linux/kernel/time/posix-cpu-timers.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Implement CPU time clocks for the POSIX clock interface.
   4 */
   5
   6#include <linux/sched/signal.h>
   7#include <linux/sched/cputime.h>
   8#include <linux/posix-timers.h>
   9#include <linux/errno.h>
  10#include <linux/math64.h>
  11#include <linux/uaccess.h>
  12#include <linux/kernel_stat.h>
  13#include <trace/events/timer.h>
  14#include <linux/tick.h>
  15#include <linux/workqueue.h>
  16#include <linux/compat.h>
  17#include <linux/sched/deadline.h>
  18
  19#include "posix-timers.h"
  20
  21static void posix_cpu_timer_rearm(struct k_itimer *timer);
  22
  23/*
  24 * Called after updating RLIMIT_CPU to run cpu timer and update
  25 * tsk->signal->cputime_expires expiration cache if necessary. Needs
  26 * siglock protection since other code may update expiration cache as
  27 * well.
  28 */
  29void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
  30{
  31        u64 nsecs = rlim_new * NSEC_PER_SEC;
  32
  33        spin_lock_irq(&task->sighand->siglock);
  34        set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
  35        spin_unlock_irq(&task->sighand->siglock);
  36}
  37
  38static int check_clock(const clockid_t which_clock)
  39{
  40        int error = 0;
  41        struct task_struct *p;
  42        const pid_t pid = CPUCLOCK_PID(which_clock);
  43
  44        if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
  45                return -EINVAL;
  46
  47        if (pid == 0)
  48                return 0;
  49
  50        rcu_read_lock();
  51        p = find_task_by_vpid(pid);
  52        if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
  53                   same_thread_group(p, current) : has_group_leader_pid(p))) {
  54                error = -EINVAL;
  55        }
  56        rcu_read_unlock();
  57
  58        return error;
  59}
  60
  61/*
  62 * Update expiry time from increment, and increase overrun count,
  63 * given the current clock sample.
  64 */
  65static void bump_cpu_timer(struct k_itimer *timer, u64 now)
  66{
  67        int i;
  68        u64 delta, incr;
  69
  70        if (timer->it.cpu.incr == 0)
  71                return;
  72
  73        if (now < timer->it.cpu.expires)
  74                return;
  75
  76        incr = timer->it.cpu.incr;
  77        delta = now + incr - timer->it.cpu.expires;
  78
  79        /* Don't use (incr*2 < delta), incr*2 might overflow. */
  80        for (i = 0; incr < delta - incr; i++)
  81                incr = incr << 1;
  82
  83        for (; i >= 0; incr >>= 1, i--) {
  84                if (delta < incr)
  85                        continue;
  86
  87                timer->it.cpu.expires += incr;
  88                timer->it_overrun += 1 << i;
  89                delta -= incr;
  90        }
  91}
  92
  93/**
  94 * task_cputime_zero - Check a task_cputime struct for all zero fields.
  95 *
  96 * @cputime:    The struct to compare.
  97 *
  98 * Checks @cputime to see if all fields are zero.  Returns true if all fields
  99 * are zero, false if any field is nonzero.
 100 */
 101static inline int task_cputime_zero(const struct task_cputime *cputime)
 102{
 103        if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
 104                return 1;
 105        return 0;
 106}
 107
 108static inline u64 prof_ticks(struct task_struct *p)
 109{
 110        u64 utime, stime;
 111
 112        task_cputime(p, &utime, &stime);
 113
 114        return utime + stime;
 115}
 116static inline u64 virt_ticks(struct task_struct *p)
 117{
 118        u64 utime, stime;
 119
 120        task_cputime(p, &utime, &stime);
 121
 122        return utime;
 123}
 124
 125static int
 126posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
 127{
 128        int error = check_clock(which_clock);
 129        if (!error) {
 130                tp->tv_sec = 0;
 131                tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
 132                if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 133                        /*
 134                         * If sched_clock is using a cycle counter, we
 135                         * don't have any idea of its true resolution
 136                         * exported, but it is much more than 1s/HZ.
 137                         */
 138                        tp->tv_nsec = 1;
 139                }
 140        }
 141        return error;
 142}
 143
 144static int
 145posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp)
 146{
 147        /*
 148         * You can never reset a CPU clock, but we check for other errors
 149         * in the call before failing with EPERM.
 150         */
 151        int error = check_clock(which_clock);
 152        if (error == 0) {
 153                error = -EPERM;
 154        }
 155        return error;
 156}
 157
 158
 159/*
 160 * Sample a per-thread clock for the given task.
 161 */
 162static int cpu_clock_sample(const clockid_t which_clock,
 163                            struct task_struct *p, u64 *sample)
 164{
 165        switch (CPUCLOCK_WHICH(which_clock)) {
 166        default:
 167                return -EINVAL;
 168        case CPUCLOCK_PROF:
 169                *sample = prof_ticks(p);
 170                break;
 171        case CPUCLOCK_VIRT:
 172                *sample = virt_ticks(p);
 173                break;
 174        case CPUCLOCK_SCHED:
 175                *sample = task_sched_runtime(p);
 176                break;
 177        }
 178        return 0;
 179}
 180
 181/*
 182 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
 183 * to avoid race conditions with concurrent updates to cputime.
