqreturn_t action_ret;
1012
1013                irq_thread_check_affinity(desc, action);
1014
1015                action_ret = handler_fn(desc, action);
1016                if (action_ret == IRQ_HANDLED)
1017                        atomic_inc(&desc->threads_handled);
1018                if (action_ret == IRQ_WAKE_THREAD)
1019                        irq_wake_secondary(desc, action);
1020
1021                wake_threads_waitq(desc);
1022        }
1023
1024        /*
1025         * This is the regular exit path. __free_irq() is stopping the
1026         * thread via kthread_stop() after calling
1027         * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
1028         * oneshot mask bit can be set. We cannot verify that as we
1029         * cannot touch the oneshot mask at this point anymore as
1030         * __setup_irq() might have given out currents thread_mask
1031         * again.
1032         */
1033        task_work_cancel(current, irq_thread_dtor);
1034        return 0;
1035}
1036
1037/**
1038 *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1039 *      @irq:           Interrupt line
1040 *      @dev_id:        Device identity for which the thread should be woken
1041 *
1042 */
1043void irq_wake_thread(unsigned int irq, void *dev_id)
1044{
1045        struct irq_desc *desc = irq_to_desc(irq);
1046        struct irqaction *action;
1047        unsigned long flags;
1048
1049        if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1050                return;
1051
1052        raw_spin_lock_irqsave(&desc->lock, flags);
1053        for_each_action_of_desc(desc, action) {
1054                if (action->dev_id == dev_id) {
1055                        if (action->thread)
1056                                __irq_wake_thread(desc, action);
1057                        break;
1058                }
1059        }
1060        raw_spin_unlock_irqrestore(&desc->lock, flags);
1061}
1062EXPORT_SYMBOL_GPL(irq_wake_thread);
1063
1064static int irq_setup_forced_threading(struct irqaction *new)
1065{
1066        if (!force_irqthreads)
1067                return 0;
1068        if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1069                return 0;
1070
1071        /*
1072         * No further action required for interrupts which are requested as
1073         * threaded interrupts already
1074         */
1075        if (new->handler == irq_default_primary_handler)
1076                return 0;
1077
1078        new->flags |= IRQF_ONESHOT;
1079
1080        /*
1081         * Handle the case where we have a real primary handler and a
1082         * thread handler. We force thread them as well by creating a
1083         * secondary action.
1084         */
1085        if (new->handler && new->thread_fn) {
1086                /* Allocate the secondary action */
1087                new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1088                if (!new->secondary)
1089                        return -ENOMEM;
1090                new->secondary->handler = irq_forced_secondary_handler;
1091                new->secondary->thread_fn = new->thread_fn;
1092                new->secondary->dev_id = new->dev_id;
1093                new->secondary->irq = new->irq;
1094                new->secondary->name = new->name;
1095        }
1096        /* Deal with the primary handler */
1097        set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1098        new->thread_fn = new->handler;
1099        new->handler = irq_default_primary_handler;
1100        return 0;
1101}
1102
1103static int irq_request_resources(struct irq_desc *desc)
1104{
1105        struct irq_data *d = &desc->irq_data;
1106        struct irq_chip *c = d->chip;
1107
1108        return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1109}
1110
1111static void irq_release_resources(struct irq_desc *desc)
1112{
1113        struct irq_data *d = &desc->irq_data;
1114        struct irq_chip *c = d->chip;
1115
1116        if (c->irq_release_resources)
1117                c->irq_release_resources(d);
1118}
1119
1120static int
1121setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1122{
1123        struct task_struct *t;
1124        struct sched_param param = {
1125                .sched_priority = MAX_USER_RT_PRIO/2,
1126        };
1127
1128        if (!secondary) {
1129                t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1130                                   new->name);
1131        } else {
1132                t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1133                                   new->name);
1134                param.sched_priority -= 1;
1135        }
1136
1137        if (IS_ERR(t))
1138                return PTR_ERR(t);
1139
1140        sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1141
1142        /*
1143         * We keep the reference to the task struct even if
1144         * the thread dies to avoid that the interrupt code
1145         * references an already freed task_struct.
1146         */
1147        get_task_struct(t);
1148        new->thread = t;
1149        /*
1150         * Tell the thread to set its affinity. This is
1151         * important for shared interrupt handlers as we do
1152         * not invoke setup_affinity() for the secondary
1153         * handlers as everything is already set up. Even for
1154         * interrupts marked with IRQF_NO_BALANCE this is
1155         * correct as we want the thread to move to the cpu(s)
1156         * on which the requesting code placed the interrupt.
1157         */
1158        set_bit(IRQTF_AFFINITY, &new->thread_flags);
1159        return 0;
1160}
1161
1162/*
1163 * Internal function to register an irqaction - typically used to
1164 * allocate special interrupts that are part of the architecture.
1165 *
1166 * Locking rules:
1167 *
1168 * desc->request_mutex  Provides serialization against a concurrent free_irq()
1169 *   chip_bus_lock      Provides serialization for slow bus operations
1170 *     desc->lock       Provides serialization against hard interrupts
1171 *
1172 * chip_bus_lock and desc->lock are sufficient for all other management and
1173 * interrupt related functions. desc->request_mutex solely serializes
1174 * request/free_irq().
