linux/net/core/dev.c
<<
>>
Prefs
   1/*
   2 *      NET3    Protocol independent device support routines.
   3 *
   4 *              This program is free software; you can redistribute it and/or
   5 *              modify it under the terms of the GNU General Public License
   6 *              as published by the Free Software Foundation; either version
   7 *              2 of the License, or (at your option) any later version.
   8 *
   9 *      Derived from the non IP parts of dev.c 1.0.19
  10 *              Authors:        Ross Biro
  11 *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
  13 *
  14 *      Additional Authors:
  15 *              Florian la Roche <rzsfl@rz.uni-sb.de>
  16 *              Alan Cox <gw4pts@gw4pts.ampr.org>
  17 *              David Hinds <dahinds@users.sourceforge.net>
  18 *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  19 *              Adam Sulmicki <adam@cfar.umd.edu>
  20 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
  21 *
  22 *      Changes:
  23 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
  24 *                                      to 2 if register_netdev gets called
  25 *                                      before net_dev_init & also removed a
  26 *                                      few lines of code in the process.
  27 *              Alan Cox        :       device private ioctl copies fields back.
  28 *              Alan Cox        :       Transmit queue code does relevant
  29 *                                      stunts to keep the queue safe.
  30 *              Alan Cox        :       Fixed double lock.
  31 *              Alan Cox        :       Fixed promisc NULL pointer trap
  32 *              ????????        :       Support the full private ioctl range
  33 *              Alan Cox        :       Moved ioctl permission check into
  34 *                                      drivers
  35 *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
  36 *              Alan Cox        :       100 backlog just doesn't cut it when
  37 *                                      you start doing multicast video 8)
  38 *              Alan Cox        :       Rewrote net_bh and list manager.
  39 *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
  40 *              Alan Cox        :       Took out transmit every packet pass
  41 *                                      Saved a few bytes in the ioctl handler
  42 *              Alan Cox        :       Network driver sets packet type before
  43 *                                      calling netif_rx. Saves a function
  44 *                                      call a packet.
  45 *              Alan Cox        :       Hashed net_bh()
  46 *              Richard Kooijman:       Timestamp fixes.
  47 *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
  48 *              Alan Cox        :       Device lock protection.
  49 *              Alan Cox        :       Fixed nasty side effect of device close
  50 *                                      changes.
  51 *              Rudi Cilibrasi  :       Pass the right thing to
  52 *                                      set_mac_address()
  53 *              Dave Miller     :       32bit quantity for the device lock to
  54 *                                      make it work out on a Sparc.
  55 *              Bjorn Ekwall    :       Added KERNELD hack.
  56 *              Alan Cox        :       Cleaned up the backlog initialise.
  57 *              Craig Metz      :       SIOCGIFCONF fix if space for under
  58 *                                      1 device.
  59 *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
  60 *                                      is no device open function.
  61 *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
  62 *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
  63 *              Cyrus Durgin    :       Cleaned for KMOD
  64 *              Adam Sulmicki   :       Bug Fix : Network Device Unload
  65 *                                      A network device unload needs to purge
  66 *                                      the backlog queue.
  67 *      Paul Rusty Russell      :       SIOCSIFNAME
  68 *              Pekka Riikonen  :       Netdev boot-time settings code
  69 *              Andrew Morton   :       Make unregister_netdevice wait
  70 *                                      indefinitely on dev->refcnt
  71 *              J Hadi Salim    :       - Backlog queue sampling
  72 *                                      - netif_rx() feedback
  73 */
  74
  75#include <linux/uaccess.h>
  76#include <linux/bitops.h>
  77#include <linux/capability.h>
  78#include <linux/cpu.h>
  79#include <linux/types.h>
  80#include <linux/kernel.h>
  81#include <linux/hash.h>
  82#include <linux/slab.h>
  83#include <linux/sched.h>
  84#include <linux/sched/mm.h>
  85#include <linux/mutex.h>
  86#include <linux/string.h>
  87#include <linux/mm.h>
  88#include <linux/socket.h>
  89#include <linux/sockios.h>
  90#include <linux/errno.h>
  91#include <linux/interrupt.h>
  92#include <linux/if_ether.h>
  93#include <linux/netdevice.h>
  94#include <linux/etherdevice.h>
  95#include <linux/ethtool.h>
  96#include <linux/notifier.h>
  97#include <linux/skbuff.h>
  98#include <linux/bpf.h>
  99#include <linux/bpf_trace.h>
 100#include <net/net_namespace.h>
 101#include <net/sock.h>
 102#include <net/busy_poll.h>
 103#include <linux/rtnetlink.h>
 104#include <linux/stat.h>
 105#include <net/dst.h>
 106#include <net/dst_metadata.h>
 107#include <net/pkt_sched.h>
 108#include <net/pkt_cls.h>
 109#include <net/checksum.h>
 110#include <net/xfrm.h>
 111#include <linux/highmem.h>
 112#include <linux/init.h>
 113#include <linux/module.h>
 114#include <linux/netpoll.h>
 115#include <linux/rcupdate.h>
 116#include <linux/delay.h>
 117#include <net/iw_handler.h>
 118#include <asm/current.h>
 119#include <linux/audit.h>
 120#include <linux/dmaengine.h>
 121#include <linux/err.h>
 122#include <linux/ctype.h>
 123#include <linux/if_arp.h>
 124#include <linux/if_vlan.h>
 125#include <linux/ip.h>
 126#include <net/ip.h>
 127#include <net/mpls.h>
 128#include <linux/ipv6.h>
 129#include <linux/in.h>
 130#include <linux/jhash.h>
 131#include <linux/random.h>
 132#include <trace/events/napi.h>
 133#include <trace/events/net.h>
 134#include <trace/events/skb.h>
 135#include <linux/pci.h>
 136#include <linux/inetdevice.h>
 137#include <linux/cpu_rmap.h>
 138#include <linux/static_key.h>
 139#include <linux/hashtable.h>
 140#include <linux/vmalloc.h>
 141#include <linux/if_macvlan.h>
 142#include <linux/errqueue.h>
 143#include <linux/hrtimer.h>
 144#include <linux/netfilter_ingress.h>
 145#include <linux/crash_dump.h>
 146#include <linux/sctp.h>
 147#include <net/udp_tunnel.h>
 148#include <linux/net_namespace.h>
 149
 150#include "net-sysfs.h"
 151
 152/* Instead of increasing this, you should create a hash table. */
 153#define MAX_GRO_SKBS 8
 154
 155/* This should be increased if a protocol with a bigger head is added. */
 156#define GRO_MAX_HEAD (MAX_HEADER + 128)
 157
 158static DEFINE_SPINLOCK(ptype_lock);
 159static DEFINE_SPINLOCK(offload_lock);
 160struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
 161struct list_head ptype_all __read_mostly;       /* Taps */
 162static struct list_head offload_base __read_mostly;
 163
 164static int netif_rx_internal(struct sk_buff *skb);
 165static int call_netdevice_notifiers_info(unsigned long val,
 166                                         struct netdev_notifier_info *info);
 167static struct napi_struct *napi_by_id(unsigned int napi_id);
 168
 169/*
 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
 171 * semaphore.
 172 *
 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
 174 *
 175 * Writers must hold the rtnl semaphore while they loop through the
 176 * dev_base_head list, and hold dev_base_lock for writing when they do the
 177 * actual updates.  This allows pure readers to access the list even
 178 * while a writer is preparing to update it.
 179 *
 180 * To put it another way, dev_base_lock is held for writing only to
 181 * protect against pure readers; the rtnl semaphore provides the
 182 * protection against other writers.
 183 *
 184 * See, for example usages, register_netdevice() and
 185 * unregister_netdevice(), which must be called with the rtnl
 186 * semaphore held.
 187 */
 188DEFINE_RWLOCK(dev_base_lock);
 189EXPORT_SYMBOL(dev_base_lock);
 190
 191static DEFINE_MUTEX(ifalias_mutex);
 192
 193/* protects napi_hash addition/deletion and napi_gen_id */
 194static DEFINE_SPINLOCK(napi_hash_lock);
 195
 196static unsigned int napi_gen_id = NR_CPUS;
 197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
 198
 199static seqcount_t devnet_rename_seq;
 200
 201static inline void dev_base_seq_inc(struct net *net)
 202{
 203        while (++net->dev_base_seq == 0)
 204                ;
 205}
 206
 207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
 208{
 209        unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
 210
 211        return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
 212}
 213
 214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
 215{
 216        return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
 217}
 218
 219static inline void rps_lock(struct softnet_data *sd)
 220{
 221#ifdef CONFIG_RPS
 222        spin_lock(&sd->input_pkt_queue.lock);
 223#endif
 224}
 225
 226static inline void rps_unlock(struct softnet_data *sd)
 227{
 228#ifdef CONFIG_RPS
 229        spin_unlock(&sd->input_pkt_queue.lock);
 230#endif
 231}
 232
 233/* Device list insertion */
 234static void list_netdevice(struct net_device *dev)
 235{
 236        struct net *net = dev_net(dev);
 237
 238        ASSERT_RTNL();
 239
 240        write_lock_bh(&dev_base_lock);
 241        list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
 242        hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
 243        hlist_add_head_rcu(&dev->index_hlist,
 244                           dev_index_hash(net, dev->ifindex));
 245        write_unlock_bh(&dev_base_lock);
 246
 247        dev_base_seq_inc(net);
 248}
 249
 250/* Device list removal
 251 * caller must respect a RCU grace period before freeing/reusing dev
 252 */
 253static void unlist_netdevice(struct net_device *dev)
 254{
 255        ASSERT_RTNL();
 256
 257        /* Unlink dev from the device chain */
 258        write_lock_bh(&dev_base_lock);
 259        list_del_rcu(&dev->dev_list);
 260        hlist_del_rcu(&dev->name_hlist);
 261        hlist_del_rcu(&dev->index_hlist);
 262        write_unlock_bh(&dev_base_lock);
 263
 264        dev_base_seq_inc(dev_net(dev));
 265}
 266
 267/*
 268 *      Our notifier list
 269 */
 270
 271static RAW_NOTIFIER_HEAD(netdev_chain);
 272
 273/*
 274 *      Device drivers call our routines to queue packets here. We empty the
 275 *      queue in the local softnet handler.
 276 */
 277
 278DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
 279EXPORT_PER_CPU_SYMBOL(softnet_data);
 280
 281#ifdef CONFIG_LOCKDEP
 282/*
 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
 284 * according to dev->type
 285 */
 286static const unsigned short netdev_lock_type[] = {
 287         ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
 288         ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
 289         ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
 290         ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
 291         ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
 292         ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
 293         ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
 294         ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
 295         ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
 296         ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
 297         ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
 298         ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
 299         ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
 300         ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
 301         ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
 302
 303static const char *const netdev_lock_name[] = {
 304        "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
 305        "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
 306        "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
 307        "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
 308        "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
 309        "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
 310        "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
 311        "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
 312        "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
 313        "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
 314        "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
 315        "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
 316        "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
 317        "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
 318        "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
 319
 320static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
 321static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
 322
 323static inline unsigned short netdev_lock_pos(unsigned short dev_type)
 324{
 325        int i;
 326
 327        for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
 328                if (netdev_lock_type[i] == dev_type)
 329                        return i;
 330        /* the last key is used by default */
 331        return ARRAY_SIZE(netdev_lock_type) - 1;
 332}
 333
 334static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 335                                                 unsigned short dev_type)
 336{
 337        int i;
 338
 339        i = netdev_lock_pos(dev_type);
 340        lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
 341                                   netdev_lock_name[i]);
 342}
 343
 344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 345{
 346        int i;
 347
 348        i = netdev_lock_pos(dev->type);
 349        lockdep_set_class_and_name(&dev->addr_list_lock,
 350                                   &netdev_addr_lock_key[i],
 351                                   netdev_lock_name[i]);
 352}
 353#else
 354static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 355                                                 unsigned short dev_type)
 356{
 357}
 358static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 359{
 360}
 361#endif
 362
 363/*******************************************************************************
 364 *
 365 *              Protocol management and registration routines
 366 *
 367 *******************************************************************************/
 368
 369
 370/*
 371 *      Add a protocol ID to the list. Now that the input handler is
 372 *      smarter we can dispense with all the messy stuff that used to be
 373 *      here.
 374 *
 375 *      BEWARE!!! Protocol handlers, mangling input packets,
 376 *      MUST BE last in hash buckets and checking protocol handlers
 377 *      MUST start from promiscuous ptype_all chain in net_bh.
 378 *      It is true now, do not change it.
 379 *      Explanation follows: if protocol handler, mangling packet, will
 380 *      be the first on list, it is not able to sense, that packet
 381 *      is cloned and should be copied-on-write, so that it will
 382 *      change it and subsequent readers will get broken packet.
 383 *                                                      --ANK (980803)
 384 */
 385
 386static inline struct list_head *ptype_head(const struct packet_type *pt)
 387{
 388        if (pt->type == htons(ETH_P_ALL))
 389                return pt->dev ? &pt->dev->ptype_all : &ptype_all;
 390        else
 391                return pt->dev ? &pt->dev->ptype_specific :
 392                                 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
 393}
 394
 395/**
 396 *      dev_add_pack - add packet handler
 397 *      @pt: packet type declaration
 398 *
 399 *      Add a protocol handler to the networking stack. The passed &packet_type
 400 *      is linked into kernel lists and may not be freed until it has been
 401 *      removed from the kernel lists.
 402 *
 403 *      This call does not sleep therefore it can not
 404 *      guarantee all CPU's that are in middle of receiving packets
 405 *      will see the new packet type (until the next received packet).
 406 */
 407
 408void dev_add_pack(struct packet_type *pt)
 409{
 410        struct list_head *head = ptype_head(pt);
 411
 412        spin_lock(&ptype_lock);
 413        list_add_rcu(&pt->list, head);
 414        spin_unlock(&ptype_lock);
 415}
 416EXPORT_SYMBOL(dev_add_pack);
 417
 418/**
 419 *      __dev_remove_pack        - remove packet handler
 420 *      @pt: packet type declaration
 421 *
 422 *      Remove a protocol handler that was previously added to the kernel
 423 *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
 424 *      from the kernel lists and can be freed or reused once this function
 425 *      returns.
 426 *
 427 *      The packet type might still be in use by receivers
 428 *      and must not be freed until after all the CPU's have gone
 429 *      through a quiescent state.
 430 */
 431void __dev_remove_pack(struct packet_type *pt)
 432{
 433        struct list_head *head = ptype_head(pt);
 434        struct packet_type *pt1;
 435
 436        spin_lock(&ptype_lock);
 437
 438        list_for_each_entry(pt1, head, list) {
 439                if (pt == pt1) {
 440                        list_del_rcu(&pt->list);
 441                        goto out;
 442                }
 443        }
 444
 445        pr_warn("dev_remove_pack: %p not found\n", pt);
 446out:
 447        spin_unlock(&ptype_lock);
 448}
 449EXPORT_SYMBOL(__dev_remove_pack);
 450
 451/**
 452 *      dev_remove_pack  - remove packet handler
 453 *      @pt: packet type declaration
 454 *
 455 *      Remove a protocol handler that was previously added to the kernel
 456 *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
 457 *      from the kernel lists and can be freed or reused once this function
 458 *      returns.
 459 *
 460 *      This call sleeps to guarantee that no CPU is looking at the packet
 461 *      type after return.
 462 */
 463void dev_remove_pack(struct packet_type *pt)
 464{
 465        __dev_remove_pack(pt);
 466
 467        synchronize_net();
 468}
 469EXPORT_SYMBOL(dev_remove_pack);
 470
 471
 472/**
 473 *      dev_add_offload - register offload handlers
 474 *      @po: protocol offload declaration
 475 *
 476 *      Add protocol offload handlers to the networking stack. The passed
 477 *      &proto_offload is linked into kernel lists and may not be freed until
 478 *      it has been removed from the kernel lists.
 479 *
 480 *      This call does not sleep therefore it can not
 481 *      guarantee all CPU's that are in middle of receiving packets
 482 *      will see the new offload handlers (until the next received packet).
 483 */
 484void dev_add_offload(struct packet_offload *po)
 485{
 486        struct packet_offload *elem;
 487
 488        spin_lock(&offload_lock);
 489        list_for_each_entry(elem, &offload_base, list) {
 490                if (po->priority < elem->priority)
 491                        break;
 492        }
 493        list_add_rcu(&po->list, elem->list.prev);
 494        spin_unlock(&offload_lock);
 495}
 496EXPORT_SYMBOL(dev_add_offload);
 497
 498/**
 499 *      __dev_remove_offload     - remove offload handler
 500 *      @po: packet offload declaration
 501 *
 502 *      Remove a protocol offload handler that was previously added to the
 503 *      kernel offload handlers by dev_add_offload(). The passed &offload_type
 504 *      is removed from the kernel lists and can be freed or reused once this
 505 *      function returns.
 506 *
 507 *      The packet type might still be in use by receivers
 508 *      and must not be freed until after all the CPU's have gone
 509 *      through a quiescent state.
 510 */
 511static void __dev_remove_offload(struct packet_offload *po)
 512{
 513        struct list_head *head = &offload_base;
 514        struct packet_offload *po1;
 515
 516        spin_lock(&offload_lock);
 517
 518        list_for_each_entry(po1, head, list) {
 519                if (po == po1) {
 520                        list_del_rcu(&po->list);
 521                        goto out;
 522                }
 523        }
 524
 525        pr_warn("dev_remove_offload: %p not found\n", po);
 526out:
 527        spin_unlock(&offload_lock);
 528}
 529
 530/**
 531 *      dev_remove_offload       - remove packet offload handler
 532 *      @po: packet offload declaration
 533 *
 534 *      Remove a packet offload handler that was previously added to the kernel
 535 *      offload handlers by dev_add_offload(). The passed &offload_type is
 536 *      removed from the kernel lists and can be freed or reused once this
 537 *      function returns.
 538 *
 539 *      This call sleeps to guarantee that no CPU is looking at the packet
 540 *      type after return.
 541 */
 542void dev_remove_offload(struct packet_offload *po)
 543{
 544        __dev_remove_offload(po);
 545
 546        synchronize_net();
 547}
 548EXPORT_SYMBOL(dev_remove_offload);
 549
 550/******************************************************************************
 551 *
 552 *                    Device Boot-time Settings Routines
 553 *
 554 ******************************************************************************/
 555
 556/* Boot time configuration table */
 557static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
 558
 559/**
 560 *      netdev_boot_setup_add   - add new setup entry
 561 *      @name: name of the device
 562 *      @map: configured settings for the device
 563 *
 564 *      Adds new setup entry to the dev_boot_setup list.  The function
 565 *      returns 0 on error and 1 on success.  This is a generic routine to
 566 *      all netdevices.
 567 */
 568static int netdev_boot_setup_add(char *name, struct ifmap *map)
 569{
 570        struct netdev_boot_setup *s;
 571        int i;
 572
 573        s = dev_boot_setup;
 574        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 575                if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
 576                        memset(s[i].name, 0, sizeof(s[i].name));
 577                        strlcpy(s[i].name, name, IFNAMSIZ);
 578                        memcpy(&s[i].map, map, sizeof(s[i].map));
 579                        break;
 580                }
 581        }
 582
 583        return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
 584}
 585
 586/**
 587 * netdev_boot_setup_check      - check boot time settings
 588 * @dev: the netdevice
 589 *
 590 * Check boot time settings for the device.
 591 * The found settings are set for the device to be used
 592 * later in the device probing.
 593 * Returns 0 if no settings found, 1 if they are.
 594 */
 595int netdev_boot_setup_check(struct net_device *dev)
 596{
 597        struct netdev_boot_setup *s = dev_boot_setup;
 598        int i;
 599
 600        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 601                if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
 602                    !strcmp(dev->name, s[i].name)) {
 603                        dev->irq = s[i].map.irq;
 604                        dev->base_addr = s[i].map.base_addr;
 605                        dev->mem_start = s[i].map.mem_start;
 606                        dev->mem_end = s[i].map.mem_end;
 607                        return 1;
 608                }
 609        }
 610        return 0;
 611}
 612EXPORT_SYMBOL(netdev_boot_setup_check);
 613
 614
 615/**
 616 * netdev_boot_base     - get address from boot time settings
 617 * @prefix: prefix for network device
 618 * @unit: id for network device
 619 *
 620 * Check boot time settings for the base address of device.
 621 * The found settings are set for the device to be used
 622 * later in the device probing.
 623 * Returns 0 if no settings found.
 624 */
 625unsigned long netdev_boot_base(const char *prefix, int unit)
 626{
 627        const struct netdev_boot_setup *s = dev_boot_setup;
 628        char name[IFNAMSIZ];
 629        int i;
 630
 631        sprintf(name, "%s%d", prefix, unit);
 632
 633        /*
 634         * If device already registered then return base of 1
 635         * to indicate not to probe for this interface
 636         */
 637        if (__dev_get_by_name(&init_net, name))
 638                return 1;
 639
 640        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
 641                if (!strcmp(name, s[i].name))
 642                        return s[i].map.base_addr;
 643        return 0;
 644}
 645
 646/*
 647 * Saves at boot time configured settings for any netdevice.
 648 */
 649int __init netdev_boot_setup(char *str)
 650{
 651        int ints[5];
 652        struct ifmap map;
 653
 654        str = get_options(str, ARRAY_SIZE(ints), ints);
 655        if (!str || !*str)
 656                return 0;
 657
 658        /* Save settings */
 659        memset(&map, 0, sizeof(map));
 660        if (ints[0] > 0)
 661                map.irq = ints[1];
 662        if (ints[0] > 1)
 663                map.base_addr = ints[2];
 664        if (ints[0] > 2)
 665                map.mem_start = ints[3];
 666        if (ints[0] > 3)
 667                map.mem_end = ints[4];
 668
 669        /* Add new entry to the list */
 670        return netdev_boot_setup_add(str, &map);
 671}
 672
 673__setup("netdev=", netdev_boot_setup);
 674
 675/*******************************************************************************
 676 *
 677 *                          Device Interface Subroutines
 678 *
 679 *******************************************************************************/
 680
 681/**
 682 *      dev_get_iflink  - get 'iflink' value of a interface
 683 *      @dev: targeted interface
 684 *
 685 *      Indicates the ifindex the interface is linked to.
 686 *      Physical interfaces have the same 'ifindex' and 'iflink' values.
 687 */
 688
 689int dev_get_iflink(const struct net_device *dev)
 690{
 691        if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
 692                return dev->netdev_ops->ndo_get_iflink(dev);
 693
 694        return dev->ifindex;
 695}
 696EXPORT_SYMBOL(dev_get_iflink);
 697
 698/**
 699 *      dev_fill_metadata_dst - Retrieve tunnel egress information.
 700 *      @dev: targeted interface
 701 *      @skb: The packet.
 702 *
 703 *      For better visibility of tunnel traffic OVS needs to retrieve
 704 *      egress tunnel information for a packet. Following API allows
 705 *      user to get this info.
 706 */
 707int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
 708{
 709        struct ip_tunnel_info *info;
 710
 711        if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
 712                return -EINVAL;
 713
 714        info = skb_tunnel_info_unclone(skb);
 715        if (!info)
 716                return -ENOMEM;
 717        if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
 718                return -EINVAL;
 719
 720        return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
 721}
 722EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
 723
 724/**
 725 *      __dev_get_by_name       - find a device by its name
 726 *      @net: the applicable net namespace
 727 *      @name: name to find
 728 *
 729 *      Find an interface by name. Must be called under RTNL semaphore
 730 *      or @dev_base_lock. If the name is found a pointer to the device
 731 *      is returned. If the name is not found then %NULL is returned. The
 732 *      reference counters are not incremented so the caller must be
 733 *      careful with locks.
 734 */
 735
 736struct net_device *__dev_get_by_name(struct net *net, const char *name)
 737{
 738        struct net_device *dev;
 739        struct hlist_head *head = dev_name_hash(net, name);
 740
 741        hlist_for_each_entry(dev, head, name_hlist)
 742                if (!strncmp(dev->name, name, IFNAMSIZ))
 743                        return dev;
 744
 745        return NULL;
 746}
 747EXPORT_SYMBOL(__dev_get_by_name);
 748
 749/**
 750 * dev_get_by_name_rcu  - find a device by its name
 751 * @net: the applicable net namespace
 752 * @name: name to find
 753 *
 754 * Find an interface by name.
 755 * If the name is found a pointer to the device is returned.
 756 * If the name is not found then %NULL is returned.
 757 * The reference counters are not incremented so the caller must be
 758 * careful with locks. The caller must hold RCU lock.
 759 */
 760
 761struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
 762{
 763        struct net_device *dev;
 764        struct hlist_head *head = dev_name_hash(net, name);
 765
 766        hlist_for_each_entry_rcu(dev, head, name_hlist)
 767                if (!strncmp(dev->name, name, IFNAMSIZ))
 768                        return dev;
 769
 770        return NULL;
 771}
 772EXPORT_SYMBOL(dev_get_by_name_rcu);
 773
 774/**
 775 *      dev_get_by_name         - find a device by its name
 776 *      @net: the applicable net namespace
 777 *      @name: name to find
 778 *
 779 *      Find an interface by name. This can be called from any
 780 *      context and does its own locking. The returned handle has
 781 *      the usage count incremented and the caller must use dev_put() to
 782 *      release it when it is no longer needed. %NULL is returned if no
 783 *      matching device is found.
 784 */
 785
 786struct net_device *dev_get_by_name(struct net *net, const char *name)
 787{
 788        struct net_device *dev;
 789
 790        rcu_read_lock();
 791        dev = dev_get_by_name_rcu(net, name);
 792        if (dev)
 793                dev_hold(dev);
 794        rcu_read_unlock();
 795        return dev;
 796}
 797EXPORT_SYMBOL(dev_get_by_name);
 798
 799/**
 800 *      __dev_get_by_index - find a device by its ifindex
 801 *      @net: the applicable net namespace
 802 *      @ifindex: index of device
 803 *
 804 *      Search for an interface by index. Returns %NULL if the device
 805 *      is not found or a pointer to the device. The device has not
 806 *      had its reference counter increased so the caller must be careful
 807 *      about locking. The caller must hold either the RTNL semaphore
 808 *      or @dev_base_lock.
 809 */
 810
 811struct net_device *__dev_get_by_index(struct net *net, int ifindex)
 812{
 813        struct net_device *dev;
 814        struct hlist_head *head = dev_index_hash(net, ifindex);
 815
 816        hlist_for_each_entry(dev, head, index_hlist)
 817                if (dev->ifindex == ifindex)
 818                        return dev;
 819
 820        return NULL;
 821}
 822EXPORT_SYMBOL(__dev_get_by_index);
 823
 824/**
 825 *      dev_get_by_index_rcu - find a device by its ifindex
 826 *      @net: the applicable net namespace
 827 *      @ifindex: index of device
 828 *
 829 *      Search for an interface by index. Returns %NULL if the device
 830 *      is not found or a pointer to the device. The device has not
 831 *      had its reference counter increased so the caller must be careful
 832 *      about locking. The caller must hold RCU lock.
 833 */
 834
 835struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
 836{
 837        struct net_device *dev;
 838        struct hlist_head *head = dev_index_hash(net, ifindex);
 839
 840        hlist_for_each_entry_rcu(dev, head, index_hlist)
 841                if (dev->ifindex == ifindex)
 842                        return dev;
 843
 844        return NULL;
 845}
 846EXPORT_SYMBOL(dev_get_by_index_rcu);
 847
 848
 849/**
 850 *      dev_get_by_index - find a device by its ifindex
 851 *      @net: the applicable net namespace
 852 *      @ifindex: index of device
 853 *
 854 *      Search for an interface by index. Returns NULL if the device
 855 *      is not found or a pointer to the device. The device returned has
 856 *      had a reference added and the pointer is safe until the user calls
 857 *      dev_put to indicate they have finished with it.
 858 */
 859
 860struct net_device *dev_get_by_index(struct net *net, int ifindex)
 861{
 862        struct net_device *dev;
 863
 864        rcu_read_lock();
 865        dev = dev_get_by_index_rcu(net, ifindex);
 866        if (dev)
 867                dev_hold(dev);
 868        rcu_read_unlock();
 869        return dev;
 870}
 871EXPORT_SYMBOL(dev_get_by_index);
 872
 873/**
 874 *      dev_get_by_napi_id - find a device by napi_id
 875 *      @napi_id: ID of the NAPI struct
 876 *
 877 *      Search for an interface by NAPI ID. Returns %NULL if the device
 878 *      is not found or a pointer to the device. The device has not had
 879 *      its reference counter increased so the caller must be careful
 880 *      about locking. The caller must hold RCU lock.
 881 */
 882
 883struct net_device *dev_get_by_napi_id(unsigned int napi_id)
 884{
 885        struct napi_struct *napi;
 886
 887        WARN_ON_ONCE(!rcu_read_lock_held());
 888
 889        if (napi_id < MIN_NAPI_ID)
 890                return NULL;
 891
 892        napi = napi_by_id(napi_id);
 893
 894        return napi ? napi->dev : NULL;
 895}
 896EXPORT_SYMBOL(dev_get_by_napi_id);
 897
 898/**
 899 *      netdev_get_name - get a netdevice name, knowing its ifindex.
 900 *      @net: network namespace
 901 *      @name: a pointer to the buffer where the name will be stored.
 902 *      @ifindex: the ifindex of the interface to get the name from.
 903 *
 904 *      The use of raw_seqcount_begin() and cond_resched() before
 905 *      retrying is required as we want to give the writers a chance
 906 *      to complete when CONFIG_PREEMPT is not set.
 907 */
 908int netdev_get_name(struct net *net, char *name, int ifindex)
 909{
 910        struct net_device *dev;
 911        unsigned int seq;
 912
 913retry:
 914        seq = raw_seqcount_begin(&devnet_rename_seq);
 915        rcu_read_lock();
 916        dev = dev_get_by_index_rcu(net, ifindex);
 917        if (!dev) {
 918                rcu_read_unlock();
 919                return -ENODEV;
 920        }
 921
 922        strcpy(name, dev->name);
 923        rcu_read_unlock();
 924        if (read_seqcount_retry(&devnet_rename_seq, seq)) {
 925                cond_resched();
 926                goto retry;
 927        }
 928
 929        return 0;
 930}
 931
 932/**
 933 *      dev_getbyhwaddr_rcu - find a device by its hardware address
 934 *      @net: the applicable net namespace
 935 *      @type: media type of device
 936 *      @ha: hardware address
 937 *
 938 *      Search for an interface by MAC address. Returns NULL if the device
 939 *      is not found or a pointer to the device.
 940 *      The caller must hold RCU or RTNL.
 941 *      The returned device has not had its ref count increased
 942 *      and the caller must therefore be careful about locking
 943 *
 944 */
 945
 946struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
 947                                       const char *ha)
 948{
 949        struct net_device *dev;
 950
 951        for_each_netdev_rcu(net, dev)
 952                if (dev->type == type &&
 953                    !memcmp(dev->dev_addr, ha, dev->addr_len))
 954                        return dev;
 955
 956        return NULL;
 957}
 958EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
 959
 960struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
 961{
 962        struct net_device *dev;
 963
 964        ASSERT_RTNL();
 965        for_each_netdev(net, dev)
 966                if (dev->type == type)
 967                        return dev;
 968
 969        return NULL;
 970}
 971EXPORT_SYMBOL(__dev_getfirstbyhwtype);
 972
 973struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
 974{
 975        struct net_device *dev, *ret = NULL;
 976
 977        rcu_read_lock();
 978        for_each_netdev_rcu(net, dev)
 979                if (dev->type == type) {
 980                        dev_hold(dev);
 981                        ret = dev;
 982                        break;
 983                }
 984        rcu_read_unlock();
 985        return ret;
 986}
 987EXPORT_SYMBOL(dev_getfirstbyhwtype);
 988
 989/**
 990 *      __dev_get_by_flags - find any device with given flags
 991 *      @net: the applicable net namespace
 992 *      @if_flags: IFF_* values
 993 *      @mask: bitmask of bits in if_flags to check
 994 *
 995 *      Search for any interface with the given flags. Returns NULL if a device
 996 *      is not found or a pointer to the device. Must be called inside
 997 *      rtnl_lock(), and result refcount is unchanged.
 998 */
 999
1000struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001                                      unsigned short mask)
1002{
1003        struct net_device *dev, *ret;
1004
1005        ASSERT_RTNL();
1006
1007        ret = NULL;
1008        for_each_netdev(net, dev) {
1009                if (((dev->flags ^ if_flags) & mask) == 0) {
1010                        ret = dev;
1011                        break;
1012                }
1013        }
1014        return ret;
1015}
1016EXPORT_SYMBOL(__dev_get_by_flags);
1017
1018/**
1019 *      dev_valid_name - check if name is okay for network device
1020 *      @name: name string
1021 *
1022 *      Network device names need to be valid file names to
1023 *      to allow sysfs to work.  We also disallow any kind of
1024 *      whitespace.
1025 */
1026bool dev_valid_name(const char *name)
1027{
1028        if (*name == '\0')
1029                return false;
1030        if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1031                return false;
1032        if (!strcmp(name, ".") || !strcmp(name, ".."))
1033                return false;
1034
1035        while (*name) {
1036                if (*name == '/' || *name == ':' || isspace(*name))
1037                        return false;
1038                name++;
1039        }
1040        return true;
1041}
1042EXPORT_SYMBOL(dev_valid_name);
1043
1044/**
1045 *      __dev_alloc_name - allocate a name for a device
1046 *      @net: network namespace to allocate the device name in
1047 *      @name: name format string
1048 *      @buf:  scratch buffer and result name string
1049 *
1050 *      Passed a format string - eg "lt%d" it will try and find a suitable
1051 *      id. It scans list of devices to build up a free map, then chooses
1052 *      the first empty slot. The caller must hold the dev_base or rtnl lock
1053 *      while allocating the name and adding the device in order to avoid
1054 *      duplicates.
1055 *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 *      Returns the number of the unit assigned or a negative errno code.
1057 */
1058
1059static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060{
1061        int i = 0;
1062        const char *p;
1063        const int max_netdevices = 8*PAGE_SIZE;
1064        unsigned long *inuse;
1065        struct net_device *d;
1066
1067        if (!dev_valid_name(name))
1068                return -EINVAL;
1069
1070        p = strchr(name, '%');
1071        if (p) {
1072                /*
1073                 * Verify the string as this thing may have come from
1074                 * the user.  There must be either one "%d" and no other "%"
1075                 * characters.