 184 */
 185static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
 186{
 187        u64 curr_cputime;
 188retry:
 189        curr_cputime = atomic64_read(cputime);
 190        if (sum_cputime > curr_cputime) {
 191                if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
 192                        goto retry;
 193        }
 194}
 195
 196static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
 197{
 198        __update_gt_cputime(&cputime_atomic->utime, sum->utime);
 199        __update_gt_cputime(&cputime_atomic->stime, sum->stime);
 200        __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
 201}
 202
 203/* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
 204static inline void sample_cputime_atomic(struct task_cputime *times,
 205                                         struct task_cputime_atomic *atomic_times)
 206{
 207        times->utime = atomic64_read(&atomic_times->utime);
 208        times->stime = atomic64_read(&atomic_times->stime);
 209        times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
 210}
 211
 212void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
 213{
 214        struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 215        struct task_cputime sum;
 216
 217        /* Check if cputimer isn't running. This is accessed without locking. */
 218        if (!READ_ONCE(cputimer->running)) {
 219                /*
 220                 * The POSIX timer interface allows for absolute time expiry
 221                 * values through the TIMER_ABSTIME flag, therefore we have
 222                 * to synchronize the timer to the clock every time we start it.
 223                 */
 224                thread_group_cputime(tsk, &sum);
 225                update_gt_cputime(&cputimer->cputime_atomic, &sum);
 226
 227                /*
 228                 * We're setting cputimer->running without a lock. Ensure
 229                 * this only gets written to in one operation. We set
 230                 * running after update_gt_cputime() as a small optimization,
 231                 * but barriers are not required because update_gt_cputime()
 232                 * can handle concurrent updates.
 233                 */
 234                WRITE_ONCE(cputimer->running, true);
 235        }
 236        sample_cputime_atomic(times, &cputimer->cputime_atomic);
 237}
 238
 239/*
 240 * Sample a process (thread group) clock for the given group_leader task.
 241 * Must be called with task sighand lock held for safe while_each_thread()
 242 * traversal.
 243 */
 244static int cpu_clock_sample_group(const clockid_t which_clock,
 245                                  struct task_struct *p,
 246                                  u64 *sample)
 247{
 248        struct task_cputime cputime;
 249
 250        switch (CPUCLOCK_WHICH(which_clock)) {
 251        default:
 252                return -EINVAL;
 253        case CPUCLOCK_PROF:
 254                thread_group_cputime(p, &cputime);
 255                *sample = cputime.utime + cputime.stime;
 256                break;
 257        case CPUCLOCK_VIRT:
 258                thread_group_cputime(p, &cputime);
 259                *sample = cputime.utime;
 260                break;
 261        case CPUCLOCK_SCHED:
 262                thread_group_cputime(p, &cputime);
 263                *sample = cputime.sum_exec_runtime;
 264                break;
 265        }
 266        return 0;
 267}
 268
 269static int posix_cpu_clock_get_task(struct task_struct *tsk,
 270                                    const clockid_t which_clock,
 271                                    struct timespec64 *tp)
 272{
 273        int err = -EINVAL;
 274        u64 rtn;
 275
 276        if (CPUCLOCK_PERTHREAD(which_clock)) {
 277                if (same_thread_group(tsk, current))
 278                        err = cpu_clock_sample(which_clock, tsk, &rtn);
 279        } else {
 280                if (tsk == current || thread_group_leader(tsk))
 281                        err = cpu_clock_sample_group(which_clock, tsk, &rtn);
 282        }
 283
 284        if (!err)
 285                *tp = ns_to_timespec64(rtn);
 286
 287        return err;
 288}
 289
 290
 291static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp)
 292{
 293        const pid_t pid = CPUCLOCK_PID(which_clock);
 294        int err = -EINVAL;
 295
 296        if (pid == 0) {
 297                /*
 298                 * Special case constant value for our own clocks.
 299                 * We don't have to do any lookup to find ourselves.
 300                 */
 301                err = posix_cpu_clock_get_task(current, which_clock, tp);
 302        } else {
 303                /*
 304                 * Find the given PID, and validate that the caller
 305                 * should be able to see it.
 306                 */
 307                struct task_struct *p;
 308                rcu_read_lock();
 309                p = find_task_by_vpid(pid);
 310                if (p)
 311                        err = posix_cpu_clock_get_task(p, which_clock, tp);
 312                rcu_read_unlock();
 313        }
 314
 315        return err;
 316}
 317
 318/*
 319 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
 320 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
 321 * new timer already all-zeros initialized.
 322 */
 323static int posix_cpu_timer_create(struct k_itimer *new_timer)
 324{
 325        int ret = 0;
 326        const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
 327        struct task_struct *p;
 328
 329        if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
 330                return -EINVAL;
 331
 332        new_timer->kclock = &clock_posix_cpu;
 333
 334        INIT_LIST_HEAD(&new_timer->it.cpu.entry);
 335
 336        rcu_read_lock();
 337        if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
 338                if (pid == 0) {
 339                        p = current;
 340                } else {
 341                        p = find_task_by_vpid(pid);
 342                        if (p && !same_thread_group(p, current))
 343                                p = NULL;
 344                }
 345        } else {
 346                if (pid == 0) {
 347                        p = current->group_leader;
 348                } else {
 349                        p = find_task_by_vpid(pid);
 350                        if (p && !has_group_leader_pid(p))
 351                                p = NULL;
 352                }
 353        }
 354        new_timer->it.cpu.task = p;
 355        if (p) {
 356                get_task_struct(p);
 357        } else {
 358                ret = -EINVAL;
 359        }
 360        rcu_read_unlock();
 361
 362        return ret;
 363}
 364
 365/*
 366 * Clean up a CPU-clock timer that is about to be destroyed.
 367 * This is called from timer deletion with the timer already locked.
 368 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 369 * and try again.  (This happens when the timer is in the middle of firing.)
 370 */
 371static int posix_cpu_timer_del(struct k_itimer *timer)
 372{
 373        int ret = 0;
 374        unsigned long flags;
 375        struct sighand_struct *sighand;
 376        struct task_struct *p = timer->it.cpu.task;
 377
 378        WARN_ON_ONCE(p == NULL);
 379
 380        /*
 381         * Protect against sighand release/switch in exit/exec and process/
 382         * thread timer list entry concurrent read/writes.
