linux/net/openvswitch/conntrack.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2015 Nicira, Inc.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of version 2 of the GNU General Public
   6 * License as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but
   9 * WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11 * General Public License for more details.
  12 */
  13
  14#include <linux/module.h>
  15#include <linux/openvswitch.h>
  16#include <linux/tcp.h>
  17#include <linux/udp.h>
  18#include <linux/sctp.h>
  19#include <linux/static_key.h>
  20#include <net/ip.h>
  21#include <net/genetlink.h>
  22#include <net/netfilter/nf_conntrack_core.h>
  23#include <net/netfilter/nf_conntrack_count.h>
  24#include <net/netfilter/nf_conntrack_helper.h>
  25#include <net/netfilter/nf_conntrack_labels.h>
  26#include <net/netfilter/nf_conntrack_seqadj.h>
  27#include <net/netfilter/nf_conntrack_zones.h>
  28#include <net/netfilter/ipv6/nf_defrag_ipv6.h>
  29
  30#ifdef CONFIG_NF_NAT_NEEDED
  31#include <linux/netfilter/nf_nat.h>
  32#include <net/netfilter/nf_nat_core.h>
  33#include <net/netfilter/nf_nat_l3proto.h>
  34#endif
  35
  36#include "datapath.h"
  37#include "conntrack.h"
  38#include "flow.h"
  39#include "flow_netlink.h"
  40
  41struct ovs_ct_len_tbl {
  42        int maxlen;
  43        int minlen;
  44};
  45
  46/* Metadata mark for masked write to conntrack mark */
  47struct md_mark {
  48        u32 value;
  49        u32 mask;
  50};
  51
  52/* Metadata label for masked write to conntrack label. */
  53struct md_labels {
  54        struct ovs_key_ct_labels value;
  55        struct ovs_key_ct_labels mask;
  56};
  57
  58enum ovs_ct_nat {
  59        OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
  60        OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
  61        OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
  62};
  63
  64/* Conntrack action context for execution. */
  65struct ovs_conntrack_info {
  66        struct nf_conntrack_helper *helper;
  67        struct nf_conntrack_zone zone;
  68        struct nf_conn *ct;
  69        u8 commit : 1;
  70        u8 nat : 3;                 /* enum ovs_ct_nat */
  71        u8 force : 1;
  72        u8 have_eventmask : 1;
  73        u16 family;
  74        u32 eventmask;              /* Mask of 1 << IPCT_*. */
  75        struct md_mark mark;
  76        struct md_labels labels;
  77#ifdef CONFIG_NF_NAT_NEEDED
  78        struct nf_nat_range2 range;  /* Only present for SRC NAT and DST NAT. */
  79#endif
  80};
  81
  82#if     IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
  83#define OVS_CT_LIMIT_UNLIMITED  0
  84#define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
  85#define CT_LIMIT_HASH_BUCKETS 512
  86static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
  87
  88struct ovs_ct_limit {
  89        /* Elements in ovs_ct_limit_info->limits hash table */
  90        struct hlist_node hlist_node;
  91        struct rcu_head rcu;
  92        u16 zone;
  93        u32 limit;
  94};
  95
  96struct ovs_ct_limit_info {
  97        u32 default_limit;
  98        struct hlist_head *limits;
  99        struct nf_conncount_data *data;
 100};
 101
 102static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
 103        [OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
 104};
 105#endif
 106
 107static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
 108
 109static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
 110
 111static u16 key_to_nfproto(const struct sw_flow_key *key)
 112{
 113        switch (ntohs(key->eth.type)) {
 114        case ETH_P_IP:
 115                return NFPROTO_IPV4;
 116        case ETH_P_IPV6:
 117                return NFPROTO_IPV6;
 118        default:
 119                return NFPROTO_UNSPEC;
 120        }
 121}
 122
 123/* Map SKB connection state into the values used by flow definition. */
 124static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
 125{
 126        u8 ct_state = OVS_CS_F_TRACKED;
 127
 128        switch (ctinfo) {
 129        case IP_CT_ESTABLISHED_REPLY:
 130        case IP_CT_RELATED_REPLY:
 131                ct_state |= OVS_CS_F_REPLY_DIR;
 132                break;
 133        default:
 134                break;
 135        }
 136
 137        switch (ctinfo) {
 138        case IP_CT_ESTABLISHED:
 139        case IP_CT_ESTABLISHED_REPLY:
 140                ct_state |= OVS_CS_F_ESTABLISHED;
 141                break;
 142        case IP_CT_RELATED:
 143        case IP_CT_RELATED_REPLY:
 144                ct_state |= OVS_CS_F_RELATED;