1076                 */
1077                if (p[1] != 'd' || strchr(p + 2, '%'))
1078                        return -EINVAL;
1079
1080                /* Use one page as a bit array of possible slots */
1081                inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082                if (!inuse)
1083                        return -ENOMEM;
1084
1085                for_each_netdev(net, d) {
1086                        if (!sscanf(d->name, name, &i))
1087                                continue;
1088                        if (i < 0 || i >= max_netdevices)
1089                                continue;
1090
1091                        /*  avoid cases where sscanf is not exact inverse of printf */
1092                        snprintf(buf, IFNAMSIZ, name, i);
1093                        if (!strncmp(buf, d->name, IFNAMSIZ))
1094                                set_bit(i, inuse);
1095                }
1096
1097                i = find_first_zero_bit(inuse, max_netdevices);
1098                free_page((unsigned long) inuse);
1099        }
1100
1101        snprintf(buf, IFNAMSIZ, name, i);
1102        if (!__dev_get_by_name(net, buf))
1103                return i;
1104
1105        /* It is possible to run out of possible slots
1106         * when the name is long and there isn't enough space left
1107         * for the digits, or if all bits are used.
1108         */
1109        return -ENFILE;
1110}
1111
1112static int dev_alloc_name_ns(struct net *net,
1113                             struct net_device *dev,
1114                             const char *name)
1115{
1116        char buf[IFNAMSIZ];
1117        int ret;
1118
1119        BUG_ON(!net);
1120        ret = __dev_alloc_name(net, name, buf);
1121        if (ret >= 0)
1122                strlcpy(dev->name, buf, IFNAMSIZ);
1123        return ret;
1124}
1125
1126/**
1127 *      dev_alloc_name - allocate a name for a device
1128 *      @dev: device
1129 *      @name: name format string
1130 *
1131 *      Passed a format string - eg "lt%d" it will try and find a suitable
1132 *      id. It scans list of devices to build up a free map, then chooses
1133 *      the first empty slot. The caller must hold the dev_base or rtnl lock
1134 *      while allocating the name and adding the device in order to avoid
1135 *      duplicates.
1136 *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137 *      Returns the number of the unit assigned or a negative errno code.
1138 */
1139
1140int dev_alloc_name(struct net_device *dev, const char *name)
1141{
1142        return dev_alloc_name_ns(dev_net(dev), dev, name);
1143}
1144EXPORT_SYMBOL(dev_alloc_name);
1145
1146int dev_get_valid_name(struct net *net, struct net_device *dev,
1147                       const char *name)
1148{
1149        BUG_ON(!net);
1150
1151        if (!dev_valid_name(name))
1152                return -EINVAL;
1153
1154        if (strchr(name, '%'))
1155                return dev_alloc_name_ns(net, dev, name);
1156        else if (__dev_get_by_name(net, name))
1157                return -EEXIST;
1158        else if (dev->name != name)
1159                strlcpy(dev->name, name, IFNAMSIZ);
1160
1161        return 0;
1162}
1163EXPORT_SYMBOL(dev_get_valid_name);
1164
1165/**
1166 *      dev_change_name - change name of a device
1167 *      @dev: device
1168 *      @newname: name (or format string) must be at least IFNAMSIZ
1169 *
1170 *      Change name of a device, can pass format strings "eth%d".
1171 *      for wildcarding.
1172 */
1173int dev_change_name(struct net_device *dev, const char *newname)
1174{
1175        unsigned char old_assign_type;
1176        char oldname[IFNAMSIZ];
1177        int err = 0;
1178        int ret;
1179        struct net *net;
1180
1181        ASSERT_RTNL();
1182        BUG_ON(!dev_net(dev));
1183
1184        net = dev_net(dev);
1185        if (dev->flags & IFF_UP)
1186                return -EBUSY;
1187
1188        write_seqcount_begin(&devnet_rename_seq);
1189
1190        if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191                write_seqcount_end(&devnet_rename_seq);
1192                return 0;
1193        }
1194
1195        memcpy(oldname, dev->name, IFNAMSIZ);
1196
1197        err = dev_get_valid_name(net, dev, newname);
1198        if (err < 0) {
1199                write_seqcount_end(&devnet_rename_seq);
1200                return err;
1201        }
1202
1203        if (oldname[0] && !strchr(oldname, '%'))
1204                netdev_info(dev, "renamed from %s\n", oldname);
1205
1206        old_assign_type = dev->name_assign_type;
1207        dev->name_assign_type = NET_NAME_RENAMED;
1208
1209rollback:
1210        ret = device_rename(&dev->dev, dev->name);
1211        if (ret) {
1212                memcpy(dev->name, oldname, IFNAMSIZ);
1213                dev->name_assign_type = old_assign_type;
1214                write_seqcount_end(&devnet_rename_seq);
1215                return ret;
1216        }
1217
1218        write_seqcount_end(&devnet_rename_seq);
1219
1220        netdev_adjacent_rename_links(dev, oldname);
1221
1222        write_lock_bh(&dev_base_lock);
1223        hlist_del_rcu(&dev->name_hlist);
1224        write_unlock_bh(&dev_base_lock);
1225
1226        synchronize_rcu();
1227
1228        write_lock_bh(&dev_base_lock);
1229        hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230        write_unlock_bh(&dev_base_lock);
1231
1232        ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233        ret = notifier_to_errno(ret);
1234
1235        if (ret) {
1236                /* err >= 0 after dev_alloc_name() or stores the first errno */
1237                if (err >= 0) {
1238                        err = ret;
1239                        write_seqcount_begin(&devnet_rename_seq);
1240                        memcpy(dev->name, oldname, IFNAMSIZ);
1241                        memcpy(oldname, newname, IFNAMSIZ);
1242                        dev->name_assign_type = old_assign_type;
1243                        old_assign_type = NET_NAME_RENAMED;
1244                        goto rollback;
1245                } else {
1246                        pr_err("%s: name change rollback failed: %d\n",
1247                               dev->name, ret);
1248                }
1249        }
1250
1251        return err;
1252}
1253
1254/**
1255 *      dev_set_alias - change ifalias of a device
1256 *      @dev: device
1257 *      @alias: name up to IFALIASZ
1258 *      @len: limit of bytes to copy from info
1259 *
1260 *      Set ifalias for a device,
1261 */
1262int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263{
1264        struct dev_ifalias *new_alias = NULL;
1265
1266        if (len >= IFALIASZ)
1267                return -EINVAL;
1268
1269        if (len) {
1270                new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271                if (!new_alias)
1272                        return -ENOMEM;
1273
1274                memcpy(new_alias->ifalias, alias, len);
1275                new_alias->ifalias[len] = 0;
1276        }
1277
1278        mutex_lock(&ifalias_mutex);
1279        rcu_swap_protected(dev->ifalias, new_alias,
1280                           mutex_is_locked(&ifalias_mutex));
1281        mutex_unlock(&ifalias_mutex);
1282
1283        if (new_alias)
1284                kfree_rcu(new_alias, rcuhead);
1285
1286        return len;
1287}
1288EXPORT_SYMBOL(dev_set_alias);
1289
1290/**
1291 *      dev_get_alias - get ifalias of a device
1292 *      @dev: device
1293 *      @name: buffer to store name of ifalias
1294 *      @len: size of buffer
1295 *
1296 *      get ifalias for a device.  Caller must make sure dev cannot go
1297 *      away,  e.g. rcu read lock or own a reference count to device.
1298 */
1299int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1300{
1301        const struct dev_ifalias *alias;
1302        int ret = 0;
1303
1304        rcu_read_lock();
1305        alias = rcu_dereference(dev->ifalias);
1306        if (alias)
1307                ret = snprintf(name, len, "%s", alias->ifalias);
1308        rcu_read_unlock();
1309
1310        return ret;
1311}
1312
1313/**
1314 *      netdev_features_change - device changes features
1315 *      @dev: device to cause notification
1316 *
1317 *      Called to indicate a device has changed features.
1318 */
1319void netdev_features_change(struct net_device *dev)
1320{
1321        call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1322}
1323EXPORT_SYMBOL(netdev_features_change);
1324
1325/**
1326 *      netdev_state_change - device changes state
1327 *      @dev: device to cause notification
1328 *
1329 *      Called to indicate a device has changed state. This function calls
1330 *      the notifier chains for netdev_chain and sends a NEWLINK message
1331 *      to the routing socket.
1332 */
1333void netdev_state_change(struct net_device *dev)
1334{
1335        if (dev->flags & IFF_UP) {
1336                struct netdev_notifier_change_info change_info = {
1337                        .info.dev = dev,
1338                };
1339
1340                call_netdevice_notifiers_info(NETDEV_CHANGE,
1341                                              &change_info.info);
1342                rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1343        }
1344}
1345EXPORT_SYMBOL(netdev_state_change);
1346
1347/**
1348 * netdev_notify_peers - notify network peers about existence of @dev
1349 * @dev: network device
1350 *
1351 * Generate traffic such that interested network peers are aware of
1352 * @dev, such as by generating a gratuitous ARP. This may be used when
1353 * a device wants to inform the rest of the network about some sort of
1354 * reconfiguration such as a failover event or virtual machine
1355 * migration.
1356 */
1357void netdev_notify_peers(struct net_device *dev)
1358{
1359        rtnl_lock();
1360        call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1361        call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1362        rtnl_unlock();
1363}
1364EXPORT_SYMBOL(netdev_notify_peers);
1365
1366static int __dev_open(struct net_device *dev)
1367{
1368        const struct net_device_ops *ops = dev->netdev_ops;
1369        int ret;
1370
1371        ASSERT_RTNL();
1372
1373        if (!netif_device_present(dev))
1374                return -ENODEV;
1375
1376        /* Block netpoll from trying to do any rx path servicing.
1377         * If we don't do this there is a chance ndo_poll_controller
1378         * or ndo_poll may be running while we open the device
1379         */
1380        netpoll_poll_disable(dev);
1381
1382        ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1383        ret = notifier_to_errno(ret);
1384        if (ret)
1385                return ret;
1386
1387        set_bit(__LINK_STATE_START, &dev->state);
1388
1389        if (ops->ndo_validate_addr)
1390                ret = ops->ndo_validate_addr(dev);
1391
1392        if (!ret && ops->ndo_open)
1393                ret = ops->ndo_open(dev);
1394
1395        netpoll_poll_enable(dev);
1396
1397        if (ret)
1398                clear_bit(__LINK_STATE_START, &dev->state);
1399        else {
1400                dev->flags |= IFF_UP;
1401                dev_set_rx_mode(dev);
1402                dev_activate(dev);
1403                add_device_randomness(dev->dev_addr, dev->addr_len);
1404        }
1405
1406        return ret;
1407}
1408
1409/**
1410 *      dev_open        - prepare an interface for use.
1411 *      @dev:   device to open
1412 *
1413 *      Takes a device from down to up state. The device's private open
1414 *      function is invoked and then the multicast lists are loaded. Finally
1415 *      the device is moved into the up state and a %NETDEV_UP message is
1416 *      sent to the netdev notifier chain.
1417 *
1418 *      Calling this function on an active interface is a nop. On a failure
1419 *      a negative errno code is returned.
1420 */
1421int dev_open(struct net_device *dev)
1422{
1423        int ret;
1424
1425        if (dev->flags & IFF_UP)
1426                return 0;
1427
1428        ret = __dev_open(dev);
1429        if (ret < 0)
1430                return ret;
1431
1432        rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1433        call_netdevice_notifiers(NETDEV_UP, dev);
1434
1435        return ret;
1436}
1437EXPORT_SYMBOL(dev_open);
1438
1439static void __dev_close_many(struct list_head *head)
1440{
1441        struct net_device *dev;
1442
1443        ASSERT_RTNL();
1444        might_sleep();
1445
1446        list_for_each_entry(dev, head, close_list) {
1447                /* Temporarily disable netpoll until the interface is down */
1448                netpoll_poll_disable(dev);
1449
1450                call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1451
1452                clear_bit(__LINK_STATE_START, &dev->state);
1453
1454                /* Synchronize to scheduled poll. We cannot touch poll list, it
1455                 * can be even on different cpu. So just clear netif_running().
1456                 *
1457                 * dev->stop() will invoke napi_disable() on all of it's
1458                 * napi_struct instances on this device.
1459                 */
1460                smp_mb__after_atomic(); /* Commit netif_running(). */
1461        }
1462
1463        dev_deactivate_many(head);
1464
1465        list_for_each_entry(dev, head, close_list) {
1466                const struct net_device_ops *ops = dev->netdev_ops;
1467
1468                /*
1469                 *      Call the device specific close. This cannot fail.
1470                 *      Only if device is UP
1471                 *
1472                 *      We allow it to be called even after a DETACH hot-plug
1473                 *      event.
1474                 */
1475                if (ops->ndo_stop)
1476                        ops->ndo_stop(dev);
1477
1478                dev->flags &= ~IFF_UP;
1479                netpoll_poll_enable(dev);
1480        }
1481}
1482
1483static void __dev_close(struct net_device *dev)
1484{
1485        LIST_HEAD(single);
1486
1487        list_add(&dev->close_list, &single);
1488        __dev_close_many(&single);
1489        list_del(&single);
1490}
1491
1492void dev_close_many(struct list_head *head, bool unlink)
1493{
1494        struct net_device *dev, *tmp;
1495
1496        /* Remove the devices that don't need to be closed */
1497        list_for_each_entry_safe(dev, tmp, head, close_list)
1498                if (!(dev->flags & IFF_UP))
1499                        list_del_init(&dev->close_list);
1500
1501        __dev_close_many(head);
1502
1503        list_for_each_entry_safe(dev, tmp, head, close_list) {
1504                rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1505                call_netdevice_notifiers(NETDEV_DOWN, dev);
1506                if (unlink)
1507                        list_del_init(&dev->close_list);
1508        }
1509}
1510EXPORT_SYMBOL(dev_close_many);
1511
1512/**
1513 *      dev_close - shutdown an interface.
1514 *      @dev: device to shutdown
1515 *
1516 *      This function moves an active device into down state. A
1517 *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1518 *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1519 *      chain.
1520 */
1521void dev_close(struct net_device *dev)
1522{
1523        if (dev->flags & IFF_UP) {
1524                LIST_HEAD(single);
1525
1526                list_add(&dev->close_list, &single);
1527                dev_close_many(&single, true);
1528                list_del(&single);
1529        }
1530}
1531EXPORT_SYMBOL(dev_close);
1532
1533
1534/**
1535 *      dev_disable_lro - disable Large Receive Offload on a device
1536 *      @dev: device
1537 *
1538 *      Disable Large Receive Offload (LRO) on a net device.  Must be
1539 *      called under RTNL.  This is needed if received packets may be
1540 *      forwarded to another interface.
1541 */
1542void dev_disable_lro(struct net_device *dev)
1543{
1544        struct net_device *lower_dev;
1545        struct list_head *iter;
1546
1547        dev->wanted_features &= ~NETIF_F_LRO;
1548        netdev_update_features(dev);
1549
1550        if (unlikely(dev->features & NETIF_F_LRO))
1551                netdev_WARN(dev, "failed to disable LRO!\n");
1552
1553        netdev_for_each_lower_dev(dev, lower_dev, iter)
1554                dev_disable_lro(lower_dev);
1555}
1556EXPORT_SYMBOL(dev_disable_lro);
1557
1558/**
1559 *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1560 *      @dev: device
1561 *
1562 *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1563 *      called under RTNL.  This is needed if Generic XDP is installed on
1564 *      the device.
1565 */
1566static void dev_disable_gro_hw(struct net_device *dev)
1567{
1568        dev->wanted_features &= ~NETIF_F_GRO_HW;
1569        netdev_update_features(dev);
1570
1571        if (unlikely(dev->features & NETIF_F_GRO_HW))
1572                netdev_WARN(dev, "failed to disable GRO_HW!\n");
1573}
1574
1575const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1576{
1577#define N(val)                                          \
1578        case NETDEV_##val:                              \
1579                return "NETDEV_" __stringify(val);
1580        switch (cmd) {
1581        N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1582        N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1583        N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1584        N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1585        N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1586        N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1587        N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1588        N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1589        N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1590        }
1591#undef N
1592        return "UNKNOWN_NETDEV_EVENT";
1593}
1594EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1595
1596static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1597                                   struct net_device *dev)
1598{
1599        struct netdev_notifier_info info = {
1600                .dev = dev,
1601        };
1602
1603        return nb->notifier_call(nb, val, &info);
1604}
1605
1606static int dev_boot_phase = 1;
1607
1608/**
1609 * register_netdevice_notifier - register a network notifier block
1610 * @nb: notifier
1611 *
1612 * Register a notifier to be called when network device events occur.
1613 * The notifier passed is linked into the kernel structures and must
1614 * not be reused until it has been unregistered. A negative errno code
1615 * is returned on a failure.
1616 *
1617 * When registered all registration and up events are replayed
1618 * to the new notifier to allow device to have a race free
1619 * view of the network device list.
1620 */
1621
1622int register_netdevice_notifier(struct notifier_block *nb)
1623{
1624        struct net_device *dev;
1625        struct net_device *last;
1626        struct net *net;
1627        int err;
1628
1629        /* Close race with setup_net() and cleanup_net() */
1630        down_write(&pernet_ops_rwsem);
1631        rtnl_lock();
1632        err = raw_notifier_chain_register(&netdev_chain, nb);
1633        if (err)
1634                goto unlock;
1635        if (dev_boot_phase)
1636                goto unlock;
1637        for_each_net(net) {
1638                for_each_netdev(net, dev) {
1639                        err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1640                        err = notifier_to_errno(err);
1641                        if (err)
1642                                goto rollback;
1643
1644                        if (!(dev->flags & IFF_UP))
1645                                continue;
1646
1647                        call_netdevice_notifier(nb, NETDEV_UP, dev);
1648                }
1649        }
1650
1651unlock:
1652        rtnl_unlock();
1653        up_write(&pernet_ops_rwsem);
1654        return err;
1655
1656rollback:
1657        last = dev;
1658        for_each_net(net) {
1659                for_each_netdev(net, dev) {
1660                        if (dev == last)
1661                                goto outroll;
1662
1663                        if (dev->flags & IFF_UP) {
1664                                call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1665                                                        dev);
1666                                call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1667                        }
1668                        call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1669                }
1670        }
1671
1672outroll:
1673        raw_notifier_chain_unregister(&netdev_chain, nb);
1674        goto unlock;
1675}
1676EXPORT_SYMBOL(register_netdevice_notifier);
1677
1678/**
1679 * unregister_netdevice_notifier - unregister a network notifier block
1680 * @nb: notifier
1681 *
1682 * Unregister a notifier previously registered by
1683 * register_netdevice_notifier(). The notifier is unlinked into the
1684 * kernel structures and may then be reused. A negative errno code
1685 * is returned on a failure.
1686 *
1687 * After unregistering unregister and down device events are synthesized
1688 * for all devices on the device list to the removed notifier to remove
1689 * the need for special case cleanup code.
1690 */
1691
1692int unregister_netdevice_notifier(struct notifier_block *nb)
1693{
1694        struct net_device *dev;
1695        struct net *net;
1696        int err;
1697
1698        /* Close race with setup_net() and cleanup_net() */
1699        down_write(&pernet_ops_rwsem);
1700        rtnl_lock();
1701        err = raw_notifier_chain_unregister(&netdev_chain, nb);
1702        if (err)
1703                goto unlock;
1704
1705        for_each_net(net) {
1706                for_each_netdev(net, dev) {
1707                        if (dev->flags & IFF_UP) {
1708                                call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1709                                                        dev);
1710                                call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1711                        }
1712                        call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1713                }
1714        }
1715unlock:
1716        rtnl_unlock();
1717        up_write(&pernet_ops_rwsem);
1718        return err;
1719}
1720EXPORT_SYMBOL(unregister_netdevice_notifier);
1721
1722/**
1723 *      call_netdevice_notifiers_info - call all network notifier blocks
1724 *      @val: value passed unmodified to notifier function
1725 *      @info: notifier information data
1726 *
1727 *      Call all network notifier blocks.  Parameters and return value
1728 *      are as for raw_notifier_call_chain().
1729 */
1730
1731static int call_netdevice_notifiers_info(unsigned long val,
1732                                         struct netdev_notifier_info *info)
1733{
1734        ASSERT_RTNL();
1735        return raw_notifier_call_chain(&netdev_chain, val, info);
1736}
1737
1738/**
1739 *      call_netdevice_notifiers - call all network notifier blocks
1740 *      @val: value passed unmodified to notifier function
1741 *      @dev: net_device pointer passed unmodified to notifier function
1742 *
1743 *      Call all network notifier blocks.  Parameters and return value
1744 *      are as for raw_notifier_call_chain().
1745 */
1746
1747int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1748{
1749        struct netdev_notifier_info info = {
1750                .dev = dev,
1751        };
1752
1753        return call_netdevice_notifiers_info(val, &info);
1754}
1755EXPORT_SYMBOL(call_netdevice_notifiers);
1756
1757#ifdef CONFIG_NET_INGRESS
1758static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1759
1760void net_inc_ingress_queue(void)
1761{
1762        static_branch_inc(&ingress_needed_key);
1763}
1764EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1765
1766void net_dec_ingress_queue(void)
1767{
1768        static_branch_dec(&ingress_needed_key);
1769}
1770EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1771#endif
1772
1773#ifdef CONFIG_NET_EGRESS
1774static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1775
1776void net_inc_egress_queue(void)
1777{
1778        static_branch_inc(&egress_needed_key);
1779}
1780EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1781
1782void net_dec_egress_queue(void)
1783{
1784        static_branch_dec(&egress_needed_key);
1785}
1786EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1787#endif
1788
1789static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1790#ifdef HAVE_JUMP_LABEL
1791static atomic_t netstamp_needed_deferred;
1792static atomic_t netstamp_wanted;
1793static void netstamp_clear(struct work_struct *work)
1794{
1795        int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1796        int wanted;
1797
1798        wanted = atomic_add_return(deferred, &netstamp_wanted);
1799        if (wanted > 0)
1800                static_branch_enable(&netstamp_needed_key);
1801        else
1802                static_branch_disable(&netstamp_needed_key);
1803}
1804static DECLARE_WORK(netstamp_work, netstamp_clear);
1805#endif
1806
1807void net_enable_timestamp(void)
1808{
1809#ifdef HAVE_JUMP_LABEL
1810        int wanted;
1811
1812        while (1) {
1813                wanted = atomic_read(&netstamp_wanted);
1814                if (wanted <= 0)
1815                        break;
1816                if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1817                        return;
1818        }
1819        atomic_inc(&netstamp_needed_deferred);
1820        schedule_work(&netstamp_work);
1821#else
1822        static_branch_inc(&netstamp_needed_key);
1823#endif
1824}
1825EXPORT_SYMBOL(net_enable_timestamp);
1826
1827void net_disable_timestamp(void)
1828{
1829#ifdef HAVE_JUMP_LABEL
1830        int wanted;
1831
1832        while (1) {
1833                wanted = atomic_read(&netstamp_wanted);
1834                if (wanted <= 1)
1835                        break;
1836                if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1837                        return;
1838        }
1839        atomic_dec(&netstamp_needed_deferred);
1840        schedule_work(&netstamp_work);
1841#else
1842        static_branch_dec(&netstamp_needed_key);
1843#endif
1844}
1845EXPORT_SYMBOL(net_disable_timestamp);
1846
1847static inline void net_timestamp_set(struct sk_buff *skb)
1848{
1849        skb->tstamp = 0;
1850        if (static_branch_unlikely(&netstamp_needed_key))
1851                __net_timestamp(skb);
1852}
1853
1854#define net_timestamp_check(COND, SKB)                          \
1855        if (static_branch_unlikely(&netstamp_needed_key)) {     \
1856                if ((COND) && !(SKB)->tstamp)                   \
1857                        __net_timestamp(SKB);                   \
1858        }                                                       \
1859
1860bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1861{
1862        unsigned int len;
1863
1864        if (!(dev->flags & IFF_UP))
1865                return false;
1866
1867        len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1868        if (skb->len <= len)
1869                return true;
1870
1871        /* if TSO is enabled, we don't care about the length as the packet
1872         * could be forwarded without being segmented before
1873         */
1874        if (skb_is_gso(skb))
1875                return true;
1876
1877        return false;
1878}
1879EXPORT_SYMBOL_GPL(is_skb_forwardable);
1880
1881int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1882{
1883        int ret = ____dev_forward_skb(dev, skb);
1884
1885        if (likely(!ret)) {
1886                skb->protocol = eth_type_trans(skb, dev);
1887                skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1888        }
1889
1890        return ret;
1891}
1892EXPORT_SYMBOL_GPL(__dev_forward_skb);
1893
1894/**
1895 * dev_forward_skb - loopback an skb to another netif
1896 *
1897 * @dev: destination network device
1898 * @skb: buffer to forward
1899 *
1900 * return values:
1901 *      NET_RX_SUCCESS  (no congestion)
1902 *      NET_RX_DROP     (packet was dropped, but freed)
1903 *
1904 * dev_forward_skb can be used for injecting an skb from the
1905 * start_xmit function of one device into the receive queue
1906 * of another device.
1907 *
1908 * The receiving device may be in another namespace, so
1909 * we have to clear all information in the skb that could
1910 * impact namespace isolation.
1911 */
1912int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1913{
1914        return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1915}
1916EXPORT_SYMBOL_GPL(dev_forward_skb);
1917
1918static inline int deliver_skb(struct sk_buff *skb,
1919                              struct packet_type *pt_prev,
1920                              struct net_device *orig_dev)
1921{
1922        if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1923                return -ENOMEM;
1924        refcount_inc(&skb->users);
1925        return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1926}
1927
1928static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1929                                          struct packet_type **pt,
1930                                          struct net_device *orig_dev,
1931                                          __be16 type,
1932                                          struct list_head *ptype_list)
1933{
1934        struct packet_type *ptype, *pt_prev = *pt;
1935
1936        list_for_each_entry_rcu(ptype, ptype_list, list) {
1937                if (ptype->type != type)
1938                        continue;
1939                if (pt_prev)
1940                        deliver_skb(skb, pt_prev, orig_dev);
1941                pt_prev = ptype;
1942        }
1943        *pt = pt_prev;
1944}
1945
1946static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1947{
1948        if (!ptype->af_packet_priv || !skb->sk)
1949                return false;
1950
1951        if (ptype->id_match)
1952                return ptype->id_match(ptype, skb->sk);
1953        else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1954                return true;
1955
1956        return false;
1957}
1958
1959/*
1960 *      Support routine. Sends outgoing frames to any network
1961 *      taps currently in use.
1962 */
1963
1964void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1965{
1966        struct packet_type *ptype;
1967        struct sk_buff *skb2 = NULL;
1968        struct packet_type *pt_prev = NULL;
1969        struct list_head *ptype_list = &ptype_all;
1970
1971        rcu_read_lock();
1972again:
1973        list_for_each_entry_rcu(ptype, ptype_list, list) {
1974                /* Never send packets back to the socket
1975                 * they originated from - MvS (miquels@drinkel.ow.org)
1976                 */
1977                if (skb_loop_sk(ptype, skb))
1978                        continue;
1979
1980                if (pt_prev) {
1981                        deliver_skb(skb2, pt_prev, skb->dev);
1982                        pt_prev = ptype;
1983                        continue;
1984                }
1985
1986                /* need to clone skb, done only once */
1987                skb2 = skb_clone(skb, GFP_ATOMIC);
1988                if (!skb2)
1989                        goto out_unlock;
1990
1991                net_timestamp_set(skb2);
1992
1993                /* skb->nh should be correctly
1994                 * set by sender, so that the second statement is
1995                 * just protection against buggy protocols.
1996                 */
1997                skb_reset_mac_header(skb2);
1998
1999                if (skb_network_header(skb2) < skb2->data ||
2000                    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2001                        net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2002                                             ntohs(skb2->protocol),
2003                                             dev->name);
2004                        skb_reset_network_header(skb2);
2005                }
2006
2007                skb2->transport_header = skb2->network_header;
2008                skb2->pkt_type = PACKET_OUTGOING;
2009                pt_prev = ptype;
2010        }
2011
2012        if (ptype_list == &ptype_all) {
2013                ptype_list = &dev->ptype_all;
2014                goto again;
2015        }
2016out_unlock:
2017        if (pt_prev) {
2018                if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2019                        pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2020                else
2021                        kfree_skb(skb2);
2022        }
2023        rcu_read_unlock();
2024}
2025EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2026
2027/**
2028 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2029 * @dev: Network device
2030 * @txq: number of queues available
2031 *
2032 * If real_num_tx_queues is changed the tc mappings may no longer be
2033 * valid. To resolve this verify the tc mapping remains valid and if
2034 * not NULL the mapping. With no priorities mapping to this
2035 * offset/count pair it will no longer be used. In the worst case TC0
2036 * is invalid nothing can be done so disable priority mappings. If is
2037 * expected that drivers will fix this mapping if they can before
2038 * calling netif_set_real_num_tx_queues.
2039 */
2040static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2041{
2042        int i;
2043        struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2044
2045        /* If TC0 is invalidated disable TC mapping */
2046        if (tc->offset + tc->count > txq) {
2047                pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2048                dev->num_tc = 0;
2049                return;
2050        }
2051
2052        /* Invalidated prio to tc mappings set to TC0 */
2053        for (i = 1; i < TC_BITMASK + 1; i++) {
2054                int q = netdev_get_prio_tc_map(dev, i);
2055
2056                tc = &dev->tc_to_txq[q];
2057                if (tc->offset + tc->count > txq) {
2058                        pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2059                                i, q);
2060                        netdev_set_prio_tc_map(dev, i, 0);
2061                }
2062        }
2063}
2064
2065int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2066{
2067        if (dev->num_tc) {
2068                struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2069                int i;
2070
2071                for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2072                        if ((txq - tc->offset) < tc->count)
2073                                return i;
2074                }
2075
2076                return -1;
2077        }
2078
2079        return 0;
2080}
2081EXPORT_SYMBOL(netdev_txq_to_tc);
2082
2083#ifdef CONFIG_XPS
2084static DEFINE_MUTEX(xps_map_mutex);
2085#define xmap_dereference(P)             \
2086        rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2087
2088static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2089                             int tci, u16 index)
2090{
2091        struct xps_map *map = NULL;
2092        int pos;
2093
2094        if (dev_maps)
2095                map = xmap_dereference(dev_maps->cpu_map[tci]);
2096        if (!map)
2097                return false;
2098
2099        for (pos = map->len; pos--;) {
2100                if (map->queues[pos] != index)
2101                        continue;
2102
2103                if (map->len > 1) {
2104                        map->queues[pos] = map->queues[--map->len];
2105                        break;
2106                }
2107
2108                RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2109                kfree_rcu(map, rcu);
2110                return false;
2111        }
2112
2113        return true;
2114}
2115
2116static bool remove_xps_queue_cpu(struct net_device *dev,
2117                                 struct xps_dev_maps *dev_maps,
2118                                 int cpu, u16 offset, u16 count)
2119{
2120        int num_tc = dev->num_tc ? : 1;
2121        bool active = false;
2122        int tci;
2123
2124        for (tci = cpu * num_tc; num_tc--; tci++) {
2125                int i, j;
2126
2127                for (i = count, j = offset; i--; j++) {
2128                        if (!remove_xps_queue(dev_maps, tci, j))
2129                                break;
2130                }
2131
2132                active |= i < 0;
2133        }
2134
2135        return active;
2136}
2137
2138static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2139                                   u16 count)
2140{
2141        struct xps_dev_maps *dev_maps;
2142        int cpu, i;
2143        bool active = false;
2144
2145        mutex_lock(&xps_map_mutex);
2146        dev_maps = xmap_dereference(dev->xps_maps);
2147
2148        if (!dev_maps)
2149                goto out_no_maps;
2150
2151        for_each_possible_cpu(cpu)
2152                active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2153                                               offset, count);
2154
2155        if (!active) {
2156                RCU_INIT_POINTER(dev->xps_maps, NULL);
2157                kfree_rcu(dev_maps, rcu);
2158        }
2159
2160        for (i = offset + (count - 1); count--; i--)
2161                netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2162                                             NUMA_NO_NODE);
2163
2164out_no_maps:
2165        mutex_unlock(&xps_map_mutex);
2166}
2167
2168static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2169{
2170        netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2171}
2172
2173static struct xps_map *expand_xps_map(struct xps_map *map,
2174                                      int cpu, u16 index)
2175{
2176        struct xps_map *new_map;
2177        int alloc_len = XPS_MIN_MAP_ALLOC;
2178        int i, pos;
2179
2180        for (pos = 0; map && pos < map->len; pos++) {
2181                if (map->queues[pos] != index)
2182                        continue;
2183                return map;
2184        }
2185
2186        /* Need to add queue to this CPU's existing map */
2187        if (map) {
2188                if (pos < map->alloc_len)
2189                        return map;
2190
2191                alloc_len = map->alloc_len * 2;
2192        }
2193
2194        /* Need to allocate new map to store queue on this CPU's map */
2195        new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2196                               cpu_to_node(cpu));
2197        if (!new_map)
2198                return NULL;
2199
2200        for (i = 0; i < pos; i++)
2201                new_map->queues[i] = map->queues[i];
2202        new_map->alloc_len = alloc_len;
2203        new_map->len = pos;
2204
2205        return new_map;
2206}
2207
2208int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2209                        u16 index)
2210{
2211        struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2212        int i, cpu, tci, numa_node_id = -2;
2213        int maps_sz, num_tc = 1, tc = 0;
2214        struct xps_map *map, *new_map;
2215        bool active = false;
2216
2217        if (dev->num_tc) {
2218                num_tc = dev->num_tc;
2219                tc = netdev_txq_to_tc(dev, index);
2220                if (tc < 0)
2221                        return -EINVAL;
2222        }
2223
2224        maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2225        if (maps_sz < L1_CACHE_BYTES)
2226                maps_sz = L1_CACHE_BYTES;
2227
2228        mutex_lock(&xps_map_mutex);
2229
2230        dev_maps = xmap_dereference(dev->xps_maps);
2231
2232        /* allocate memory for queue storage */
2233        for_each_cpu_and(cpu, cpu_online_mask, mask) {
2234                if (!new_dev_maps)
2235                        new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2236                if (!new_dev_maps) {
2237                        mutex_unlock(&xps_map_mutex);
2238                        return -ENOMEM;
2239                }
2240
2241                tci = cpu * num_tc + tc;
2242                map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2243                                 NULL;
2244
2245                map = expand_xps_map(map, cpu, index);
2246                if (!map)
2247                        goto error;
2248
2249                RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2250        }
2251
2252        if (!new_dev_maps)
2253                goto out_no_new_maps;
2254
2255        for_each_possible_cpu(cpu) {
2256                /* copy maps belonging to foreign traffic classes */
2257                for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2258                        /* fill in the new device map from the old device map */
2259                        map = xmap_dereference(dev_maps->cpu_map[tci]);
2260                        RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2261                }
2262
2263                /* We need to explicitly update tci as prevous loop
2264                 * could break out early if dev_maps is NULL.