 383         */
 384        sighand = lock_task_sighand(p, &flags);
 385        if (unlikely(sighand == NULL)) {
 386                /*
 387                 * We raced with the reaping of the task.
 388                 * The deletion should have cleared us off the list.
 389                 */
 390                WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
 391        } else {
 392                if (timer->it.cpu.firing)
 393                        ret = TIMER_RETRY;
 394                else
 395                        list_del(&timer->it.cpu.entry);
 396
 397                unlock_task_sighand(p, &flags);
 398        }
 399
 400        if (!ret)
 401                put_task_struct(p);
 402
 403        return ret;
 404}
 405
 406static void cleanup_timers_list(struct list_head *head)
 407{
 408        struct cpu_timer_list *timer, *next;
 409
 410        list_for_each_entry_safe(timer, next, head, entry)
 411                list_del_init(&timer->entry);
 412}
 413
 414/*
 415 * Clean out CPU timers still ticking when a thread exited.  The task
 416 * pointer is cleared, and the expiry time is replaced with the residual
 417 * time for later timer_gettime calls to return.
 418 * This must be called with the siglock held.
 419 */
 420static void cleanup_timers(struct list_head *head)
 421{
 422        cleanup_timers_list(head);
 423        cleanup_timers_list(++head);
 424        cleanup_timers_list(++head);
 425}
 426
 427/*
 428 * These are both called with the siglock held, when the current thread
 429 * is being reaped.  When the final (leader) thread in the group is reaped,
 430 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
 431 */
 432void posix_cpu_timers_exit(struct task_struct *tsk)
 433{
 434        cleanup_timers(tsk->cpu_timers);
 435}
 436void posix_cpu_timers_exit_group(struct task_struct *tsk)
 437{
 438        cleanup_timers(tsk->signal->cpu_timers);
 439}
 440
 441static inline int expires_gt(u64 expires, u64 new_exp)
 442{
 443        return expires == 0 || expires > new_exp;
 444}
 445
 446/*
 447 * Insert the timer on the appropriate list before any timers that
 448 * expire later.  This must be called with the sighand lock held.
 449 */
 450static void arm_timer(struct k_itimer *timer)
 451{
 452        struct task_struct *p = timer->it.cpu.task;
 453        struct list_head *head, *listpos;
 454        struct task_cputime *cputime_expires;
 455        struct cpu_timer_list *const nt = &timer->it.cpu;
 456        struct cpu_timer_list *next;
 457
 458        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 459                head = p->cpu_timers;
 460                cputime_expires = &p->cputime_expires;
 461        } else {
 462                head = p->signal->cpu_timers;
 463                cputime_expires = &p->signal->cputime_expires;
 464        }
 465        head += CPUCLOCK_WHICH(timer->it_clock);
 466
 467        listpos = head;
 468        list_for_each_entry(next, head, entry) {
 469                if (nt->expires < next->expires)
 470                        break;
 471                listpos = &next->entry;
 472        }
 473        list_add(&nt->entry, listpos);
 474
 475        if (listpos == head) {
 476                u64 exp = nt->expires;
 477
 478                /*
 479                 * We are the new earliest-expiring POSIX 1.b timer, hence
 480                 * need to update expiration cache. Take into account that
 481                 * for process timers we share expiration cache with itimers
 482                 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
 483                 */
 484
 485                switch (CPUCLOCK_WHICH(timer->it_clock)) {
 486                case CPUCLOCK_PROF:
 487                        if (expires_gt(cputime_expires->prof_exp, exp))
 488                                cputime_expires->prof_exp = exp;
 489                        break;
 490                case CPUCLOCK_VIRT:
 491                        if (expires_gt(cputime_expires->virt_exp, exp))
 492                                cputime_expires->virt_exp = exp;
 493                        break;
 494                case CPUCLOCK_SCHED:
 495                        if (expires_gt(cputime_expires->sched_exp, exp))
 496                                cputime_expires->sched_exp = exp;
 497                        break;
 498                }
 499                if (CPUCLOCK_PERTHREAD(timer->it_clock))
 500                        tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
 501                else
 502                        tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
 503        }
 504}
 505
 506/*
 507 * The timer is locked, fire it and arrange for its reload.
 508 */
 509static void cpu_timer_fire(struct k_itimer *timer)
 510{
 511        if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
 512                /*
 513                 * User don't want any signal.
 514                 */
 515                timer->it.cpu.expires = 0;
 516        } else if (unlikely(timer->sigq == NULL)) {
 517                /*
 518                 * This a special case for clock_nanosleep,
 519                 * not a normal timer from sys_timer_create.
 520                 */
 521                wake_up_process(timer->it_process);
 522                timer->it.cpu.expires = 0;
 523        } else if (timer->it.cpu.incr == 0) {
 524                /*
 525                 * One-shot timer.  Clear it as soon as it's fired.
 526                 */
 527                posix_timer_event(timer, 0);
 528                timer->it.cpu.expires = 0;
 529        } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
 530                /*
 531                 * The signal did not get queued because the signal
 532                 * was ignored, so we won't get any callback to
 533                 * reload the timer.  But we need to keep it
 534                 * ticking in case the signal is deliverable next time.
 535                 */
 536                posix_cpu_timer_rearm(timer);
 537                ++timer->it_requeue_pending;
 538        }
 539}
 540
 541/*
 542 * Sample a process (thread group) timer for the given group_leader task.
 543 * Must be called with task sighand lock held for safe while_each_thread()
 544 * traversal.