 145                break;
 146        case IP_CT_NEW:
 147                ct_state |= OVS_CS_F_NEW;
 148                break;
 149        default:
 150                break;
 151        }
 152
 153        return ct_state;
 154}
 155
 156static u32 ovs_ct_get_mark(const struct nf_conn *ct)
 157{
 158#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
 159        return ct ? ct->mark : 0;
 160#else
 161        return 0;
 162#endif
 163}
 164
 165/* Guard against conntrack labels max size shrinking below 128 bits. */
 166#if NF_CT_LABELS_MAX_SIZE < 16
 167#error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
 168#endif
 169
 170static void ovs_ct_get_labels(const struct nf_conn *ct,
 171                              struct ovs_key_ct_labels *labels)
 172{
 173        struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
 174
 175        if (cl)
 176                memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
 177        else
 178                memset(labels, 0, OVS_CT_LABELS_LEN);
 179}
 180
 181static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
 182                                        const struct nf_conntrack_tuple *orig,
 183                                        u8 icmp_proto)
 184{
 185        key->ct_orig_proto = orig->dst.protonum;
 186        if (orig->dst.protonum == icmp_proto) {
 187                key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
 188                key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
 189        } else {
 190                key->ct.orig_tp.src = orig->src.u.all;
 191                key->ct.orig_tp.dst = orig->dst.u.all;
 192        }
 193}
 194
 195static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
 196                                const struct nf_conntrack_zone *zone,
 197                                const struct nf_conn *ct)
 198{
 199        key->ct_state = state;
 200        key->ct_zone = zone->id;
 201        key->ct.mark = ovs_ct_get_mark(ct);
 202        ovs_ct_get_labels(ct, &key->ct.labels);
 203
 204        if (ct) {
 205                const struct nf_conntrack_tuple *orig;
 206
 207                /* Use the master if we have one. */
 208                if (ct->master)
 209                        ct = ct->master;
 210                orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
 211
 212                /* IP version must match with the master connection. */
 213                if (key->eth.type == htons(ETH_P_IP) &&
 214                    nf_ct_l3num(ct) == NFPROTO_IPV4) {
 215                        key->ipv4.ct_orig.src = orig->src.u3.ip;
 216                        key->ipv4.ct_orig.dst = orig->dst.u3.ip;
 217                        __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
 218                        return;
 219                } else if (key->eth.type == htons(ETH_P_IPV6) &&
 220                           !sw_flow_key_is_nd(key) &&
 221                           nf_ct_l3num(ct) == NFPROTO_IPV6) {
 222                        key->ipv6.ct_orig.src = orig->src.u3.in6;
 223                        key->ipv6.ct_orig.dst = orig->dst.u3.in6;
 224                        __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
 225                        return;
 226                }
 227        }
 228        /* Clear 'ct_orig_proto' to mark the non-existence of conntrack
 229         * original direction key fields.
 230         */
 231        key->ct_orig_proto = 0;
 232}
 233
 234/* Update 'key' based on skb->_nfct.  If 'post_ct' is true, then OVS has
 235 * previously sent the packet to conntrack via the ct action.  If
 236 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
 237 * initialized from the connection status.
 238 */
 239static void ovs_ct_update_key(const struct sk_buff *skb,
 240                              const struct ovs_conntrack_info *info,
 241                              struct sw_flow_key *key, bool post_ct,
 242                              bool keep_nat_flags)
 243{
 244        const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
 245        enum ip_conntrack_info ctinfo;
 246        struct nf_conn *ct;
 247        u8 state = 0;
 248
 249        ct = nf_ct_get(skb, &ctinfo);
 250        if (ct) {
 251                state = ovs_ct_get_state(ctinfo);
 252                /* All unconfirmed entries are NEW connections. */
 253                if (!nf_ct_is_confirmed(ct))
 254                        state |= OVS_CS_F_NEW;
 255                /* OVS persists the related flag for the duration of the
 256                 * connection.