2265                 */
2266                tci = cpu * num_tc + tc;
2267
2268                if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2269                        /* add queue to CPU maps */
2270                        int pos = 0;
2271
2272                        map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2273                        while ((pos < map->len) && (map->queues[pos] != index))
2274                                pos++;
2275
2276                        if (pos == map->len)
2277                                map->queues[map->len++] = index;
2278#ifdef CONFIG_NUMA
2279                        if (numa_node_id == -2)
2280                                numa_node_id = cpu_to_node(cpu);
2281                        else if (numa_node_id != cpu_to_node(cpu))
2282                                numa_node_id = -1;
2283#endif
2284                } else if (dev_maps) {
2285                        /* fill in the new device map from the old device map */
2286                        map = xmap_dereference(dev_maps->cpu_map[tci]);
2287                        RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2288                }
2289
2290                /* copy maps belonging to foreign traffic classes */
2291                for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2292                        /* fill in the new device map from the old device map */
2293                        map = xmap_dereference(dev_maps->cpu_map[tci]);
2294                        RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2295                }
2296        }
2297
2298        rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2299
2300        /* Cleanup old maps */
2301        if (!dev_maps)
2302                goto out_no_old_maps;
2303
2304        for_each_possible_cpu(cpu) {
2305                for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2306                        new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2307                        map = xmap_dereference(dev_maps->cpu_map[tci]);
2308                        if (map && map != new_map)
2309                                kfree_rcu(map, rcu);
2310                }
2311        }
2312
2313        kfree_rcu(dev_maps, rcu);
2314
2315out_no_old_maps:
2316        dev_maps = new_dev_maps;
2317        active = true;
2318
2319out_no_new_maps:
2320        /* update Tx queue numa node */
2321        netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2322                                     (numa_node_id >= 0) ? numa_node_id :
2323                                     NUMA_NO_NODE);
2324
2325        if (!dev_maps)
2326                goto out_no_maps;
2327
2328        /* removes queue from unused CPUs */
2329        for_each_possible_cpu(cpu) {
2330                for (i = tc, tci = cpu * num_tc; i--; tci++)
2331                        active |= remove_xps_queue(dev_maps, tci, index);
2332                if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2333                        active |= remove_xps_queue(dev_maps, tci, index);
2334                for (i = num_tc - tc, tci++; --i; tci++)
2335                        active |= remove_xps_queue(dev_maps, tci, index);
2336        }
2337
2338        /* free map if not active */
2339        if (!active) {
2340                RCU_INIT_POINTER(dev->xps_maps, NULL);
2341                kfree_rcu(dev_maps, rcu);
2342        }
2343
2344out_no_maps:
2345        mutex_unlock(&xps_map_mutex);
2346
2347        return 0;
2348error:
2349        /* remove any maps that we added */
2350        for_each_possible_cpu(cpu) {
2351                for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2352                        new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2353                        map = dev_maps ?
2354                              xmap_dereference(dev_maps->cpu_map[tci]) :
2355                              NULL;
2356                        if (new_map && new_map != map)
2357                                kfree(new_map);
2358                }
2359        }
2360
2361        mutex_unlock(&xps_map_mutex);
2362
2363        kfree(new_dev_maps);
2364        return -ENOMEM;
2365}
2366EXPORT_SYMBOL(netif_set_xps_queue);
2367
2368#endif
2369void netdev_reset_tc(struct net_device *dev)
2370{
2371#ifdef CONFIG_XPS
2372        netif_reset_xps_queues_gt(dev, 0);
2373#endif
2374        dev->num_tc = 0;
2375        memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2376        memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2377}
2378EXPORT_SYMBOL(netdev_reset_tc);
2379
2380int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2381{
2382        if (tc >= dev->num_tc)
2383                return -EINVAL;
2384
2385#ifdef CONFIG_XPS
2386        netif_reset_xps_queues(dev, offset, count);
2387#endif
2388        dev->tc_to_txq[tc].count = count;
2389        dev->tc_to_txq[tc].offset = offset;
2390        return 0;
2391}
2392EXPORT_SYMBOL(netdev_set_tc_queue);
2393
2394int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2395{
2396        if (num_tc > TC_MAX_QUEUE)
2397                return -EINVAL;
2398
2399#ifdef CONFIG_XPS
2400        netif_reset_xps_queues_gt(dev, 0);
2401#endif
2402        dev->num_tc = num_tc;
2403        return 0;
2404}
2405EXPORT_SYMBOL(netdev_set_num_tc);
2406
2407/*
2408 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2409 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2410 */
2411int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2412{
2413        bool disabling;
2414        int rc;
2415
2416        disabling = txq < dev->real_num_tx_queues;
2417
2418        if (txq < 1 || txq > dev->num_tx_queues)
2419                return -EINVAL;
2420
2421        if (dev->reg_state == NETREG_REGISTERED ||
2422            dev->reg_state == NETREG_UNREGISTERING) {
2423                ASSERT_RTNL();
2424
2425                rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2426                                                  txq);
2427                if (rc)
2428                        return rc;
2429
2430                if (dev->num_tc)
2431                        netif_setup_tc(dev, txq);
2432
2433                dev->real_num_tx_queues = txq;
2434
2435                if (disabling) {
2436                        synchronize_net();
2437                        qdisc_reset_all_tx_gt(dev, txq);
2438#ifdef CONFIG_XPS
2439                        netif_reset_xps_queues_gt(dev, txq);
2440#endif
2441                }
2442        } else {
2443                dev->real_num_tx_queues = txq;
2444        }
2445
2446        return 0;
2447}
2448EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2449
2450#ifdef CONFIG_SYSFS
2451/**
2452 *      netif_set_real_num_rx_queues - set actual number of RX queues used
2453 *      @dev: Network device
2454 *      @rxq: Actual number of RX queues
2455 *
2456 *      This must be called either with the rtnl_lock held or before
2457 *      registration of the net device.  Returns 0 on success, or a
2458 *      negative error code.  If called before registration, it always
2459 *      succeeds.
2460 */
2461int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2462{
2463        int rc;
2464
2465        if (rxq < 1 || rxq > dev->num_rx_queues)
2466                return -EINVAL;
2467
2468        if (dev->reg_state == NETREG_REGISTERED) {
2469                ASSERT_RTNL();
2470
2471                rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2472                                                  rxq);
2473                if (rc)
2474                        return rc;
2475        }
2476
2477        dev->real_num_rx_queues = rxq;
2478        return 0;
2479}
2480EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2481#endif
2482
2483/**
2484 * netif_get_num_default_rss_queues - default number of RSS queues
2485 *
2486 * This routine should set an upper limit on the number of RSS queues
2487 * used by default by multiqueue devices.
2488 */
2489int netif_get_num_default_rss_queues(void)
2490{
2491        return is_kdump_kernel() ?
2492                1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2493}
2494EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2495
2496static void __netif_reschedule(struct Qdisc *q)
2497{
2498        struct softnet_data *sd;
2499        unsigned long flags;
2500
2501        local_irq_save(flags);
2502        sd = this_cpu_ptr(&softnet_data);
2503        q->next_sched = NULL;
2504        *sd->output_queue_tailp = q;
2505        sd->output_queue_tailp = &q->next_sched;
2506        raise_softirq_irqoff(NET_TX_SOFTIRQ);
2507        local_irq_restore(flags);
2508}
2509
2510void __netif_schedule(struct Qdisc *q)
2511{
2512        if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2513                __netif_reschedule(q);
2514}
2515EXPORT_SYMBOL(__netif_schedule);
2516
2517struct dev_kfree_skb_cb {
2518        enum skb_free_reason reason;
2519};
2520
2521static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2522{
2523        return (struct dev_kfree_skb_cb *)skb->cb;
2524}
2525
2526void netif_schedule_queue(struct netdev_queue *txq)
2527{
2528        rcu_read_lock();
2529        if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2530                struct Qdisc *q = rcu_dereference(txq->qdisc);
2531
2532                __netif_schedule(q);
2533        }
2534        rcu_read_unlock();
2535}
2536EXPORT_SYMBOL(netif_schedule_queue);
2537
2538void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2539{
2540        if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2541                struct Qdisc *q;
2542
2543                rcu_read_lock();
2544                q = rcu_dereference(dev_queue->qdisc);
2545                __netif_schedule(q);
2546                rcu_read_unlock();
2547        }
2548}
2549EXPORT_SYMBOL(netif_tx_wake_queue);
2550
2551void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2552{
2553        unsigned long flags;
2554
2555        if (unlikely(!skb))
2556                return;
2557
2558        if (likely(refcount_read(&skb->users) == 1)) {
2559                smp_rmb();
2560                refcount_set(&skb->users, 0);
2561        } else if (likely(!refcount_dec_and_test(&skb->users))) {
2562                return;
2563        }
2564        get_kfree_skb_cb(skb)->reason = reason;
2565        local_irq_save(flags);
2566        skb->next = __this_cpu_read(softnet_data.completion_queue);
2567        __this_cpu_write(softnet_data.completion_queue, skb);
2568        raise_softirq_irqoff(NET_TX_SOFTIRQ);
2569        local_irq_restore(flags);
2570}
2571EXPORT_SYMBOL(__dev_kfree_skb_irq);
2572
2573void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2574{
2575        if (in_irq() || irqs_disabled())
2576                __dev_kfree_skb_irq(skb, reason);
2577        else
2578                dev_kfree_skb(skb);
2579}
2580EXPORT_SYMBOL(__dev_kfree_skb_any);
2581
2582
2583/**
2584 * netif_device_detach - mark device as removed
2585 * @dev: network device
2586 *
2587 * Mark device as removed from system and therefore no longer available.
2588 */
2589void netif_device_detach(struct net_device *dev)
2590{
2591        if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2592            netif_running(dev)) {
2593                netif_tx_stop_all_queues(dev);
2594        }
2595}
2596EXPORT_SYMBOL(netif_device_detach);
2597
2598/**
2599 * netif_device_attach - mark device as attached
2600 * @dev: network device
2601 *
2602 * Mark device as attached from system and restart if needed.
2603 */
2604void netif_device_attach(struct net_device *dev)
2605{
2606        if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2607            netif_running(dev)) {
2608                netif_tx_wake_all_queues(dev);
2609                __netdev_watchdog_up(dev);
2610        }
2611}
2612EXPORT_SYMBOL(netif_device_attach);
2613
2614/*
2615 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2616 * to be used as a distribution range.
2617 */
2618static u16 skb_tx_hash(const struct net_device *dev, struct sk_buff *skb)
2619{
2620        u32 hash;
2621        u16 qoffset = 0;
2622        u16 qcount = dev->real_num_tx_queues;
2623
2624        if (skb_rx_queue_recorded(skb)) {
2625                hash = skb_get_rx_queue(skb);
2626                while (unlikely(hash >= qcount))
2627                        hash -= qcount;
2628                return hash;
2629        }
2630
2631        if (dev->num_tc) {
2632                u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2633
2634                qoffset = dev->tc_to_txq[tc].offset;
2635                qcount = dev->tc_to_txq[tc].count;
2636        }
2637
2638        return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2639}
2640
2641static void skb_warn_bad_offload(const struct sk_buff *skb)
2642{
2643        static const netdev_features_t null_features;
2644        struct net_device *dev = skb->dev;
2645        const char *name = "";
2646
2647        if (!net_ratelimit())
2648                return;
2649
2650        if (dev) {
2651                if (dev->dev.parent)
2652                        name = dev_driver_string(dev->dev.parent);
2653                else
2654                        name = netdev_name(dev);
2655        }
2656        WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2657             "gso_type=%d ip_summed=%d\n",
2658             name, dev ? &dev->features : &null_features,
2659             skb->sk ? &skb->sk->sk_route_caps : &null_features,
2660             skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2661             skb_shinfo(skb)->gso_type, skb->ip_summed);
2662}
2663
2664/*
2665 * Invalidate hardware checksum when packet is to be mangled, and
2666 * complete checksum manually on outgoing path.
2667 */
2668int skb_checksum_help(struct sk_buff *skb)
2669{
2670        __wsum csum;
2671        int ret = 0, offset;
2672
2673        if (skb->ip_summed == CHECKSUM_COMPLETE)
2674                goto out_set_summed;
2675
2676        if (unlikely(skb_shinfo(skb)->gso_size)) {
2677                skb_warn_bad_offload(skb);
2678                return -EINVAL;
2679        }
2680
2681        /* Before computing a checksum, we should make sure no frag could
2682         * be modified by an external entity : checksum could be wrong.
2683         */
2684        if (skb_has_shared_frag(skb)) {
2685                ret = __skb_linearize(skb);
2686                if (ret)
2687                        goto out;
2688        }
2689
2690        offset = skb_checksum_start_offset(skb);
2691        BUG_ON(offset >= skb_headlen(skb));
2692        csum = skb_checksum(skb, offset, skb->len - offset, 0);
2693
2694        offset += skb->csum_offset;
2695        BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2696
2697        if (skb_cloned(skb) &&
2698            !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2699                ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2700                if (ret)
2701                        goto out;
2702        }
2703
2704        *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2705out_set_summed:
2706        skb->ip_summed = CHECKSUM_NONE;
2707out:
2708        return ret;
2709}
2710EXPORT_SYMBOL(skb_checksum_help);
2711
2712int skb_crc32c_csum_help(struct sk_buff *skb)
2713{
2714        __le32 crc32c_csum;
2715        int ret = 0, offset, start;
2716
2717        if (skb->ip_summed != CHECKSUM_PARTIAL)
2718                goto out;
2719
2720        if (unlikely(skb_is_gso(skb)))
2721                goto out;
2722
2723        /* Before computing a checksum, we should make sure no frag could
2724         * be modified by an external entity : checksum could be wrong.
2725         */
2726        if (unlikely(skb_has_shared_frag(skb))) {
2727                ret = __skb_linearize(skb);
2728                if (ret)
2729                        goto out;
2730        }
2731        start = skb_checksum_start_offset(skb);
2732        offset = start + offsetof(struct sctphdr, checksum);
2733        if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2734                ret = -EINVAL;
2735                goto out;
2736        }
2737        if (skb_cloned(skb) &&
2738            !skb_clone_writable(skb, offset + sizeof(__le32))) {
2739                ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2740                if (ret)
2741                        goto out;
2742        }
2743        crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2744                                                  skb->len - start, ~(__u32)0,
2745                                                  crc32c_csum_stub));
2746        *(__le32 *)(skb->data + offset) = crc32c_csum;
2747        skb->ip_summed = CHECKSUM_NONE;
2748        skb->csum_not_inet = 0;
2749out:
2750        return ret;
2751}
2752
2753__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2754{
2755        __be16 type = skb->protocol;
2756
2757        /* Tunnel gso handlers can set protocol to ethernet. */
2758        if (type == htons(ETH_P_TEB)) {
2759                struct ethhdr *eth;
2760
2761                if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2762                        return 0;
2763
2764                eth = (struct ethhdr *)skb->data;
2765                type = eth->h_proto;
2766        }
2767
2768        return __vlan_get_protocol(skb, type, depth);
2769}
2770
2771/**
2772 *      skb_mac_gso_segment - mac layer segmentation handler.
2773 *      @skb: buffer to segment
2774 *      @features: features for the output path (see dev->features)
2775 */
2776struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2777                                    netdev_features_t features)
2778{
2779        struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2780        struct packet_offload *ptype;
2781        int vlan_depth = skb->mac_len;
2782        __be16 type = skb_network_protocol(skb, &vlan_depth);
2783
2784        if (unlikely(!type))
2785                return ERR_PTR(-EINVAL);
2786
2787        __skb_pull(skb, vlan_depth);
2788
2789        rcu_read_lock();
2790        list_for_each_entry_rcu(ptype, &offload_base, list) {
2791                if (ptype->type == type && ptype->callbacks.gso_segment) {
2792                        segs = ptype->callbacks.gso_segment(skb, features);
2793                        break;
2794                }
2795        }
2796        rcu_read_unlock();
2797
2798        __skb_push(skb, skb->data - skb_mac_header(skb));
2799
2800        return segs;
2801}
2802EXPORT_SYMBOL(skb_mac_gso_segment);
2803
2804
2805/* openvswitch calls this on rx path, so we need a different check.
2806 */
2807static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2808{
2809        if (tx_path)
2810                return skb->ip_summed != CHECKSUM_PARTIAL &&
2811                       skb->ip_summed != CHECKSUM_UNNECESSARY;
2812
2813        return skb->ip_summed == CHECKSUM_NONE;
2814}
2815
2816/**
2817 *      __skb_gso_segment - Perform segmentation on skb.
2818 *      @skb: buffer to segment
2819 *      @features: features for the output path (see dev->features)
2820 *      @tx_path: whether it is called in TX path
2821 *
2822 *      This function segments the given skb and returns a list of segments.
2823 *
2824 *      It may return NULL if the skb requires no segmentation.  This is
2825 *      only possible when GSO is used for verifying header integrity.
2826 *
2827 *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2828 */
2829struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2830                                  netdev_features_t features, bool tx_path)
2831{
2832        struct sk_buff *segs;
2833
2834        if (unlikely(skb_needs_check(skb, tx_path))) {
2835                int err;
2836
2837                /* We're going to init ->check field in TCP or UDP header */
2838                err = skb_cow_head(skb, 0);
2839                if (err < 0)
2840                        return ERR_PTR(err);
2841        }
2842
2843        /* Only report GSO partial support if it will enable us to
2844         * support segmentation on this frame without needing additional
2845         * work.
2846         */
2847        if (features & NETIF_F_GSO_PARTIAL) {
2848                netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2849                struct net_device *dev = skb->dev;
2850
2851                partial_features |= dev->features & dev->gso_partial_features;
2852                if (!skb_gso_ok(skb, features | partial_features))
2853                        features &= ~NETIF_F_GSO_PARTIAL;
2854        }
2855
2856        BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2857                     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2858
2859        SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2860        SKB_GSO_CB(skb)->encap_level = 0;
2861
2862        skb_reset_mac_header(skb);
2863        skb_reset_mac_len(skb);
2864
2865        segs = skb_mac_gso_segment(skb, features);
2866
2867        if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2868                skb_warn_bad_offload(skb);
2869
2870        return segs;
2871}
2872EXPORT_SYMBOL(__skb_gso_segment);
2873
2874/* Take action when hardware reception checksum errors are detected. */
2875#ifdef CONFIG_BUG
2876void netdev_rx_csum_fault(struct net_device *dev)
2877{
2878        if (net_ratelimit()) {
2879                pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2880                dump_stack();
2881        }
2882}
2883EXPORT_SYMBOL(netdev_rx_csum_fault);
2884#endif
2885
2886/* XXX: check that highmem exists at all on the given machine. */
2887static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2888{
2889#ifdef CONFIG_HIGHMEM
2890        int i;
2891
2892        if (!(dev->features & NETIF_F_HIGHDMA)) {
2893                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2894                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2895
2896                        if (PageHighMem(skb_frag_page(frag)))
2897                                return 1;
2898                }
2899        }
2900#endif
2901        return 0;
2902}
2903
2904/* If MPLS offload request, verify we are testing hardware MPLS features
2905 * instead of standard features for the netdev.
2906 */
2907#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2908static netdev_features_t net_mpls_features(struct sk_buff *skb,
2909                                           netdev_features_t features,
2910                                           __be16 type)
2911{
2912        if (eth_p_mpls(type))
2913                features &= skb->dev->mpls_features;
2914
2915        return features;
2916}
2917#else
2918static netdev_features_t net_mpls_features(struct sk_buff *skb,
2919                                           netdev_features_t features,
2920                                           __be16 type)
2921{
2922        return features;
2923}
2924#endif
2925
2926static netdev_features_t harmonize_features(struct sk_buff *skb,
2927        netdev_features_t features)
2928{
2929        int tmp;
2930        __be16 type;
2931
2932        type = skb_network_protocol(skb, &tmp);
2933        features = net_mpls_features(skb, features, type);
2934
2935        if (skb->ip_summed != CHECKSUM_NONE &&
2936            !can_checksum_protocol(features, type)) {
2937                features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2938        }
2939        if (illegal_highdma(skb->dev, skb))
2940                features &= ~NETIF_F_SG;
2941
2942        return features;
2943}
2944
2945netdev_features_t passthru_features_check(struct sk_buff *skb,
2946                                          struct net_device *dev,
2947                                          netdev_features_t features)
2948{
2949        return features;
2950}
2951EXPORT_SYMBOL(passthru_features_check);
2952
2953static netdev_features_t dflt_features_check(struct sk_buff *skb,
2954                                             struct net_device *dev,
2955                                             netdev_features_t features)
2956{
2957        return vlan_features_check(skb, features);
2958}
2959
2960static netdev_features_t gso_features_check(const struct sk_buff *skb,
2961                                            struct net_device *dev,
2962                                            netdev_features_t features)
2963{
2964        u16 gso_segs = skb_shinfo(skb)->gso_segs;
2965
2966        if (gso_segs > dev->gso_max_segs)
2967                return features & ~NETIF_F_GSO_MASK;
2968
2969        /* Support for GSO partial features requires software
2970         * intervention before we can actually process the packets
2971         * so we need to strip support for any partial features now
2972         * and we can pull them back in after we have partially
2973         * segmented the frame.
2974         */
2975        if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2976                features &= ~dev->gso_partial_features;
2977
2978        /* Make sure to clear the IPv4 ID mangling feature if the
2979         * IPv4 header has the potential to be fragmented.
2980         */
2981        if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2982                struct iphdr *iph = skb->encapsulation ?
2983                                    inner_ip_hdr(skb) : ip_hdr(skb);
2984
2985                if (!(iph->frag_off & htons(IP_DF)))
2986                        features &= ~NETIF_F_TSO_MANGLEID;
2987        }
2988
2989        return features;
2990}
2991
2992netdev_features_t netif_skb_features(struct sk_buff *skb)
2993{
2994        struct net_device *dev = skb->dev;
2995        netdev_features_t features = dev->features;
2996
2997        if (skb_is_gso(skb))
2998                features = gso_features_check(skb, dev, features);
2999
3000        /* If encapsulation offload request, verify we are testing
3001         * hardware encapsulation features instead of standard
3002         * features for the netdev
3003         */
3004        if (skb->encapsulation)
3005                features &= dev->hw_enc_features;
3006
3007        if (skb_vlan_tagged(skb))
3008                features = netdev_intersect_features(features,
3009                                                     dev->vlan_features |
3010                                                     NETIF_F_HW_VLAN_CTAG_TX |
3011                                                     NETIF_F_HW_VLAN_STAG_TX);
3012
3013        if (dev->netdev_ops->ndo_features_check)
3014                features &= dev->netdev_ops->ndo_features_check(skb, dev,
3015                                                                features);
3016        else
3017                features &= dflt_features_check(skb, dev, features);
3018
3019        return harmonize_features(skb, features);
3020}
3021EXPORT_SYMBOL(netif_skb_features);
3022
3023static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3024                    struct netdev_queue *txq, bool more)
3025{
3026        unsigned int len;
3027        int rc;
3028
3029        if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3030                dev_queue_xmit_nit(skb, dev);
3031
3032        len = skb->len;
3033        trace_net_dev_start_xmit(skb, dev);
3034        rc = netdev_start_xmit(skb, dev, txq, more);
3035        trace_net_dev_xmit(skb, rc, dev, len);
3036
3037        return rc;
3038}
3039
3040struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3041                                    struct netdev_queue *txq, int *ret)
3042{
3043        struct sk_buff *skb = first;
3044        int rc = NETDEV_TX_OK;
3045
3046        while (skb) {
3047                struct sk_buff *next = skb->next;
3048
3049                skb->next = NULL;
3050                rc = xmit_one(skb, dev, txq, next != NULL);
3051                if (unlikely(!dev_xmit_complete(rc))) {
3052                        skb->next = next;
3053                        goto out;
3054                }
3055
3056                skb = next;
3057                if (netif_xmit_stopped(txq) && skb) {
3058                        rc = NETDEV_TX_BUSY;
3059                        break;
3060                }
3061        }
3062
3063out:
3064        *ret = rc;
3065        return skb;
3066}
3067
3068static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3069                                          netdev_features_t features)
3070{
3071        if (skb_vlan_tag_present(skb) &&
3072            !vlan_hw_offload_capable(features, skb->vlan_proto))
3073                skb = __vlan_hwaccel_push_inside(skb);
3074        return skb;
3075}
3076
3077int skb_csum_hwoffload_help(struct sk_buff *skb,
3078                            const netdev_features_t features)
3079{
3080        if (unlikely(skb->csum_not_inet))
3081                return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3082                        skb_crc32c_csum_help(skb);
3083
3084        return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3085}
3086EXPORT_SYMBOL(skb_csum_hwoffload_help);
3087
3088static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3089{
3090        netdev_features_t features;
3091
3092        features = netif_skb_features(skb);
3093        skb = validate_xmit_vlan(skb, features);
3094        if (unlikely(!skb))
3095                goto out_null;
3096
3097        skb = sk_validate_xmit_skb(skb, dev);
3098        if (unlikely(!skb))
3099                goto out_null;
3100
3101        if (netif_needs_gso(skb, features)) {
3102                struct sk_buff *segs;
3103
3104                segs = skb_gso_segment(skb, features);
3105                if (IS_ERR(segs)) {
3106                        goto out_kfree_skb;
3107                } else if (segs) {
3108                        consume_skb(skb);
3109                        skb = segs;
3110                }
3111        } else {
3112                if (skb_needs_linearize(skb, features) &&
3113                    __skb_linearize(skb))
3114                        goto out_kfree_skb;
3115
3116                /* If packet is not checksummed and device does not
3117                 * support checksumming for this protocol, complete
3118                 * checksumming here.
3119                 */
3120                if (skb->ip_summed == CHECKSUM_PARTIAL) {
3121                        if (skb->encapsulation)
3122                                skb_set_inner_transport_header(skb,
3123                                                               skb_checksum_start_offset(skb));
3124                        else
3125                                skb_set_transport_header(skb,
3126                                                         skb_checksum_start_offset(skb));
3127                        if (skb_csum_hwoffload_help(skb, features))
3128                                goto out_kfree_skb;
3129                }
3130        }
3131
3132        skb = validate_xmit_xfrm(skb, features, again);
3133
3134        return skb;
3135
3136out_kfree_skb:
3137        kfree_skb(skb);
3138out_null:
3139        atomic_long_inc(&dev->tx_dropped);
3140        return NULL;
3141}
3142
3143struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3144{
3145        struct sk_buff *next, *head = NULL, *tail;
3146
3147        for (; skb != NULL; skb = next) {
3148                next = skb->next;
3149                skb->next = NULL;
3150
3151                /* in case skb wont be segmented, point to itself */
3152                skb->prev = skb;
3153
3154                skb = validate_xmit_skb(skb, dev, again);
3155                if (!skb)
3156                        continue;
3157
3158                if (!head)
3159                        head = skb;
3160                else
3161                        tail->next = skb;
3162                /* If skb was segmented, skb->prev points to
3163                 * the last segment. If not, it still contains skb.
3164                 */
3165                tail = skb->prev;
3166        }
3167        return head;
3168}
3169EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3170
3171static void qdisc_pkt_len_init(struct sk_buff *skb)
3172{
3173        const struct skb_shared_info *shinfo = skb_shinfo(skb);
3174
3175        qdisc_skb_cb(skb)->pkt_len = skb->len;
3176
3177        /* To get more precise estimation of bytes sent on wire,
3178         * we add to pkt_len the headers size of all segments
3179         */
3180        if (shinfo->gso_size)  {
3181                unsigned int hdr_len;
3182                u16 gso_segs = shinfo->gso_segs;
3183
3184                /* mac layer + network layer */
3185                hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3186
3187                /* + transport layer */
3188                if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3189                        const struct tcphdr *th;
3190                        struct tcphdr _tcphdr;
3191
3192                        th = skb_header_pointer(skb, skb_transport_offset(skb),
3193                                                sizeof(_tcphdr), &_tcphdr);
3194                        if (likely(th))
3195                                hdr_len += __tcp_hdrlen(th);
3196                } else {
3197                        struct udphdr _udphdr;
3198
3199                        if (skb_header_pointer(skb, skb_transport_offset(skb),
3200                                               sizeof(_udphdr), &_udphdr))
3201                                hdr_len += sizeof(struct udphdr);
3202                }
3203
3204                if (shinfo->gso_type & SKB_GSO_DODGY)
3205                        gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3206                                                shinfo->gso_size);
3207
3208                qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3209        }
3210}
3211
3212static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3213                                 struct net_device *dev,
3214                                 struct netdev_queue *txq)
3215{
3216        spinlock_t *root_lock = qdisc_lock(q);
3217        struct sk_buff *to_free = NULL;
3218        bool contended;
3219        int rc;
3220
3221        qdisc_calculate_pkt_len(skb, q);
3222
3223        if (q->flags & TCQ_F_NOLOCK) {
3224                if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3225                        __qdisc_drop(skb, &to_free);
3226                        rc = NET_XMIT_DROP;
3227                } else {
3228                        rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3229                        qdisc_run(q);
3230                }
3231
3232                if (unlikely(to_free))
3233                        kfree_skb_list(to_free);
3234                return rc;
3235        }
3236
3237        /*
3238         * Heuristic to force contended enqueues to serialize on a
3239         * separate lock before trying to get qdisc main lock.
3240         * This permits qdisc->running owner to get the lock more
3241         * often and dequeue packets faster.
3242         */
3243        contended = qdisc_is_running(q);
3244        if (unlikely(contended))
3245                spin_lock(&q->busylock);
3246
3247        spin_lock(root_lock);
3248        if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3249                __qdisc_drop(skb, &to_free);
3250                rc = NET_XMIT_DROP;
3251        } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3252                   qdisc_run_begin(q)) {
3253                /*
3254                 * This is a work-conserving queue; there are no old skbs
3255                 * waiting to be sent out; and the qdisc is not running -
3256                 * xmit the skb directly.
3257                 */
3258
3259                qdisc_bstats_update(q, skb);
3260
3261                if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3262                        if (unlikely(contended)) {
3263                                spin_unlock(&q->busylock);
3264                                contended = false;
3265                        }
3266                        __qdisc_run(q);
3267                }
3268
3269                qdisc_run_end(q);
3270                rc = NET_XMIT_SUCCESS;
3271        } else {
3272                rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3273                if (qdisc_run_begin(q)) {
3274                        if (unlikely(contended)) {
3275                                spin_unlock(&q->busylock);
3276                                contended = false;
3277                        }
3278                        __qdisc_run(q);
3279                        qdisc_run_end(q);
3280                }
3281        }
3282        spin_unlock(root_lock);
3283        if (unlikely(to_free))
3284                kfree_skb_list(to_free);
3285        if (unlikely(contended))
3286                spin_unlock(&q->busylock);
3287        return rc;
3288}
3289
3290#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3291static void skb_update_prio(struct sk_buff *skb)
3292{
3293        const struct netprio_map *map;
3294        const struct sock *sk;
3295        unsigned int prioidx;
3296
3297        if (skb->priority)
3298                return;
3299        map = rcu_dereference_bh(skb->dev->priomap);
3300        if (!map)
3301                return;
3302        sk = skb_to_full_sk(skb);
3303        if (!sk)
3304                return;
3305
3306        prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3307
3308        if (prioidx < map->priomap_len)
3309                skb->priority = map->priomap[prioidx];
3310}
3311#else
3312#define skb_update_prio(skb)
3313#endif
3314
3315DEFINE_PER_CPU(int, xmit_recursion);
3316EXPORT_SYMBOL(xmit_recursion);
3317
3318/**
3319 *      dev_loopback_xmit - loop back @skb
3320 *      @net: network namespace this loopback is happening in
3321 *      @sk:  sk needed to be a netfilter okfn
3322 *      @skb: buffer to transmit
3323 */
3324int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3325{
3326        skb_reset_mac_header(skb);
3327        __skb_pull(skb, skb_network_offset(skb));
3328        skb->pkt_type = PACKET_LOOPBACK;
3329        skb->ip_summed = CHECKSUM_UNNECESSARY;
3330        WARN_ON(!skb_dst(skb));
3331        skb_dst_force(skb);
3332        netif_rx_ni(skb);
3333        return 0;
3334}
3335EXPORT_SYMBOL(dev_loopback_xmit);
3336
3337#ifdef CONFIG_NET_EGRESS
3338static struct sk_buff *
3339sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3340{
3341        struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3342        struct tcf_result cl_res;
3343
3344        if (!miniq)
3345                return skb;
3346
3347        /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3348        mini_qdisc_bstats_cpu_update(miniq, skb);
3349
3350        switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3351        case TC_ACT_OK:
3352        case TC_ACT_RECLASSIFY:
3353                skb->tc_index = TC_H_MIN(cl_res.classid);
3354                break;
3355        case TC_ACT_SHOT:
3356                mini_qdisc_qstats_cpu_drop(miniq);
3357                *ret = NET_XMIT_DROP;
3358                kfree_skb(skb);
3359                return NULL;
3360        case TC_ACT_STOLEN:
3361        case TC_ACT_QUEUED:
3362        case TC_ACT_TRAP:
3363                *ret = NET_XMIT_SUCCESS;
3364                consume_skb(skb);
3365                return NULL;
3366        case TC_ACT_REDIRECT:
3367                /* No need to push/pop skb's mac_header here on egress! */
3368                skb_do_redirect(skb);
3369                *ret = NET_XMIT_SUCCESS;
3370                return NULL;
3371        default:
3372                break;
3373        }
3374
3375        return skb;
3376}
3377#endif /* CONFIG_NET_EGRESS */
3378
3379static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3380{
3381#ifdef CONFIG_XPS
3382        struct xps_dev_maps *dev_maps;
3383        struct xps_map *map;
3384        int queue_index = -1;
3385
3386        rcu_read_lock();
3387        dev_maps = rcu_dereference(dev->xps_maps);
3388        if (dev_maps) {
3389                unsigned int tci = skb->sender_cpu - 1;
3390
3391                if (dev->num_tc) {
3392                        tci *= dev->num_tc;
3393                        tci += netdev_get_prio_tc_map(dev, skb->priority);
3394                }
3395
3396                map = rcu_dereference(dev_maps->cpu_map[tci]);
3397                if (map) {
3398                        if (map->len == 1)
3399                                queue_index = map->queues[0];
3400                        else
3401                                queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3402                                                                           map->len)];
3403                        if (unlikely(queue_index >= dev->real_num_tx_queues))
3404                                queue_index = -1;
3405                }
3406        }
3407        rcu_read_unlock();
3408
3409        return queue_index;
3410#else
3411        return -1;
3412#endif
3413}
3414
3415static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3416{
3417        struct sock *sk = skb->sk;
3418        int queue_index = sk_tx_queue_get(sk);
3419
3420        if (queue_index < 0 || skb->ooo_okay ||
3421            queue_index >= dev->real_num_tx_queues) {
3422                int new_index = get_xps_queue(dev, skb);
3423
3424                if (new_index < 0)
3425                        new_index = skb_tx_hash(dev, skb);
3426
3427                if (queue_index != new_index && sk &&
3428                    sk_fullsock(sk) &&
3429                    rcu_access_pointer(sk->sk_dst_cache))
3430                        sk_tx_queue_set(sk, new_index);
3431
3432                queue_index = new_index;
3433        }
3434
3435        return queue_index;
3436}
3437
3438struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3439                                    struct sk_buff *skb,
3440                                    void *accel_priv)
3441{
3442        int queue_index = 0;
3443
3444#ifdef CONFIG_XPS
3445        u32 sender_cpu = skb->sender_cpu - 1;
3446
3447        if (sender_cpu >= (u32)NR_CPUS)
3448                skb->sender_cpu = raw_smp_processor_id() + 1;
3449#endif
3450
3451        if (dev->real_num_tx_queues != 1) {
3452                const struct net_device_ops *ops = dev->netdev_ops;
3453
3454                if (ops->ndo_select_queue)
3455                        queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3456                                                            __netdev_pick_tx);
3457                else
3458                        queue_index = __netdev_pick_tx(dev, skb);
3459
3460                queue_index = netdev_cap_txqueue(dev, queue_index);
3461        }
3462
3463        skb_set_queue_mapping(skb, queue_index);
3464        return netdev_get_tx_queue(dev, queue_index);
3465}
3466
3467/**
3468 *      __dev_queue_xmit - transmit a buffer
3469 *      @skb: buffer to transmit
3470 *      @accel_priv: private data used for L2 forwarding offload
3471 *
3472 *      Queue a buffer for transmission to a network device. The caller must
3473 *      have set the device and priority and built the buffer before calling
3474 *      this function. The function can be called from an interrupt.