1175 */
1176static int
1177__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1178{
1179        struct irqaction *old, **old_ptr;
1180        unsigned long flags, thread_mask = 0;
1181        int ret, nested, shared = 0;
1182
1183        if (!desc)
1184                return -EINVAL;
1185
1186        if (desc->irq_data.chip == &no_irq_chip)
1187                return -ENOSYS;
1188        if (!try_module_get(desc->owner))
1189                return -ENODEV;
1190
1191        new->irq = irq;
1192
1193        /*
1194         * If the trigger type is not specified by the caller,
1195         * then use the default for this interrupt.
1196         */
1197        if (!(new->flags & IRQF_TRIGGER_MASK))
1198                new->flags |= irqd_get_trigger_type(&desc->irq_data);
1199
1200        /*
1201         * Check whether the interrupt nests into another interrupt
1202         * thread.
1203         */
1204        nested = irq_settings_is_nested_thread(desc);
1205        if (nested) {
1206                if (!new->thread_fn) {
1207                        ret = -EINVAL;
1208                        goto out_mput;
1209                }
1210                /*
1211                 * Replace the primary handler which was provided from
1212                 * the driver for non nested interrupt handling by the
1213                 * dummy function which warns when called.
1214                 */
1215                new->handler = irq_nested_primary_handler;
1216        } else {
1217                if (irq_settings_can_thread(desc)) {
1218                        ret = irq_setup_forced_threading(new);
1219                        if (ret)
1220                                goto out_mput;
1221                }
1222        }
1223
1224        /*
1225         * Create a handler thread when a thread function is supplied
1226         * and the interrupt does not nest into another interrupt
1227         * thread.
1228         */
1229        if (new->thread_fn && !nested) {
1230                ret = setup_irq_thread(new, irq, false);
1231                if (ret)
1232                        goto out_mput;
1233                if (new->secondary) {
1234                        ret = setup_irq_thread(new->secondary, irq, true);
1235                        if (ret)
1236                                goto out_thread;
1237                }
1238        }
1239
1240        /*
1241         * Drivers are often written to work w/o knowledge about the
1242         * underlying irq chip implementation, so a request for a
1243         * threaded irq without a primary hard irq context handler
1244         * requires the ONESHOT flag to be set. Some irq chips like
1245         * MSI based interrupts are per se one shot safe. Check the
1246         * chip flags, so we can avoid the unmask dance at the end of
1247         * the threaded handler for those.
1248         */
1249        if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1250                new->flags &= ~IRQF_ONESHOT;
1251
1252        /*
1253         * Protects against a concurrent __free_irq() call which might wait
1254         * for synchronize_irq() to complete without holding the optional
1255         * chip bus lock and desc->lock.
1256         */
1257        mutex_lock(&desc->request_mutex);
1258
1259        /*
1260         * Acquire bus lock as the irq_request_resources() callback below
1261         * might rely on the serialization or the magic power management
1262         * functions which are abusing the irq_bus_lock() callback,
1263         */
1264        chip_bus_lock(desc);
1265
1266        /* First installed action requests resources. */
1267        if (!desc->action) {
1268                ret = irq_request_resources(desc);
1269                if (ret) {
1270                        pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1271                               new->name, irq, desc->irq_data.chip->name);
1272                        goto out_bus_unlock;
1273                }
1274        }
1275
1276        /*
1277         * The following block of code has to be executed atomically
1278         * protected against a concurrent interrupt and any of the other
1279         * management calls which are not serialized via
1280         * desc->request_mutex or the optional bus lock.
1281         */
1282        raw_spin_lock_irqsave(&desc->lock, flags);
1283        old_ptr = &desc->action;
1284        old = *old_ptr;
1285        if (old) {
1286                /*
1287                 * Can't share interrupts unless both agree to and are
1288                 * the same type (level, edge, polarity). So both flag
1289                 * fields must have IRQF_SHARED set and the bits which
1290                 * set the trigger type must match. Also all must
1291                 * agree on ONESHOT.
1292                 */
1293                unsigned int oldtype;
1294
1295                /*
1296                 * If nobody did set the configuration before, inherit
1297                 * the one provided by the requester.
1298                 */
1299                if (irqd_trigger_type_was_set(&desc->irq_data)) {
1300                        oldtype = irqd_get_trigger_type(&desc->irq_data);
1301                } else {
1302                        oldtype = new->flags & IRQF_TRIGGER_MASK;
1303                        irqd_set_trigger_type(&desc->irq_data, oldtype);
1304                }
1305
1306                if (!((old->flags & new->flags) & IRQF_SHARED) ||
1307                    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1308                    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1309                        goto mismatch;
1310
1311                /* All handlers must agree on per-cpuness */
1312                if ((old->flags & IRQF_PERCPU) !=
1313                    (new->flags & IRQF_PERCPU))
1314                        goto mismatch;
1315
1316                /* add new interrupt at end of irq queue */
1317                do {
1318                        /*
1319                         * Or all existing action->thread_mask bits,
1320                         * so we can find the next zero bit for this
1321                         * new action.