 545 */
 546static int cpu_timer_sample_group(const clockid_t which_clock,
 547                                  struct task_struct *p, u64 *sample)
 548{
 549        struct task_cputime cputime;
 550
 551        thread_group_cputimer(p, &cputime);
 552        switch (CPUCLOCK_WHICH(which_clock)) {
 553        default:
 554                return -EINVAL;
 555        case CPUCLOCK_PROF:
 556                *sample = cputime.utime + cputime.stime;
 557                break;
 558        case CPUCLOCK_VIRT:
 559                *sample = cputime.utime;
 560                break;
 561        case CPUCLOCK_SCHED:
 562                *sample = cputime.sum_exec_runtime;
 563                break;
 564        }
 565        return 0;
 566}
 567
 568/*
 569 * Guts of sys_timer_settime for CPU timers.
 570 * This is called with the timer locked and interrupts disabled.
 571 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 572 * and try again.  (This happens when the timer is in the middle of firing.)
 573 */
 574static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
 575                               struct itimerspec64 *new, struct itimerspec64 *old)
 576{
 577        unsigned long flags;
 578        struct sighand_struct *sighand;
 579        struct task_struct *p = timer->it.cpu.task;
 580        u64 old_expires, new_expires, old_incr, val;
 581        int ret;
 582
 583        WARN_ON_ONCE(p == NULL);
 584
 585        /*
 586         * Use the to_ktime conversion because that clamps the maximum
 587         * value to KTIME_MAX and avoid multiplication overflows.
 588         */
 589        new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
 590
 591        /*
 592         * Protect against sighand release/switch in exit/exec and p->cpu_timers
 593         * and p->signal->cpu_timers read/write in arm_timer()
 594         */
 595        sighand = lock_task_sighand(p, &flags);
 596        /*
 597         * If p has just been reaped, we can no
 598         * longer get any information about it at all.
 599         */
 600        if (unlikely(sighand == NULL)) {
 601                return -ESRCH;
 602        }
 603
 604        /*
 605         * Disarm any old timer after extracting its expiry time.
 606         */
 607
 608        ret = 0;
 609        old_incr = timer->it.cpu.incr;
 610        old_expires = timer->it.cpu.expires;
 611        if (unlikely(timer->it.cpu.firing)) {
 612                timer->it.cpu.firing = -1;
 613                ret = TIMER_RETRY;
 614        } else
 615                list_del_init(&timer->it.cpu.entry);
 616
 617        /*
 618         * We need to sample the current value to convert the new
 619         * value from to relative and absolute, and to convert the
 620         * old value from absolute to relative.  To set a process
 621         * timer, we need a sample to balance the thread expiry
 622         * times (in arm_timer).  With an absolute time, we must
 623         * check if it's already passed.  In short, we need a sample.
 624         */
 625        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 626                cpu_clock_sample(timer->it_clock, p, &val);
 627        } else {
 628                cpu_timer_sample_group(timer->it_clock, p, &val);
 629        }
 630
 631        if (old) {
 632                if (old_expires == 0) {
 633                        old->it_value.tv_sec = 0;
 634                        old->it_value.tv_nsec = 0;
 635                } else {
 636                        /*
 637                         * Update the timer in case it has
 638                         * overrun already.  If it has,
 639                         * we'll report it as having overrun
 640                         * and with the next reloaded timer
 641                         * already ticking, though we are
 642                         * swallowing that pending
 643                         * notification here to install the
 644                         * new setting.
 645                         */
 646                        bump_cpu_timer(timer, val);
 647                        if (val < timer->it.cpu.expires) {
 648                                old_expires = timer->it.cpu.expires - val;
 649                                old->it_value = ns_to_timespec64(old_expires);
 650                        } else {
 651                                old->it_value.tv_nsec = 1;
 652                                old->it_value.tv_sec = 0;
 653                        }
 654                }
 655        }
 656
 657        if (unlikely(ret)) {
 658                /*
 659                 * We are colliding with the timer actually firing.
 660                 * Punt after filling in the timer's old value, and
 661                 * disable this firing since we are already reporting
 662                 * it as an overrun (thanks to bump_cpu_timer above).
 663                 */
 664                unlock_task_sighand(p, &flags);
 665                goto out;
 666        }
 667
 668        if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
 669                new_expires += val;
 670        }
 671
 672        /*
 673         * Install the new expiry time (or zero).
 674         * For a timer with no notification action, we don't actually
 675         * arm the timer (we'll just fake it for timer_gettime).
 676         */
 677        timer->it.cpu.expires = new_expires;
 678        if (new_expires != 0 && val < new_expires) {
 679                arm_timer(timer);
 680        }
 681
 682        unlock_task_sighand(p, &flags);
 683        /*
 684         * Install the new reload setting, and
 685         * set up the signal and overrun bookkeeping.
 686         */
 687        timer->it.cpu.incr = timespec64_to_ns(&new->it_interval);
 688
 689        /*
 690         * This acts as a modification timestamp for the timer,
 691         * so any automatic reload attempt will punt on seeing
 692         * that we have reset the timer manually.
 693         */
 694        timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
 695                ~REQUEUE_PENDING;
 696        timer->it_overrun_last = 0;
 697        timer->it_overrun = -1;
 698
 699        if (new_expires != 0 && !(val < new_expires)) {
 700                /*
 701                 * The designated time already passed, so we notify
 702                 * immediately, even if the thread never runs to
 703                 * accumulate more time on this clock.
 704                 */
 705                cpu_timer_fire(timer);
 706        }
 707
 708        ret = 0;
 709 out:
 710        if (old)
 711                old->it_interval = ns_to_timespec64(old_incr);
 712
 713        return ret;
 714}
 715
 716static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
 717{
 718        u64 now;
 719        struct task_struct *p = timer->it.cpu.task;
 720
 721        WARN_ON_ONCE(p == NULL);
 722
 723        /*
 724         * Easy part: convert the reload time.
 725         */
 726        itp->it_interval = ns_to_timespec64(timer->it.cpu.incr);
 727
 728        if (!timer->it.cpu.expires)
 729                return;
 730
 731        /*
 732         * Sample the clock to take the difference with the expiry time.