3475 *
3476 *      A negative errno code is returned on a failure. A success does not
3477 *      guarantee the frame will be transmitted as it may be dropped due
3478 *      to congestion or traffic shaping.
3479 *
3480 * -----------------------------------------------------------------------------------
3481 *      I notice this method can also return errors from the queue disciplines,
3482 *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3483 *      be positive.
3484 *
3485 *      Regardless of the return value, the skb is consumed, so it is currently
3486 *      difficult to retry a send to this method.  (You can bump the ref count
3487 *      before sending to hold a reference for retry if you are careful.)
3488 *
3489 *      When calling this method, interrupts MUST be enabled.  This is because
3490 *      the BH enable code must have IRQs enabled so that it will not deadlock.
3491 *          --BLG
3492 */
3493static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3494{
3495        struct net_device *dev = skb->dev;
3496        struct netdev_queue *txq;
3497        struct Qdisc *q;
3498        int rc = -ENOMEM;
3499        bool again = false;
3500
3501        skb_reset_mac_header(skb);
3502
3503        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3504                __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3505
3506        /* Disable soft irqs for various locks below. Also
3507         * stops preemption for RCU.
3508         */
3509        rcu_read_lock_bh();
3510
3511        skb_update_prio(skb);
3512
3513        qdisc_pkt_len_init(skb);
3514#ifdef CONFIG_NET_CLS_ACT
3515        skb->tc_at_ingress = 0;
3516# ifdef CONFIG_NET_EGRESS
3517        if (static_branch_unlikely(&egress_needed_key)) {
3518                skb = sch_handle_egress(skb, &rc, dev);
3519                if (!skb)
3520                        goto out;
3521        }
3522# endif
3523#endif
3524        /* If device/qdisc don't need skb->dst, release it right now while
3525         * its hot in this cpu cache.
3526         */
3527        if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3528                skb_dst_drop(skb);
3529        else
3530                skb_dst_force(skb);
3531
3532        txq = netdev_pick_tx(dev, skb, accel_priv);
3533        q = rcu_dereference_bh(txq->qdisc);
3534
3535        trace_net_dev_queue(skb);
3536        if (q->enqueue) {
3537                rc = __dev_xmit_skb(skb, q, dev, txq);
3538                goto out;
3539        }
3540
3541        /* The device has no queue. Common case for software devices:
3542         * loopback, all the sorts of tunnels...
3543
3544         * Really, it is unlikely that netif_tx_lock protection is necessary
3545         * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3546         * counters.)
3547         * However, it is possible, that they rely on protection
3548         * made by us here.
3549
3550         * Check this and shot the lock. It is not prone from deadlocks.
3551         *Either shot noqueue qdisc, it is even simpler 8)
3552         */
3553        if (dev->flags & IFF_UP) {
3554                int cpu = smp_processor_id(); /* ok because BHs are off */
3555
3556                if (txq->xmit_lock_owner != cpu) {
3557                        if (unlikely(__this_cpu_read(xmit_recursion) >
3558                                     XMIT_RECURSION_LIMIT))
3559                                goto recursion_alert;
3560
3561                        skb = validate_xmit_skb(skb, dev, &again);
3562                        if (!skb)
3563                                goto out;
3564
3565                        HARD_TX_LOCK(dev, txq, cpu);
3566
3567                        if (!netif_xmit_stopped(txq)) {
3568                                __this_cpu_inc(xmit_recursion);
3569                                skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3570                                __this_cpu_dec(xmit_recursion);
3571                                if (dev_xmit_complete(rc)) {
3572                                        HARD_TX_UNLOCK(dev, txq);
3573                                        goto out;
3574                                }
3575                        }
3576                        HARD_TX_UNLOCK(dev, txq);
3577                        net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3578                                             dev->name);
3579                } else {
3580                        /* Recursion is detected! It is possible,
3581                         * unfortunately
3582                         */
3583recursion_alert:
3584                        net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3585                                             dev->name);
3586                }
3587        }
3588
3589        rc = -ENETDOWN;
3590        rcu_read_unlock_bh();
3591
3592        atomic_long_inc(&dev->tx_dropped);
3593        kfree_skb_list(skb);
3594        return rc;
3595out:
3596        rcu_read_unlock_bh();
3597        return rc;
3598}
3599
3600int dev_queue_xmit(struct sk_buff *skb)
3601{
3602        return __dev_queue_xmit(skb, NULL);
3603}
3604EXPORT_SYMBOL(dev_queue_xmit);
3605
3606int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3607{
3608        return __dev_queue_xmit(skb, accel_priv);
3609}
3610EXPORT_SYMBOL(dev_queue_xmit_accel);
3611
3612int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3613{
3614        struct net_device *dev = skb->dev;
3615        struct sk_buff *orig_skb = skb;
3616        struct netdev_queue *txq;
3617        int ret = NETDEV_TX_BUSY;
3618        bool again = false;
3619
3620        if (unlikely(!netif_running(dev) ||
3621                     !netif_carrier_ok(dev)))
3622                goto drop;
3623
3624        skb = validate_xmit_skb_list(skb, dev, &again);
3625        if (skb != orig_skb)
3626                goto drop;
3627
3628        skb_set_queue_mapping(skb, queue_id);
3629        txq = skb_get_tx_queue(dev, skb);
3630
3631        local_bh_disable();
3632
3633        HARD_TX_LOCK(dev, txq, smp_processor_id());
3634        if (!netif_xmit_frozen_or_drv_stopped(txq))
3635                ret = netdev_start_xmit(skb, dev, txq, false);
3636        HARD_TX_UNLOCK(dev, txq);
3637
3638        local_bh_enable();
3639
3640        if (!dev_xmit_complete(ret))
3641                kfree_skb(skb);
3642
3643        return ret;
3644drop:
3645        atomic_long_inc(&dev->tx_dropped);
3646        kfree_skb_list(skb);
3647        return NET_XMIT_DROP;
3648}
3649EXPORT_SYMBOL(dev_direct_xmit);
3650
3651/*************************************************************************
3652 *                      Receiver routines
3653 *************************************************************************/
3654
3655int netdev_max_backlog __read_mostly = 1000;
3656EXPORT_SYMBOL(netdev_max_backlog);
3657
3658int netdev_tstamp_prequeue __read_mostly = 1;
3659int netdev_budget __read_mostly = 300;
3660unsigned int __read_mostly netdev_budget_usecs = 2000;
3661int weight_p __read_mostly = 64;           /* old backlog weight */
3662int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3663int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3664int dev_rx_weight __read_mostly = 64;
3665int dev_tx_weight __read_mostly = 64;
3666
3667/* Called with irq disabled */
3668static inline void ____napi_schedule(struct softnet_data *sd,
3669                                     struct napi_struct *napi)
3670{
3671        list_add_tail(&napi->poll_list, &sd->poll_list);
3672        __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3673}
3674
3675#ifdef CONFIG_RPS
3676
3677/* One global table that all flow-based protocols share. */
3678struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3679EXPORT_SYMBOL(rps_sock_flow_table);
3680u32 rps_cpu_mask __read_mostly;
3681EXPORT_SYMBOL(rps_cpu_mask);
3682
3683struct static_key rps_needed __read_mostly;
3684EXPORT_SYMBOL(rps_needed);
3685struct static_key rfs_needed __read_mostly;
3686EXPORT_SYMBOL(rfs_needed);
3687
3688static struct rps_dev_flow *
3689set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3690            struct rps_dev_flow *rflow, u16 next_cpu)
3691{
3692        if (next_cpu < nr_cpu_ids) {
3693#ifdef CONFIG_RFS_ACCEL
3694                struct netdev_rx_queue *rxqueue;
3695                struct rps_dev_flow_table *flow_table;
3696                struct rps_dev_flow *old_rflow;
3697                u32 flow_id;
3698                u16 rxq_index;
3699                int rc;
3700
3701                /* Should we steer this flow to a different hardware queue? */
3702                if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3703                    !(dev->features & NETIF_F_NTUPLE))
3704                        goto out;
3705                rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3706                if (rxq_index == skb_get_rx_queue(skb))
3707                        goto out;
3708
3709                rxqueue = dev->_rx + rxq_index;
3710                flow_table = rcu_dereference(rxqueue->rps_flow_table);
3711                if (!flow_table)
3712                        goto out;
3713                flow_id = skb_get_hash(skb) & flow_table->mask;
3714                rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3715                                                        rxq_index, flow_id);
3716                if (rc < 0)
3717                        goto out;
3718                old_rflow = rflow;
3719                rflow = &flow_table->flows[flow_id];
3720                rflow->filter = rc;
3721                if (old_rflow->filter == rflow->filter)
3722                        old_rflow->filter = RPS_NO_FILTER;
3723        out:
3724#endif
3725                rflow->last_qtail =
3726                        per_cpu(softnet_data, next_cpu).input_queue_head;
3727        }
3728
3729        rflow->cpu = next_cpu;
3730        return rflow;
3731}
3732
3733/*
3734 * get_rps_cpu is called from netif_receive_skb and returns the target
3735 * CPU from the RPS map of the receiving queue for a given skb.
3736 * rcu_read_lock must be held on entry.
3737 */
3738static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3739                       struct rps_dev_flow **rflowp)
3740{
3741        const struct rps_sock_flow_table *sock_flow_table;
3742        struct netdev_rx_queue *rxqueue = dev->_rx;
3743        struct rps_dev_flow_table *flow_table;
3744        struct rps_map *map;
3745        int cpu = -1;
3746        u32 tcpu;
3747        u32 hash;
3748
3749        if (skb_rx_queue_recorded(skb)) {
3750                u16 index = skb_get_rx_queue(skb);
3751
3752                if (unlikely(index >= dev->real_num_rx_queues)) {
3753                        WARN_ONCE(dev->real_num_rx_queues > 1,
3754                                  "%s received packet on queue %u, but number "
3755                                  "of RX queues is %u\n",
3756                                  dev->name, index, dev->real_num_rx_queues);
3757                        goto done;
3758                }
3759                rxqueue += index;
3760        }
3761
3762        /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3763
3764        flow_table = rcu_dereference(rxqueue->rps_flow_table);
3765        map = rcu_dereference(rxqueue->rps_map);
3766        if (!flow_table && !map)
3767                goto done;
3768
3769        skb_reset_network_header(skb);
3770        hash = skb_get_hash(skb);
3771        if (!hash)
3772                goto done;
3773
3774        sock_flow_table = rcu_dereference(rps_sock_flow_table);
3775        if (flow_table && sock_flow_table) {
3776                struct rps_dev_flow *rflow;
3777                u32 next_cpu;
3778                u32 ident;
3779
3780                /* First check into global flow table if there is a match */
3781                ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3782                if ((ident ^ hash) & ~rps_cpu_mask)
3783                        goto try_rps;
3784
3785                next_cpu = ident & rps_cpu_mask;
3786
3787                /* OK, now we know there is a match,
3788                 * we can look at the local (per receive queue) flow table
3789                 */
3790                rflow = &flow_table->flows[hash & flow_table->mask];
3791                tcpu = rflow->cpu;
3792
3793                /*
3794                 * If the desired CPU (where last recvmsg was done) is
3795                 * different from current CPU (one in the rx-queue flow
3796                 * table entry), switch if one of the following holds:
3797                 *   - Current CPU is unset (>= nr_cpu_ids).
3798                 *   - Current CPU is offline.
3799                 *   - The current CPU's queue tail has advanced beyond the
3800                 *     last packet that was enqueued using this table entry.
3801                 *     This guarantees that all previous packets for the flow
3802                 *     have been dequeued, thus preserving in order delivery.
3803                 */
3804                if (unlikely(tcpu != next_cpu) &&
3805                    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3806                     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3807                      rflow->last_qtail)) >= 0)) {
3808                        tcpu = next_cpu;
3809                        rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3810                }
3811
3812                if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3813                        *rflowp = rflow;
3814                        cpu = tcpu;
3815                        goto done;
3816                }
3817        }
3818
3819try_rps:
3820
3821        if (map) {
3822                tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3823                if (cpu_online(tcpu)) {
3824                        cpu = tcpu;
3825                        goto done;
3826                }
3827        }
3828
3829done:
3830        return cpu;
3831}
3832
3833#ifdef CONFIG_RFS_ACCEL
3834
3835/**
3836 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3837 * @dev: Device on which the filter was set
3838 * @rxq_index: RX queue index
3839 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3840 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3841 *
3842 * Drivers that implement ndo_rx_flow_steer() should periodically call
3843 * this function for each installed filter and remove the filters for
3844 * which it returns %true.
3845 */
3846bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3847                         u32 flow_id, u16 filter_id)
3848{
3849        struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3850        struct rps_dev_flow_table *flow_table;
3851        struct rps_dev_flow *rflow;
3852        bool expire = true;
3853        unsigned int cpu;
3854
3855        rcu_read_lock();
3856        flow_table = rcu_dereference(rxqueue->rps_flow_table);
3857        if (flow_table && flow_id <= flow_table->mask) {
3858                rflow = &flow_table->flows[flow_id];
3859                cpu = READ_ONCE(rflow->cpu);
3860                if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3861                    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3862                           rflow->last_qtail) <
3863                     (int)(10 * flow_table->mask)))
3864                        expire = false;
3865        }
3866        rcu_read_unlock();
3867        return expire;
3868}
3869EXPORT_SYMBOL(rps_may_expire_flow);
3870
3871#endif /* CONFIG_RFS_ACCEL */
3872
3873/* Called from hardirq (IPI) context */
3874static void rps_trigger_softirq(void *data)
3875{
3876        struct softnet_data *sd = data;
3877
3878        ____napi_schedule(sd, &sd->backlog);
3879        sd->received_rps++;
3880}
3881
3882#endif /* CONFIG_RPS */
3883
3884/*
3885 * Check if this softnet_data structure is another cpu one
3886 * If yes, queue it to our IPI list and return 1
3887 * If no, return 0
3888 */
3889static int rps_ipi_queued(struct softnet_data *sd)
3890{
3891#ifdef CONFIG_RPS
3892        struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3893
3894        if (sd != mysd) {
3895                sd->rps_ipi_next = mysd->rps_ipi_list;
3896                mysd->rps_ipi_list = sd;
3897
3898                __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3899                return 1;
3900        }
3901#endif /* CONFIG_RPS */
3902        return 0;
3903}
3904
3905#ifdef CONFIG_NET_FLOW_LIMIT
3906int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3907#endif
3908
3909static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3910{
3911#ifdef CONFIG_NET_FLOW_LIMIT
3912        struct sd_flow_limit *fl;
3913        struct softnet_data *sd;
3914        unsigned int old_flow, new_flow;
3915
3916        if (qlen < (netdev_max_backlog >> 1))
3917                return false;
3918
3919        sd = this_cpu_ptr(&softnet_data);
3920
3921        rcu_read_lock();
3922        fl = rcu_dereference(sd->flow_limit);
3923        if (fl) {
3924                new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3925                old_flow = fl->history[fl->history_head];
3926                fl->history[fl->history_head] = new_flow;
3927
3928                fl->history_head++;
3929                fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3930
3931                if (likely(fl->buckets[old_flow]))
3932                        fl->buckets[old_flow]--;
3933
3934                if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3935                        fl->count++;
3936                        rcu_read_unlock();
3937                        return true;
3938                }
3939        }
3940        rcu_read_unlock();
3941#endif
3942        return false;
3943}
3944
3945/*
3946 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3947 * queue (may be a remote CPU queue).
3948 */
3949static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3950                              unsigned int *qtail)
3951{
3952        struct softnet_data *sd;
3953        unsigned long flags;
3954        unsigned int qlen;
3955
3956        sd = &per_cpu(softnet_data, cpu);
3957
3958        local_irq_save(flags);
3959
3960        rps_lock(sd);
3961        if (!netif_running(skb->dev))
3962                goto drop;
3963        qlen = skb_queue_len(&sd->input_pkt_queue);
3964        if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3965                if (qlen) {
3966enqueue:
3967                        __skb_queue_tail(&sd->input_pkt_queue, skb);
3968                        input_queue_tail_incr_save(sd, qtail);
3969                        rps_unlock(sd);
3970                        local_irq_restore(flags);
3971                        return NET_RX_SUCCESS;
3972                }
3973
3974                /* Schedule NAPI for backlog device
3975                 * We can use non atomic operation since we own the queue lock
3976                 */
3977                if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3978                        if (!rps_ipi_queued(sd))
3979                                ____napi_schedule(sd, &sd->backlog);
3980                }
3981                goto enqueue;
3982        }
3983
3984drop:
3985        sd->dropped++;
3986        rps_unlock(sd);
3987
3988        local_irq_restore(flags);
3989
3990        atomic_long_inc(&skb->dev->rx_dropped);
3991        kfree_skb(skb);
3992        return NET_RX_DROP;
3993}
3994
3995static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3996{
3997        struct net_device *dev = skb->dev;
3998        struct netdev_rx_queue *rxqueue;
3999
4000        rxqueue = dev->_rx;
4001
4002        if (skb_rx_queue_recorded(skb)) {
4003                u16 index = skb_get_rx_queue(skb);
4004
4005                if (unlikely(index >= dev->real_num_rx_queues)) {
4006                        WARN_ONCE(dev->real_num_rx_queues > 1,
4007                                  "%s received packet on queue %u, but number "
4008                                  "of RX queues is %u\n",
4009                                  dev->name, index, dev->real_num_rx_queues);
4010
4011                        return rxqueue; /* Return first rxqueue */
4012                }
4013                rxqueue += index;
4014        }
4015        return rxqueue;
4016}
4017
4018static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4019                                     struct xdp_buff *xdp,
4020                                     struct bpf_prog *xdp_prog)
4021{
4022        struct netdev_rx_queue *rxqueue;
4023        void *orig_data, *orig_data_end;
4024        u32 metalen, act = XDP_DROP;
4025        int hlen, off;
4026        u32 mac_len;
4027
4028        /* Reinjected packets coming from act_mirred or similar should
4029         * not get XDP generic processing.
4030         */
4031        if (skb_cloned(skb))
4032                return XDP_PASS;
4033
4034        /* XDP packets must be linear and must have sufficient headroom
4035         * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4036         * native XDP provides, thus we need to do it here as well.
4037         */
4038        if (skb_is_nonlinear(skb) ||
4039            skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4040                int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4041                int troom = skb->tail + skb->data_len - skb->end;
4042
4043                /* In case we have to go down the path and also linearize,
4044                 * then lets do the pskb_expand_head() work just once here.
4045                 */
4046                if (pskb_expand_head(skb,
4047                                     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4048                                     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4049                        goto do_drop;
4050                if (skb_linearize(skb))
4051                        goto do_drop;
4052        }
4053
4054        /* The XDP program wants to see the packet starting at the MAC
4055         * header.
4056         */
4057        mac_len = skb->data - skb_mac_header(skb);
4058        hlen = skb_headlen(skb) + mac_len;
4059        xdp->data = skb->data - mac_len;
4060        xdp->data_meta = xdp->data;
4061        xdp->data_end = xdp->data + hlen;
4062        xdp->data_hard_start = skb->data - skb_headroom(skb);
4063        orig_data_end = xdp->data_end;
4064        orig_data = xdp->data;
4065
4066        rxqueue = netif_get_rxqueue(skb);
4067        xdp->rxq = &rxqueue->xdp_rxq;
4068
4069        act = bpf_prog_run_xdp(xdp_prog, xdp);
4070
4071        off = xdp->data - orig_data;
4072        if (off > 0)
4073                __skb_pull(skb, off);
4074        else if (off < 0)
4075                __skb_push(skb, -off);
4076        skb->mac_header += off;
4077
4078        /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4079         * pckt.
4080         */
4081        off = orig_data_end - xdp->data_end;
4082        if (off != 0) {
4083                skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4084                skb->len -= off;
4085
4086        }
4087
4088        switch (act) {
4089        case XDP_REDIRECT:
4090        case XDP_TX:
4091                __skb_push(skb, mac_len);
4092                break;
4093        case XDP_PASS:
4094                metalen = xdp->data - xdp->data_meta;
4095                if (metalen)
4096                        skb_metadata_set(skb, metalen);
4097                break;
4098        default:
4099                bpf_warn_invalid_xdp_action(act);
4100                /* fall through */
4101        case XDP_ABORTED:
4102                trace_xdp_exception(skb->dev, xdp_prog, act);
4103                /* fall through */
4104        case XDP_DROP:
4105        do_drop:
4106                kfree_skb(skb);
4107                break;
4108        }
4109
4110        return act;
4111}
4112
4113/* When doing generic XDP we have to bypass the qdisc layer and the
4114 * network taps in order to match in-driver-XDP behavior.
4115 */
4116void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4117{
4118        struct net_device *dev = skb->dev;
4119        struct netdev_queue *txq;
4120        bool free_skb = true;
4121        int cpu, rc;
4122
4123        txq = netdev_pick_tx(dev, skb, NULL);
4124        cpu = smp_processor_id();
4125        HARD_TX_LOCK(dev, txq, cpu);
4126        if (!netif_xmit_stopped(txq)) {
4127                rc = netdev_start_xmit(skb, dev, txq, 0);
4128                if (dev_xmit_complete(rc))
4129                        free_skb = false;
4130        }
4131        HARD_TX_UNLOCK(dev, txq);
4132        if (free_skb) {
4133                trace_xdp_exception(dev, xdp_prog, XDP_TX);
4134                kfree_skb(skb);
4135        }
4136}
4137EXPORT_SYMBOL_GPL(generic_xdp_tx);
4138
4139static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4140
4141int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4142{
4143        if (xdp_prog) {
4144                struct xdp_buff xdp;
4145                u32 act;
4146                int err;
4147
4148                act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4149                if (act != XDP_PASS) {
4150                        switch (act) {
4151                        case XDP_REDIRECT:
4152                                err = xdp_do_generic_redirect(skb->dev, skb,
4153                                                              &xdp, xdp_prog);
4154                                if (err)
4155                                        goto out_redir;
4156                                break;
4157                        case XDP_TX:
4158                                generic_xdp_tx(skb, xdp_prog);
4159                                break;
4160                        }
4161                        return XDP_DROP;
4162                }
4163        }
4164        return XDP_PASS;
4165out_redir:
4166        kfree_skb(skb);
4167        return XDP_DROP;
4168}
4169EXPORT_SYMBOL_GPL(do_xdp_generic);
4170
4171static int netif_rx_internal(struct sk_buff *skb)
4172{
4173        int ret;
4174
4175        net_timestamp_check(netdev_tstamp_prequeue, skb);
4176
4177        trace_netif_rx(skb);
4178
4179        if (static_branch_unlikely(&generic_xdp_needed_key)) {
4180                int ret;
4181
4182                preempt_disable();
4183                rcu_read_lock();
4184                ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4185                rcu_read_unlock();
4186                preempt_enable();
4187
4188                /* Consider XDP consuming the packet a success from
4189                 * the netdev point of view we do not want to count
4190                 * this as an error.
4191                 */
4192                if (ret != XDP_PASS)
4193                        return NET_RX_SUCCESS;
4194        }
4195
4196#ifdef CONFIG_RPS
4197        if (static_key_false(&rps_needed)) {
4198                struct rps_dev_flow voidflow, *rflow = &voidflow;
4199                int cpu;
4200
4201                preempt_disable();
4202                rcu_read_lock();
4203
4204                cpu = get_rps_cpu(skb->dev, skb, &rflow);
4205                if (cpu < 0)
4206                        cpu = smp_processor_id();
4207
4208                ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4209
4210                rcu_read_unlock();
4211                preempt_enable();
4212        } else
4213#endif
4214        {
4215                unsigned int qtail;
4216
4217                ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4218                put_cpu();
4219        }
4220        return ret;
4221}
4222
4223/**
4224 *      netif_rx        -       post buffer to the network code
4225 *      @skb: buffer to post
4226 *
4227 *      This function receives a packet from a device driver and queues it for
4228 *      the upper (protocol) levels to process.  It always succeeds. The buffer
4229 *      may be dropped during processing for congestion control or by the
4230 *      protocol layers.
4231 *
4232 *      return values:
4233 *      NET_RX_SUCCESS  (no congestion)
4234 *      NET_RX_DROP     (packet was dropped)
4235 *
4236 */
4237
4238int netif_rx(struct sk_buff *skb)
4239{
4240        trace_netif_rx_entry(skb);
4241
4242        return netif_rx_internal(skb);
4243}
4244EXPORT_SYMBOL(netif_rx);
4245
4246int netif_rx_ni(struct sk_buff *skb)
4247{
4248        int err;
4249
4250        trace_netif_rx_ni_entry(skb);
4251
4252        preempt_disable();
4253        err = netif_rx_internal(skb);
4254        if (local_softirq_pending())
4255                do_softirq();
4256        preempt_enable();
4257
4258        return err;
4259}
4260EXPORT_SYMBOL(netif_rx_ni);
4261
4262static __latent_entropy void net_tx_action(struct softirq_action *h)
4263{
4264        struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4265
4266        if (sd->completion_queue) {
4267                struct sk_buff *clist;
4268
4269                local_irq_disable();
4270                clist = sd->completion_queue;
4271                sd->completion_queue = NULL;
4272                local_irq_enable();
4273
4274                while (clist) {
4275                        struct sk_buff *skb = clist;
4276
4277                        clist = clist->next;
4278
4279                        WARN_ON(refcount_read(&skb->users));
4280                        if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4281                                trace_consume_skb(skb);
4282                        else
4283                                trace_kfree_skb(skb, net_tx_action);
4284
4285                        if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4286                                __kfree_skb(skb);
4287                        else
4288                                __kfree_skb_defer(skb);
4289                }
4290
4291                __kfree_skb_flush();
4292        }
4293
4294        if (sd->output_queue) {
4295                struct Qdisc *head;
4296
4297                local_irq_disable();
4298                head = sd->output_queue;
4299                sd->output_queue = NULL;
4300                sd->output_queue_tailp = &sd->output_queue;
4301                local_irq_enable();
4302
4303                while (head) {
4304                        struct Qdisc *q = head;
4305                        spinlock_t *root_lock = NULL;
4306
4307                        head = head->next_sched;
4308
4309                        if (!(q->flags & TCQ_F_NOLOCK)) {
4310                                root_lock = qdisc_lock(q);
4311                                spin_lock(root_lock);
4312                        }
4313                        /* We need to make sure head->next_sched is read
4314                         * before clearing __QDISC_STATE_SCHED
4315                         */
4316                        smp_mb__before_atomic();
4317                        clear_bit(__QDISC_STATE_SCHED, &q->state);
4318                        qdisc_run(q);
4319                        if (root_lock)
4320                                spin_unlock(root_lock);
4321                }
4322        }
4323
4324        xfrm_dev_backlog(sd);
4325}
4326
4327#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4328/* This hook is defined here for ATM LANE */
4329int (*br_fdb_test_addr_hook)(struct net_device *dev,
4330                             unsigned char *addr) __read_mostly;
4331EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4332#endif
4333
4334static inline struct sk_buff *
4335sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4336                   struct net_device *orig_dev)
4337{
4338#ifdef CONFIG_NET_CLS_ACT
4339        struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4340        struct tcf_result cl_res;
4341
4342        /* If there's at least one ingress present somewhere (so
4343         * we get here via enabled static key), remaining devices
4344         * that are not configured with an ingress qdisc will bail
4345         * out here.
4346         */
4347        if (!miniq)
4348                return skb;
4349
4350        if (*pt_prev) {
4351                *ret = deliver_skb(skb, *pt_prev, orig_dev);
4352                *pt_prev = NULL;
4353        }
4354
4355        qdisc_skb_cb(skb)->pkt_len = skb->len;
4356        skb->tc_at_ingress = 1;
4357        mini_qdisc_bstats_cpu_update(miniq, skb);
4358
4359        switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4360        case TC_ACT_OK:
4361        case TC_ACT_RECLASSIFY:
4362                skb->tc_index = TC_H_MIN(cl_res.classid);
4363                break;
4364        case TC_ACT_SHOT:
4365                mini_qdisc_qstats_cpu_drop(miniq);
4366                kfree_skb(skb);
4367                return NULL;
4368        case TC_ACT_STOLEN:
4369        case TC_ACT_QUEUED:
4370        case TC_ACT_TRAP:
4371                consume_skb(skb);
4372                return NULL;
4373        case TC_ACT_REDIRECT:
4374                /* skb_mac_header check was done by cls/act_bpf, so
4375                 * we can safely push the L2 header back before
4376                 * redirecting to another netdev
4377                 */
4378                __skb_push(skb, skb->mac_len);
4379                skb_do_redirect(skb);
4380                return NULL;
4381        default:
4382                break;
4383        }
4384#endif /* CONFIG_NET_CLS_ACT */
4385        return skb;
4386}
4387
4388/**
4389 *      netdev_is_rx_handler_busy - check if receive handler is registered
4390 *      @dev: device to check
4391 *
4392 *      Check if a receive handler is already registered for a given device.
4393 *      Return true if there one.
4394 *
4395 *      The caller must hold the rtnl_mutex.
4396 */
4397bool netdev_is_rx_handler_busy(struct net_device *dev)
4398{
4399        ASSERT_RTNL();
4400        return dev && rtnl_dereference(dev->rx_handler);
4401}
4402EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4403
4404/**
4405 *      netdev_rx_handler_register - register receive handler
4406 *      @dev: device to register a handler for
4407 *      @rx_handler: receive handler to register
4408 *      @rx_handler_data: data pointer that is used by rx handler
4409 *
4410 *      Register a receive handler for a device. This handler will then be
4411 *      called from __netif_receive_skb. A negative errno code is returned
4412 *      on a failure.
4413 *
4414 *      The caller must hold the rtnl_mutex.
4415 *
4416 *      For a general description of rx_handler, see enum rx_handler_result.
4417 */
4418int netdev_rx_handler_register(struct net_device *dev,
4419                               rx_handler_func_t *rx_handler,
4420                               void *rx_handler_data)
4421{
4422        if (netdev_is_rx_handler_busy(dev))
4423                return -EBUSY;
4424
4425        if (dev->priv_flags & IFF_NO_RX_HANDLER)
4426                return -EINVAL;
4427
4428        /* Note: rx_handler_data must be set before rx_handler */
4429        rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4430        rcu_assign_pointer(dev->rx_handler, rx_handler);
4431
4432        return 0;
4433}
4434EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4435
4436/**
4437 *      netdev_rx_handler_unregister - unregister receive handler
4438 *      @dev: device to unregister a handler from
4439 *
4440 *      Unregister a receive handler from a device.
4441 *
4442 *      The caller must hold the rtnl_mutex.
4443 */
4444void netdev_rx_handler_unregister(struct net_device *dev)
4445{
4446
4447        ASSERT_RTNL();
4448        RCU_INIT_POINTER(dev->rx_handler, NULL);
4449        /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4450         * section has a guarantee to see a non NULL rx_handler_data
4451         * as well.
4452         */
4453        synchronize_net();
4454        RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4455}
4456EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4457
4458/*
4459 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4460 * the special handling of PFMEMALLOC skbs.
4461 */
4462static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4463{
4464        switch (skb->protocol) {
4465        case htons(ETH_P_ARP):
4466        case htons(ETH_P_IP):
4467        case htons(ETH_P_IPV6):
4468        case htons(ETH_P_8021Q):
4469        case htons(ETH_P_8021AD):
4470                return true;
4471        default:
4472                return false;
4473        }
4474}
4475
4476static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4477                             int *ret, struct net_device *orig_dev)
4478{
4479#ifdef CONFIG_NETFILTER_INGRESS
4480        if (nf_hook_ingress_active(skb)) {
4481                int ingress_retval;
4482
4483                if (*pt_prev) {
4484                        *ret = deliver_skb(skb, *pt_prev, orig_dev);
4485                        *pt_prev = NULL;
4486                }
4487
4488                rcu_read_lock();
4489                ingress_retval = nf_hook_ingress(skb);
4490                rcu_read_unlock();
4491                return ingress_retval;
4492        }
4493#endif /* CONFIG_NETFILTER_INGRESS */
4494        return 0;
4495}
4496
4497static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4498{
4499        struct packet_type *ptype, *pt_prev;
4500        rx_handler_func_t *rx_handler;
4501        struct net_device *orig_dev;
4502        bool deliver_exact = false;
4503        int ret = NET_RX_DROP;
4504        __be16 type;
4505
4506        net_timestamp_check(!netdev_tstamp_prequeue, skb);
4507
4508        trace_netif_receive_skb(skb);
4509
4510        orig_dev = skb->dev;
4511
4512        skb_reset_network_header(skb);
4513        if (!skb_transport_header_was_set(skb))
4514                skb_reset_transport_header(skb);
4515        skb_reset_mac_len(skb);
4516
4517        pt_prev = NULL;
4518
4519another_round:
4520        skb->skb_iif = skb->dev->ifindex;
4521
4522        __this_cpu_inc(softnet_data.processed);
4523
4524        if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4525            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4526                skb = skb_vlan_untag(skb);
4527                if (unlikely(!skb))
4528                        goto out;
4529        }
4530
4531        if (skb_skip_tc_classify(skb))
4532                goto skip_classify;
4533
4534        if (pfmemalloc)
4535                goto skip_taps;
4536
4537        list_for_each_entry_rcu(ptype, &ptype_all, list) {
4538                if (pt_prev)
4539                        ret = deliver_skb(skb, pt_prev, orig_dev);
4540                pt_prev = ptype;
4541        }
4542
4543        list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4544                if (pt_prev)
4545                        ret = deliver_skb(skb, pt_prev, orig_dev);
4546                pt_prev = ptype;
4547        }
4548
4549skip_taps:
4550#ifdef CONFIG_NET_INGRESS
4551        if (static_branch_unlikely(&ingress_needed_key)) {
4552                skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4553                if (!skb)
4554                        goto out;
4555
4556                if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4557                        goto out;
4558        }
4559#endif
4560        skb_reset_tc(skb);
4561skip_classify:
4562        if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4563                goto drop;
4564
4565        if (skb_vlan_tag_present(skb)) {
4566                if (pt_prev) {
4567                        ret = deliver_skb(skb, pt_prev, orig_dev);
4568                        pt_prev = NULL;
4569                }
4570                if (vlan_do_receive(&skb))
4571                        goto another_round;
4572                else if (unlikely(!skb))
4573                        goto out;
4574        }
4575
4576        rx_handler = rcu_dereference(skb->dev->rx_handler);
4577        if (rx_handler) {
4578                if (pt_prev) {
4579                        ret = deliver_skb(skb, pt_prev, orig_dev);
4580                        pt_prev = NULL;
4581                }
4582                switch (rx_handler(&skb)) {
4583                case RX_HANDLER_CONSUMED:
4584                        ret = NET_RX_SUCCESS;
4585                        goto out;
4586                case RX_HANDLER_ANOTHER:
4587                        goto another_round;
4588                case RX_HANDLER_EXACT:
4589                        deliver_exact = true;
4590                case RX_HANDLER_PASS:
4591                        break;
4592                default:
4593                        BUG();
4594                }
4595        }
4596
4597        if (unlikely(skb_vlan_tag_present(skb))) {
4598                if (skb_vlan_tag_get_id(skb))
4599                        skb->pkt_type = PACKET_OTHERHOST;
4600                /* Note: we might in the future use prio bits
4601                 * and set skb->priority like in vlan_do_receive()
4602                 * For the time being, just ignore Priority Code Point
4603                 */
4604                skb->vlan_tci = 0;
4605        }
4606
4607        type = skb->protocol;
4608
4609        /* deliver only exact match when indicated */
4610        if (likely(!deliver_exact)) {
4611                deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4612                                       &ptype_base[ntohs(type) &
4613                                                   PTYPE_HASH_MASK]);
4614        }
4615
4616        deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4617                               &orig_dev->ptype_specific);
4618
4619        if (unlikely(skb->dev != orig_dev)) {
4620                deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4621                                       &skb->dev->ptype_specific);
4622        }
4623
4624        if (pt_prev) {
4625                if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4626                        goto drop;
4627                else
4628                        ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4629        } else {
4630drop:
4631                if (!deliver_exact)
4632                        atomic_long_inc(&skb->dev->rx_dropped);
4633                else
4634                        atomic_long_inc(&skb->dev->rx_nohandler);
4635                kfree_skb(skb);
4636                /* Jamal, now you will not able to escape explaining
4637                 * me how you were going to use this. :-)
4638                 */
4639                ret = NET_RX_DROP;
4640        }
4641
4642out:
4643        return ret;
4644}
4645
4646/**
4647 *      netif_receive_skb_core - special purpose version of netif_receive_skb
4648 *      @skb: buffer to process
4649 *
4650 *      More direct receive version of netif_receive_skb().  It should
4651 *      only be used by callers that have a need to skip RPS and Generic XDP.