1322                         */
1323                        thread_mask |= old->thread_mask;
1324                        old_ptr = &old->next;
1325                        old = *old_ptr;
1326                } while (old);
1327                shared = 1;
1328        }
1329
1330        /*
1331         * Setup the thread mask for this irqaction for ONESHOT. For
1332         * !ONESHOT irqs the thread mask is 0 so we can avoid a
1333         * conditional in irq_wake_thread().
1334         */
1335        if (new->flags & IRQF_ONESHOT) {
1336                /*
1337                 * Unlikely to have 32 resp 64 irqs sharing one line,
1338                 * but who knows.
1339                 */
1340                if (thread_mask == ~0UL) {
1341                        ret = -EBUSY;
1342                        goto out_unlock;
1343                }
1344                /*
1345                 * The thread_mask for the action is or'ed to
1346                 * desc->thread_active to indicate that the
1347                 * IRQF_ONESHOT thread handler has been woken, but not
1348                 * yet finished. The bit is cleared when a thread
1349                 * completes. When all threads of a shared interrupt
1350                 * line have completed desc->threads_active becomes
1351                 * zero and the interrupt line is unmasked. See
1352                 * handle.c:irq_wake_thread() for further information.
1353                 *
1354                 * If no thread is woken by primary (hard irq context)
1355                 * interrupt handlers, then desc->threads_active is
1356                 * also checked for zero to unmask the irq line in the
1357                 * affected hard irq flow handlers
1358                 * (handle_[fasteoi|level]_irq).
1359                 *
1360                 * The new action gets the first zero bit of
1361                 * thread_mask assigned. See the loop above which or's
1362                 * all existing action->thread_mask bits.
1363                 */
1364                new->thread_mask = 1UL << ffz(thread_mask);
1365
1366        } else if (new->handler == irq_default_primary_handler &&
1367                   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1368                /*
1369                 * The interrupt was requested with handler = NULL, so
1370                 * we use the default primary handler for it. But it
1371                 * does not have the oneshot flag set. In combination
1372                 * with level interrupts this is deadly, because the
1373                 * default primary handler just wakes the thread, then
1374                 * the irq lines is reenabled, but the device still
1375                 * has the level irq asserted. Rinse and repeat....
1376                 *
1377                 * While this works for edge type interrupts, we play
1378                 * it safe and reject unconditionally because we can't
1379                 * say for sure which type this interrupt really
1380                 * has. The type flags are unreliable as the
1381                 * underlying chip implementation can override them.
1382                 */
1383                pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1384                       irq);
1385                ret = -EINVAL;
1386                goto out_unlock;
1387        }
1388
1389        if (!shared) {
1390                init_waitqueue_head(&desc->wait_for_threads);
1391
1392                /* Setup the type (level, edge polarity) if configured: */
1393                if (new->flags & IRQF_TRIGGER_MASK) {
1394                        ret = __irq_set_trigger(desc,
1395                                                new->flags & IRQF_TRIGGER_MASK);
1396
1397                        if (ret)
1398                                goto out_unlock;
1399                }
1400
1401                /*
1402                 * Activate the interrupt. That activation must happen
1403                 * independently of IRQ_NOAUTOEN. request_irq() can fail
1404                 * and the callers are supposed to handle
1405                 * that. enable_irq() of an interrupt requested with
1406                 * IRQ_NOAUTOEN is not supposed to fail. The activation
1407                 * keeps it in shutdown mode, it merily associates
1408                 * resources if necessary and if that's not possible it
1409                 * fails. Interrupts which are in managed shutdown mode
1410                 * will simply ignore that activation request.
1411                 */
1412                ret = irq_activate(desc);
1413                if (ret)
1414                        goto out_unlock;
1415
1416                desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1417                                  IRQS_ONESHOT | IRQS_WAITING);
1418                irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1419
1420                if (new->flags & IRQF_PERCPU) {
1421                        irqd_set(&desc->irq_data, IRQD_PER_CPU);
1422                        irq_settings_set_per_cpu(desc);
1423                }
1424
1425                if (new->flags & IRQF_ONESHOT)
1426                        desc->istate |= IRQS_ONESHOT;
1427
1428                /* Exclude IRQ from balancing if requested */
1429                if (new->flags & IRQF_NOBALANCING) {
1430                        irq_settings_set_no_balancing(desc);
1431                        irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1432                }
1433
1434                if (irq_settings_can_autoenable(desc)) {
1435                        irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1436                } else {
1437                        /*
1438                         * Shared interrupts do not go well with disabling
1439                         * auto enable. The sharing interrupt might request
1440                         * it while it's still disabled and then wait for
1441                         * interrupts forever.
1442                         */
1443                        WARN_ON_ONCE(new->flags & IRQF_SHARED);
1444                        /* Undo nested disables: */
1445                        desc->depth = 1;
1446                }
1447
1448        } else if (new->flags & IRQF_TRIGGER_MASK) {
1449                unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1450                unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1451
1452                if (nmsk != omsk)
1453                        /* hope the handler works with current  trigger mode */
1454                        pr_warn("irq %d uses trigger mode %u; requested %u\n",
1455                                irq, omsk, nmsk);
1456        }
1457
1458        *old_ptr = new;
1459
1460        irq_pm_install_action(desc, new);
1461
1462        /* Reset broken irq detection when installing new handler */
1463        desc->irq_count = 0;
1464        desc->irqs_unhandled = 0;
1465
1466        /*
1467         * Check whether we disabled the irq via the spurious handler
1468         * before. Reenable it and give it another chance.