 257                 */
 258                if (ct->master)
 259                        state |= OVS_CS_F_RELATED;
 260                if (keep_nat_flags) {
 261                        state |= key->ct_state & OVS_CS_F_NAT_MASK;
 262                } else {
 263                        if (ct->status & IPS_SRC_NAT)
 264                                state |= OVS_CS_F_SRC_NAT;
 265                        if (ct->status & IPS_DST_NAT)
 266                                state |= OVS_CS_F_DST_NAT;
 267                }
 268                zone = nf_ct_zone(ct);
 269        } else if (post_ct) {
 270                state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
 271                if (info)
 272                        zone = &info->zone;
 273        }
 274        __ovs_ct_update_key(key, state, zone, ct);
 275}
 276
 277/* This is called to initialize CT key fields possibly coming in from the local
 278 * stack.
 279 */
 280void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
 281{
 282        ovs_ct_update_key(skb, NULL, key, false, false);
 283}
 284
 285#define IN6_ADDR_INITIALIZER(ADDR) \
 286        { (ADDR).s6_addr32[0], (ADDR).s6_addr32[1], \
 287          (ADDR).s6_addr32[2], (ADDR).s6_addr32[3] }
 288
 289int ovs_ct_put_key(const struct sw_flow_key *swkey,
 290                   const struct sw_flow_key *output, struct sk_buff *skb)
 291{
 292        if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
 293                return -EMSGSIZE;
 294
 295        if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
 296            nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
 297                return -EMSGSIZE;
 298
 299        if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
 300            nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
 301                return -EMSGSIZE;
 302
 303        if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
 304            nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
 305                    &output->ct.labels))
 306                return -EMSGSIZE;
 307
 308        if (swkey->ct_orig_proto) {
 309                if (swkey->eth.type == htons(ETH_P_IP)) {
 310                        struct ovs_key_ct_tuple_ipv4 orig = {
 311                                output->ipv4.ct_orig.src,
 312                                output->ipv4.ct_orig.dst,
 313                                output->ct.orig_tp.src,
 314                                output->ct.orig_tp.dst,
 315                                output->ct_orig_proto,
 316                        };
 317                        if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
 318                                    sizeof(orig), &orig))
 319                                return -EMSGSIZE;
 320                } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
 321                        struct ovs_key_ct_tuple_ipv6 orig = {
 322                                IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.src),
 323                                IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.dst),
 324                                output->ct.orig_tp.src,
 325                                output->ct.orig_tp.dst,
 326                                output->ct_orig_proto,
 327                        };
 328                        if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
 329                                    sizeof(orig), &orig))
 330                                return -EMSGSIZE;
 331                }
 332        }
 333
 334        return 0;
 335}
 336
 337static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
 338                           u32 ct_mark, u32 mask)
 339{
 340#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
 341        u32 new_mark;
 342
 343        new_mark = ct_mark | (ct->mark & ~(mask));
 344        if (ct->mark != new_mark) {
 345                ct->mark = new_mark;
 346                if (nf_ct_is_confirmed(ct))
 347                        nf_conntrack_event_cache(IPCT_MARK, ct);
 348                key->ct.mark = new_mark;
 349        }
 350
 351        return 0;
 352#else
 353        return -ENOTSUPP;
 354#endif
 355}
 356
 357static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
 358{
 359        struct nf_conn_labels *cl;
 360
 361        cl = nf_ct_labels_find(ct);
 362        if (!cl) {
 363                nf_ct_labels_ext_add(ct);
 364                cl = nf_ct_labels_find(ct);
 365        }
 366
 367        return cl;
 368}
 369
 370/* Initialize labels for a new, yet to be committed conntrack entry.  Note that
 371 * since the new connection is not yet confirmed, and thus no-one else has
 372 * access to it's labels, we simply write them over.