4652 *      Caller must also take care of handling if (page_is_)pfmemalloc.
4653 *
4654 *      This function may only be called from softirq context and interrupts
4655 *      should be enabled.
4656 *
4657 *      Return values (usually ignored):
4658 *      NET_RX_SUCCESS: no congestion
4659 *      NET_RX_DROP: packet was dropped
4660 */
4661int netif_receive_skb_core(struct sk_buff *skb)
4662{
4663        int ret;
4664
4665        rcu_read_lock();
4666        ret = __netif_receive_skb_core(skb, false);
4667        rcu_read_unlock();
4668
4669        return ret;
4670}
4671EXPORT_SYMBOL(netif_receive_skb_core);
4672
4673static int __netif_receive_skb(struct sk_buff *skb)
4674{
4675        int ret;
4676
4677        if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4678                unsigned int noreclaim_flag;
4679
4680                /*
4681                 * PFMEMALLOC skbs are special, they should
4682                 * - be delivered to SOCK_MEMALLOC sockets only
4683                 * - stay away from userspace
4684                 * - have bounded memory usage
4685                 *
4686                 * Use PF_MEMALLOC as this saves us from propagating the allocation
4687                 * context down to all allocation sites.
4688                 */
4689                noreclaim_flag = memalloc_noreclaim_save();
4690                ret = __netif_receive_skb_core(skb, true);
4691                memalloc_noreclaim_restore(noreclaim_flag);
4692        } else
4693                ret = __netif_receive_skb_core(skb, false);
4694
4695        return ret;
4696}
4697
4698static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4699{
4700        struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4701        struct bpf_prog *new = xdp->prog;
4702        int ret = 0;
4703
4704        switch (xdp->command) {
4705        case XDP_SETUP_PROG:
4706                rcu_assign_pointer(dev->xdp_prog, new);
4707                if (old)
4708                        bpf_prog_put(old);
4709
4710                if (old && !new) {
4711                        static_branch_dec(&generic_xdp_needed_key);
4712                } else if (new && !old) {
4713                        static_branch_inc(&generic_xdp_needed_key);
4714                        dev_disable_lro(dev);
4715                        dev_disable_gro_hw(dev);
4716                }
4717                break;
4718
4719        case XDP_QUERY_PROG:
4720                xdp->prog_attached = !!old;
4721                xdp->prog_id = old ? old->aux->id : 0;
4722                break;
4723
4724        default:
4725                ret = -EINVAL;
4726                break;
4727        }
4728
4729        return ret;
4730}
4731
4732static int netif_receive_skb_internal(struct sk_buff *skb)
4733{
4734        int ret;
4735
4736        net_timestamp_check(netdev_tstamp_prequeue, skb);
4737
4738        if (skb_defer_rx_timestamp(skb))
4739                return NET_RX_SUCCESS;
4740
4741        if (static_branch_unlikely(&generic_xdp_needed_key)) {
4742                int ret;
4743
4744                preempt_disable();
4745                rcu_read_lock();
4746                ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4747                rcu_read_unlock();
4748                preempt_enable();
4749
4750                if (ret != XDP_PASS)
4751                        return NET_RX_DROP;
4752        }
4753
4754        rcu_read_lock();
4755#ifdef CONFIG_RPS
4756        if (static_key_false(&rps_needed)) {
4757                struct rps_dev_flow voidflow, *rflow = &voidflow;
4758                int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4759
4760                if (cpu >= 0) {
4761                        ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4762                        rcu_read_unlock();
4763                        return ret;
4764                }
4765        }
4766#endif
4767        ret = __netif_receive_skb(skb);
4768        rcu_read_unlock();
4769        return ret;
4770}
4771
4772/**
4773 *      netif_receive_skb - process receive buffer from network
4774 *      @skb: buffer to process
4775 *
4776 *      netif_receive_skb() is the main receive data processing function.
4777 *      It always succeeds. The buffer may be dropped during processing
4778 *      for congestion control or by the protocol layers.
4779 *
4780 *      This function may only be called from softirq context and interrupts
4781 *      should be enabled.
4782 *
4783 *      Return values (usually ignored):
4784 *      NET_RX_SUCCESS: no congestion
4785 *      NET_RX_DROP: packet was dropped
4786 */
4787int netif_receive_skb(struct sk_buff *skb)
4788{
4789        trace_netif_receive_skb_entry(skb);
4790
4791        return netif_receive_skb_internal(skb);
4792}
4793EXPORT_SYMBOL(netif_receive_skb);
4794
4795DEFINE_PER_CPU(struct work_struct, flush_works);
4796
4797/* Network device is going away, flush any packets still pending */
4798static void flush_backlog(struct work_struct *work)
4799{
4800        struct sk_buff *skb, *tmp;
4801        struct softnet_data *sd;
4802
4803        local_bh_disable();
4804        sd = this_cpu_ptr(&softnet_data);
4805
4806        local_irq_disable();
4807        rps_lock(sd);
4808        skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4809                if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4810                        __skb_unlink(skb, &sd->input_pkt_queue);
4811                        kfree_skb(skb);
4812                        input_queue_head_incr(sd);
4813                }
4814        }
4815        rps_unlock(sd);
4816        local_irq_enable();
4817
4818        skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4819                if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4820                        __skb_unlink(skb, &sd->process_queue);
4821                        kfree_skb(skb);
4822                        input_queue_head_incr(sd);
4823                }
4824        }
4825        local_bh_enable();
4826}
4827
4828static void flush_all_backlogs(void)
4829{
4830        unsigned int cpu;
4831
4832        get_online_cpus();
4833
4834        for_each_online_cpu(cpu)
4835                queue_work_on(cpu, system_highpri_wq,
4836                              per_cpu_ptr(&flush_works, cpu));
4837
4838        for_each_online_cpu(cpu)
4839                flush_work(per_cpu_ptr(&flush_works, cpu));
4840
4841        put_online_cpus();
4842}
4843
4844static int napi_gro_complete(struct sk_buff *skb)
4845{
4846        struct packet_offload *ptype;
4847        __be16 type = skb->protocol;
4848        struct list_head *head = &offload_base;
4849        int err = -ENOENT;
4850
4851        BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4852
4853        if (NAPI_GRO_CB(skb)->count == 1) {
4854                skb_shinfo(skb)->gso_size = 0;
4855                goto out;
4856        }
4857
4858        rcu_read_lock();
4859        list_for_each_entry_rcu(ptype, head, list) {
4860                if (ptype->type != type || !ptype->callbacks.gro_complete)
4861                        continue;
4862
4863                err = ptype->callbacks.gro_complete(skb, 0);
4864                break;
4865        }
4866        rcu_read_unlock();
4867
4868        if (err) {
4869                WARN_ON(&ptype->list == head);
4870                kfree_skb(skb);
4871                return NET_RX_SUCCESS;
4872        }
4873
4874out:
4875        return netif_receive_skb_internal(skb);
4876}
4877
4878/* napi->gro_list contains packets ordered by age.
4879 * youngest packets at the head of it.
4880 * Complete skbs in reverse order to reduce latencies.
4881 */
4882void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4883{
4884        struct sk_buff *skb, *prev = NULL;
4885
4886        /* scan list and build reverse chain */
4887        for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4888                skb->prev = prev;
4889                prev = skb;
4890        }
4891
4892        for (skb = prev; skb; skb = prev) {
4893                skb->next = NULL;
4894
4895                if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4896                        return;
4897
4898                prev = skb->prev;
4899                napi_gro_complete(skb);
4900                napi->gro_count--;
4901        }
4902
4903        napi->gro_list = NULL;
4904}
4905EXPORT_SYMBOL(napi_gro_flush);
4906
4907static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4908{
4909        struct sk_buff *p;
4910        unsigned int maclen = skb->dev->hard_header_len;
4911        u32 hash = skb_get_hash_raw(skb);
4912
4913        for (p = napi->gro_list; p; p = p->next) {
4914                unsigned long diffs;
4915
4916                NAPI_GRO_CB(p)->flush = 0;
4917
4918                if (hash != skb_get_hash_raw(p)) {
4919                        NAPI_GRO_CB(p)->same_flow = 0;
4920                        continue;
4921                }
4922
4923                diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4924                diffs |= p->vlan_tci ^ skb->vlan_tci;
4925                diffs |= skb_metadata_dst_cmp(p, skb);
4926                diffs |= skb_metadata_differs(p, skb);
4927                if (maclen == ETH_HLEN)
4928                        diffs |= compare_ether_header(skb_mac_header(p),
4929                                                      skb_mac_header(skb));
4930                else if (!diffs)
4931                        diffs = memcmp(skb_mac_header(p),
4932                                       skb_mac_header(skb),
4933                                       maclen);
4934                NAPI_GRO_CB(p)->same_flow = !diffs;
4935        }
4936}
4937
4938static void skb_gro_reset_offset(struct sk_buff *skb)
4939{
4940        const struct skb_shared_info *pinfo = skb_shinfo(skb);
4941        const skb_frag_t *frag0 = &pinfo->frags[0];
4942
4943        NAPI_GRO_CB(skb)->data_offset = 0;
4944        NAPI_GRO_CB(skb)->frag0 = NULL;
4945        NAPI_GRO_CB(skb)->frag0_len = 0;
4946
4947        if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4948            pinfo->nr_frags &&
4949            !PageHighMem(skb_frag_page(frag0))) {
4950                NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4951                NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4952                                                    skb_frag_size(frag0),
4953                                                    skb->end - skb->tail);
4954        }
4955}
4956
4957static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4958{
4959        struct skb_shared_info *pinfo = skb_shinfo(skb);
4960
4961        BUG_ON(skb->end - skb->tail < grow);
4962
4963        memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4964
4965        skb->data_len -= grow;
4966        skb->tail += grow;
4967
4968        pinfo->frags[0].page_offset += grow;
4969        skb_frag_size_sub(&pinfo->frags[0], grow);
4970
4971        if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4972                skb_frag_unref(skb, 0);
4973                memmove(pinfo->frags, pinfo->frags + 1,
4974                        --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4975        }
4976}
4977
4978static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4979{
4980        struct sk_buff **pp = NULL;
4981        struct packet_offload *ptype;
4982        __be16 type = skb->protocol;
4983        struct list_head *head = &offload_base;
4984        int same_flow;
4985        enum gro_result ret;
4986        int grow;
4987
4988        if (netif_elide_gro(skb->dev))
4989                goto normal;
4990
4991        gro_list_prepare(napi, skb);
4992
4993        rcu_read_lock();
4994        list_for_each_entry_rcu(ptype, head, list) {
4995                if (ptype->type != type || !ptype->callbacks.gro_receive)
4996                        continue;
4997
4998                skb_set_network_header(skb, skb_gro_offset(skb));
4999                skb_reset_mac_len(skb);
5000                NAPI_GRO_CB(skb)->same_flow = 0;
5001                NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5002                NAPI_GRO_CB(skb)->free = 0;
5003                NAPI_GRO_CB(skb)->encap_mark = 0;
5004                NAPI_GRO_CB(skb)->recursion_counter = 0;
5005                NAPI_GRO_CB(skb)->is_fou = 0;
5006                NAPI_GRO_CB(skb)->is_atomic = 1;
5007                NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5008
5009                /* Setup for GRO checksum validation */
5010                switch (skb->ip_summed) {
5011                case CHECKSUM_COMPLETE:
5012                        NAPI_GRO_CB(skb)->csum = skb->csum;
5013                        NAPI_GRO_CB(skb)->csum_valid = 1;
5014                        NAPI_GRO_CB(skb)->csum_cnt = 0;
5015                        break;
5016                case CHECKSUM_UNNECESSARY:
5017                        NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5018                        NAPI_GRO_CB(skb)->csum_valid = 0;
5019                        break;
5020                default:
5021                        NAPI_GRO_CB(skb)->csum_cnt = 0;
5022                        NAPI_GRO_CB(skb)->csum_valid = 0;
5023                }
5024
5025                pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
5026                break;
5027        }
5028        rcu_read_unlock();
5029
5030        if (&ptype->list == head)
5031                goto normal;
5032
5033        if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5034                ret = GRO_CONSUMED;
5035                goto ok;
5036        }
5037
5038        same_flow = NAPI_GRO_CB(skb)->same_flow;
5039        ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5040
5041        if (pp) {
5042                struct sk_buff *nskb = *pp;
5043
5044                *pp = nskb->next;
5045                nskb->next = NULL;
5046                napi_gro_complete(nskb);
5047                napi->gro_count--;
5048        }
5049
5050        if (same_flow)
5051                goto ok;
5052
5053        if (NAPI_GRO_CB(skb)->flush)
5054                goto normal;
5055
5056        if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
5057                struct sk_buff *nskb = napi->gro_list;
5058
5059                /* locate the end of the list to select the 'oldest' flow */
5060                while (nskb->next) {
5061                        pp = &nskb->next;
5062                        nskb = *pp;
5063                }
5064                *pp = NULL;
5065                nskb->next = NULL;
5066                napi_gro_complete(nskb);
5067        } else {
5068                napi->gro_count++;
5069        }
5070        NAPI_GRO_CB(skb)->count = 1;
5071        NAPI_GRO_CB(skb)->age = jiffies;
5072        NAPI_GRO_CB(skb)->last = skb;
5073        skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5074        skb->next = napi->gro_list;
5075        napi->gro_list = skb;
5076        ret = GRO_HELD;
5077
5078pull:
5079        grow = skb_gro_offset(skb) - skb_headlen(skb);
5080        if (grow > 0)
5081                gro_pull_from_frag0(skb, grow);
5082ok:
5083        return ret;
5084
5085normal:
5086        ret = GRO_NORMAL;
5087        goto pull;
5088}
5089
5090struct packet_offload *gro_find_receive_by_type(__be16 type)
5091{
5092        struct list_head *offload_head = &offload_base;
5093        struct packet_offload *ptype;
5094
5095        list_for_each_entry_rcu(ptype, offload_head, list) {
5096                if (ptype->type != type || !ptype->callbacks.gro_receive)
5097                        continue;
5098                return ptype;
5099        }
5100        return NULL;
5101}
5102EXPORT_SYMBOL(gro_find_receive_by_type);
5103
5104struct packet_offload *gro_find_complete_by_type(__be16 type)
5105{
5106        struct list_head *offload_head = &offload_base;
5107        struct packet_offload *ptype;
5108
5109        list_for_each_entry_rcu(ptype, offload_head, list) {
5110                if (ptype->type != type || !ptype->callbacks.gro_complete)
5111                        continue;
5112                return ptype;
5113        }
5114        return NULL;
5115}
5116EXPORT_SYMBOL(gro_find_complete_by_type);
5117
5118static void napi_skb_free_stolen_head(struct sk_buff *skb)
5119{
5120        skb_dst_drop(skb);
5121        secpath_reset(skb);
5122        kmem_cache_free(skbuff_head_cache, skb);
5123}
5124
5125static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5126{
5127        switch (ret) {
5128        case GRO_NORMAL:
5129                if (netif_receive_skb_internal(skb))
5130                        ret = GRO_DROP;
5131                break;
5132
5133        case GRO_DROP:
5134                kfree_skb(skb);
5135                break;
5136
5137        case GRO_MERGED_FREE:
5138                if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5139                        napi_skb_free_stolen_head(skb);
5140                else
5141                        __kfree_skb(skb);
5142                break;
5143
5144        case GRO_HELD:
5145        case GRO_MERGED:
5146        case GRO_CONSUMED:
5147                break;
5148        }
5149
5150        return ret;
5151}
5152
5153gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5154{
5155        skb_mark_napi_id(skb, napi);
5156        trace_napi_gro_receive_entry(skb);
5157
5158        skb_gro_reset_offset(skb);
5159
5160        return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5161}
5162EXPORT_SYMBOL(napi_gro_receive);
5163
5164static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5165{
5166        if (unlikely(skb->pfmemalloc)) {
5167                consume_skb(skb);
5168                return;
5169        }
5170        __skb_pull(skb, skb_headlen(skb));
5171        /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5172        skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5173        skb->vlan_tci = 0;
5174        skb->dev = napi->dev;
5175        skb->skb_iif = 0;
5176        skb->encapsulation = 0;
5177        skb_shinfo(skb)->gso_type = 0;
5178        skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5179        secpath_reset(skb);
5180
5181        napi->skb = skb;
5182}
5183
5184struct sk_buff *napi_get_frags(struct napi_struct *napi)
5185{
5186        struct sk_buff *skb = napi->skb;
5187
5188        if (!skb) {
5189                skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5190                if (skb) {
5191                        napi->skb = skb;
5192                        skb_mark_napi_id(skb, napi);
5193                }
5194        }
5195        return skb;
5196}
5197EXPORT_SYMBOL(napi_get_frags);
5198
5199static gro_result_t napi_frags_finish(struct napi_struct *napi,
5200                                      struct sk_buff *skb,
5201                                      gro_result_t ret)
5202{
5203        switch (ret) {
5204        case GRO_NORMAL:
5205        case GRO_HELD:
5206                __skb_push(skb, ETH_HLEN);
5207                skb->protocol = eth_type_trans(skb, skb->dev);
5208                if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5209                        ret = GRO_DROP;
5210                break;
5211
5212        case GRO_DROP:
5213                napi_reuse_skb(napi, skb);
5214                break;
5215
5216        case GRO_MERGED_FREE:
5217                if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5218                        napi_skb_free_stolen_head(skb);
5219                else
5220                        napi_reuse_skb(napi, skb);
5221                break;
5222
5223        case GRO_MERGED:
5224        case GRO_CONSUMED:
5225                break;
5226        }
5227
5228        return ret;
5229}
5230
5231/* Upper GRO stack assumes network header starts at gro_offset=0
5232 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5233 * We copy ethernet header into skb->data to have a common layout.
5234 */
5235static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5236{
5237        struct sk_buff *skb = napi->skb;
5238        const struct ethhdr *eth;
5239        unsigned int hlen = sizeof(*eth);
5240
5241        napi->skb = NULL;
5242
5243        skb_reset_mac_header(skb);
5244        skb_gro_reset_offset(skb);
5245
5246        eth = skb_gro_header_fast(skb, 0);
5247        if (unlikely(skb_gro_header_hard(skb, hlen))) {
5248                eth = skb_gro_header_slow(skb, hlen, 0);
5249                if (unlikely(!eth)) {
5250                        net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5251                                             __func__, napi->dev->name);
5252                        napi_reuse_skb(napi, skb);
5253                        return NULL;
5254                }
5255        } else {
5256                gro_pull_from_frag0(skb, hlen);
5257                NAPI_GRO_CB(skb)->frag0 += hlen;
5258                NAPI_GRO_CB(skb)->frag0_len -= hlen;
5259        }
5260        __skb_pull(skb, hlen);
5261
5262        /*
5263         * This works because the only protocols we care about don't require
5264         * special handling.
5265         * We'll fix it up properly in napi_frags_finish()
5266         */
5267        skb->protocol = eth->h_proto;
5268
5269        return skb;
5270}
5271
5272gro_result_t napi_gro_frags(struct napi_struct *napi)
5273{
5274        struct sk_buff *skb = napi_frags_skb(napi);
5275
5276        if (!skb)
5277                return GRO_DROP;
5278
5279        trace_napi_gro_frags_entry(skb);
5280
5281        return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5282}
5283EXPORT_SYMBOL(napi_gro_frags);
5284
5285/* Compute the checksum from gro_offset and return the folded value
5286 * after adding in any pseudo checksum.
5287 */
5288__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5289{
5290        __wsum wsum;
5291        __sum16 sum;
5292
5293        wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5294
5295        /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5296        sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5297        if (likely(!sum)) {
5298                if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5299                    !skb->csum_complete_sw)
5300                        netdev_rx_csum_fault(skb->dev);
5301        }
5302
5303        NAPI_GRO_CB(skb)->csum = wsum;
5304        NAPI_GRO_CB(skb)->csum_valid = 1;
5305
5306        return sum;
5307}
5308EXPORT_SYMBOL(__skb_gro_checksum_complete);
5309
5310static void net_rps_send_ipi(struct softnet_data *remsd)
5311{
5312#ifdef CONFIG_RPS
5313        while (remsd) {
5314                struct softnet_data *next = remsd->rps_ipi_next;
5315
5316                if (cpu_online(remsd->cpu))
5317                        smp_call_function_single_async(remsd->cpu, &remsd->csd);
5318                remsd = next;
5319        }
5320#endif
5321}
5322
5323/*
5324 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5325 * Note: called with local irq disabled, but exits with local irq enabled.
5326 */
5327static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5328{
5329#ifdef CONFIG_RPS
5330        struct softnet_data *remsd = sd->rps_ipi_list;
5331
5332        if (remsd) {
5333                sd->rps_ipi_list = NULL;
5334
5335                local_irq_enable();
5336
5337                /* Send pending IPI's to kick RPS processing on remote cpus. */
5338                net_rps_send_ipi(remsd);
5339        } else
5340#endif
5341                local_irq_enable();
5342}
5343
5344static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5345{
5346#ifdef CONFIG_RPS
5347        return sd->rps_ipi_list != NULL;
5348#else
5349        return false;
5350#endif
5351}
5352
5353static int process_backlog(struct napi_struct *napi, int quota)
5354{
5355        struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5356        bool again = true;
5357        int work = 0;
5358
5359        /* Check if we have pending ipi, its better to send them now,
5360         * not waiting net_rx_action() end.
5361         */
5362        if (sd_has_rps_ipi_waiting(sd)) {
5363                local_irq_disable();
5364                net_rps_action_and_irq_enable(sd);
5365        }
5366
5367        napi->weight = dev_rx_weight;
5368        while (again) {
5369                struct sk_buff *skb;
5370
5371                while ((skb = __skb_dequeue(&sd->process_queue))) {
5372                        rcu_read_lock();
5373                        __netif_receive_skb(skb);
5374                        rcu_read_unlock();
5375                        input_queue_head_incr(sd);
5376                        if (++work >= quota)
5377                                return work;
5378
5379                }
5380
5381                local_irq_disable();
5382                rps_lock(sd);
5383                if (skb_queue_empty(&sd->input_pkt_queue)) {
5384                        /*
5385                         * Inline a custom version of __napi_complete().
5386                         * only current cpu owns and manipulates this napi,
5387                         * and NAPI_STATE_SCHED is the only possible flag set
5388                         * on backlog.
5389                         * We can use a plain write instead of clear_bit(),
5390                         * and we dont need an smp_mb() memory barrier.
5391                         */
5392                        napi->state = 0;
5393                        again = false;
5394                } else {
5395                        skb_queue_splice_tail_init(&sd->input_pkt_queue,
5396                                                   &sd->process_queue);
5397                }
5398                rps_unlock(sd);
5399                local_irq_enable();
5400        }
5401
5402        return work;
5403}
5404
5405/**
5406 * __napi_schedule - schedule for receive
5407 * @n: entry to schedule
5408 *
5409 * The entry's receive function will be scheduled to run.
5410 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5411 */
5412void __napi_schedule(struct napi_struct *n)
5413{
5414        unsigned long flags;
5415
5416        local_irq_save(flags);
5417        ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5418        local_irq_restore(flags);
5419}
5420EXPORT_SYMBOL(__napi_schedule);
5421
5422/**
5423 *      napi_schedule_prep - check if napi can be scheduled
5424 *      @n: napi context
5425 *
5426 * Test if NAPI routine is already running, and if not mark
5427 * it as running.  This is used as a condition variable
5428 * insure only one NAPI poll instance runs.  We also make
5429 * sure there is no pending NAPI disable.
5430 */
5431bool napi_schedule_prep(struct napi_struct *n)
5432{
5433        unsigned long val, new;
5434
5435        do {
5436                val = READ_ONCE(n->state);
5437                if (unlikely(val & NAPIF_STATE_DISABLE))
5438                        return false;
5439                new = val | NAPIF_STATE_SCHED;
5440
5441                /* Sets STATE_MISSED bit if STATE_SCHED was already set
5442                 * This was suggested by Alexander Duyck, as compiler
5443                 * emits better code than :
5444                 * if (val & NAPIF_STATE_SCHED)
5445                 *     new |= NAPIF_STATE_MISSED;
5446                 */
5447                new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5448                                                   NAPIF_STATE_MISSED;
5449        } while (cmpxchg(&n->state, val, new) != val);
5450
5451        return !(val & NAPIF_STATE_SCHED);
5452}
5453EXPORT_SYMBOL(napi_schedule_prep);
5454
5455/**
5456 * __napi_schedule_irqoff - schedule for receive
5457 * @n: entry to schedule
5458 *
5459 * Variant of __napi_schedule() assuming hard irqs are masked
5460 */
5461void __napi_schedule_irqoff(struct napi_struct *n)
5462{
5463        ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5464}
5465EXPORT_SYMBOL(__napi_schedule_irqoff);
5466
5467bool napi_complete_done(struct napi_struct *n, int work_done)
5468{
5469        unsigned long flags, val, new;
5470
5471        /*
5472         * 1) Don't let napi dequeue from the cpu poll list
5473         *    just in case its running on a different cpu.
5474         * 2) If we are busy polling, do nothing here, we have
5475         *    the guarantee we will be called later.
5476         */
5477        if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5478                                 NAPIF_STATE_IN_BUSY_POLL)))
5479                return false;
5480
5481        if (n->gro_list) {
5482                unsigned long timeout = 0;
5483
5484                if (work_done)
5485                        timeout = n->dev->gro_flush_timeout;
5486
5487                if (timeout)
5488                        hrtimer_start(&n->timer, ns_to_ktime(timeout),
5489                                      HRTIMER_MODE_REL_PINNED);
5490                else
5491                        napi_gro_flush(n, false);
5492        }
5493        if (unlikely(!list_empty(&n->poll_list))) {
5494                /* If n->poll_list is not empty, we need to mask irqs */
5495                local_irq_save(flags);
5496                list_del_init(&n->poll_list);
5497                local_irq_restore(flags);
5498        }
5499
5500        do {
5501                val = READ_ONCE(n->state);
5502
5503                WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5504
5505                new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5506
5507                /* If STATE_MISSED was set, leave STATE_SCHED set,
5508                 * because we will call napi->poll() one more time.
5509                 * This C code was suggested by Alexander Duyck to help gcc.
5510                 */
5511                new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5512                                                    NAPIF_STATE_SCHED;
5513        } while (cmpxchg(&n->state, val, new) != val);
5514
5515        if (unlikely(val & NAPIF_STATE_MISSED)) {
5516                __napi_schedule(n);
5517                return false;
5518        }
5519
5520        return true;
5521}
5522EXPORT_SYMBOL(napi_complete_done);
5523
5524/* must be called under rcu_read_lock(), as we dont take a reference */
5525static struct napi_struct *napi_by_id(unsigned int napi_id)
5526{
5527        unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5528        struct napi_struct *napi;
5529
5530        hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5531                if (napi->napi_id == napi_id)
5532                        return napi;
5533
5534        return NULL;
5535}
5536
5537#if defined(CONFIG_NET_RX_BUSY_POLL)
5538
5539#define BUSY_POLL_BUDGET 8
5540
5541static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5542{
5543        int rc;
5544
5545        /* Busy polling means there is a high chance device driver hard irq
5546         * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5547         * set in napi_schedule_prep().
5548         * Since we are about to call napi->poll() once more, we can safely
5549         * clear NAPI_STATE_MISSED.
5550         *
5551         * Note: x86 could use a single "lock and ..." instruction
5552         * to perform these two clear_bit()
5553         */
5554        clear_bit(NAPI_STATE_MISSED, &napi->state);
5555        clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5556
5557        local_bh_disable();
5558
5559        /* All we really want here is to re-enable device interrupts.
5560         * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5561         */
5562        rc = napi->poll(napi, BUSY_POLL_BUDGET);
5563        trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5564        netpoll_poll_unlock(have_poll_lock);
5565        if (rc == BUSY_POLL_BUDGET)
5566                __napi_schedule(napi);
5567        local_bh_enable();
5568}
5569
5570void napi_busy_loop(unsigned int napi_id,
5571                    bool (*loop_end)(void *, unsigned long),
5572                    void *loop_end_arg)
5573{
5574        unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5575        int (*napi_poll)(struct napi_struct *napi, int budget);
5576        void *have_poll_lock = NULL;
5577        struct napi_struct *napi;
5578
5579restart:
5580        napi_poll = NULL;
5581
5582        rcu_read_lock();
5583
5584        napi = napi_by_id(napi_id);
5585        if (!napi)
5586                goto out;
5587
5588        preempt_disable();
5589        for (;;) {
5590                int work = 0;
5591
5592                local_bh_disable();
5593                if (!napi_poll) {
5594                        unsigned long val = READ_ONCE(napi->state);
5595
5596                        /* If multiple threads are competing for this napi,
5597                         * we avoid dirtying napi->state as much as we can.
5598                         */
5599                        if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5600                                   NAPIF_STATE_IN_BUSY_POLL))
5601                                goto count;
5602                        if (cmpxchg(&napi->state, val,
5603                                    val | NAPIF_STATE_IN_BUSY_POLL |
5604                                          NAPIF_STATE_SCHED) != val)
5605                                goto count;
5606                        have_poll_lock = netpoll_poll_lock(napi);
5607                        napi_poll = napi->poll;
5608                }
5609                work = napi_poll(napi, BUSY_POLL_BUDGET);
5610                trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5611count:
5612                if (work > 0)
5613                        __NET_ADD_STATS(dev_net(napi->dev),
5614                                        LINUX_MIB_BUSYPOLLRXPACKETS, work);
5615                local_bh_enable();
5616
5617                if (!loop_end || loop_end(loop_end_arg, start_time))
5618                        break;
5619
5620                if (unlikely(need_resched())) {
5621                        if (napi_poll)
5622                                busy_poll_stop(napi, have_poll_lock);
5623                        preempt_enable();
5624                        rcu_read_unlock();
5625                        cond_resched();
5626                        if (loop_end(loop_end_arg, start_time))
5627                                return;
5628                        goto restart;
5629                }
5630                cpu_relax();
5631        }
5632        if (napi_poll)
5633                busy_poll_stop(napi, have_poll_lock);
5634        preempt_enable();
5635out:
5636        rcu_read_unlock();
5637}
5638EXPORT_SYMBOL(napi_busy_loop);
5639
5640#endif /* CONFIG_NET_RX_BUSY_POLL */
5641
5642static void napi_hash_add(struct napi_struct *napi)
5643{
5644        if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5645            test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5646                return;
5647
5648        spin_lock(&napi_hash_lock);
5649
5650        /* 0..NR_CPUS range is reserved for sender_cpu use */
5651        do {
5652                if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5653                        napi_gen_id = MIN_NAPI_ID;
5654        } while (napi_by_id(napi_gen_id));
5655        napi->napi_id = napi_gen_id;
5656
5657        hlist_add_head_rcu(&napi->napi_hash_node,
5658                           &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5659
5660        spin_unlock(&napi_hash_lock);
5661}
5662
5663/* Warning : caller is responsible to make sure rcu grace period
5664 * is respected before freeing memory containing @napi
5665 */
5666bool napi_hash_del(struct napi_struct *napi)
5667{
5668        bool rcu_sync_needed = false;
5669
5670        spin_lock(&napi_hash_lock);
5671
5672        if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5673                rcu_sync_needed = true;
5674                hlist_del_rcu(&napi->napi_hash_node);
5675        }
5676        spin_unlock(&napi_hash_lock);
5677        return rcu_sync_needed;
5678}
5679EXPORT_SYMBOL_GPL(napi_hash_del);
5680
5681static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5682{
5683        struct napi_struct *napi;
5684
5685        napi = container_of(timer, struct napi_struct, timer);
5686
5687        /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5688         * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5689         */
5690        if (napi->gro_list && !napi_disable_pending(napi) &&
5691            !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5692                __napi_schedule_irqoff(napi);
5693
5694        return HRTIMER_NORESTART;
5695}
5696
5697void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5698                    int (*poll)(struct napi_struct *, int), int weight)
5699{
5700        INIT_LIST_HEAD(&napi->poll_list);
5701        hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5702        napi->timer.function = napi_watchdog;
5703        napi->gro_count = 0;
5704        napi->gro_list = NULL;
5705        napi->skb = NULL;
5706        napi->poll = poll;
5707        if (weight > NAPI_POLL_WEIGHT)
5708                pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5709                            weight, dev->name);
5710        napi->weight = weight;
5711        list_add(&napi->dev_list, &dev->napi_list);
5712        napi->dev = dev;
5713#ifdef CONFIG_NETPOLL
5714        napi->poll_owner = -1;
5715#endif
5716        set_bit(NAPI_STATE_SCHED, &napi->state);
5717        napi_hash_add(napi);
5718}
5719EXPORT_SYMBOL(netif_napi_add);
5720
5721void napi_disable(struct napi_struct *n)
5722{
5723        might_sleep();
5724        set_bit(NAPI_STATE_DISABLE, &n->state);
5725
5726        while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5727                msleep(1);
5728        while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5729                msleep(1);
5730
5731        hrtimer_cancel(&n->timer);
5732
5733        clear_bit(NAPI_STATE_DISABLE, &n->state);
5734}
5735EXPORT_SYMBOL(napi_disable);
5736
5737/* Must be called in process context */
5738void netif_napi_del(struct napi_struct *napi)
5739{
5740        might_sleep();
5741        if (napi_hash_del(napi))
5742                synchronize_net();
5743        list_del_init(&napi->dev_list);
5744        napi_free_frags(napi);
5745
5746        kfree_skb_list(napi->gro_list);
5747        napi->gro_list = NULL;
5748        napi->gro_count = 0;
5749}
5750EXPORT_SYMBOL(netif_napi_del);
5751
5752static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5753{
5754        void *have;
5755        int work, weight;
5756
5757        list_del_init(&n->poll_list);
5758
5759        have = netpoll_poll_lock(n);
5760
5761        weight = n->weight;
5762
5763        /* This NAPI_STATE_SCHED test is for avoiding a race
5764         * with netpoll's poll_napi().  Only the entity which
5765         * obtains the lock and sees NAPI_STATE_SCHED set will
5766         * actually make the ->poll() call.  Therefore we avoid
5767         * accidentally calling ->poll() when NAPI is not scheduled.