1469         */
1470        if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1471                desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1472                __enable_irq(desc);
1473        }
1474
1475        raw_spin_unlock_irqrestore(&desc->lock, flags);
1476        chip_bus_sync_unlock(desc);
1477        mutex_unlock(&desc->request_mutex);
1478
1479        irq_setup_timings(desc, new);
1480
1481        /*
1482         * Strictly no need to wake it up, but hung_task complains
1483         * when no hard interrupt wakes the thread up.
1484         */
1485        if (new->thread)
1486                wake_up_process(new->thread);
1487        if (new->secondary)
1488                wake_up_process(new->secondary->thread);
1489
1490        register_irq_proc(irq, desc);
1491        new->dir = NULL;
1492        register_handler_proc(irq, new);
1493        return 0;
1494
1495mismatch:
1496        if (!(new->flags & IRQF_PROBE_SHARED)) {
1497                pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1498                       irq, new->flags, new->name, old->flags, old->name);
1499#ifdef CONFIG_DEBUG_SHIRQ
1500                dump_stack();
1501#endif
1502        }
1503        ret = -EBUSY;
1504
1505out_unlock:
1506        raw_spin_unlock_irqrestore(&desc->lock, flags);
1507
1508        if (!desc->action)
1509                irq_release_resources(desc);
1510out_bus_unlock:
1511        chip_bus_sync_unlock(desc);
1512        mutex_unlock(&desc->request_mutex);
1513
1514out_thread:
1515        if (new->thread) {
1516                struct task_struct *t = new->thread;
1517
1518                new->thread = NULL;
1519                kthread_stop(t);
1520                put_task_struct(t);
1521        }
1522        if (new->secondary && new->secondary->thread) {
1523                struct task_struct *t = new->secondary->thread;
1524
1525                new->secondary->thread = NULL;
1526                kthread_stop(t);
1527                put_task_struct(t);
1528        }
1529out_mput:
1530        module_put(desc->owner);
1531        return ret;
1532}
1533
1534/**
1535 *      setup_irq - setup an interrupt
1536 *      @irq: Interrupt line to setup
1537 *      @act: irqaction for the interrupt
1538 *
1539 * Used to statically setup interrupts in the early boot process.
1540 */
1541int setup_irq(unsigned int irq, struct irqaction *act)
1542{
1543        int retval;
1544        struct irq_desc *desc = irq_to_desc(irq);
1545
1546        if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1547                return -EINVAL;
1548
1549        retval = irq_chip_pm_get(&desc->irq_data);
1550        if (retval < 0)
1551                return retval;
1552
1553        retval = __setup_irq(irq, desc, act);
1554
1555        if (retval)
1556                irq_chip_pm_put(&desc->irq_data);
1557
1558        return retval;
1559}
1560EXPORT_SYMBOL_GPL(setup_irq);
1561
1562/*
1563 * Internal function to unregister an irqaction - used to free
1564 * regular and special interrupts that are part of the architecture.
1565 */
1566static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1567{
1568        unsigned irq = desc->irq_data.irq;
1569        struct irqaction *action, **action_ptr;
1570        unsigned long flags;
1571
1572        WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1573
1574        if (!desc)
1575                return NULL;
1576
1577        mutex_lock(&desc->request_mutex);
1578        chip_bus_lock(desc);
1579        raw_spin_lock_irqsave(&desc->lock, flags);
1580
1581        /*
1582         * There can be multiple actions per IRQ descriptor, find the right
1583         * one based on the dev_id:
1584         */
1585        action_ptr = &desc->action;
1586        for (;;) {
1587                action = *action_ptr;
1588
1589                if (!action) {
1590                        WARN(1, "Trying to free already-free IRQ %d\n", irq);
1591                        raw_spin_unlock_irqrestore(&desc->lock, flags);
1592                        chip_bus_sync_unlock(desc);
1593                        mutex_unlock(&desc->request_mutex);
1594                        return NULL;
1595                }
1596
1597                if (action->dev_id == dev_id)
1598                        break;
1599                action_ptr = &action->next;
1600        }
1601
1602        /* Found it - now remove it from the list of entries: */
1603        *action_ptr = action->next;
1604
1605        irq_pm_remove_action(desc, action);
1606
1607        /* If this was the last handler, shut down the IRQ line: */
1608        if (!desc->action) {
1609                irq_settings_clr_disable_unlazy(desc);
1610                irq_shutdown(desc);
1611        }
1612
1613#ifdef CONFIG_SMP
1614        /* make sure affinity_hint is cleaned up */
1615        if (WARN_ON_ONCE(desc->affinity_hint))
1616                desc->affinity_hint = NULL;
1617#endif
1618
1619        raw_spin_unlock_irqrestore(&desc->lock, flags);
1620        /*
1621         * Drop bus_lock here so the changes which were done in the chip
1622         * callbacks above are synced out to the irq chips which hang
1623         * behind a slow bus (I2C, SPI) before calling synchronize_irq().