 733         */
 734        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 735                cpu_clock_sample(timer->it_clock, p, &now);
 736        } else {
 737                struct sighand_struct *sighand;
 738                unsigned long flags;
 739
 740                /*
 741                 * Protect against sighand release/switch in exit/exec and
 742                 * also make timer sampling safe if it ends up calling
 743                 * thread_group_cputime().
 744                 */
 745                sighand = lock_task_sighand(p, &flags);
 746                if (unlikely(sighand == NULL)) {
 747                        /*
 748                         * The process has been reaped.
 749                         * We can't even collect a sample any more.
 750                         * Call the timer disarmed, nothing else to do.
 751                         */
 752                        timer->it.cpu.expires = 0;
 753                        return;
 754                } else {
 755                        cpu_timer_sample_group(timer->it_clock, p, &now);
 756                        unlock_task_sighand(p, &flags);
 757                }
 758        }
 759
 760        if (now < timer->it.cpu.expires) {
 761                itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now);
 762        } else {
 763                /*
 764                 * The timer should have expired already, but the firing
 765                 * hasn't taken place yet.  Say it's just about to expire.
 766                 */
 767                itp->it_value.tv_nsec = 1;
 768                itp->it_value.tv_sec = 0;
 769        }
 770}
 771
 772static unsigned long long
 773check_timers_list(struct list_head *timers,
 774                  struct list_head *firing,
 775                  unsigned long long curr)
 776{
 777        int maxfire = 20;
 778
 779        while (!list_empty(timers)) {
 780                struct cpu_timer_list *t;
 781
 782                t = list_first_entry(timers, struct cpu_timer_list, entry);
 783
 784                if (!--maxfire || curr < t->expires)
 785                        return t->expires;
 786
 787                t->firing = 1;
 788                list_move_tail(&t->entry, firing);
 789        }
 790
 791        return 0;
 792}
 793
 794static inline void check_dl_overrun(struct task_struct *tsk)
 795{
 796        if (tsk->dl.dl_overrun) {
 797                tsk->dl.dl_overrun = 0;
 798                __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 799        }
 800}
 801
 802/*
 803 * Check for any per-thread CPU timers that have fired and move them off
 804 * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
 805 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
 806 */
 807static void check_thread_timers(struct task_struct *tsk,
 808                                struct list_head *firing)
 809{
 810        struct list_head *timers = tsk->cpu_timers;
 811        struct task_cputime *tsk_expires = &tsk->cputime_expires;
 812        u64 expires;
 813        unsigned long soft;
 814
 815        if (dl_task(tsk))
 816                check_dl_overrun(tsk);
 817
 818        /*
 819         * If cputime_expires is zero, then there are no active
 820         * per thread CPU timers.
 821         */
 822        if (task_cputime_zero(&tsk->cputime_expires))
 823                return;
 824
 825        expires = check_timers_list(timers, firing, prof_ticks(tsk));
 826        tsk_expires->prof_exp = expires;
 827
 828        expires = check_timers_list(++timers, firing, virt_ticks(tsk));
 829        tsk_expires->virt_exp = expires;
 830
 831        tsk_expires->sched_exp = check_timers_list(++timers, firing,
 832                                                   tsk->se.sum_exec_runtime);
 833
 834        /*
 835         * Check for the special case thread timers.
 836         */
 837        soft = task_rlimit(tsk, RLIMIT_RTTIME);
 838        if (soft != RLIM_INFINITY) {
 839                unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
 840
 841                if (hard != RLIM_INFINITY &&
 842                    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
 843                        /*
 844                         * At the hard limit, we just die.
 845                         * No need to calculate anything else now.
 846                         */
 847                        if (print_fatal_signals) {
 848                                pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
 849                                        tsk->comm, task_pid_nr(tsk));
 850                        }
 851                        __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
 852                        return;
 853                }
 854                if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
 855                        /*
 856                         * At the soft limit, send a SIGXCPU every second.
 857                         */
 858                        if (soft < hard) {
 859                                soft += USEC_PER_SEC;
 860                                tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur =
 861                                        soft;
 862                        }
 863                        if (print_fatal_signals) {
 864                                pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
 865                                        tsk->comm, task_pid_nr(tsk));
 866                        }
 867                        __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 868                }
 869        }
 870        if (task_cputime_zero(tsk_expires))
 871                tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
 872}
 873
 874static inline void stop_process_timers(struct signal_struct *sig)
 875{
 876        struct thread_group_cputimer *cputimer = &sig->cputimer;
 877
 878        /* Turn off cputimer->running. This is done without locking. */
 879        WRITE_ONCE(cputimer->running, false);
 880        tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
 881}
 882
 883static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
 884                             u64 *expires, u64 cur_time, int signo)
 885{
 886        if (!it->expires)
 887                return;
 888
 889        if (cur_time >= it->expires) {
 890                if (it->incr)
 891                        it->expires += it->incr;
 892                else
 893                        it->expires = 0;
 894
 895                trace_itimer_expire(signo == SIGPROF ?
 896                                    ITIMER_PROF : ITIMER_VIRTUAL,
 897                                    tsk->signal->leader_pid, cur_time);
 898                __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
 899        }
 900
 901        if (it->expires && (!*expires || it->expires < *expires))
 902                *expires = it->expires;
 903}
 904
 905/*
 906 * Check for any per-thread CPU timers that have fired and move them
 907 * off the tsk->*_timers list onto the firing list.  Per-thread timers
 908 * have already been taken off.
 909 */
 910static void check_process_timers(struct task_struct *tsk,
 911                                 struct list_head *firing)
 912{
 913        struct signal_struct *const sig = tsk->signal;
 914        u64 utime, ptime, virt_expires, prof_expires;
 915        u64 sum_sched_runtime, sched_expires;
 916        struct list_head *timers = sig->cpu_timers;
 917        struct task_cputime cputime;
 918        unsigned long soft;
 919
 920        if (dl_task(tsk))
 921                check_dl_overrun(tsk);
 922
 923        /*
 924         * If cputimer is not running, then there are no active
 925         * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
 926         */
 927        if (!READ_ONCE(tsk->signal->cputimer.running))
 928                return;
 929
 930        /*
 931         * Signify that a thread is checking for process timers.