5768         */
5769        work = 0;
5770        if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5771                work = n->poll(n, weight);
5772                trace_napi_poll(n, work, weight);
5773        }
5774
5775        WARN_ON_ONCE(work > weight);
5776
5777        if (likely(work < weight))
5778                goto out_unlock;
5779
5780        /* Drivers must not modify the NAPI state if they
5781         * consume the entire weight.  In such cases this code
5782         * still "owns" the NAPI instance and therefore can
5783         * move the instance around on the list at-will.
5784         */
5785        if (unlikely(napi_disable_pending(n))) {
5786                napi_complete(n);
5787                goto out_unlock;
5788        }
5789
5790        if (n->gro_list) {
5791                /* flush too old packets
5792                 * If HZ < 1000, flush all packets.
5793                 */
5794                napi_gro_flush(n, HZ >= 1000);
5795        }
5796
5797        /* Some drivers may have called napi_schedule
5798         * prior to exhausting their budget.
5799         */
5800        if (unlikely(!list_empty(&n->poll_list))) {
5801                pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5802                             n->dev ? n->dev->name : "backlog");
5803                goto out_unlock;
5804        }
5805
5806        list_add_tail(&n->poll_list, repoll);
5807
5808out_unlock:
5809        netpoll_poll_unlock(have);
5810
5811        return work;
5812}
5813
5814static __latent_entropy void net_rx_action(struct softirq_action *h)
5815{
5816        struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5817        unsigned long time_limit = jiffies +
5818                usecs_to_jiffies(netdev_budget_usecs);
5819        int budget = netdev_budget;
5820        LIST_HEAD(list);
5821        LIST_HEAD(repoll);
5822
5823        local_irq_disable();
5824        list_splice_init(&sd->poll_list, &list);
5825        local_irq_enable();
5826
5827        for (;;) {
5828                struct napi_struct *n;
5829
5830                if (list_empty(&list)) {
5831                        if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5832                                goto out;
5833                        break;
5834                }
5835
5836                n = list_first_entry(&list, struct napi_struct, poll_list);
5837                budget -= napi_poll(n, &repoll);
5838
5839                /* If softirq window is exhausted then punt.
5840                 * Allow this to run for 2 jiffies since which will allow
5841                 * an average latency of 1.5/HZ.
5842                 */
5843                if (unlikely(budget <= 0 ||
5844                             time_after_eq(jiffies, time_limit))) {
5845                        sd->time_squeeze++;
5846                        break;
5847                }
5848        }
5849
5850        local_irq_disable();
5851
5852        list_splice_tail_init(&sd->poll_list, &list);
5853        list_splice_tail(&repoll, &list);
5854        list_splice(&list, &sd->poll_list);
5855        if (!list_empty(&sd->poll_list))
5856                __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5857
5858        net_rps_action_and_irq_enable(sd);
5859out:
5860        __kfree_skb_flush();
5861}
5862
5863struct netdev_adjacent {
5864        struct net_device *dev;
5865
5866        /* upper master flag, there can only be one master device per list */
5867        bool master;
5868
5869        /* counter for the number of times this device was added to us */
5870        u16 ref_nr;
5871
5872        /* private field for the users */
5873        void *private;
5874
5875        struct list_head list;
5876        struct rcu_head rcu;
5877};
5878
5879static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5880                                                 struct list_head *adj_list)
5881{
5882        struct netdev_adjacent *adj;
5883
5884        list_for_each_entry(adj, adj_list, list) {
5885                if (adj->dev == adj_dev)
5886                        return adj;
5887        }
5888        return NULL;
5889}
5890
5891static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5892{
5893        struct net_device *dev = data;
5894
5895        return upper_dev == dev;
5896}
5897
5898/**
5899 * netdev_has_upper_dev - Check if device is linked to an upper device
5900 * @dev: device
5901 * @upper_dev: upper device to check
5902 *
5903 * Find out if a device is linked to specified upper device and return true
5904 * in case it is. Note that this checks only immediate upper device,
5905 * not through a complete stack of devices. The caller must hold the RTNL lock.
5906 */
5907bool netdev_has_upper_dev(struct net_device *dev,
5908                          struct net_device *upper_dev)
5909{
5910        ASSERT_RTNL();
5911
5912        return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5913                                             upper_dev);
5914}
5915EXPORT_SYMBOL(netdev_has_upper_dev);
5916
5917/**
5918 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5919 * @dev: device
5920 * @upper_dev: upper device to check
5921 *
5922 * Find out if a device is linked to specified upper device and return true
5923 * in case it is. Note that this checks the entire upper device chain.
5924 * The caller must hold rcu lock.
5925 */
5926
5927bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5928                                  struct net_device *upper_dev)
5929{
5930        return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5931                                               upper_dev);
5932}
5933EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5934
5935/**
5936 * netdev_has_any_upper_dev - Check if device is linked to some device
5937 * @dev: device
5938 *
5939 * Find out if a device is linked to an upper device and return true in case
5940 * it is. The caller must hold the RTNL lock.
5941 */
5942bool netdev_has_any_upper_dev(struct net_device *dev)
5943{
5944        ASSERT_RTNL();
5945
5946        return !list_empty(&dev->adj_list.upper);
5947}
5948EXPORT_SYMBOL(netdev_has_any_upper_dev);
5949
5950/**
5951 * netdev_master_upper_dev_get - Get master upper device
5952 * @dev: device
5953 *
5954 * Find a master upper device and return pointer to it or NULL in case
5955 * it's not there. The caller must hold the RTNL lock.
5956 */
5957struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5958{
5959        struct netdev_adjacent *upper;
5960
5961        ASSERT_RTNL();
5962
5963        if (list_empty(&dev->adj_list.upper))
5964                return NULL;
5965
5966        upper = list_first_entry(&dev->adj_list.upper,
5967                                 struct netdev_adjacent, list);
5968        if (likely(upper->master))
5969                return upper->dev;
5970        return NULL;
5971}
5972EXPORT_SYMBOL(netdev_master_upper_dev_get);
5973
5974/**
5975 * netdev_has_any_lower_dev - Check if device is linked to some device
5976 * @dev: device
5977 *
5978 * Find out if a device is linked to a lower device and return true in case
5979 * it is. The caller must hold the RTNL lock.
5980 */
5981static bool netdev_has_any_lower_dev(struct net_device *dev)
5982{
5983        ASSERT_RTNL();
5984
5985        return !list_empty(&dev->adj_list.lower);
5986}
5987
5988void *netdev_adjacent_get_private(struct list_head *adj_list)
5989{
5990        struct netdev_adjacent *adj;
5991
5992        adj = list_entry(adj_list, struct netdev_adjacent, list);
5993
5994        return adj->private;
5995}
5996EXPORT_SYMBOL(netdev_adjacent_get_private);
5997
5998/**
5999 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6000 * @dev: device
6001 * @iter: list_head ** of the current position
6002 *
6003 * Gets the next device from the dev's upper list, starting from iter
6004 * position. The caller must hold RCU read lock.
6005 */
6006struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6007                                                 struct list_head **iter)
6008{
6009        struct netdev_adjacent *upper;
6010
6011        WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6012
6013        upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6014
6015        if (&upper->list == &dev->adj_list.upper)
6016                return NULL;
6017
6018        *iter = &upper->list;
6019
6020        return upper->dev;
6021}
6022EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6023
6024static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6025                                                    struct list_head **iter)
6026{
6027        struct netdev_adjacent *upper;
6028
6029        WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6030
6031        upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6032
6033        if (&upper->list == &dev->adj_list.upper)
6034                return NULL;
6035
6036        *iter = &upper->list;
6037
6038        return upper->dev;
6039}
6040
6041int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6042                                  int (*fn)(struct net_device *dev,
6043                                            void *data),
6044                                  void *data)
6045{
6046        struct net_device *udev;
6047        struct list_head *iter;
6048        int ret;
6049
6050        for (iter = &dev->adj_list.upper,
6051             udev = netdev_next_upper_dev_rcu(dev, &iter);
6052             udev;
6053             udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6054                /* first is the upper device itself */
6055                ret = fn(udev, data);
6056                if (ret)
6057                        return ret;
6058
6059                /* then look at all of its upper devices */
6060                ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6061                if (ret)
6062                        return ret;
6063        }
6064
6065        return 0;
6066}
6067EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6068
6069/**
6070 * netdev_lower_get_next_private - Get the next ->private from the
6071 *                                 lower neighbour list
6072 * @dev: device
6073 * @iter: list_head ** of the current position
6074 *
6075 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6076 * list, starting from iter position. The caller must hold either hold the
6077 * RTNL lock or its own locking that guarantees that the neighbour lower
6078 * list will remain unchanged.
6079 */
6080void *netdev_lower_get_next_private(struct net_device *dev,
6081                                    struct list_head **iter)
6082{
6083        struct netdev_adjacent *lower;
6084
6085        lower = list_entry(*iter, struct netdev_adjacent, list);
6086
6087        if (&lower->list == &dev->adj_list.lower)
6088                return NULL;
6089
6090        *iter = lower->list.next;
6091
6092        return lower->private;
6093}
6094EXPORT_SYMBOL(netdev_lower_get_next_private);
6095
6096/**
6097 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6098 *                                     lower neighbour list, RCU
6099 *                                     variant
6100 * @dev: device
6101 * @iter: list_head ** of the current position
6102 *
6103 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6104 * list, starting from iter position. The caller must hold RCU read lock.
6105 */
6106void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6107                                        struct list_head **iter)
6108{
6109        struct netdev_adjacent *lower;
6110
6111        WARN_ON_ONCE(!rcu_read_lock_held());
6112
6113        lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6114
6115        if (&lower->list == &dev->adj_list.lower)
6116                return NULL;
6117
6118        *iter = &lower->list;
6119
6120        return lower->private;
6121}
6122EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6123
6124/**
6125 * netdev_lower_get_next - Get the next device from the lower neighbour
6126 *                         list
6127 * @dev: device
6128 * @iter: list_head ** of the current position
6129 *
6130 * Gets the next netdev_adjacent from the dev's lower neighbour
6131 * list, starting from iter position. The caller must hold RTNL lock or
6132 * its own locking that guarantees that the neighbour lower
6133 * list will remain unchanged.
6134 */
6135void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6136{
6137        struct netdev_adjacent *lower;
6138
6139        lower = list_entry(*iter, struct netdev_adjacent, list);
6140
6141        if (&lower->list == &dev->adj_list.lower)
6142                return NULL;
6143
6144        *iter = lower->list.next;
6145
6146        return lower->dev;
6147}
6148EXPORT_SYMBOL(netdev_lower_get_next);
6149
6150static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6151                                                struct list_head **iter)
6152{
6153        struct netdev_adjacent *lower;
6154
6155        lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6156
6157        if (&lower->list == &dev->adj_list.lower)
6158                return NULL;
6159
6160        *iter = &lower->list;
6161
6162        return lower->dev;
6163}
6164
6165int netdev_walk_all_lower_dev(struct net_device *dev,
6166                              int (*fn)(struct net_device *dev,
6167                                        void *data),
6168                              void *data)
6169{
6170        struct net_device *ldev;
6171        struct list_head *iter;
6172        int ret;
6173
6174        for (iter = &dev->adj_list.lower,
6175             ldev = netdev_next_lower_dev(dev, &iter);
6176             ldev;
6177             ldev = netdev_next_lower_dev(dev, &iter)) {
6178                /* first is the lower device itself */
6179                ret = fn(ldev, data);
6180                if (ret)
6181                        return ret;
6182
6183                /* then look at all of its lower devices */
6184                ret = netdev_walk_all_lower_dev(ldev, fn, data);
6185                if (ret)
6186                        return ret;
6187        }
6188
6189        return 0;
6190}
6191EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6192
6193static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6194                                                    struct list_head **iter)
6195{
6196        struct netdev_adjacent *lower;
6197
6198        lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6199        if (&lower->list == &dev->adj_list.lower)
6200                return NULL;
6201
6202        *iter = &lower->list;
6203
6204        return lower->dev;
6205}
6206
6207int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6208                                  int (*fn)(struct net_device *dev,
6209                                            void *data),
6210                                  void *data)
6211{
6212        struct net_device *ldev;
6213        struct list_head *iter;
6214        int ret;
6215
6216        for (iter = &dev->adj_list.lower,
6217             ldev = netdev_next_lower_dev_rcu(dev, &iter);
6218             ldev;
6219             ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6220                /* first is the lower device itself */
6221                ret = fn(ldev, data);
6222                if (ret)
6223                        return ret;
6224
6225                /* then look at all of its lower devices */
6226                ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6227                if (ret)
6228                        return ret;
6229        }
6230
6231        return 0;
6232}
6233EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6234
6235/**
6236 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6237 *                                     lower neighbour list, RCU
6238 *                                     variant
6239 * @dev: device
6240 *
6241 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6242 * list. The caller must hold RCU read lock.
6243 */
6244void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6245{
6246        struct netdev_adjacent *lower;
6247
6248        lower = list_first_or_null_rcu(&dev->adj_list.lower,
6249                        struct netdev_adjacent, list);
6250        if (lower)
6251                return lower->private;
6252        return NULL;
6253}
6254EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6255
6256/**
6257 * netdev_master_upper_dev_get_rcu - Get master upper device
6258 * @dev: device
6259 *
6260 * Find a master upper device and return pointer to it or NULL in case
6261 * it's not there. The caller must hold the RCU read lock.
6262 */
6263struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6264{
6265        struct netdev_adjacent *upper;
6266
6267        upper = list_first_or_null_rcu(&dev->adj_list.upper,
6268                                       struct netdev_adjacent, list);
6269        if (upper && likely(upper->master))
6270                return upper->dev;
6271        return NULL;
6272}
6273EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6274
6275static int netdev_adjacent_sysfs_add(struct net_device *dev,
6276                              struct net_device *adj_dev,
6277                              struct list_head *dev_list)
6278{
6279        char linkname[IFNAMSIZ+7];
6280
6281        sprintf(linkname, dev_list == &dev->adj_list.upper ?
6282                "upper_%s" : "lower_%s", adj_dev->name);
6283        return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6284                                 linkname);
6285}
6286static void netdev_adjacent_sysfs_del(struct net_device *dev,
6287                               char *name,
6288                               struct list_head *dev_list)
6289{
6290        char linkname[IFNAMSIZ+7];
6291
6292        sprintf(linkname, dev_list == &dev->adj_list.upper ?
6293                "upper_%s" : "lower_%s", name);
6294        sysfs_remove_link(&(dev->dev.kobj), linkname);
6295}
6296
6297static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6298                                                 struct net_device *adj_dev,
6299                                                 struct list_head *dev_list)
6300{
6301        return (dev_list == &dev->adj_list.upper ||
6302                dev_list == &dev->adj_list.lower) &&
6303                net_eq(dev_net(dev), dev_net(adj_dev));
6304}
6305
6306static int __netdev_adjacent_dev_insert(struct net_device *dev,
6307                                        struct net_device *adj_dev,
6308                                        struct list_head *dev_list,
6309                                        void *private, bool master)
6310{
6311        struct netdev_adjacent *adj;
6312        int ret;
6313
6314        adj = __netdev_find_adj(adj_dev, dev_list);
6315
6316        if (adj) {
6317                adj->ref_nr += 1;
6318                pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6319                         dev->name, adj_dev->name, adj->ref_nr);
6320
6321                return 0;
6322        }
6323
6324        adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6325        if (!adj)
6326                return -ENOMEM;
6327
6328        adj->dev = adj_dev;
6329        adj->master = master;
6330        adj->ref_nr = 1;
6331        adj->private = private;
6332        dev_hold(adj_dev);
6333
6334        pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6335                 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6336
6337        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6338                ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6339                if (ret)
6340                        goto free_adj;
6341        }
6342
6343        /* Ensure that master link is always the first item in list. */
6344        if (master) {
6345                ret = sysfs_create_link(&(dev->dev.kobj),
6346                                        &(adj_dev->dev.kobj), "master");
6347                if (ret)
6348                        goto remove_symlinks;
6349
6350                list_add_rcu(&adj->list, dev_list);
6351        } else {
6352                list_add_tail_rcu(&adj->list, dev_list);
6353        }
6354
6355        return 0;
6356
6357remove_symlinks:
6358        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6359                netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6360free_adj:
6361        kfree(adj);
6362        dev_put(adj_dev);
6363
6364        return ret;
6365}
6366
6367static void __netdev_adjacent_dev_remove(struct net_device *dev,
6368                                         struct net_device *adj_dev,
6369                                         u16 ref_nr,
6370                                         struct list_head *dev_list)
6371{
6372        struct netdev_adjacent *adj;
6373
6374        pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6375                 dev->name, adj_dev->name, ref_nr);
6376
6377        adj = __netdev_find_adj(adj_dev, dev_list);
6378
6379        if (!adj) {
6380                pr_err("Adjacency does not exist for device %s from %s\n",
6381                       dev->name, adj_dev->name);
6382                WARN_ON(1);
6383                return;
6384        }
6385
6386        if (adj->ref_nr > ref_nr) {
6387                pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6388                         dev->name, adj_dev->name, ref_nr,
6389                         adj->ref_nr - ref_nr);
6390                adj->ref_nr -= ref_nr;
6391                return;
6392        }
6393
6394        if (adj->master)
6395                sysfs_remove_link(&(dev->dev.kobj), "master");
6396
6397        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6398                netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6399
6400        list_del_rcu(&adj->list);
6401        pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6402                 adj_dev->name, dev->name, adj_dev->name);
6403        dev_put(adj_dev);
6404        kfree_rcu(adj, rcu);
6405}
6406
6407static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6408                                            struct net_device *upper_dev,
6409                                            struct list_head *up_list,
6410                                            struct list_head *down_list,
6411                                            void *private, bool master)
6412{
6413        int ret;
6414
6415        ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6416                                           private, master);
6417        if (ret)
6418                return ret;
6419
6420        ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6421                                           private, false);
6422        if (ret) {
6423                __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6424                return ret;
6425        }
6426
6427        return 0;
6428}
6429
6430static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6431                                               struct net_device *upper_dev,
6432                                               u16 ref_nr,
6433                                               struct list_head *up_list,
6434                                               struct list_head *down_list)
6435{
6436        __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6437        __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6438}
6439
6440static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6441                                                struct net_device *upper_dev,
6442                                                void *private, bool master)
6443{
6444        return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6445                                                &dev->adj_list.upper,
6446                                                &upper_dev->adj_list.lower,
6447                                                private, master);
6448}
6449
6450static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6451                                                   struct net_device *upper_dev)
6452{
6453        __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6454                                           &dev->adj_list.upper,
6455                                           &upper_dev->adj_list.lower);
6456}
6457
6458static int __netdev_upper_dev_link(struct net_device *dev,
6459                                   struct net_device *upper_dev, bool master,
6460                                   void *upper_priv, void *upper_info,
6461                                   struct netlink_ext_ack *extack)
6462{
6463        struct netdev_notifier_changeupper_info changeupper_info = {
6464                .info = {
6465                        .dev = dev,
6466                        .extack = extack,
6467                },
6468                .upper_dev = upper_dev,
6469                .master = master,
6470                .linking = true,
6471                .upper_info = upper_info,
6472        };
6473        struct net_device *master_dev;
6474        int ret = 0;
6475
6476        ASSERT_RTNL();
6477
6478        if (dev == upper_dev)
6479                return -EBUSY;
6480
6481        /* To prevent loops, check if dev is not upper device to upper_dev. */
6482        if (netdev_has_upper_dev(upper_dev, dev))
6483                return -EBUSY;
6484
6485        if (!master) {
6486                if (netdev_has_upper_dev(dev, upper_dev))
6487                        return -EEXIST;
6488        } else {
6489                master_dev = netdev_master_upper_dev_get(dev);
6490                if (master_dev)
6491                        return master_dev == upper_dev ? -EEXIST : -EBUSY;
6492        }
6493
6494        ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6495                                            &changeupper_info.info);
6496        ret = notifier_to_errno(ret);
6497        if (ret)
6498                return ret;
6499
6500        ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6501                                                   master);
6502        if (ret)
6503                return ret;
6504
6505        ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6506                                            &changeupper_info.info);
6507        ret = notifier_to_errno(ret);
6508        if (ret)
6509                goto rollback;
6510
6511        return 0;
6512
6513rollback:
6514        __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6515
6516        return ret;
6517}
6518
6519/**
6520 * netdev_upper_dev_link - Add a link to the upper device
6521 * @dev: device
6522 * @upper_dev: new upper device
6523 * @extack: netlink extended ack
6524 *
6525 * Adds a link to device which is upper to this one. The caller must hold
6526 * the RTNL lock. On a failure a negative errno code is returned.
6527 * On success the reference counts are adjusted and the function
6528 * returns zero.
6529 */
6530int netdev_upper_dev_link(struct net_device *dev,
6531                          struct net_device *upper_dev,
6532                          struct netlink_ext_ack *extack)
6533{
6534        return __netdev_upper_dev_link(dev, upper_dev, false,
6535                                       NULL, NULL, extack);
6536}
6537EXPORT_SYMBOL(netdev_upper_dev_link);
6538
6539/**
6540 * netdev_master_upper_dev_link - Add a master link to the upper device
6541 * @dev: device
6542 * @upper_dev: new upper device
6543 * @upper_priv: upper device private
6544 * @upper_info: upper info to be passed down via notifier
6545 * @extack: netlink extended ack
6546 *
6547 * Adds a link to device which is upper to this one. In this case, only
6548 * one master upper device can be linked, although other non-master devices
6549 * might be linked as well. The caller must hold the RTNL lock.
6550 * On a failure a negative errno code is returned. On success the reference
6551 * counts are adjusted and the function returns zero.
6552 */
6553int netdev_master_upper_dev_link(struct net_device *dev,
6554                                 struct net_device *upper_dev,
6555                                 void *upper_priv, void *upper_info,
6556                                 struct netlink_ext_ack *extack)
6557{
6558        return __netdev_upper_dev_link(dev, upper_dev, true,
6559                                       upper_priv, upper_info, extack);
6560}
6561EXPORT_SYMBOL(netdev_master_upper_dev_link);
6562
6563/**
6564 * netdev_upper_dev_unlink - Removes a link to upper device
6565 * @dev: device
6566 * @upper_dev: new upper device
6567 *
6568 * Removes a link to device which is upper to this one. The caller must hold
6569 * the RTNL lock.
6570 */
6571void netdev_upper_dev_unlink(struct net_device *dev,
6572                             struct net_device *upper_dev)
6573{
6574        struct netdev_notifier_changeupper_info changeupper_info = {
6575                .info = {
6576                        .dev = dev,
6577                },
6578                .upper_dev = upper_dev,
6579                .linking = false,
6580        };
6581
6582        ASSERT_RTNL();
6583
6584        changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6585
6586        call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6587                                      &changeupper_info.info);
6588
6589        __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6590
6591        call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6592                                      &changeupper_info.info);
6593}
6594EXPORT_SYMBOL(netdev_upper_dev_unlink);
6595
6596/**
6597 * netdev_bonding_info_change - Dispatch event about slave change
6598 * @dev: device
6599 * @bonding_info: info to dispatch
6600 *
6601 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6602 * The caller must hold the RTNL lock.
6603 */
6604void netdev_bonding_info_change(struct net_device *dev,
6605                                struct netdev_bonding_info *bonding_info)
6606{
6607        struct netdev_notifier_bonding_info info = {
6608                .info.dev = dev,
6609        };
6610
6611        memcpy(&info.bonding_info, bonding_info,
6612               sizeof(struct netdev_bonding_info));
6613        call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6614                                      &info.info);
6615}
6616EXPORT_SYMBOL(netdev_bonding_info_change);
6617
6618static void netdev_adjacent_add_links(struct net_device *dev)
6619{
6620        struct netdev_adjacent *iter;
6621
6622        struct net *net = dev_net(dev);
6623
6624        list_for_each_entry(iter, &dev->adj_list.upper, list) {
6625                if (!net_eq(net, dev_net(iter->dev)))
6626                        continue;
6627                netdev_adjacent_sysfs_add(iter->dev, dev,
6628                                          &iter->dev->adj_list.lower);
6629                netdev_adjacent_sysfs_add(dev, iter->dev,
6630                                          &dev->adj_list.upper);
6631        }
6632
6633        list_for_each_entry(iter, &dev->adj_list.lower, list) {
6634                if (!net_eq(net, dev_net(iter->dev)))
6635                        continue;
6636                netdev_adjacent_sysfs_add(iter->dev, dev,
6637                                          &iter->dev->adj_list.upper);
6638                netdev_adjacent_sysfs_add(dev, iter->dev,
6639                                          &dev->adj_list.lower);
6640        }
6641}
6642
6643static void netdev_adjacent_del_links(struct net_device *dev)
6644{
6645        struct netdev_adjacent *iter;
6646
6647        struct net *net = dev_net(dev);
6648
6649        list_for_each_entry(iter, &dev->adj_list.upper, list) {
6650                if (!net_eq(net, dev_net(iter->dev)))
6651                        continue;
6652                netdev_adjacent_sysfs_del(iter->dev, dev->name,
6653                                          &iter->dev->adj_list.lower);
6654                netdev_adjacent_sysfs_del(dev, iter->dev->name,
6655                                          &dev->adj_list.upper);
6656        }
6657
6658        list_for_each_entry(iter, &dev->adj_list.lower, list) {
6659                if (!net_eq(net, dev_net(iter->dev)))
6660                        continue;
6661                netdev_adjacent_sysfs_del(iter->dev, dev->name,
6662                                          &iter->dev->adj_list.upper);
6663                netdev_adjacent_sysfs_del(dev, iter->dev->name,
6664                                          &dev->adj_list.lower);
6665        }
6666}
6667
6668void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6669{
6670        struct netdev_adjacent *iter;
6671
6672        struct net *net = dev_net(dev);
6673
6674        list_for_each_entry(iter, &dev->adj_list.upper, list) {
6675                if (!net_eq(net, dev_net(iter->dev)))
6676                        continue;
6677                netdev_adjacent_sysfs_del(iter->dev, oldname,
6678                                          &iter->dev->adj_list.lower);
6679                netdev_adjacent_sysfs_add(iter->dev, dev,
6680                                          &iter->dev->adj_list.lower);
6681        }
6682
6683        list_for_each_entry(iter, &dev->adj_list.lower, list) {
6684                if (!net_eq(net, dev_net(iter->dev)))
6685                        continue;
6686                netdev_adjacent_sysfs_del(iter->dev, oldname,
6687                                          &iter->dev->adj_list.upper);
6688                netdev_adjacent_sysfs_add(iter->dev, dev,
6689                                          &iter->dev->adj_list.upper);
6690        }
6691}
6692
6693void *netdev_lower_dev_get_private(struct net_device *dev,
6694                                   struct net_device *lower_dev)
6695{
6696        struct netdev_adjacent *lower;
6697
6698        if (!lower_dev)
6699                return NULL;
6700        lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6701        if (!lower)
6702                return NULL;
6703
6704        return lower->private;
6705}
6706EXPORT_SYMBOL(netdev_lower_dev_get_private);
6707
6708
6709int dev_get_nest_level(struct net_device *dev)
6710{
6711        struct net_device *lower = NULL;
6712        struct list_head *iter;
6713        int max_nest = -1;
6714        int nest;
6715
6716        ASSERT_RTNL();
6717
6718        netdev_for_each_lower_dev(dev, lower, iter) {
6719                nest = dev_get_nest_level(lower);
6720                if (max_nest < nest)
6721                        max_nest = nest;
6722        }
6723
6724        return max_nest + 1;
6725}
6726EXPORT_SYMBOL(dev_get_nest_level);
6727
6728/**
6729 * netdev_lower_change - Dispatch event about lower device state change
6730 * @lower_dev: device
6731 * @lower_state_info: state to dispatch
6732 *
6733 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6734 * The caller must hold the RTNL lock.
6735 */
6736void netdev_lower_state_changed(struct net_device *lower_dev,
6737                                void *lower_state_info)
6738{
6739        struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6740                .info.dev = lower_dev,
6741        };
6742
6743        ASSERT_RTNL();
6744        changelowerstate_info.lower_state_info = lower_state_info;
6745        call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6746                                      &changelowerstate_info.info);
6747}
6748EXPORT_SYMBOL(netdev_lower_state_changed);
6749
6750static void dev_change_rx_flags(struct net_device *dev, int flags)
6751{
6752        const struct net_device_ops *ops = dev->netdev_ops;
6753
6754        if (ops->ndo_change_rx_flags)
6755                ops->ndo_change_rx_flags(dev, flags);
6756}
6757
6758static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6759{
6760        unsigned int old_flags = dev->flags;
6761        kuid_t uid;
6762        kgid_t gid;
6763
6764        ASSERT_RTNL();
6765
6766        dev->flags |= IFF_PROMISC;
6767        dev->promiscuity += inc;
6768        if (dev->promiscuity == 0) {
6769                /*
6770                 * Avoid overflow.
6771                 * If inc causes overflow, untouch promisc and return error.
6772                 */
6773                if (inc < 0)
6774                        dev->flags &= ~IFF_PROMISC;
6775                else {
6776                        dev->promiscuity -= inc;
6777                        pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6778                                dev->name);
6779                        return -EOVERFLOW;
6780                }
6781        }
6782        if (dev->flags != old_flags) {
6783                pr_info("device %s %s promiscuous mode\n",
6784                        dev->name,
6785                        dev->flags & IFF_PROMISC ? "entered" : "left");
6786                if (audit_enabled) {
6787                        current_uid_gid(&uid, &gid);
6788                        audit_log(audit_context(), GFP_ATOMIC,
6789                                  AUDIT_ANOM_PROMISCUOUS,
6790                                  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6791                                  dev->name, (dev->flags & IFF_PROMISC),
6792                                  (old_flags & IFF_PROMISC),
6793                                  from_kuid(&init_user_ns, audit_get_loginuid(current)),
6794                                  from_kuid(&init_user_ns, uid),
6795                                  from_kgid(&init_user_ns, gid),
6796                                  audit_get_sessionid(current));
6797                }
6798
6799                dev_change_rx_flags(dev, IFF_PROMISC);
6800        }
6801        if (notify)
6802                __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6803        return 0;
6804}
6805
6806/**
6807 *      dev_set_promiscuity     - update promiscuity count on a device
6808 *      @dev: device
6809 *      @inc: modifier
6810 *
6811 *      Add or remove promiscuity from a device. While the count in the device
6812 *      remains above zero the interface remains promiscuous. Once it hits zero
6813 *      the device reverts back to normal filtering operation. A negative inc
6814 *      value is used to drop promiscuity on the device.
6815 *      Return 0 if successful or a negative errno code on error.
6816 */
6817int dev_set_promiscuity(struct net_device *dev, int inc)
6818{
6819        unsigned int old_flags = dev->flags;
6820        int err;
6821
6822        err = __dev_set_promiscuity(dev, inc, true);
6823        if (err < 0)
6824                return err;
6825        if (dev->flags != old_flags)
6826                dev_set_rx_mode(dev);
6827        return err;
6828}
6829EXPORT_SYMBOL(dev_set_promiscuity);
6830
6831static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6832{
6833        unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6834
6835        ASSERT_RTNL();
6836
6837        dev->flags |= IFF_ALLMULTI;
6838        dev->allmulti += inc;
6839        if (dev->allmulti == 0) {
6840                /*
6841                 * Avoid overflow.
6842                 * If inc causes overflow, untouch allmulti and return error.
6843                 */
6844                if (inc < 0)
6845                        dev->flags &= ~IFF_ALLMULTI;
6846                else {
6847                        dev->allmulti -= inc;
6848                        pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6849                                dev->name);
6850                        return -EOVERFLOW;
6851                }
6852        }
6853        if (dev->flags ^ old_flags) {
6854                dev_change_rx_flags(dev, IFF_ALLMULTI);
6855                dev_set_rx_mode(dev);
6856                if (notify)
6857                        __dev_notify_flags(dev, old_flags,
6858                                           dev->gflags ^ old_gflags);
6859        }
6860        return 0;
6861}
6862
6863/**
6864 *      dev_set_allmulti        - update allmulti count on a device
6865 *      @dev: device
6866 *      @inc: modifier
6867 *
6868 *      Add or remove reception of all multicast frames to a device. While the
6869 *      count in the device remains above zero the interface remains listening
6870 *      to all interfaces. Once it hits zero the device reverts back to normal
6871 *      filtering operation. A negative @inc value is used to drop the counter
6872 *      when releasing a resource needing all multicasts.
6873 *      Return 0 if successful or a negative errno code on error.
6874 */
6875
6876int dev_set_allmulti(struct net_device *dev, int inc)
6877{
6878        return __dev_set_allmulti(dev, inc, true);
6879}
6880EXPORT_SYMBOL(dev_set_allmulti);
6881
6882/*
6883 *      Upload unicast and multicast address lists to device and
6884 *      configure RX filtering. When the device doesn't support unicast
6885 *      filtering it is put in promiscuous mode while unicast addresses
6886 *      are present.