1624         *
1625         * Aside of that the bus_lock can also be taken from the threaded
1626         * handler in irq_finalize_oneshot() which results in a deadlock
1627         * because synchronize_irq() would wait forever for the thread to
1628         * complete, which is blocked on the bus lock.
1629         *
1630         * The still held desc->request_mutex() protects against a
1631         * concurrent request_irq() of this irq so the release of resources
1632         * and timing data is properly serialized.
1633         */
1634        chip_bus_sync_unlock(desc);
1635
1636        unregister_handler_proc(irq, action);
1637
1638        /* Make sure it's not being used on another CPU: */
1639        synchronize_irq(irq);
1640
1641#ifdef CONFIG_DEBUG_SHIRQ
1642        /*
1643         * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1644         * event to happen even now it's being freed, so let's make sure that
1645         * is so by doing an extra call to the handler ....
1646         *
1647         * ( We do this after actually deregistering it, to make sure that a
1648         *   'real' IRQ doesn't run in * parallel with our fake. )
1649         */
1650        if (action->flags & IRQF_SHARED) {
1651                local_irq_save(flags);
1652                action->handler(irq, dev_id);
1653                local_irq_restore(flags);
1654        }
1655#endif
1656
1657        if (action->thread) {
1658                kthread_stop(action->thread);
1659                put_task_struct(action->thread);
1660                if (action->secondary && action->secondary->thread) {
1661                        kthread_stop(action->secondary->thread);
1662                        put_task_struct(action->secondary->thread);
1663                }
1664        }
1665
1666        /* Last action releases resources */
1667        if (!desc->action) {
1668                /*
1669                 * Reaquire bus lock as irq_release_resources() might
1670                 * require it to deallocate resources over the slow bus.
1671                 */
1672                chip_bus_lock(desc);
1673                irq_release_resources(desc);
1674                chip_bus_sync_unlock(desc);
1675                irq_remove_timings(desc);
1676        }
1677
1678        mutex_unlock(&desc->request_mutex);
1679
1680        irq_chip_pm_put(&desc->irq_data);
1681        module_put(desc->owner);
1682        kfree(action->secondary);
1683        return action;
1684}
1685
1686/**
1687 *      remove_irq - free an interrupt
1688 *      @irq: Interrupt line to free
1689 *      @act: irqaction for the interrupt
1690 *
1691 * Used to remove interrupts statically setup by the early boot process.
1692 */
1693void remove_irq(unsigned int irq, struct irqaction *act)
1694{
1695        struct irq_desc *desc = irq_to_desc(irq);
1696
1697        if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1698                __free_irq(desc, act->dev_id);
1699}
1700EXPORT_SYMBOL_GPL(remove_irq);
1701
1702/**
1703 *      free_irq - free an interrupt allocated with request_irq
1704 *      @irq: Interrupt line to free
1705 *      @dev_id: Device identity to free
1706 *
1707 *      Remove an interrupt handler. The handler is removed and if the
1708 *      interrupt line is no longer in use by any driver it is disabled.
1709 *      On a shared IRQ the caller must ensure the interrupt is disabled
1710 *      on the card it drives before calling this function. The function
1711 *      does not return until any executing interrupts for this IRQ
1712 *      have completed.
1713 *
1714 *      This function must not be called from interrupt context.
1715 *
1716 *      Returns the devname argument passed to request_irq.
1717 */
1718const void *free_irq(unsigned int irq, void *dev_id)
1719{
1720        struct irq_desc *desc = irq_to_desc(irq);
1721        struct irqaction *action;
1722        const char *devname;
1723
1724        if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1725                return NULL;
1726
1727#ifdef CONFIG_SMP
1728        if (WARN_ON(desc->affinity_notify))
1729                desc->affinity_notify = NULL;
1730#endif
1731
1732        action = __free_irq(desc, dev_id);
1733
1734        if (!action)
1735                return NULL;
1736
1737        devname = action->name;
1738        kfree(action);
1739        return devname;
1740}
1741EXPORT_SYMBOL(free_irq);
1742
1743/**
1744 *      request_threaded_irq - allocate an interrupt line
1745 *      @irq: Interrupt line to allocate
1746 *      @handler: Function to be called when the IRQ occurs.
1747 *                Primary handler for threaded interrupts
1748 *                If NULL and thread_fn != NULL the default
1749 *                primary handler is installed
1750 *      @thread_fn: Function called from the irq handler thread
1751 *                  If NULL, no irq thread is created
1752 *      @irqflags: Interrupt type flags
1753 *      @devname: An ascii name for the claiming device
1754 *      @dev_id: A cookie passed back to the handler function
1755 *
1756 *      This call allocates interrupt resources and enables the
1757 *      interrupt line and IRQ handling. From the point this
1758 *      call is made your handler function may be invoked. Since
1759 *      your handler function must clear any interrupt the board
1760 *      raises, you must take care both to initialise your hardware
1761 *      and to set up the interrupt handler in the right order.