 932         * Write access to this field is protected by the sighand lock.
 933         */
 934        sig->cputimer.checking_timer = true;
 935
 936        /*
 937         * Collect the current process totals.
 938         */
 939        thread_group_cputimer(tsk, &cputime);
 940        utime = cputime.utime;
 941        ptime = utime + cputime.stime;
 942        sum_sched_runtime = cputime.sum_exec_runtime;
 943
 944        prof_expires = check_timers_list(timers, firing, ptime);
 945        virt_expires = check_timers_list(++timers, firing, utime);
 946        sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
 947
 948        /*
 949         * Check for the special case process timers.
 950         */
 951        check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
 952                         SIGPROF);
 953        check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
 954                         SIGVTALRM);
 955        soft = task_rlimit(tsk, RLIMIT_CPU);
 956        if (soft != RLIM_INFINITY) {
 957                unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
 958                unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
 959                u64 x;
 960                if (psecs >= hard) {
 961                        /*
 962                         * At the hard limit, we just die.
 963                         * No need to calculate anything else now.
 964                         */
 965                        if (print_fatal_signals) {
 966                                pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
 967                                        tsk->comm, task_pid_nr(tsk));
 968                        }
 969                        __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
 970                        return;
 971                }
 972                if (psecs >= soft) {
 973                        /*
 974                         * At the soft limit, send a SIGXCPU every second.
 975                         */
 976                        if (print_fatal_signals) {
 977                                pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
 978                                        tsk->comm, task_pid_nr(tsk));
 979                        }
 980                        __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 981                        if (soft < hard) {
 982                                soft++;
 983                                sig->rlim[RLIMIT_CPU].rlim_cur = soft;
 984                        }
 985                }
 986                x = soft * NSEC_PER_SEC;
 987                if (!prof_expires || x < prof_expires)
 988                        prof_expires = x;
 989        }
 990
 991        sig->cputime_expires.prof_exp = prof_expires;
 992        sig->cputime_expires.virt_exp = virt_expires;
 993        sig->cputime_expires.sched_exp = sched_expires;
 994        if (task_cputime_zero(&sig->cputime_expires))
 995                stop_process_timers(sig);
 996
 997        sig->cputimer.checking_timer = false;
 998}
 999
1000/*
1001 * This is called from the signal code (via posixtimer_rearm)
1002 * when the last timer signal was delivered and we have to reload the timer.
1003 */
1004static void posix_cpu_timer_rearm(struct k_itimer *timer)
1005{
1006        struct sighand_struct *sighand;
1007        unsigned long flags;
1008        struct task_struct *p = timer->it.cpu.task;
1009        u64 now;
1010
1011        WARN_ON_ONCE(p == NULL);
1012
1013        /*
1014         * Fetch the current sample and update the timer's expiry time.
1015         */
1016        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1017                cpu_clock_sample(timer->it_clock, p, &now);
1018                bump_cpu_timer(timer, now);
1019                if (unlikely(p->exit_state))
1020                        return;
1021
1022                /* Protect timer list r/w in arm_timer() */
1023                sighand = lock_task_sighand(p, &flags);
1024                if (!sighand)
1025                        return;
1026        } else {
1027                /*
1028                 * Protect arm_timer() and timer sampling in case of call to
1029                 * thread_group_cputime().
1030                 */
1031                sighand = lock_task_sighand(p, &flags);
1032                if (unlikely(sighand == NULL)) {
1033                        /*
1034                         * The process has been reaped.
1035                         * We can't even collect a sample any more.
1036                         */
1037                        timer->it.cpu.expires = 0;
1038                        return;
1039                } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1040                        /* If the process is dying, no need to rearm */
1041                        goto unlock;
1042                }
1043                cpu_timer_sample_group(timer->it_clock, p, &now);
1044                bump_cpu_timer(timer, now);
1045                /* Leave the sighand locked for the call below.  */
1046        }
1047
1048        /*
1049         * Now re-arm for the new expiry time.
1050         */
1051        arm_timer(timer);
1052unlock:
1053        unlock_task_sighand(p, &flags);
1054}
1055
1056/**
1057 * task_cputime_expired - Compare two task_cputime entities.
1058 *
1059 * @sample:     The task_cputime structure to be checked for expiration.
1060 * @expires:    Expiration times, against which @sample will be checked.
1061 *
1062 * Checks @sample against @expires to see if any field of @sample has expired.
1063 * Returns true if any field of the former is greater than the corresponding
1064 * field of the latter if the latter field is set.  Otherwise returns false.
1065 */
1066static inline int task_cputime_expired(const struct task_cputime *sample,
1067                                        const struct task_cputime *expires)
1068{
1069        if (expires->utime && sample->utime >= expires->utime)
1070                return 1;
1071        if (expires->stime && sample->utime + sample->stime >= expires->stime)
1072                return 1;
1073        if (expires->sum_exec_runtime != 0 &&
1074            sample->sum_exec_runtime >= expires->sum_exec_runtime)
1075                return 1;
1076        return 0;
1077}
1078
1079/**
1080 * fastpath_timer_check - POSIX CPU timers fast path.
1081 *
1082 * @tsk:        The task (thread) being checked.
1083 *
1084 * Check the task and thread group timers.  If both are zero (there are no
1085 * timers set) return false.  Otherwise snapshot the task and thread group
1086 * timers and compare them with the corresponding expiration times.  Return
1087 * true if a timer has expired, else return false.