 373 */
 374static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
 375                              const struct ovs_key_ct_labels *labels,
 376                              const struct ovs_key_ct_labels *mask)
 377{
 378        struct nf_conn_labels *cl, *master_cl;
 379        bool have_mask = labels_nonzero(mask);
 380
 381        /* Inherit master's labels to the related connection? */
 382        master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
 383
 384        if (!master_cl && !have_mask)
 385                return 0;   /* Nothing to do. */
 386
 387        cl = ovs_ct_get_conn_labels(ct);
 388        if (!cl)
 389                return -ENOSPC;
 390
 391        /* Inherit the master's labels, if any. */
 392        if (master_cl)
 393                *cl = *master_cl;
 394
 395        if (have_mask) {
 396                u32 *dst = (u32 *)cl->bits;
 397                int i;
 398
 399                for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
 400                        dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
 401                                (labels->ct_labels_32[i]
 402                                 & mask->ct_labels_32[i]);
 403        }
 404
 405        /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
 406         * IPCT_LABEL bit is set in the event cache.
 407         */
 408        nf_conntrack_event_cache(IPCT_LABEL, ct);
 409
 410        memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
 411
 412        return 0;
 413}
 414
 415static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
 416                             const struct ovs_key_ct_labels *labels,
 417                             const struct ovs_key_ct_labels *mask)
 418{
 419        struct nf_conn_labels *cl;
 420        int err;
 421
 422        cl = ovs_ct_get_conn_labels(ct);
 423        if (!cl)
 424                return -ENOSPC;
 425
 426        err = nf_connlabels_replace(ct, labels->ct_labels_32,
 427                                    mask->ct_labels_32,
 428                                    OVS_CT_LABELS_LEN_32);
 429        if (err)
 430                return err;
 431
 432        memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
 433
 434        return 0;
 435}
 436
 437/* 'skb' should already be pulled to nh_ofs. */
 438static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
 439{
 440        const struct nf_conntrack_helper *helper;
 441        const struct nf_conn_help *help;
 442        enum ip_conntrack_info ctinfo;
 443        unsigned int protoff;
 444        struct nf_conn *ct;
 445        int err;
 446
 447        ct = nf_ct_get(skb, &ctinfo);
 448        if (!ct || ctinfo == IP_CT_RELATED_REPLY)
 449                return NF_ACCEPT;
 450
 451        help = nfct_help(ct);
 452        if (!help)
 453                return NF_ACCEPT;
 454
 455        helper = rcu_dereference(help->helper);
 456        if (!helper)
 457                return NF_ACCEPT;
 458
 459        switch (proto) {
 460        case NFPROTO_IPV4:
 461                protoff = ip_hdrlen(skb);
 462                break;
 463        case NFPROTO_IPV6: {
 464                u8 nexthdr = ipv6_hdr(skb)->nexthdr;
 465                __be16 frag_off;
 466                int ofs;
 467
 468                ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
 469                                       &frag_off);
 470                if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
 471                        pr_debug("proto header not found\n");
 472                        return NF_ACCEPT;
 473                }
 474                protoff = ofs;
 475                break;
 476        }
 477        default:
 478                WARN_ONCE(1, "helper invoked on non-IP family!");
 479                return NF_DROP;
 480        }
 481
 482        err = helper->help(skb, protoff, ct, ctinfo);
 483        if (err != NF_ACCEPT)
 484                return err;
 485
 486        /* Adjust seqs after helper.  This is needed due to some helpers (e.g.,
 487         * FTP with NAT) adusting the TCP payload size when mangling IP
 488         * addresses and/or port numbers in the text-based control connection.
 489         */
 490        if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
 491            !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
 492                return NF_DROP;
 493        return NF_ACCEPT;
 494}
 495
 496/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
 497 * value if 'skb' is freed.