1762 *
1763 *      If you want to set up a threaded irq handler for your device
1764 *      then you need to supply @handler and @thread_fn. @handler is
1765 *      still called in hard interrupt context and has to check
1766 *      whether the interrupt originates from the device. If yes it
1767 *      needs to disable the interrupt on the device and return
1768 *      IRQ_WAKE_THREAD which will wake up the handler thread and run
1769 *      @thread_fn. This split handler design is necessary to support
1770 *      shared interrupts.
1771 *
1772 *      Dev_id must be globally unique. Normally the address of the
1773 *      device data structure is used as the cookie. Since the handler
1774 *      receives this value it makes sense to use it.
1775 *
1776 *      If your interrupt is shared you must pass a non NULL dev_id
1777 *      as this is required when freeing the interrupt.
1778 *
1779 *      Flags:
1780 *
1781 *      IRQF_SHARED             Interrupt is shared
1782 *      IRQF_TRIGGER_*          Specify active edge(s) or level
1783 *
1784 */
1785int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1786                         irq_handler_t thread_fn, unsigned long irqflags,
1787                         const char *devname, void *dev_id)
1788{
1789        struct irqaction *action;
1790        struct irq_desc *desc;
1791        int retval;
1792
1793        if (irq == IRQ_NOTCONNECTED)
1794                return -ENOTCONN;
1795
1796        /*
1797         * Sanity-check: shared interrupts must pass in a real dev-ID,
1798         * otherwise we'll have trouble later trying to figure out
1799         * which interrupt is which (messes up the interrupt freeing
1800         * logic etc).
1801         *
1802         * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1803         * it cannot be set along with IRQF_NO_SUSPEND.
1804         */
1805        if (((irqflags & IRQF_SHARED) && !dev_id) ||
1806            (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1807            ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1808                return -EINVAL;
1809
1810        desc = irq_to_desc(irq);
1811        if (!desc)
1812                return -EINVAL;
1813
1814        if (!irq_settings_can_request(desc) ||
1815            WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1816                return -EINVAL;
1817
1818        if (!handler) {
1819                if (!thread_fn)
1820                        return -EINVAL;
1821                handler = irq_default_primary_handler;
1822        }
1823
1824        action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1825        if (!action)
1826                return -ENOMEM;
1827
1828        action->handler = handler;
1829        action->thread_fn = thread_fn;
1830        action->flags = irqflags;
1831        action->name = devname;
1832        action->dev_id = dev_id;
1833
1834        retval = irq_chip_pm_get(&desc->irq_data);
1835        if (retval < 0) {
1836                kfree(action);
1837                return retval;
1838        }
1839
1840        retval = __setup_irq(irq, desc, action);
1841
1842        if (retval) {
1843                irq_chip_pm_put(&desc->irq_data);
1844                kfree(action->secondary);
1845                kfree(action);
1846        }
1847
1848#ifdef CONFIG_DEBUG_SHIRQ_FIXME
1849        if (!retval && (irqflags & IRQF_SHARED)) {
1850                /*
1851                 * It's a shared IRQ -- the driver ought to be prepared for it
1852                 * to happen immediately, so let's make sure....
1853                 * We disable the irq to make sure that a 'real' IRQ doesn't
1854                 * run in parallel with our fake.
1855                 */
1856                unsigned long flags;
1857
1858                disable_irq(irq);
1859                local_irq_save(flags);
1860
1861                handler(irq, dev_id);
1862
1863                local_irq_restore(flags);
1864                enable_irq(irq);
1865        }
1866#endif
1867        return retval;
1868}
1869EXPORT_SYMBOL(request_threaded_irq);
1870
1871/**
1872 *      request_any_context_irq - allocate an interrupt line
1873 *      @irq: Interrupt line to allocate
1874 *      @handler: Function to be called when the IRQ occurs.
1875 *                Threaded handler for threaded interrupts.
1876 *      @flags: Interrupt type flags
1877 *      @name: An ascii name for the claiming device
1878 *      @dev_id: A cookie passed back to the handler function
1879 *
1880 *      This call allocates interrupt resources and enables the
1881 *      interrupt line and IRQ handling. It selects either a
1882 *      hardirq or threaded handling method depending on the
1883 *      context.
1884 *
1885 *      On failure, it returns a negative value. On success,
1886 *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1887 */
1888int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1889                            unsigned long flags, const char *name, void *dev_id)
1890{
1891        struct irq_desc *desc;
1892        int ret;
1893
1894        if (irq == IRQ_NOTCONNECTED)
1895                return -ENOTCONN;
1896
1897        desc = irq_to_desc(irq);
1898        if (!desc)
1899                return -EINVAL;
1900
1901        if (irq_settings_is_nested_thread(desc)) {
1902                ret = request_threaded_irq(irq, NULL, handler,
1903                                           flags, name, dev_id);
1904                return !ret ? IRQC_IS_NESTED : ret;
1905        }
1906
1907        ret = request_irq(irq, handler, flags, name, dev_id);
1908        return !ret ? IRQC_IS_HARDIRQ : ret;
1909}
1910EXPORT_SYMBOL_GPL(request_any_context_irq);
1911
1912void enable_percpu_irq(unsigned int irq, unsigned int type)
1913{
1914        unsigned int cpu = smp_processor_id();
1915        unsigned long flags;
1916        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1917
1918        if (!desc)
1919                return;
1920
1921        /*
1922         * If the trigger type is not specified by the caller, then
1923         * use the default for this interrupt.