1088 */
1089static inline int fastpath_timer_check(struct task_struct *tsk)
1090{
1091        struct signal_struct *sig;
1092
1093        if (!task_cputime_zero(&tsk->cputime_expires)) {
1094                struct task_cputime task_sample;
1095
1096                task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1097                task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1098                if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1099                        return 1;
1100        }
1101
1102        sig = tsk->signal;
1103        /*
1104         * Check if thread group timers expired when the cputimer is
1105         * running and no other thread in the group is already checking
1106         * for thread group cputimers. These fields are read without the
1107         * sighand lock. However, this is fine because this is meant to
1108         * be a fastpath heuristic to determine whether we should try to
1109         * acquire the sighand lock to check/handle timers.
1110         *
1111         * In the worst case scenario, if 'running' or 'checking_timer' gets
1112         * set but the current thread doesn't see the change yet, we'll wait
1113         * until the next thread in the group gets a scheduler interrupt to
1114         * handle the timer. This isn't an issue in practice because these
1115         * types of delays with signals actually getting sent are expected.
1116         */
1117        if (READ_ONCE(sig->cputimer.running) &&
1118            !READ_ONCE(sig->cputimer.checking_timer)) {
1119                struct task_cputime group_sample;
1120
1121                sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1122
1123                if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1124                        return 1;
1125        }
1126
1127        if (dl_task(tsk) && tsk->dl.dl_overrun)
1128                return 1;
1129
1130        return 0;
1131}
1132
1133/*
1134 * This is called from the timer interrupt handler.  The irq handler has
1135 * already updated our counts.  We need to check if any timers fire now.
1136 * Interrupts are disabled.
1137 */
1138void run_posix_cpu_timers(struct task_struct *tsk)
1139{
1140        LIST_HEAD(firing);
1141        struct k_itimer *timer, *next;
1142        unsigned long flags;
1143
1144        lockdep_assert_irqs_disabled();
1145
1146        /*
1147         * The fast path checks that there are no expired thread or thread
1148         * group timers.  If that's so, just return.
1149         */
1150        if (!fastpath_timer_check(tsk))
1151                return;
1152
1153        if (!lock_task_sighand(tsk, &flags))
1154                return;
1155        /*
1156         * Here we take off tsk->signal->cpu_timers[N] and
1157         * tsk->cpu_timers[N] all the timers that are firing, and
1158         * put them on the firing list.
1159         */
1160        check_thread_timers(tsk, &firing);
1161
1162        check_process_timers(tsk, &firing);
1163
1164        /*
1165         * We must release these locks before taking any timer's lock.
1166         * There is a potential race with timer deletion here, as the
1167         * siglock now protects our private firing list.  We have set
1168         * the firing flag in each timer, so that a deletion attempt
1169         * that gets the timer lock before we do will give it up and
1170         * spin until we've taken care of that timer below.
1171         */
1172        unlock_task_sighand(tsk, &flags);
1173
1174        /*
1175         * Now that all the timers on our list have the firing flag,
1176         * no one will touch their list entries but us.  We'll take
1177         * each timer's lock before clearing its firing flag, so no
1178         * timer call will interfere.
1179         */
1180        list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1181                int cpu_firing;
1182
1183                spin_lock(&timer->it_lock);
1184                list_del_init(&timer->it.cpu.entry);
1185                cpu_firing = timer->it.cpu.firing;
1186                timer->it.cpu.firing = 0;
1187                /*
1188                 * The firing flag is -1 if we collided with a reset
1189                 * of the timer, which already reported this
1190                 * almost-firing as an overrun.  So don't generate an event.
1191                 */
1192                if (likely(cpu_firing >= 0))
1193                        cpu_timer_fire(timer);
1194                spin_unlock(&timer->it_lock);
1195        }
1196}
1197
1198/*
1199 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1200 * The tsk->sighand->siglock must be held by the caller.
1201 */
1202void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1203                           u64 *newval, u64 *oldval)
1204{
1205        u64 now;
1206        int ret;
1207
1208        WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1209        ret = cpu_timer_sample_group(clock_idx, tsk, &now);
1210
1211        if (oldval && ret != -EINVAL) {
1212                /*
1213                 * We are setting itimer. The *oldval is absolute and we update
1214                 * it to be relative, *newval argument is relative and we update
1215                 * it to be absolute.
1216                 */
1217                if (*oldval) {
1218                        if (*oldval <= now) {
1219                                /* Just about to fire. */
1220                                *oldval = TICK_NSEC;
1221                        } else {
1222                                *oldval -= now;
1223                        }
1224                }
1225
1226                if (!*newval)
1227                        return;
1228                *newval += now;
1229        }
1230
1231        /*
1232         * Update expiration cache if we are the earliest timer, or eventually
1233         * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1234         */
1235        switch (clock_idx) {
1236        case CPUCLOCK_PROF:
1237                if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1238                        tsk->signal->cputime_expires.prof_exp = *newval;
1239                break;
1240        case CPUCLOCK_VIRT:
1241                if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1242                        tsk->signal->cputime_expires.virt_exp = *newval;
1243                break;
1244        }
1245
1246        tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1247}
1248
1249static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1250                            const struct timespec64 *rqtp)
1251{
1252        struct itimerspec64 it;
1253        struct k_itimer timer;
1254        u64 expires;
1255        int error;
1256
1257        /*
1258         * Set up a temporary timer and then wait for it to go off.
1259         */
1260        memset(&timer, 0, sizeof timer);
1261        spin_lock_init(&timer.it_lock);
1262        timer.it_clock = which_clock;
1263        timer.it_overrun = -1;
1264        error = posix_cpu_timer_create(&timer);
1265        timer.it_process = current;
1266        if (!error) {
1267                static struct itimerspec64 zero_it;
1268                struct restart_block *restart;
1269
1270                memset(&it, 0, sizeof(it));
1271                it.it_value = *rqtp;
1272
1273                spin_lock_irq(&timer.it_lock);
1274                error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1275                if (error) {
1276                        spin_unlock_irq(&timer.it_lock);
1277                        return error;
1278                }
1279
1280                while (!signal_pending(current)) {
1281                        if (timer.it.cpu.expires == 0) {
1282                                /*
1283                                 * Our timer fired and was reset, below
1284                                 * deletion can not fail.