6887 */
6888void __dev_set_rx_mode(struct net_device *dev)
6889{
6890        const struct net_device_ops *ops = dev->netdev_ops;
6891
6892        /* dev_open will call this function so the list will stay sane. */
6893        if (!(dev->flags&IFF_UP))
6894                return;
6895
6896        if (!netif_device_present(dev))
6897                return;
6898
6899        if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6900                /* Unicast addresses changes may only happen under the rtnl,
6901                 * therefore calling __dev_set_promiscuity here is safe.
6902                 */
6903                if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6904                        __dev_set_promiscuity(dev, 1, false);
6905                        dev->uc_promisc = true;
6906                } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6907                        __dev_set_promiscuity(dev, -1, false);
6908                        dev->uc_promisc = false;
6909                }
6910        }
6911
6912        if (ops->ndo_set_rx_mode)
6913                ops->ndo_set_rx_mode(dev);
6914}
6915
6916void dev_set_rx_mode(struct net_device *dev)
6917{
6918        netif_addr_lock_bh(dev);
6919        __dev_set_rx_mode(dev);
6920        netif_addr_unlock_bh(dev);
6921}
6922
6923/**
6924 *      dev_get_flags - get flags reported to userspace
6925 *      @dev: device
6926 *
6927 *      Get the combination of flag bits exported through APIs to userspace.
6928 */
6929unsigned int dev_get_flags(const struct net_device *dev)
6930{
6931        unsigned int flags;
6932
6933        flags = (dev->flags & ~(IFF_PROMISC |
6934                                IFF_ALLMULTI |
6935                                IFF_RUNNING |
6936                                IFF_LOWER_UP |
6937                                IFF_DORMANT)) |
6938                (dev->gflags & (IFF_PROMISC |
6939                                IFF_ALLMULTI));
6940
6941        if (netif_running(dev)) {
6942                if (netif_oper_up(dev))
6943                        flags |= IFF_RUNNING;
6944                if (netif_carrier_ok(dev))
6945                        flags |= IFF_LOWER_UP;
6946                if (netif_dormant(dev))
6947                        flags |= IFF_DORMANT;
6948        }
6949
6950        return flags;
6951}
6952EXPORT_SYMBOL(dev_get_flags);
6953
6954int __dev_change_flags(struct net_device *dev, unsigned int flags)
6955{
6956        unsigned int old_flags = dev->flags;
6957        int ret;
6958
6959        ASSERT_RTNL();
6960
6961        /*
6962         *      Set the flags on our device.
6963         */
6964
6965        dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6966                               IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6967                               IFF_AUTOMEDIA)) |
6968                     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6969                                    IFF_ALLMULTI));
6970
6971        /*
6972         *      Load in the correct multicast list now the flags have changed.
6973         */
6974
6975        if ((old_flags ^ flags) & IFF_MULTICAST)
6976                dev_change_rx_flags(dev, IFF_MULTICAST);
6977
6978        dev_set_rx_mode(dev);
6979
6980        /*
6981         *      Have we downed the interface. We handle IFF_UP ourselves
6982         *      according to user attempts to set it, rather than blindly
6983         *      setting it.
6984         */
6985
6986        ret = 0;
6987        if ((old_flags ^ flags) & IFF_UP) {
6988                if (old_flags & IFF_UP)
6989                        __dev_close(dev);
6990                else
6991                        ret = __dev_open(dev);
6992        }
6993
6994        if ((flags ^ dev->gflags) & IFF_PROMISC) {
6995                int inc = (flags & IFF_PROMISC) ? 1 : -1;
6996                unsigned int old_flags = dev->flags;
6997
6998                dev->gflags ^= IFF_PROMISC;
6999
7000                if (__dev_set_promiscuity(dev, inc, false) >= 0)
7001                        if (dev->flags != old_flags)
7002                                dev_set_rx_mode(dev);
7003        }
7004
7005        /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7006         * is important. Some (broken) drivers set IFF_PROMISC, when
7007         * IFF_ALLMULTI is requested not asking us and not reporting.
7008         */
7009        if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7010                int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7011
7012                dev->gflags ^= IFF_ALLMULTI;
7013                __dev_set_allmulti(dev, inc, false);
7014        }
7015
7016        return ret;
7017}
7018
7019void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7020                        unsigned int gchanges)
7021{
7022        unsigned int changes = dev->flags ^ old_flags;
7023
7024        if (gchanges)
7025                rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7026
7027        if (changes & IFF_UP) {
7028                if (dev->flags & IFF_UP)
7029                        call_netdevice_notifiers(NETDEV_UP, dev);
7030                else
7031                        call_netdevice_notifiers(NETDEV_DOWN, dev);
7032        }
7033
7034        if (dev->flags & IFF_UP &&
7035            (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7036                struct netdev_notifier_change_info change_info = {
7037                        .info = {
7038                                .dev = dev,
7039                        },
7040                        .flags_changed = changes,
7041                };
7042
7043                call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7044        }
7045}
7046
7047/**
7048 *      dev_change_flags - change device settings
7049 *      @dev: device
7050 *      @flags: device state flags
7051 *
7052 *      Change settings on device based state flags. The flags are
7053 *      in the userspace exported format.
7054 */
7055int dev_change_flags(struct net_device *dev, unsigned int flags)
7056{
7057        int ret;
7058        unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7059
7060        ret = __dev_change_flags(dev, flags);
7061        if (ret < 0)
7062                return ret;
7063
7064        changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7065        __dev_notify_flags(dev, old_flags, changes);
7066        return ret;
7067}
7068EXPORT_SYMBOL(dev_change_flags);
7069
7070int __dev_set_mtu(struct net_device *dev, int new_mtu)
7071{
7072        const struct net_device_ops *ops = dev->netdev_ops;
7073
7074        if (ops->ndo_change_mtu)
7075                return ops->ndo_change_mtu(dev, new_mtu);
7076
7077        dev->mtu = new_mtu;
7078        return 0;
7079}
7080EXPORT_SYMBOL(__dev_set_mtu);
7081
7082/**
7083 *      dev_set_mtu - Change maximum transfer unit
7084 *      @dev: device
7085 *      @new_mtu: new transfer unit
7086 *
7087 *      Change the maximum transfer size of the network device.
7088 */
7089int dev_set_mtu(struct net_device *dev, int new_mtu)
7090{
7091        int err, orig_mtu;
7092
7093        if (new_mtu == dev->mtu)
7094                return 0;
7095
7096        /* MTU must be positive, and in range */
7097        if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7098                net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7099                                    dev->name, new_mtu, dev->min_mtu);
7100                return -EINVAL;
7101        }
7102
7103        if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7104                net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7105                                    dev->name, new_mtu, dev->max_mtu);
7106                return -EINVAL;
7107        }
7108
7109        if (!netif_device_present(dev))
7110                return -ENODEV;
7111
7112        err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7113        err = notifier_to_errno(err);
7114        if (err)
7115                return err;
7116
7117        orig_mtu = dev->mtu;
7118        err = __dev_set_mtu(dev, new_mtu);
7119
7120        if (!err) {
7121                err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7122                err = notifier_to_errno(err);
7123                if (err) {
7124                        /* setting mtu back and notifying everyone again,
7125                         * so that they have a chance to revert changes.
7126                         */
7127                        __dev_set_mtu(dev, orig_mtu);
7128                        call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7129                }
7130        }
7131        return err;
7132}
7133EXPORT_SYMBOL(dev_set_mtu);
7134
7135/**
7136 *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7137 *      @dev: device
7138 *      @new_len: new tx queue length
7139 */
7140int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7141{
7142        unsigned int orig_len = dev->tx_queue_len;
7143        int res;
7144
7145        if (new_len != (unsigned int)new_len)
7146                return -ERANGE;
7147
7148        if (new_len != orig_len) {
7149                dev->tx_queue_len = new_len;
7150                res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7151                res = notifier_to_errno(res);
7152                if (res)
7153                        goto err_rollback;
7154                res = dev_qdisc_change_tx_queue_len(dev);
7155                if (res)
7156                        goto err_rollback;
7157        }
7158
7159        return 0;
7160
7161err_rollback:
7162        netdev_err(dev, "refused to change device tx_queue_len\n");
7163        dev->tx_queue_len = orig_len;
7164        return res;
7165}
7166
7167/**
7168 *      dev_set_group - Change group this device belongs to
7169 *      @dev: device
7170 *      @new_group: group this device should belong to
7171 */
7172void dev_set_group(struct net_device *dev, int new_group)
7173{
7174        dev->group = new_group;
7175}
7176EXPORT_SYMBOL(dev_set_group);
7177
7178/**
7179 *      dev_set_mac_address - Change Media Access Control Address
7180 *      @dev: device
7181 *      @sa: new address
7182 *
7183 *      Change the hardware (MAC) address of the device
7184 */
7185int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7186{
7187        const struct net_device_ops *ops = dev->netdev_ops;
7188        int err;
7189
7190        if (!ops->ndo_set_mac_address)
7191                return -EOPNOTSUPP;
7192        if (sa->sa_family != dev->type)
7193                return -EINVAL;
7194        if (!netif_device_present(dev))
7195                return -ENODEV;
7196        err = ops->ndo_set_mac_address(dev, sa);
7197        if (err)
7198                return err;
7199        dev->addr_assign_type = NET_ADDR_SET;
7200        call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7201        add_device_randomness(dev->dev_addr, dev->addr_len);
7202        return 0;
7203}
7204EXPORT_SYMBOL(dev_set_mac_address);
7205
7206/**
7207 *      dev_change_carrier - Change device carrier
7208 *      @dev: device
7209 *      @new_carrier: new value
7210 *
7211 *      Change device carrier
7212 */
7213int dev_change_carrier(struct net_device *dev, bool new_carrier)
7214{
7215        const struct net_device_ops *ops = dev->netdev_ops;
7216
7217        if (!ops->ndo_change_carrier)
7218                return -EOPNOTSUPP;
7219        if (!netif_device_present(dev))
7220                return -ENODEV;
7221        return ops->ndo_change_carrier(dev, new_carrier);
7222}
7223EXPORT_SYMBOL(dev_change_carrier);
7224
7225/**
7226 *      dev_get_phys_port_id - Get device physical port ID
7227 *      @dev: device
7228 *      @ppid: port ID
7229 *
7230 *      Get device physical port ID
7231 */
7232int dev_get_phys_port_id(struct net_device *dev,
7233                         struct netdev_phys_item_id *ppid)
7234{
7235        const struct net_device_ops *ops = dev->netdev_ops;
7236
7237        if (!ops->ndo_get_phys_port_id)
7238                return -EOPNOTSUPP;
7239        return ops->ndo_get_phys_port_id(dev, ppid);
7240}
7241EXPORT_SYMBOL(dev_get_phys_port_id);
7242
7243/**
7244 *      dev_get_phys_port_name - Get device physical port name
7245 *      @dev: device
7246 *      @name: port name
7247 *      @len: limit of bytes to copy to name
7248 *
7249 *      Get device physical port name
7250 */
7251int dev_get_phys_port_name(struct net_device *dev,
7252                           char *name, size_t len)
7253{
7254        const struct net_device_ops *ops = dev->netdev_ops;
7255
7256        if (!ops->ndo_get_phys_port_name)
7257                return -EOPNOTSUPP;
7258        return ops->ndo_get_phys_port_name(dev, name, len);
7259}
7260EXPORT_SYMBOL(dev_get_phys_port_name);
7261
7262/**
7263 *      dev_change_proto_down - update protocol port state information
7264 *      @dev: device
7265 *      @proto_down: new value
7266 *
7267 *      This info can be used by switch drivers to set the phys state of the
7268 *      port.
7269 */
7270int dev_change_proto_down(struct net_device *dev, bool proto_down)
7271{
7272        const struct net_device_ops *ops = dev->netdev_ops;
7273
7274        if (!ops->ndo_change_proto_down)
7275                return -EOPNOTSUPP;
7276        if (!netif_device_present(dev))
7277                return -ENODEV;
7278        return ops->ndo_change_proto_down(dev, proto_down);
7279}
7280EXPORT_SYMBOL(dev_change_proto_down);
7281
7282void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7283                     struct netdev_bpf *xdp)
7284{
7285        memset(xdp, 0, sizeof(*xdp));
7286        xdp->command = XDP_QUERY_PROG;
7287
7288        /* Query must always succeed. */
7289        WARN_ON(bpf_op(dev, xdp) < 0);
7290}
7291
7292static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7293{
7294        struct netdev_bpf xdp;
7295
7296        __dev_xdp_query(dev, bpf_op, &xdp);
7297
7298        return xdp.prog_attached;
7299}
7300
7301static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7302                           struct netlink_ext_ack *extack, u32 flags,
7303                           struct bpf_prog *prog)
7304{
7305        struct netdev_bpf xdp;
7306
7307        memset(&xdp, 0, sizeof(xdp));
7308        if (flags & XDP_FLAGS_HW_MODE)
7309                xdp.command = XDP_SETUP_PROG_HW;
7310        else
7311                xdp.command = XDP_SETUP_PROG;
7312        xdp.extack = extack;
7313        xdp.flags = flags;
7314        xdp.prog = prog;
7315
7316        return bpf_op(dev, &xdp);
7317}
7318
7319static void dev_xdp_uninstall(struct net_device *dev)
7320{
7321        struct netdev_bpf xdp;
7322        bpf_op_t ndo_bpf;
7323
7324        /* Remove generic XDP */
7325        WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7326
7327        /* Remove from the driver */
7328        ndo_bpf = dev->netdev_ops->ndo_bpf;
7329        if (!ndo_bpf)
7330                return;
7331
7332        __dev_xdp_query(dev, ndo_bpf, &xdp);
7333        if (xdp.prog_attached == XDP_ATTACHED_NONE)
7334                return;
7335
7336        /* Program removal should always succeed */
7337        WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7338}
7339
7340/**
7341 *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7342 *      @dev: device
7343 *      @extack: netlink extended ack
7344 *      @fd: new program fd or negative value to clear
7345 *      @flags: xdp-related flags
7346 *
7347 *      Set or clear a bpf program for a device
7348 */
7349int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7350                      int fd, u32 flags)
7351{
7352        const struct net_device_ops *ops = dev->netdev_ops;
7353        struct bpf_prog *prog = NULL;
7354        bpf_op_t bpf_op, bpf_chk;
7355        int err;
7356
7357        ASSERT_RTNL();
7358
7359        bpf_op = bpf_chk = ops->ndo_bpf;
7360        if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7361                return -EOPNOTSUPP;
7362        if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7363                bpf_op = generic_xdp_install;
7364        if (bpf_op == bpf_chk)
7365                bpf_chk = generic_xdp_install;
7366
7367        if (fd >= 0) {
7368                if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7369                        return -EEXIST;
7370                if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7371                    __dev_xdp_attached(dev, bpf_op))
7372                        return -EBUSY;
7373
7374                prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7375                                             bpf_op == ops->ndo_bpf);
7376                if (IS_ERR(prog))
7377                        return PTR_ERR(prog);
7378
7379                if (!(flags & XDP_FLAGS_HW_MODE) &&
7380                    bpf_prog_is_dev_bound(prog->aux)) {
7381                        NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7382                        bpf_prog_put(prog);
7383                        return -EINVAL;
7384                }
7385        }
7386
7387        err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7388        if (err < 0 && prog)
7389                bpf_prog_put(prog);
7390
7391        return err;
7392}
7393
7394/**
7395 *      dev_new_index   -       allocate an ifindex
7396 *      @net: the applicable net namespace
7397 *
7398 *      Returns a suitable unique value for a new device interface
7399 *      number.  The caller must hold the rtnl semaphore or the
7400 *      dev_base_lock to be sure it remains unique.
7401 */
7402static int dev_new_index(struct net *net)
7403{
7404        int ifindex = net->ifindex;
7405
7406        for (;;) {
7407                if (++ifindex <= 0)
7408                        ifindex = 1;
7409                if (!__dev_get_by_index(net, ifindex))
7410                        return net->ifindex = ifindex;
7411        }
7412}
7413
7414/* Delayed registration/unregisteration */
7415static LIST_HEAD(net_todo_list);
7416DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7417
7418static void net_set_todo(struct net_device *dev)
7419{
7420        list_add_tail(&dev->todo_list, &net_todo_list);
7421        dev_net(dev)->dev_unreg_count++;
7422}
7423
7424static void rollback_registered_many(struct list_head *head)
7425{
7426        struct net_device *dev, *tmp;
7427        LIST_HEAD(close_head);
7428
7429        BUG_ON(dev_boot_phase);
7430        ASSERT_RTNL();
7431
7432        list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7433                /* Some devices call without registering
7434                 * for initialization unwind. Remove those
7435                 * devices and proceed with the remaining.
7436                 */
7437                if (dev->reg_state == NETREG_UNINITIALIZED) {
7438                        pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7439                                 dev->name, dev);
7440
7441                        WARN_ON(1);
7442                        list_del(&dev->unreg_list);
7443                        continue;
7444                }
7445                dev->dismantle = true;
7446                BUG_ON(dev->reg_state != NETREG_REGISTERED);
7447        }
7448
7449        /* If device is running, close it first. */
7450        list_for_each_entry(dev, head, unreg_list)
7451                list_add_tail(&dev->close_list, &close_head);
7452        dev_close_many(&close_head, true);
7453
7454        list_for_each_entry(dev, head, unreg_list) {
7455                /* And unlink it from device chain. */
7456                unlist_netdevice(dev);
7457
7458                dev->reg_state = NETREG_UNREGISTERING;
7459        }
7460        flush_all_backlogs();
7461
7462        synchronize_net();
7463
7464        list_for_each_entry(dev, head, unreg_list) {
7465                struct sk_buff *skb = NULL;
7466
7467                /* Shutdown queueing discipline. */
7468                dev_shutdown(dev);
7469
7470                dev_xdp_uninstall(dev);
7471
7472                /* Notify protocols, that we are about to destroy
7473                 * this device. They should clean all the things.
7474                 */
7475                call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7476
7477                if (!dev->rtnl_link_ops ||
7478                    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7479                        skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7480                                                     GFP_KERNEL, NULL, 0);
7481
7482                /*
7483                 *      Flush the unicast and multicast chains
7484                 */
7485                dev_uc_flush(dev);
7486                dev_mc_flush(dev);
7487
7488                if (dev->netdev_ops->ndo_uninit)
7489                        dev->netdev_ops->ndo_uninit(dev);
7490
7491                if (skb)
7492                        rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7493
7494                /* Notifier chain MUST detach us all upper devices. */
7495                WARN_ON(netdev_has_any_upper_dev(dev));
7496                WARN_ON(netdev_has_any_lower_dev(dev));
7497
7498                /* Remove entries from kobject tree */
7499                netdev_unregister_kobject(dev);
7500#ifdef CONFIG_XPS
7501                /* Remove XPS queueing entries */
7502                netif_reset_xps_queues_gt(dev, 0);
7503#endif
7504        }
7505
7506        synchronize_net();
7507
7508        list_for_each_entry(dev, head, unreg_list)
7509                dev_put(dev);
7510}
7511
7512static void rollback_registered(struct net_device *dev)
7513{
7514        LIST_HEAD(single);
7515
7516        list_add(&dev->unreg_list, &single);
7517        rollback_registered_many(&single);
7518        list_del(&single);
7519}
7520
7521static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7522        struct net_device *upper, netdev_features_t features)
7523{
7524        netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7525        netdev_features_t feature;
7526        int feature_bit;
7527
7528        for_each_netdev_feature(&upper_disables, feature_bit) {
7529                feature = __NETIF_F_BIT(feature_bit);
7530                if (!(upper->wanted_features & feature)
7531                    && (features & feature)) {
7532                        netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7533                                   &feature, upper->name);
7534                        features &= ~feature;
7535                }
7536        }
7537
7538        return features;
7539}
7540
7541static void netdev_sync_lower_features(struct net_device *upper,
7542        struct net_device *lower, netdev_features_t features)
7543{
7544        netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7545        netdev_features_t feature;
7546        int feature_bit;
7547
7548        for_each_netdev_feature(&upper_disables, feature_bit) {
7549                feature = __NETIF_F_BIT(feature_bit);
7550                if (!(features & feature) && (lower->features & feature)) {
7551                        netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7552                                   &feature, lower->name);
7553                        lower->wanted_features &= ~feature;
7554                        netdev_update_features(lower);
7555
7556                        if (unlikely(lower->features & feature))
7557                                netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7558                                            &feature, lower->name);
7559                }
7560        }
7561}
7562
7563static netdev_features_t netdev_fix_features(struct net_device *dev,
7564        netdev_features_t features)
7565{
7566        /* Fix illegal checksum combinations */
7567        if ((features & NETIF_F_HW_CSUM) &&
7568            (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7569                netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7570                features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7571        }
7572
7573        /* TSO requires that SG is present as well. */
7574        if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7575                netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7576                features &= ~NETIF_F_ALL_TSO;
7577        }
7578
7579        if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7580                                        !(features & NETIF_F_IP_CSUM)) {
7581                netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7582                features &= ~NETIF_F_TSO;
7583                features &= ~NETIF_F_TSO_ECN;
7584        }
7585
7586        if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7587                                         !(features & NETIF_F_IPV6_CSUM)) {
7588                netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7589                features &= ~NETIF_F_TSO6;
7590        }
7591
7592        /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7593        if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7594                features &= ~NETIF_F_TSO_MANGLEID;
7595
7596        /* TSO ECN requires that TSO is present as well. */
7597        if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7598                features &= ~NETIF_F_TSO_ECN;
7599
7600        /* Software GSO depends on SG. */
7601        if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7602                netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7603                features &= ~NETIF_F_GSO;
7604        }
7605
7606        /* GSO partial features require GSO partial be set */
7607        if ((features & dev->gso_partial_features) &&
7608            !(features & NETIF_F_GSO_PARTIAL)) {
7609                netdev_dbg(dev,
7610                           "Dropping partially supported GSO features since no GSO partial.\n");
7611                features &= ~dev->gso_partial_features;
7612        }
7613
7614        if (!(features & NETIF_F_RXCSUM)) {
7615                /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7616                 * successfully merged by hardware must also have the
7617                 * checksum verified by hardware.  If the user does not
7618                 * want to enable RXCSUM, logically, we should disable GRO_HW.
7619                 */
7620                if (features & NETIF_F_GRO_HW) {
7621                        netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7622                        features &= ~NETIF_F_GRO_HW;
7623                }
7624        }
7625
7626        /* LRO/HW-GRO features cannot be combined with RX-FCS */
7627        if (features & NETIF_F_RXFCS) {
7628                if (features & NETIF_F_LRO) {
7629                        netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
7630                        features &= ~NETIF_F_LRO;
7631                }
7632
7633                if (features & NETIF_F_GRO_HW) {
7634                        netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
7635                        features &= ~NETIF_F_GRO_HW;
7636                }
7637        }
7638
7639        return features;
7640}
7641
7642int __netdev_update_features(struct net_device *dev)
7643{
7644        struct net_device *upper, *lower;
7645        netdev_features_t features;
7646        struct list_head *iter;
7647        int err = -1;
7648
7649        ASSERT_RTNL();
7650
7651        features = netdev_get_wanted_features(dev);
7652
7653        if (dev->netdev_ops->ndo_fix_features)
7654                features = dev->netdev_ops->ndo_fix_features(dev, features);
7655
7656        /* driver might be less strict about feature dependencies */
7657        features = netdev_fix_features(dev, features);
7658
7659        /* some features can't be enabled if they're off an an upper device */
7660        netdev_for_each_upper_dev_rcu(dev, upper, iter)
7661                features = netdev_sync_upper_features(dev, upper, features);
7662
7663        if (dev->features == features)
7664                goto sync_lower;
7665
7666        netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7667                &dev->features, &features);
7668
7669        if (dev->netdev_ops->ndo_set_features)
7670                err = dev->netdev_ops->ndo_set_features(dev, features);
7671        else
7672                err = 0;
7673
7674        if (unlikely(err < 0)) {
7675                netdev_err(dev,
7676                        "set_features() failed (%d); wanted %pNF, left %pNF\n",
7677                        err, &features, &dev->features);
7678                /* return non-0 since some features might have changed and
7679                 * it's better to fire a spurious notification than miss it
7680                 */
7681                return -1;
7682        }
7683
7684sync_lower:
7685        /* some features must be disabled on lower devices when disabled
7686         * on an upper device (think: bonding master or bridge)
7687         */
7688        netdev_for_each_lower_dev(dev, lower, iter)
7689                netdev_sync_lower_features(dev, lower, features);
7690
7691        if (!err) {
7692                netdev_features_t diff = features ^ dev->features;
7693
7694                if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7695                        /* udp_tunnel_{get,drop}_rx_info both need
7696                         * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7697                         * device, or they won't do anything.
7698                         * Thus we need to update dev->features
7699                         * *before* calling udp_tunnel_get_rx_info,
7700                         * but *after* calling udp_tunnel_drop_rx_info.
7701                         */
7702                        if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7703                                dev->features = features;
7704                                udp_tunnel_get_rx_info(dev);
7705                        } else {
7706                                udp_tunnel_drop_rx_info(dev);
7707                        }
7708                }
7709
7710                if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
7711                        if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
7712                                dev->features = features;
7713                                err |= vlan_get_rx_ctag_filter_info(dev);
7714                        } else {
7715                                vlan_drop_rx_ctag_filter_info(dev);
7716                        }
7717                }
7718
7719                if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
7720                        if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
7721                                dev->features = features;
7722                                err |= vlan_get_rx_stag_filter_info(dev);
7723                        } else {
7724                                vlan_drop_rx_stag_filter_info(dev);
7725                        }
7726                }
7727
7728                dev->features = features;
7729        }
7730
7731        return err < 0 ? 0 : 1;
7732}
7733
7734/**
7735 *      netdev_update_features - recalculate device features
7736 *      @dev: the device to check
7737 *
7738 *      Recalculate dev->features set and send notifications if it
7739 *      has changed. Should be called after driver or hardware dependent
7740 *      conditions might have changed that influence the features.
7741 */
7742void netdev_update_features(struct net_device *dev)
7743{
7744        if (__netdev_update_features(dev))
7745                netdev_features_change(dev);
7746}
7747EXPORT_SYMBOL(netdev_update_features);
7748
7749/**
7750 *      netdev_change_features - recalculate device features
7751 *      @dev: the device to check
7752 *
7753 *      Recalculate dev->features set and send notifications even
7754 *      if they have not changed. Should be called instead of
7755 *      netdev_update_features() if also dev->vlan_features might
7756 *      have changed to allow the changes to be propagated to stacked
7757 *      VLAN devices.
7758 */
7759void netdev_change_features(struct net_device *dev)
7760{
7761        __netdev_update_features(dev);
7762        netdev_features_change(dev);
7763}
7764EXPORT_SYMBOL(netdev_change_features);
7765
7766/**
7767 *      netif_stacked_transfer_operstate -      transfer operstate
7768 *      @rootdev: the root or lower level device to transfer state from
7769 *      @dev: the device to transfer operstate to
7770 *
7771 *      Transfer operational state from root to device. This is normally
7772 *      called when a stacking relationship exists between the root
7773 *      device and the device(a leaf device).
7774 */
7775void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7776                                        struct net_device *dev)
7777{
7778        if (rootdev->operstate == IF_OPER_DORMANT)
7779                netif_dormant_on(dev);
7780        else
7781                netif_dormant_off(dev);
7782
7783        if (netif_carrier_ok(rootdev))
7784                netif_carrier_on(dev);
7785        else
7786                netif_carrier_off(dev);
7787}
7788EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7789
7790static int netif_alloc_rx_queues(struct net_device *dev)
7791{
7792        unsigned int i, count = dev->num_rx_queues;
7793        struct netdev_rx_queue *rx;
7794        size_t sz = count * sizeof(*rx);
7795        int err = 0;
7796
7797        BUG_ON(count < 1);
7798
7799        rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7800        if (!rx)
7801                return -ENOMEM;
7802
7803        dev->_rx = rx;
7804
7805        for (i = 0; i < count; i++) {
7806                rx[i].dev = dev;
7807
7808                /* XDP RX-queue setup */
7809                err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7810                if (err < 0)
7811                        goto err_rxq_info;
7812        }
7813        return 0;
7814
7815err_rxq_info:
7816        /* Rollback successful reg's and free other resources */
7817        while (i--)
7818                xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7819        kvfree(dev->_rx);
7820        dev->_rx = NULL;
7821        return err;
7822}
7823
7824static void netif_free_rx_queues(struct net_device *dev)
7825{
7826        unsigned int i, count = dev->num_rx_queues;
7827
7828        /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7829        if (!dev->_rx)
7830                return;
7831
7832        for (i = 0; i < count; i++)
7833                xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7834
7835        kvfree(dev->_rx);
7836}
7837
7838static void netdev_init_one_queue(struct net_device *dev,
7839                                  struct netdev_queue *queue, void *_unused)
7840{
7841        /* Initialize queue lock */
7842        spin_lock_init(&queue->_xmit_lock);
7843        netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7844        queue->xmit_lock_owner = -1;
7845        netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7846        queue->dev = dev;
7847#ifdef CONFIG_BQL
7848        dql_init(&queue->dql, HZ);
7849#endif
7850}
7851
7852static void netif_free_tx_queues(struct net_device *dev)
7853{
7854        kvfree(dev->_tx);
7855}
7856
7857static int netif_alloc_netdev_queues(struct net_device *dev)
7858{
7859        unsigned int count = dev->num_tx_queues;
7860        struct netdev_queue *tx;
7861        size_t sz = count * sizeof(*tx);
7862
7863        if (count < 1 || count > 0xffff)
7864                return -EINVAL;
7865
7866        tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7867        if (!tx)
7868                return -ENOMEM;
7869
7870        dev->_tx = tx;
7871
7872        netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7873        spin_lock_init(&dev->tx_global_lock);
7874
7875        return 0;
7876}
7877
7878void netif_tx_stop_all_queues(struct net_device *dev)
7879{
7880        unsigned int i;
7881
7882        for (i = 0; i < dev->num_tx_queues; i++) {
7883                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7884
7885                netif_tx_stop_queue(txq);
7886        }
7887}
7888EXPORT_SYMBOL(netif_tx_stop_all_queues);
7889
7890/**
7891 *      register_netdevice      - register a network device
7892 *      @dev: device to register
7893 *
7894 *      Take a completed network device structure and add it to the kernel
7895 *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7896 *      chain. 0 is returned on success. A negative errno code is returned
7897 *      on a failure to set up the device, or if the name is a duplicate.
7898 *
7899 *      Callers must hold the rtnl semaphore. You may want
7900 *      register_netdev() instead of this.
7901 *
7902 *      BUGS:
7903 *      The locking appears insufficient to guarantee two parallel registers
7904 *      will not get the same name.
7905 */
7906
7907int register_netdevice(struct net_device *dev)
7908{
7909        int ret;
7910        struct net *net = dev_net(dev);
7911
7912        BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
7913                     NETDEV_FEATURE_COUNT);
7914        BUG_ON(dev_boot_phase);
7915        ASSERT_RTNL();
7916
7917        might_sleep();
7918
7919        /* When net_device's are persistent, this will be fatal. */
7920        BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7921        BUG_ON(!net);
7922
7923        spin_lock_init(&dev->addr_list_lock);
7924        netdev_set_addr_lockdep_class(dev);
7925
7926        ret = dev_get_valid_name(net, dev, dev->name);
7927        if (ret < 0)
7928                goto out;
7929
7930        /* Init, if this function is available */
7931        if (dev->netdev_ops->ndo_init) {
7932                ret = dev->netdev_ops->ndo_init(dev);
7933                if (ret) {
7934                        if (ret > 0)
7935                                ret = -EIO;
7936                        goto out;
7937                }
7938        }
7939
7940        if (((dev->hw_features | dev->features) &
7941             NETIF_F_HW_VLAN_CTAG_FILTER) &&
7942            (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7943             !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7944                netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7945                ret = -EINVAL;
7946                goto err_uninit;
7947        }
7948
7949        ret = -EBUSY;
7950        if (!dev->ifindex)
7951                dev->ifindex = dev_new_index(net);
7952        else if (__dev_get_by_index(net, dev->ifindex))
7953                goto err_uninit;
7954
7955        /* Transfer changeable features to wanted_features and enable
7956         * software offloads (GSO and GRO).
7957         */
7958        dev->hw_features |= NETIF_F_SOFT_FEATURES;
7959        dev->features |= NETIF_F_SOFT_FEATURES;
7960
7961        if (dev->netdev_ops->ndo_udp_tunnel_add) {
7962                dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7963                dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7964        }
7965
7966        dev->wanted_features = dev->features & dev->hw_features;
7967
7968        if (!(dev->flags & IFF_LOOPBACK))
7969                dev->hw_features |= NETIF_F_NOCACHE_COPY;
7970
7971        /* If IPv4 TCP segmentation offload is supported we should also
7972         * allow the device to enable segmenting the frame with the option
7973         * of ignoring a static IP ID value.  This doesn't enable the
7974         * feature itself but allows the user to enable it later.
7975         */
7976        if (dev->hw_features & NETIF_F_TSO)
7977                dev->hw_features |= NETIF_F_TSO_MANGLEID;
7978        if (dev->vlan_features & NETIF_F_TSO)
7979                dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7980        if (dev->mpls_features & NETIF_F_TSO)
7981                dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7982        if (dev->hw_enc_features & NETIF_F_TSO)
7983                dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7984
7985        /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7986         */
7987        dev->vlan_features |= NETIF_F_HIGHDMA;
7988
7989        /* Make NETIF_F_SG inheritable to tunnel devices.
7990         */
7991        dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7992
7993        /* Make NETIF_F_SG inheritable to MPLS.
7994         */
7995        dev->mpls_features |= NETIF_F_SG;
7996
7997        ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7998        ret = notifier_to_errno(ret);
7999        if (ret)
8000                goto err_uninit;
8001
8002        ret = netdev_register_kobject(dev);
8003        if (ret)
8004                goto err_uninit;
8005        dev->reg_state = NETREG_REGISTERED;
8006
8007        __netdev_update_features(dev);
8008
8009        /*
8010         *      Default initial state at registry is that the
8011         *      device is present.
8012         */
8013
8014        set_bit(__LINK_STATE_PRESENT, &dev->state);
8015
8016        linkwatch_init_dev(dev);
8017
8018        dev_init_scheduler(dev);
8019        dev_hold(dev);
8020        list_netdevice(dev);
8021        add_device_randomness(dev->dev_addr, dev->addr_len);
8022
8023        /* If the device has permanent device address, driver should
8024         * set dev_addr and also addr_assign_type should be set to
8025         * NET_ADDR_PERM (default value).
8026         */
8027        if (dev->addr_assign_type == NET_ADDR_PERM)
8028                memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8029
8030        /* Notify protocols, that a new device appeared. */
8031        ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8032        ret = notifier_to_errno(ret);
8033        if (ret) {
8034                rollback_registered(dev);
8035                dev->reg_state = NETREG_UNREGISTERED;
8036        }
8037        /*
8038         *      Prevent userspace races by waiting until the network
8039         *      device is fully setup before sending notifications.