1924         */
1925        type &= IRQ_TYPE_SENSE_MASK;
1926        if (type == IRQ_TYPE_NONE)
1927                type = irqd_get_trigger_type(&desc->irq_data);
1928
1929        if (type != IRQ_TYPE_NONE) {
1930                int ret;
1931
1932                ret = __irq_set_trigger(desc, type);
1933
1934                if (ret) {
1935                        WARN(1, "failed to set type for IRQ%d\n", irq);
1936                        goto out;
1937                }
1938        }
1939
1940        irq_percpu_enable(desc, cpu);
1941out:
1942        irq_put_desc_unlock(desc, flags);
1943}
1944EXPORT_SYMBOL_GPL(enable_percpu_irq);
1945
1946/**
1947 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1948 * @irq:        Linux irq number to check for
1949 *
1950 * Must be called from a non migratable context. Returns the enable
1951 * state of a per cpu interrupt on the current cpu.
1952 */
1953bool irq_percpu_is_enabled(unsigned int irq)
1954{
1955        unsigned int cpu = smp_processor_id();
1956        struct irq_desc *desc;
1957        unsigned long flags;
1958        bool is_enabled;
1959
1960        desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1961        if (!desc)
1962                return false;
1963
1964        is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1965        irq_put_desc_unlock(desc, flags);
1966
1967        return is_enabled;
1968}
1969EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1970
1971void disable_percpu_irq(unsigned int irq)
1972{
1973        unsigned int cpu = smp_processor_id();
1974        unsigned long flags;
1975        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1976
1977        if (!desc)
1978                return;
1979
1980        irq_percpu_disable(desc, cpu);
1981        irq_put_desc_unlock(desc, flags);
1982}
1983EXPORT_SYMBOL_GPL(disable_percpu_irq);
1984
1985/*
1986 * Internal function to unregister a percpu irqaction.
1987 */
1988static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1989{
1990        struct irq_desc *desc = irq_to_desc(irq);
1991        struct irqaction *action;
1992        unsigned long flags;
1993
1994        WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1995
1996        if (!desc)
1997                return NULL;
1998
1999        raw_spin_lock_irqsave(&desc->lock, flags);
2000
2001        action = desc->action;
2002        if (!action || action->percpu_dev_id != dev_id) {
2003                WARN(1, "Trying to free already-free IRQ %d\n", irq);
2004                goto bad;
2005        }
2006
2007        if (!cpumask_empty(desc->percpu_enabled)) {
2008                WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2009                     irq, cpumask_first(desc->percpu_enabled));
2010                goto bad;
2011        }
2012
2013        /* Found it - now remove it from the list of entries: */
2014        desc->action = NULL;
2015
2016        raw_spin_unlock_irqrestore(&desc->lock, flags);
2017
2018        unregister_handler_proc(irq, action);
2019
2020        irq_chip_pm_put(&desc->irq_data);
2021        module_put(desc->owner);
2022        return action;
2023
2024bad:
2025        raw_spin_unlock_irqrestore(&desc->lock, flags);
2026        return NULL;
2027}
2028
2029/**
2030 *      remove_percpu_irq - free a per-cpu interrupt
2031 *      @irq: Interrupt line to free
2032 *      @act: irqaction for the interrupt
2033 *
2034 * Used to remove interrupts statically setup by the early boot process.
2035 */
2036void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2037{
2038        struct irq_desc *desc = irq_to_desc(irq);
2039
2040        if (desc && irq_settings_is_per_cpu_devid(desc))
2041            __free_percpu_irq(irq, act->percpu_dev_id);
2042}
2043
2044/**
2045 *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2046 *      @irq: Interrupt line to free
2047 *      @dev_id: Device identity to free
2048 *
2049 *      Remove a percpu interrupt handler. The handler is removed, but
2050 *      the interrupt line is not disabled. This must be done on each
2051 *      CPU before calling this function. The function does not return
2052 *      until any executing interrupts for this IRQ have completed.
2053 *
2054 *      This function must not be called from interrupt context.
2055 */
2056void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2057{
2058        struct irq_desc *desc = irq_to_desc(irq);
2059
2060        if (!desc || !irq_settings_is_per_cpu_devid(desc))
2061                return;
2062
2063        chip_bus_lock(desc);
2064        kfree(__free_percpu_irq(irq, dev_id));
2065        chip_bus_sync_unlock(desc);
2066}
2067EXPORT_SYMBOL_GPL(free_percpu_irq);
2068
2069/**
2070 *      setup_percpu_irq - setup a per-cpu interrupt
2071 *      @irq: Interrupt line to setup
2072 *      @act: irqaction for the interrupt
2073 *
2074 * Used to statically setup per-cpu interrupts in the early boot process.