1285                                 */
1286                                posix_cpu_timer_del(&timer);
1287                                spin_unlock_irq(&timer.it_lock);
1288                                return 0;
1289                        }
1290
1291                        /*
1292                         * Block until cpu_timer_fire (or a signal) wakes us.
1293                         */
1294                        __set_current_state(TASK_INTERRUPTIBLE);
1295                        spin_unlock_irq(&timer.it_lock);
1296                        schedule();
1297                        spin_lock_irq(&timer.it_lock);
1298                }
1299
1300                /*
1301                 * We were interrupted by a signal.
1302                 */
1303                expires = timer.it.cpu.expires;
1304                error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1305                if (!error) {
1306                        /*
1307                         * Timer is now unarmed, deletion can not fail.
1308                         */
1309                        posix_cpu_timer_del(&timer);
1310                }
1311                spin_unlock_irq(&timer.it_lock);
1312
1313                while (error == TIMER_RETRY) {
1314                        /*
1315                         * We need to handle case when timer was or is in the
1316                         * middle of firing. In other cases we already freed
1317                         * resources.
1318                         */
1319                        spin_lock_irq(&timer.it_lock);
1320                        error = posix_cpu_timer_del(&timer);
1321                        spin_unlock_irq(&timer.it_lock);
1322                }
1323
1324                if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1325                        /*
1326                         * It actually did fire already.
1327                         */
1328                        return 0;
1329                }
1330
1331                error = -ERESTART_RESTARTBLOCK;
1332                /*
1333                 * Report back to the user the time still remaining.
1334                 */
1335                restart = &current->restart_block;
1336                restart->nanosleep.expires = expires;
1337                if (restart->nanosleep.type != TT_NONE)
1338                        error = nanosleep_copyout(restart, &it.it_value);
1339        }
1340
1341        return error;
1342}
1343
1344static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1345
1346static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1347                            const struct timespec64 *rqtp)
1348{
1349        struct restart_block *restart_block = &current->restart_block;
1350        int error;
1351
1352        /*
1353         * Diagnose required errors first.
1354         */
1355        if (CPUCLOCK_PERTHREAD(which_clock) &&
1356            (CPUCLOCK_PID(which_clock) == 0 ||
1357             CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1358                return -EINVAL;
1359
1360        error = do_cpu_nanosleep(which_clock, flags, rqtp);
1361
1362        if (error == -ERESTART_RESTARTBLOCK) {
1363
1364                if (flags & TIMER_ABSTIME)
1365                        return -ERESTARTNOHAND;
1366
1367                restart_block->fn = posix_cpu_nsleep_restart;
1368                restart_block->nanosleep.clockid = which_clock;
1369        }
1370        return error;
1371}
1372
1373static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1374{
1375        clockid_t which_clock = restart_block->nanosleep.clockid;
1376        struct timespec64 t;
1377
1378        t = ns_to_timespec64(restart_block->nanosleep.expires);
1379
1380        return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1381}
1382
1383#define PROCESS_CLOCK   make_process_cpuclock(0, CPUCLOCK_SCHED)
1384#define THREAD_CLOCK    make_thread_cpuclock(0, CPUCLOCK_SCHED)
1385
1386static int process_cpu_clock_getres(const clockid_t which_clock,
1387                                    struct timespec64 *tp)
1388{
1389        return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1390}
1391static int process_cpu_clock_get(const clockid_t which_clock,
1392                                 struct timespec64 *tp)
1393{
1394        return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1395}
1396static int process_cpu_timer_create(struct k_itimer *timer)
1397{
1398        timer->it_clock = PROCESS_CLOCK;
1399        return posix_cpu_timer_create(timer);
1400}
1401static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1402                              const struct timespec64 *rqtp)
1403{
1404        return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1405}
1406static int thread_cpu_clock_getres(const clockid_t which_clock,
1407                                   struct timespec64 *tp)
1408{
1409        return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1410}
1411static int thread_cpu_clock_get(const clockid_t which_clock,
1412                                struct timespec64 *tp)
1413{
1414        return posix_cpu_clock_get(THREAD_CLOCK, tp);
1415}
1416static int thread_cpu_timer_create(struct k_itimer *timer)
1417{
1418        timer->it_clock = THREAD_CLOCK;
1419        return posix_cpu_timer_create(timer);
1420}
1421
1422const struct k_clock clock_posix_cpu = {
1423        .clock_getres   = posix_cpu_clock_getres,
1424        .clock_set      = posix_cpu_clock_set,
1425        .clock_get      = posix_cpu_clock_get,
1426        .timer_create   = posix_cpu_timer_create,
1427        .nsleep         = posix_cpu_nsleep,
1428        .timer_set      = posix_cpu_timer_set,
1429        .timer_del      = posix_cpu_timer_del,
1430        .timer_get      = posix_cpu_timer_get,
1431        .timer_rearm    = posix_cpu_timer_rearm,
1432};
1433
1434const struct k_clock clock_process = {
1435        .clock_getres   = process_cpu_clock_getres,
1436        .clock_get      = process_cpu_clock_get,
1437        .timer_create   = process_cpu_timer_create,
1438        .nsleep         = process_cpu_nsleep,
1439};
1440
1441const struct k_clock clock_thread = {
1442        .clock_getres   = thread_cpu_clock_getres,
1443        .clock_get      = thread_cpu_clock_get,
1444        .timer_create   = thread_cpu_timer_create,
1445};
1446