8040         */
8041        if (!dev->rtnl_link_ops ||
8042            dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8043                rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8044
8045out:
8046        return ret;
8047
8048err_uninit:
8049        if (dev->netdev_ops->ndo_uninit)
8050                dev->netdev_ops->ndo_uninit(dev);
8051        if (dev->priv_destructor)
8052                dev->priv_destructor(dev);
8053        goto out;
8054}
8055EXPORT_SYMBOL(register_netdevice);
8056
8057/**
8058 *      init_dummy_netdev       - init a dummy network device for NAPI
8059 *      @dev: device to init
8060 *
8061 *      This takes a network device structure and initialize the minimum
8062 *      amount of fields so it can be used to schedule NAPI polls without
8063 *      registering a full blown interface. This is to be used by drivers
8064 *      that need to tie several hardware interfaces to a single NAPI
8065 *      poll scheduler due to HW limitations.
8066 */
8067int init_dummy_netdev(struct net_device *dev)
8068{
8069        /* Clear everything. Note we don't initialize spinlocks
8070         * are they aren't supposed to be taken by any of the
8071         * NAPI code and this dummy netdev is supposed to be
8072         * only ever used for NAPI polls
8073         */
8074        memset(dev, 0, sizeof(struct net_device));
8075
8076        /* make sure we BUG if trying to hit standard
8077         * register/unregister code path
8078         */
8079        dev->reg_state = NETREG_DUMMY;
8080
8081        /* NAPI wants this */
8082        INIT_LIST_HEAD(&dev->napi_list);
8083
8084        /* a dummy interface is started by default */
8085        set_bit(__LINK_STATE_PRESENT, &dev->state);
8086        set_bit(__LINK_STATE_START, &dev->state);
8087
8088        /* Note : We dont allocate pcpu_refcnt for dummy devices,
8089         * because users of this 'device' dont need to change
8090         * its refcount.
8091         */
8092
8093        return 0;
8094}
8095EXPORT_SYMBOL_GPL(init_dummy_netdev);
8096
8097
8098/**
8099 *      register_netdev - register a network device
8100 *      @dev: device to register
8101 *
8102 *      Take a completed network device structure and add it to the kernel
8103 *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8104 *      chain. 0 is returned on success. A negative errno code is returned
8105 *      on a failure to set up the device, or if the name is a duplicate.
8106 *
8107 *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8108 *      and expands the device name if you passed a format string to
8109 *      alloc_netdev.
8110 */
8111int register_netdev(struct net_device *dev)
8112{
8113        int err;
8114
8115        if (rtnl_lock_killable())
8116                return -EINTR;
8117        err = register_netdevice(dev);
8118        rtnl_unlock();
8119        return err;
8120}
8121EXPORT_SYMBOL(register_netdev);
8122
8123int netdev_refcnt_read(const struct net_device *dev)
8124{
8125        int i, refcnt = 0;
8126
8127        for_each_possible_cpu(i)
8128                refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8129        return refcnt;
8130}
8131EXPORT_SYMBOL(netdev_refcnt_read);
8132
8133/**
8134 * netdev_wait_allrefs - wait until all references are gone.
8135 * @dev: target net_device
8136 *
8137 * This is called when unregistering network devices.
8138 *
8139 * Any protocol or device that holds a reference should register
8140 * for netdevice notification, and cleanup and put back the
8141 * reference if they receive an UNREGISTER event.
8142 * We can get stuck here if buggy protocols don't correctly
8143 * call dev_put.
8144 */
8145static void netdev_wait_allrefs(struct net_device *dev)
8146{
8147        unsigned long rebroadcast_time, warning_time;
8148        int refcnt;
8149
8150        linkwatch_forget_dev(dev);
8151
8152        rebroadcast_time = warning_time = jiffies;
8153        refcnt = netdev_refcnt_read(dev);
8154
8155        while (refcnt != 0) {
8156                if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8157                        rtnl_lock();
8158
8159                        /* Rebroadcast unregister notification */
8160                        call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8161
8162                        __rtnl_unlock();
8163                        rcu_barrier();
8164                        rtnl_lock();
8165
8166                        if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8167                                     &dev->state)) {
8168                                /* We must not have linkwatch events
8169                                 * pending on unregister. If this
8170                                 * happens, we simply run the queue
8171                                 * unscheduled, resulting in a noop
8172                                 * for this device.
8173                                 */
8174                                linkwatch_run_queue();
8175                        }
8176
8177                        __rtnl_unlock();
8178
8179                        rebroadcast_time = jiffies;
8180                }
8181
8182                msleep(250);
8183
8184                refcnt = netdev_refcnt_read(dev);
8185
8186                if (time_after(jiffies, warning_time + 10 * HZ)) {
8187                        pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8188                                 dev->name, refcnt);
8189                        warning_time = jiffies;
8190                }
8191        }
8192}
8193
8194/* The sequence is:
8195 *
8196 *      rtnl_lock();
8197 *      ...
8198 *      register_netdevice(x1);
8199 *      register_netdevice(x2);
8200 *      ...
8201 *      unregister_netdevice(y1);
8202 *      unregister_netdevice(y2);
8203 *      ...
8204 *      rtnl_unlock();
8205 *      free_netdev(y1);
8206 *      free_netdev(y2);
8207 *
8208 * We are invoked by rtnl_unlock().
8209 * This allows us to deal with problems:
8210 * 1) We can delete sysfs objects which invoke hotplug
8211 *    without deadlocking with linkwatch via keventd.
8212 * 2) Since we run with the RTNL semaphore not held, we can sleep
8213 *    safely in order to wait for the netdev refcnt to drop to zero.
8214 *
8215 * We must not return until all unregister events added during
8216 * the interval the lock was held have been completed.
8217 */
8218void netdev_run_todo(void)
8219{
8220        struct list_head list;
8221
8222        /* Snapshot list, allow later requests */
8223        list_replace_init(&net_todo_list, &list);
8224
8225        __rtnl_unlock();
8226
8227
8228        /* Wait for rcu callbacks to finish before next phase */
8229        if (!list_empty(&list))
8230                rcu_barrier();
8231
8232        while (!list_empty(&list)) {
8233                struct net_device *dev
8234                        = list_first_entry(&list, struct net_device, todo_list);
8235                list_del(&dev->todo_list);
8236
8237                if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8238                        pr_err("network todo '%s' but state %d\n",
8239                               dev->name, dev->reg_state);
8240                        dump_stack();
8241                        continue;
8242                }
8243
8244                dev->reg_state = NETREG_UNREGISTERED;
8245
8246                netdev_wait_allrefs(dev);
8247
8248                /* paranoia */
8249                BUG_ON(netdev_refcnt_read(dev));
8250                BUG_ON(!list_empty(&dev->ptype_all));
8251                BUG_ON(!list_empty(&dev->ptype_specific));
8252                WARN_ON(rcu_access_pointer(dev->ip_ptr));
8253                WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8254#if IS_ENABLED(CONFIG_DECNET)
8255                WARN_ON(dev->dn_ptr);
8256#endif
8257                if (dev->priv_destructor)
8258                        dev->priv_destructor(dev);
8259                if (dev->needs_free_netdev)
8260                        free_netdev(dev);
8261
8262                /* Report a network device has been unregistered */
8263                rtnl_lock();
8264                dev_net(dev)->dev_unreg_count--;
8265                __rtnl_unlock();
8266                wake_up(&netdev_unregistering_wq);
8267
8268                /* Free network device */
8269                kobject_put(&dev->dev.kobj);
8270        }
8271}
8272
8273/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8274 * all the same fields in the same order as net_device_stats, with only
8275 * the type differing, but rtnl_link_stats64 may have additional fields
8276 * at the end for newer counters.
8277 */
8278void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8279                             const struct net_device_stats *netdev_stats)
8280{
8281#if BITS_PER_LONG == 64
8282        BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8283        memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8284        /* zero out counters that only exist in rtnl_link_stats64 */
8285        memset((char *)stats64 + sizeof(*netdev_stats), 0,
8286               sizeof(*stats64) - sizeof(*netdev_stats));
8287#else
8288        size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8289        const unsigned long *src = (const unsigned long *)netdev_stats;
8290        u64 *dst = (u64 *)stats64;
8291
8292        BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8293        for (i = 0; i < n; i++)
8294                dst[i] = src[i];
8295        /* zero out counters that only exist in rtnl_link_stats64 */
8296        memset((char *)stats64 + n * sizeof(u64), 0,
8297               sizeof(*stats64) - n * sizeof(u64));
8298#endif
8299}
8300EXPORT_SYMBOL(netdev_stats_to_stats64);
8301
8302/**
8303 *      dev_get_stats   - get network device statistics
8304 *      @dev: device to get statistics from
8305 *      @storage: place to store stats
8306 *
8307 *      Get network statistics from device. Return @storage.
8308 *      The device driver may provide its own method by setting
8309 *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8310 *      otherwise the internal statistics structure is used.
8311 */
8312struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8313                                        struct rtnl_link_stats64 *storage)
8314{
8315        const struct net_device_ops *ops = dev->netdev_ops;
8316
8317        if (ops->ndo_get_stats64) {
8318                memset(storage, 0, sizeof(*storage));
8319                ops->ndo_get_stats64(dev, storage);
8320        } else if (ops->ndo_get_stats) {
8321                netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8322        } else {
8323                netdev_stats_to_stats64(storage, &dev->stats);
8324        }
8325        storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8326        storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8327        storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8328        return storage;
8329}
8330EXPORT_SYMBOL(dev_get_stats);
8331
8332struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8333{
8334        struct netdev_queue *queue = dev_ingress_queue(dev);
8335
8336#ifdef CONFIG_NET_CLS_ACT
8337        if (queue)
8338                return queue;
8339        queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8340        if (!queue)
8341                return NULL;
8342        netdev_init_one_queue(dev, queue, NULL);
8343        RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8344        queue->qdisc_sleeping = &noop_qdisc;
8345        rcu_assign_pointer(dev->ingress_queue, queue);
8346#endif
8347        return queue;
8348}
8349
8350static const struct ethtool_ops default_ethtool_ops;
8351
8352void netdev_set_default_ethtool_ops(struct net_device *dev,
8353                                    const struct ethtool_ops *ops)
8354{
8355        if (dev->ethtool_ops == &default_ethtool_ops)
8356                dev->ethtool_ops = ops;
8357}
8358EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8359
8360void netdev_freemem(struct net_device *dev)
8361{
8362        char *addr = (char *)dev - dev->padded;
8363
8364        kvfree(addr);
8365}
8366
8367/**
8368 * alloc_netdev_mqs - allocate network device
8369 * @sizeof_priv: size of private data to allocate space for
8370 * @name: device name format string
8371 * @name_assign_type: origin of device name
8372 * @setup: callback to initialize device
8373 * @txqs: the number of TX subqueues to allocate
8374 * @rxqs: the number of RX subqueues to allocate
8375 *
8376 * Allocates a struct net_device with private data area for driver use
8377 * and performs basic initialization.  Also allocates subqueue structs
8378 * for each queue on the device.
8379 */
8380struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8381                unsigned char name_assign_type,
8382                void (*setup)(struct net_device *),
8383                unsigned int txqs, unsigned int rxqs)
8384{
8385        struct net_device *dev;
8386        unsigned int alloc_size;
8387        struct net_device *p;
8388
8389        BUG_ON(strlen(name) >= sizeof(dev->name));
8390
8391        if (txqs < 1) {
8392                pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8393                return NULL;
8394        }
8395
8396        if (rxqs < 1) {
8397                pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8398                return NULL;
8399        }
8400
8401        alloc_size = sizeof(struct net_device);
8402        if (sizeof_priv) {
8403                /* ensure 32-byte alignment of private area */
8404                alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8405                alloc_size += sizeof_priv;
8406        }
8407        /* ensure 32-byte alignment of whole construct */
8408        alloc_size += NETDEV_ALIGN - 1;
8409
8410        p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8411        if (!p)
8412                return NULL;
8413
8414        dev = PTR_ALIGN(p, NETDEV_ALIGN);
8415        dev->padded = (char *)dev - (char *)p;
8416
8417        dev->pcpu_refcnt = alloc_percpu(int);
8418        if (!dev->pcpu_refcnt)
8419                goto free_dev;
8420
8421        if (dev_addr_init(dev))
8422                goto free_pcpu;
8423
8424        dev_mc_init(dev);
8425        dev_uc_init(dev);
8426
8427        dev_net_set(dev, &init_net);
8428
8429        dev->gso_max_size = GSO_MAX_SIZE;
8430        dev->gso_max_segs = GSO_MAX_SEGS;
8431
8432        INIT_LIST_HEAD(&dev->napi_list);
8433        INIT_LIST_HEAD(&dev->unreg_list);
8434        INIT_LIST_HEAD(&dev->close_list);
8435        INIT_LIST_HEAD(&dev->link_watch_list);
8436        INIT_LIST_HEAD(&dev->adj_list.upper);
8437        INIT_LIST_HEAD(&dev->adj_list.lower);
8438        INIT_LIST_HEAD(&dev->ptype_all);
8439        INIT_LIST_HEAD(&dev->ptype_specific);
8440#ifdef CONFIG_NET_SCHED
8441        hash_init(dev->qdisc_hash);
8442#endif
8443        dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8444        setup(dev);
8445
8446        if (!dev->tx_queue_len) {
8447                dev->priv_flags |= IFF_NO_QUEUE;
8448                dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8449        }
8450
8451        dev->num_tx_queues = txqs;
8452        dev->real_num_tx_queues = txqs;
8453        if (netif_alloc_netdev_queues(dev))
8454                goto free_all;
8455
8456        dev->num_rx_queues = rxqs;
8457        dev->real_num_rx_queues = rxqs;
8458        if (netif_alloc_rx_queues(dev))
8459                goto free_all;
8460
8461        strcpy(dev->name, name);
8462        dev->name_assign_type = name_assign_type;
8463        dev->group = INIT_NETDEV_GROUP;
8464        if (!dev->ethtool_ops)
8465                dev->ethtool_ops = &default_ethtool_ops;
8466
8467        nf_hook_ingress_init(dev);
8468
8469        return dev;
8470
8471free_all:
8472        free_netdev(dev);
8473        return NULL;
8474
8475free_pcpu:
8476        free_percpu(dev->pcpu_refcnt);
8477free_dev:
8478        netdev_freemem(dev);
8479        return NULL;
8480}
8481EXPORT_SYMBOL(alloc_netdev_mqs);
8482
8483/**
8484 * free_netdev - free network device
8485 * @dev: device
8486 *
8487 * This function does the last stage of destroying an allocated device
8488 * interface. The reference to the device object is released. If this
8489 * is the last reference then it will be freed.Must be called in process
8490 * context.
8491 */
8492void free_netdev(struct net_device *dev)
8493{
8494        struct napi_struct *p, *n;
8495
8496        might_sleep();
8497        netif_free_tx_queues(dev);
8498        netif_free_rx_queues(dev);
8499
8500        kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8501
8502        /* Flush device addresses */
8503        dev_addr_flush(dev);
8504
8505        list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8506                netif_napi_del(p);
8507
8508        free_percpu(dev->pcpu_refcnt);
8509        dev->pcpu_refcnt = NULL;
8510
8511        /*  Compatibility with error handling in drivers */
8512        if (dev->reg_state == NETREG_UNINITIALIZED) {
8513                netdev_freemem(dev);
8514                return;
8515        }
8516
8517        BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8518        dev->reg_state = NETREG_RELEASED;
8519
8520        /* will free via device release */
8521        put_device(&dev->dev);
8522}
8523EXPORT_SYMBOL(free_netdev);
8524
8525/**
8526 *      synchronize_net -  Synchronize with packet receive processing
8527 *
8528 *      Wait for packets currently being received to be done.
8529 *      Does not block later packets from starting.
8530 */
8531void synchronize_net(void)
8532{
8533        might_sleep();
8534        if (rtnl_is_locked())
8535                synchronize_rcu_expedited();
8536        else
8537                synchronize_rcu();
8538}
8539EXPORT_SYMBOL(synchronize_net);
8540
8541/**
8542 *      unregister_netdevice_queue - remove device from the kernel
8543 *      @dev: device
8544 *      @head: list
8545 *
8546 *      This function shuts down a device interface and removes it
8547 *      from the kernel tables.
8548 *      If head not NULL, device is queued to be unregistered later.
8549 *
8550 *      Callers must hold the rtnl semaphore.  You may want
8551 *      unregister_netdev() instead of this.
8552 */
8553
8554void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8555{
8556        ASSERT_RTNL();
8557
8558        if (head) {
8559                list_move_tail(&dev->unreg_list, head);
8560        } else {
8561                rollback_registered(dev);
8562                /* Finish processing unregister after unlock */
8563                net_set_todo(dev);
8564        }
8565}
8566EXPORT_SYMBOL(unregister_netdevice_queue);
8567
8568/**
8569 *      unregister_netdevice_many - unregister many devices
8570 *      @head: list of devices
8571 *
8572 *  Note: As most callers use a stack allocated list_head,
8573 *  we force a list_del() to make sure stack wont be corrupted later.
8574 */
8575void unregister_netdevice_many(struct list_head *head)
8576{
8577        struct net_device *dev;
8578
8579        if (!list_empty(head)) {
8580                rollback_registered_many(head);
8581                list_for_each_entry(dev, head, unreg_list)
8582                        net_set_todo(dev);
8583                list_del(head);
8584        }
8585}
8586EXPORT_SYMBOL(unregister_netdevice_many);
8587
8588/**
8589 *      unregister_netdev - remove device from the kernel
8590 *      @dev: device
8591 *
8592 *      This function shuts down a device interface and removes it
8593 *      from the kernel tables.
8594 *
8595 *      This is just a wrapper for unregister_netdevice that takes
8596 *      the rtnl semaphore.  In general you want to use this and not
8597 *      unregister_netdevice.
8598 */
8599void unregister_netdev(struct net_device *dev)
8600{
8601        rtnl_lock();
8602        unregister_netdevice(dev);
8603        rtnl_unlock();
8604}
8605EXPORT_SYMBOL(unregister_netdev);
8606
8607/**
8608 *      dev_change_net_namespace - move device to different nethost namespace
8609 *      @dev: device
8610 *      @net: network namespace
8611 *      @pat: If not NULL name pattern to try if the current device name
8612 *            is already taken in the destination network namespace.
8613 *
8614 *      This function shuts down a device interface and moves it
8615 *      to a new network namespace. On success 0 is returned, on
8616 *      a failure a netagive errno code is returned.
8617 *
8618 *      Callers must hold the rtnl semaphore.
8619 */
8620
8621int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8622{
8623        int err, new_nsid, new_ifindex;
8624
8625        ASSERT_RTNL();
8626
8627        /* Don't allow namespace local devices to be moved. */
8628        err = -EINVAL;
8629        if (dev->features & NETIF_F_NETNS_LOCAL)
8630                goto out;
8631
8632        /* Ensure the device has been registrered */
8633        if (dev->reg_state != NETREG_REGISTERED)
8634                goto out;
8635
8636        /* Get out if there is nothing todo */
8637        err = 0;
8638        if (net_eq(dev_net(dev), net))
8639                goto out;
8640
8641        /* Pick the destination device name, and ensure
8642         * we can use it in the destination network namespace.
8643         */
8644        err = -EEXIST;
8645        if (__dev_get_by_name(net, dev->name)) {
8646                /* We get here if we can't use the current device name */
8647                if (!pat)
8648                        goto out;
8649                err = dev_get_valid_name(net, dev, pat);
8650                if (err < 0)
8651                        goto out;
8652        }
8653
8654        /*
8655         * And now a mini version of register_netdevice unregister_netdevice.
8656         */
8657
8658        /* If device is running close it first. */
8659        dev_close(dev);
8660
8661        /* And unlink it from device chain */
8662        unlist_netdevice(dev);
8663
8664        synchronize_net();
8665
8666        /* Shutdown queueing discipline. */
8667        dev_shutdown(dev);
8668
8669        /* Notify protocols, that we are about to destroy
8670         * this device. They should clean all the things.
8671         *
8672         * Note that dev->reg_state stays at NETREG_REGISTERED.
8673         * This is wanted because this way 8021q and macvlan know
8674         * the device is just moving and can keep their slaves up.
8675         */
8676        call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8677        rcu_barrier();
8678
8679        new_nsid = peernet2id_alloc(dev_net(dev), net);
8680        /* If there is an ifindex conflict assign a new one */
8681        if (__dev_get_by_index(net, dev->ifindex))
8682                new_ifindex = dev_new_index(net);
8683        else
8684                new_ifindex = dev->ifindex;
8685
8686        rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8687                            new_ifindex);
8688
8689        /*
8690         *      Flush the unicast and multicast chains
8691         */
8692        dev_uc_flush(dev);
8693        dev_mc_flush(dev);
8694
8695        /* Send a netdev-removed uevent to the old namespace */
8696        kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8697        netdev_adjacent_del_links(dev);
8698
8699        /* Actually switch the network namespace */
8700        dev_net_set(dev, net);
8701        dev->ifindex = new_ifindex;
8702
8703        /* Send a netdev-add uevent to the new namespace */
8704        kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8705        netdev_adjacent_add_links(dev);
8706
8707        /* Fixup kobjects */
8708        err = device_rename(&dev->dev, dev->name);
8709        WARN_ON(err);
8710
8711        /* Add the device back in the hashes */
8712        list_netdevice(dev);
8713
8714        /* Notify protocols, that a new device appeared. */
8715        call_netdevice_notifiers(NETDEV_REGISTER, dev);
8716
8717        /*
8718         *      Prevent userspace races by waiting until the network
8719         *      device is fully setup before sending notifications.
8720         */
8721        rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8722
8723        synchronize_net();
8724        err = 0;
8725out:
8726        return err;
8727}
8728EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8729
8730static int dev_cpu_dead(unsigned int oldcpu)
8731{
8732        struct sk_buff **list_skb;
8733        struct sk_buff *skb;
8734        unsigned int cpu;
8735        struct softnet_data *sd, *oldsd, *remsd = NULL;
8736
8737        local_irq_disable();
8738        cpu = smp_processor_id();
8739        sd = &per_cpu(softnet_data, cpu);
8740        oldsd = &per_cpu(softnet_data, oldcpu);
8741
8742        /* Find end of our completion_queue. */
8743        list_skb = &sd->completion_queue;
8744        while (*list_skb)
8745                list_skb = &(*list_skb)->next;
8746        /* Append completion queue from offline CPU. */
8747        *list_skb = oldsd->completion_queue;
8748        oldsd->completion_queue = NULL;
8749
8750        /* Append output queue from offline CPU. */
8751        if (oldsd->output_queue) {
8752                *sd->output_queue_tailp = oldsd->output_queue;
8753                sd->output_queue_tailp = oldsd->output_queue_tailp;
8754                oldsd->output_queue = NULL;
8755                oldsd->output_queue_tailp = &oldsd->output_queue;
8756        }
8757        /* Append NAPI poll list from offline CPU, with one exception :
8758         * process_backlog() must be called by cpu owning percpu backlog.
8759         * We properly handle process_queue & input_pkt_queue later.
8760         */
8761        while (!list_empty(&oldsd->poll_list)) {
8762                struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8763                                                            struct napi_struct,
8764                                                            poll_list);
8765
8766                list_del_init(&napi->poll_list);
8767                if (napi->poll == process_backlog)
8768                        napi->state = 0;
8769                else
8770                        ____napi_schedule(sd, napi);
8771        }
8772
8773        raise_softirq_irqoff(NET_TX_SOFTIRQ);
8774        local_irq_enable();
8775
8776#ifdef CONFIG_RPS
8777        remsd = oldsd->rps_ipi_list;
8778        oldsd->rps_ipi_list = NULL;
8779#endif
8780        /* send out pending IPI's on offline CPU */
8781        net_rps_send_ipi(remsd);
8782
8783        /* Process offline CPU's input_pkt_queue */
8784        while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8785                netif_rx_ni(skb);
8786                input_queue_head_incr(oldsd);
8787        }
8788        while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8789                netif_rx_ni(skb);
8790                input_queue_head_incr(oldsd);
8791        }
8792
8793        return 0;
8794}
8795
8796/**
8797 *      netdev_increment_features - increment feature set by one
8798 *      @all: current feature set
8799 *      @one: new feature set
8800 *      @mask: mask feature set
8801 *
8802 *      Computes a new feature set after adding a device with feature set
8803 *      @one to the master device with current feature set @all.  Will not
8804 *      enable anything that is off in @mask. Returns the new feature set.
8805 */
8806netdev_features_t netdev_increment_features(netdev_features_t all,
8807        netdev_features_t one, netdev_features_t mask)
8808{
8809        if (mask & NETIF_F_HW_CSUM)
8810                mask |= NETIF_F_CSUM_MASK;
8811        mask |= NETIF_F_VLAN_CHALLENGED;
8812
8813        all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8814        all &= one | ~NETIF_F_ALL_FOR_ALL;
8815
8816        /* If one device supports hw checksumming, set for all. */
8817        if (all & NETIF_F_HW_CSUM)
8818                all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8819
8820        return all;
8821}
8822EXPORT_SYMBOL(netdev_increment_features);
8823
8824static struct hlist_head * __net_init netdev_create_hash(void)
8825{
8826        int i;
8827        struct hlist_head *hash;
8828
8829        hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
8830        if (hash != NULL)
8831                for (i = 0; i < NETDEV_HASHENTRIES; i++)
8832                        INIT_HLIST_HEAD(&hash[i]);
8833
8834        return hash;
8835}
8836
8837/* Initialize per network namespace state */
8838static int __net_init netdev_init(struct net *net)
8839{
8840        if (net != &init_net)
8841                INIT_LIST_HEAD(&net->dev_base_head);
8842
8843        net->dev_name_head = netdev_create_hash();
8844        if (net->dev_name_head == NULL)
8845                goto err_name;
8846
8847        net->dev_index_head = netdev_create_hash();
8848        if (net->dev_index_head == NULL)
8849                goto err_idx;
8850
8851        return 0;
8852
8853err_idx:
8854        kfree(net->dev_name_head);
8855err_name:
8856        return -ENOMEM;
8857}
8858
8859/**
8860 *      netdev_drivername - network driver for the device
8861 *      @dev: network device
8862 *
8863 *      Determine network driver for device.
8864 */
8865const char *netdev_drivername(const struct net_device *dev)
8866{
8867        const struct device_driver *driver;
8868        const struct device *parent;
8869        const char *empty = "";
8870
8871        parent = dev->dev.parent;
8872        if (!parent)
8873                return empty;
8874
8875        driver = parent->driver;
8876        if (driver && driver->name)
8877                return driver->name;
8878        return empty;
8879}
8880
8881static void __netdev_printk(const char *level, const struct net_device *dev,
8882                            struct va_format *vaf)
8883{
8884        if (dev && dev->dev.parent) {
8885                dev_printk_emit(level[1] - '0',
8886                                dev->dev.parent,
8887                                "%s %s %s%s: %pV",
8888                                dev_driver_string(dev->dev.parent),
8889                                dev_name(dev->dev.parent),
8890                                netdev_name(dev), netdev_reg_state(dev),
8891                                vaf);
8892        } else if (dev) {
8893                printk("%s%s%s: %pV",
8894                       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8895        } else {
8896                printk("%s(NULL net_device): %pV", level, vaf);
8897        }
8898}
8899
8900void netdev_printk(const char *level, const struct net_device *dev,
8901                   const char *format, ...)
8902{
8903        struct va_format vaf;
8904        va_list args;
8905
8906        va_start(args, format);
8907
8908        vaf.fmt = format;
8909        vaf.va = &args;
8910
8911        __netdev_printk(level, dev, &vaf);
8912
8913        va_end(args);
8914}
8915EXPORT_SYMBOL(netdev_printk);
8916
8917#define define_netdev_printk_level(func, level)                 \
8918void func(const struct net_device *dev, const char *fmt, ...)   \
8919{                                                               \
8920        struct va_format vaf;                                   \
8921        va_list args;                                           \
8922                                                                \
8923        va_start(args, fmt);                                    \
8924                                                                \
8925        vaf.fmt = fmt;                                          \
8926        vaf.va = &args;                                         \
8927                                                                \
8928        __netdev_printk(level, dev, &vaf);                      \
8929                                                                \
8930        va_end(args);                                           \
8931}                                                               \
8932EXPORT_SYMBOL(func);
8933
8934define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8935define_netdev_printk_level(netdev_alert, KERN_ALERT);
8936define_netdev_printk_level(netdev_crit, KERN_CRIT);
8937define_netdev_printk_level(netdev_err, KERN_ERR);
8938define_netdev_printk_level(netdev_warn, KERN_WARNING);
8939define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8940define_netdev_printk_level(netdev_info, KERN_INFO);
8941
8942static void __net_exit netdev_exit(struct net *net)
8943{
8944        kfree(net->dev_name_head);
8945        kfree(net->dev_index_head);
8946        if (net != &init_net)
8947                WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8948}
8949
8950static struct pernet_operations __net_initdata netdev_net_ops = {
8951        .init = netdev_init,
8952        .exit = netdev_exit,
8953};
8954
8955static void __net_exit default_device_exit(struct net *net)
8956{
8957        struct net_device *dev, *aux;
8958        /*
8959         * Push all migratable network devices back to the
8960         * initial network namespace
8961         */
8962        rtnl_lock();
8963        for_each_netdev_safe(net, dev, aux) {
8964                int err;
8965                char fb_name[IFNAMSIZ];
8966
8967                /* Ignore unmoveable devices (i.e. loopback) */
8968                if (dev->features & NETIF_F_NETNS_LOCAL)
8969                        continue;
8970
8971                /* Leave virtual devices for the generic cleanup */
8972                if (dev->rtnl_link_ops)
8973                        continue;
8974
8975                /* Push remaining network devices to init_net */
8976                snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8977                err = dev_change_net_namespace(dev, &init_net, fb_name);
8978                if (err) {
8979                        pr_emerg("%s: failed to move %s to init_net: %d\n",
8980                                 __func__, dev->name, err);
8981                        BUG();
8982                }
8983        }
8984        rtnl_unlock();
8985}
8986
8987static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8988{
8989        /* Return with the rtnl_lock held when there are no network
8990         * devices unregistering in any network namespace in net_list.
8991         */
8992        struct net *net;
8993        bool unregistering;
8994        DEFINE_WAIT_FUNC(wait, woken_wake_function);
8995
8996        add_wait_queue(&netdev_unregistering_wq, &wait);
8997        for (;;) {
8998                unregistering = false;
8999                rtnl_lock();
9000                list_for_each_entry(net, net_list, exit_list) {
9001                        if (net->dev_unreg_count > 0) {
9002                                unregistering = true;
9003                                break;
9004                        }
9005                }
9006                if (!unregistering)
9007                        break;
9008                __rtnl_unlock();
9009
9010                wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9011        }
9012        remove_wait_queue(&netdev_unregistering_wq, &wait);
9013}
9014
9015static void __net_exit default_device_exit_batch(struct list_head *net_list)
9016{
9017        /* At exit all network devices most be removed from a network
9018         * namespace.  Do this in the reverse order of registration.
9019         * Do this across as many network namespaces as possible to
9020         * improve batching efficiency.
9021         */
9022        struct net_device *dev;
9023        struct net *net;
9024        LIST_HEAD(dev_kill_list);
9025
9026        /* To prevent network device cleanup code from dereferencing
9027         * loopback devices or network devices that have been freed
9028         * wait here for all pending unregistrations to complete,
9029         * before unregistring the loopback device and allowing the
9030         * network namespace be freed.
9031         *
9032         * The netdev todo list containing all network devices
9033         * unregistrations that happen in default_device_exit_batch
9034         * will run in the rtnl_unlock() at the end of
9035         * default_device_exit_batch.
9036         */
9037        rtnl_lock_unregistering(net_list);
9038        list_for_each_entry(net, net_list, exit_list) {
9039                for_each_netdev_reverse(net, dev) {
9040                        if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9041                                dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9042                        else
9043                                unregister_netdevice_queue(dev, &dev_kill_list);
9044                }
9045        }
9046        unregister_netdevice_many(&dev_kill_list);
9047        rtnl_unlock();
9048}
9049
9050static struct pernet_operations __net_initdata default_device_ops = {
9051        .exit = default_device_exit,
9052        .exit_batch = default_device_exit_batch,
9053};
9054
9055/*
9056 *      Initialize the DEV module. At boot time this walks the device list and
9057 *      unhooks any devices that fail to initialise (normally hardware not
9058 *      present) and leaves us with a valid list of present and active devices.
9059 *
9060 */
9061
9062/*
9063 *       This is called single threaded during boot, so no need
9064 *       to take the rtnl semaphore.
9065 */
9066static int __init net_dev_init(void)
9067{
9068        int i, rc = -ENOMEM;
9069
9070        BUG_ON(!dev_boot_phase);
9071
9072        if (dev_proc_init())
9073                goto out;
9074
9075        if (netdev_kobject_init())
9076                goto out;
9077
9078        INIT_LIST_HEAD(&ptype_all);
9079        for (i = 0; i < PTYPE_HASH_SIZE; i++)
9080                INIT_LIST_HEAD(&ptype_base[i]);
9081
9082        INIT_LIST_HEAD(&offload_base);
9083
9084        if (register_pernet_subsys(&netdev_net_ops))
9085                goto out;
9086
9087        /*
9088         *      Initialise the packet receive queues.
9089         */
9090
9091        for_each_possible_cpu(i) {
9092                struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9093                struct softnet_data *sd = &per_cpu(softnet_data, i);
9094
9095                INIT_WORK(flush, flush_backlog);
9096
9097                skb_queue_head_init(&sd->input_pkt_queue);
9098                skb_queue_head_init(&sd->process_queue);
9099#ifdef CONFIG_XFRM_OFFLOAD
9100                skb_queue_head_init(&sd->xfrm_backlog);
9101#endif
9102                INIT_LIST_HEAD(&sd->poll_list);
9103                sd->output_queue_tailp = &sd->output_queue;
9104#ifdef CONFIG_RPS
9105                sd->csd.func = rps_trigger_softirq;
9106                sd->csd.info = sd;
9107                sd->cpu = i;
9108#endif
9109
9110                sd->backlog.poll = process_backlog;
9111                sd->backlog.weight = weight_p;
9112        }
9113
9114        dev_boot_phase = 0;
9115
9116        /* The loopback device is special if any other network devices
9117         * is present in a network namespace the loopback device must
9118         * be present. Since we now dynamically allocate and free the
9119         * loopback device ensure this invariant is maintained by
9120         * keeping the loopback device as the first device on the
9121         * list of network devices.  Ensuring the loopback devices
9122         * is the first device that appears and the last network device
9123         * that disappears.
9124         */
9125        if (register_pernet_device(&loopback_net_ops))
9126                goto out;
9127
9128        if (register_pernet_device(&default_device_ops))
9129                goto out;
9130
9131        open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9132        open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9133
9134        rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9135                                       NULL, dev_cpu_dead);
9136        WARN_ON(rc < 0);
9137        rc = 0;
9138out:
9139        return rc;
9140}
9141
9142subsys_initcall(net_dev_init);
9143