2075 */
2076int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2077{
2078        struct irq_desc *desc = irq_to_desc(irq);
2079        int retval;
2080
2081        if (!desc || !irq_settings_is_per_cpu_devid(desc))
2082                return -EINVAL;
2083
2084        retval = irq_chip_pm_get(&desc->irq_data);
2085        if (retval < 0)
2086                return retval;
2087
2088        retval = __setup_irq(irq, desc, act);
2089
2090        if (retval)
2091                irq_chip_pm_put(&desc->irq_data);
2092
2093        return retval;
2094}
2095
2096/**
2097 *      __request_percpu_irq - allocate a percpu interrupt line
2098 *      @irq: Interrupt line to allocate
2099 *      @handler: Function to be called when the IRQ occurs.
2100 *      @flags: Interrupt type flags (IRQF_TIMER only)
2101 *      @devname: An ascii name for the claiming device
2102 *      @dev_id: A percpu cookie passed back to the handler function
2103 *
2104 *      This call allocates interrupt resources and enables the
2105 *      interrupt on the local CPU. If the interrupt is supposed to be
2106 *      enabled on other CPUs, it has to be done on each CPU using
2107 *      enable_percpu_irq().
2108 *
2109 *      Dev_id must be globally unique. It is a per-cpu variable, and
2110 *      the handler gets called with the interrupted CPU's instance of
2111 *      that variable.
2112 */
2113int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2114                         unsigned long flags, const char *devname,
2115                         void __percpu *dev_id)
2116{
2117        struct irqaction *action;
2118        struct irq_desc *desc;
2119        int retval;
2120
2121        if (!dev_id)
2122                return -EINVAL;
2123
2124        desc = irq_to_desc(irq);
2125        if (!desc || !irq_settings_can_request(desc) ||
2126            !irq_settings_is_per_cpu_devid(desc))
2127                return -EINVAL;
2128
2129        if (flags && flags != IRQF_TIMER)
2130                return -EINVAL;
2131
2132        action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2133        if (!action)
2134                return -ENOMEM;
2135
2136        action->handler = handler;
2137        action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2138        action->name = devname;
2139        action->percpu_dev_id = dev_id;
2140
2141        retval = irq_chip_pm_get(&desc->irq_data);
2142        if (retval < 0) {
2143                kfree(action);
2144                return retval;
2145        }
2146
2147        retval = __setup_irq(irq, desc, action);
2148
2149        if (retval) {
2150                irq_chip_pm_put(&desc->irq_data);
2151                kfree(action);
2152        }
2153
2154        return retval;
2155}
2156EXPORT_SYMBOL_GPL(__request_percpu_irq);
2157
2158/**
2159 *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2160 *      @irq: Interrupt line that is forwarded to a VM
2161 *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2162 *      @state: a pointer to a boolean where the state is to be storeed
2163 *
2164 *      This call snapshots the internal irqchip state of an
2165 *      interrupt, returning into @state the bit corresponding to
2166 *      stage @which
2167 *
2168 *      This function should be called with preemption disabled if the
2169 *      interrupt controller has per-cpu registers.
2170 */
2171int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2172                          bool *state)
2173{
2174        struct irq_desc *desc;
2175        struct irq_data *data;
2176        struct irq_chip *chip;
2177        unsigned long flags;
2178        int err = -EINVAL;
2179
2180        desc = irq_get_desc_buslock(irq, &flags, 0);
2181        if (!desc)
2182                return err;
2183
2184        data = irq_desc_get_irq_data(desc);
2185
2186        do {
2187                chip = irq_data_get_irq_chip(data);
2188                if (chip->irq_get_irqchip_state)
2189                        break;
2190#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2191                data = data->parent_data;
2192#else
2193                data = NULL;
2194#endif
2195        } while (data);
2196
2197        if (data)
2198                err = chip->irq_get_irqchip_state(data, which, state);
2199
2200        irq_put_desc_busunlock(desc, flags);
2201        return err;
2202}
2203EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2204
2205/**
2206 *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2207 *      @irq: Interrupt line that is forwarded to a VM
2208 *      @which: State to be restored (one of IRQCHIP_STATE_*)
2209 *      @val: Value corresponding to @which
2210 *
2211 *      This call sets the internal irqchip state of an interrupt,
2212 *      depending on the value of @which.
2213 *
2214 *      This function should be called with preemption disabled if the
2215 *      interrupt controller has per-cpu registers.
2216 */
2217int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2218                          bool val)
2219{
2220        struct irq_desc *desc;
2221        struct irq_data *data;
2222        struct irq_chip *chip;
2223        unsigned long flags;
2224        int err = -EINVAL;
2225
2226        desc = irq_get_desc_buslock(irq, &flags, 0);
2227        if (!desc)
2228                return err;
2229
2230        data = irq_desc_get_irq_data(desc);
2231
2232        do {
2233                chip = irq_data_get_irq_chip(data);
2234                if (chip->irq_set_irqchip_state)
2235                        break;
2236#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2237                data = data->parent_data;
2238#else
2239                data = NULL;
2240#endif
2241        } while (data);
2242
2243        if (data)
2244                err = chip->irq_set_irqchip_state(data, which, val);
2245
2246        irq_put_desc_busunlock(desc, flags);
2247        return err;
2248}
2249EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2250