 498 */
 499static int handle_fragments(struct net *net, struct sw_flow_key *key,
 500                            u16 zone, struct sk_buff *skb)
 501{
 502        struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
 503        int err;
 504
 505        if (key->eth.type == htons(ETH_P_IP)) {
 506                enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
 507
 508                memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 509                err = ip_defrag(net, skb, user);
 510                if (err)
 511                        return err;
 512
 513                ovs_cb.mru = IPCB(skb)->frag_max_size;
 514#if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
 515        } else if (key->eth.type == htons(ETH_P_IPV6)) {
 516                enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
 517
 518                memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
 519                err = nf_ct_frag6_gather(net, skb, user);
 520                if (err) {
 521                        if (err != -EINPROGRESS)
 522                                kfree_skb(skb);
 523                        return err;
 524                }
 525
 526                key->ip.proto = ipv6_hdr(skb)->nexthdr;
 527                ovs_cb.mru = IP6CB(skb)->frag_max_size;
 528#endif
 529        } else {
 530                kfree_skb(skb);
 531                return -EPFNOSUPPORT;
 532        }
 533
 534        key->ip.frag = OVS_FRAG_TYPE_NONE;
 535        skb_clear_hash(skb);
 536        skb->ignore_df = 1;
 537        *OVS_CB(skb) = ovs_cb;
 538
 539        return 0;
 540}
 541
 542static struct nf_conntrack_expect *
 543ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
 544                   u16 proto, const struct sk_buff *skb)
 545{
 546        struct nf_conntrack_tuple tuple;
 547        struct nf_conntrack_expect *exp;
 548
 549        if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
 550                return NULL;
 551
 552        exp = __nf_ct_expect_find(net, zone, &tuple);
 553        if (exp) {
 554                struct nf_conntrack_tuple_hash *h;
 555
 556                /* Delete existing conntrack entry, if it clashes with the
 557                 * expectation.  This can happen since conntrack ALGs do not
 558                 * check for clashes between (new) expectations and existing
 559                 * conntrack entries.  nf_conntrack_in() will check the
 560                 * expectations only if a conntrack entry can not be found,
 561                 * which can lead to OVS finding the expectation (here) in the
 562                 * init direction, but which will not be removed by the
 563                 * nf_conntrack_in() call, if a matching conntrack entry is
 564                 * found instead.  In this case all init direction packets
 565                 * would be reported as new related packets, while reply
 566                 * direction packets would be reported as un-related
 567                 * established packets.
 568                 */
 569                h = nf_conntrack_find_get(net, zone, &tuple);
 570                if (h) {
 571                        struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
 572
 573                        nf_ct_delete(ct, 0, 0);
 574                        nf_conntrack_put(&ct->ct_general);
 575                }
 576        }
 577
 578        return exp;
 579}
 580
 581/* This replicates logic from nf_conntrack_core.c that is not exported. */
 582static enum ip_conntrack_info
 583ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
 584{
 585        const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
 586
 587        if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
 588                return IP_CT_ESTABLISHED_REPLY;
 589        /* Once we've had two way comms, always ESTABLISHED. */
 590        if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
 591                return IP_CT_ESTABLISHED;
 592        if (test_bit(IPS_EXPECTED_BIT, &ct->status))
 593                return IP_CT_RELATED;
 594        return IP_CT_NEW;
 595}
 596
 597/* Find an existing connection which this packet belongs to without
 598 * re-attributing statistics or modifying the connection state.  This allows an
 599 * skb->_nfct lost due to an upcall to be recovered during actions execution.
 600 *
 601 * Must be called with rcu_read_lock.
 602 *
 603 * On success, populates skb->_nfct and returns the connection.  Returns NULL
 604 * if there is no existing entry.
 605 */
 606static struct nf_conn *
 607ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
 608                     u8 l3num, struct sk_buff *skb, bool natted)
 609{
 610        const struct nf_conntrack_l3proto *l3proto;
 611        const struct nf_conntrack_l4proto *l4proto;
 612        struct nf_conntrack_tuple tuple;
 613        struct nf_conntrack_tuple_hash *h;
 614        struct nf_conn *ct;
 615        unsigned int dataoff;
 616        u8 protonum;
 617
 618        l3proto = __nf_ct_l3proto_find(l3num);
 619        if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff,
 620                                 &protonum) <= 0) {
 621                pr_debug("ovs_ct_find_existing: Can't get protonum\n");
 622                return NULL;
 623        }
 624        l4proto = __nf_ct_l4proto_find(l3num, protonum);
 625        if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
 626                             protonum, net, &tuple, l3proto, l4proto)) {
 627                pr_debug("ovs_ct_find_existing: Can't get tuple\n");
 628                return NULL;
 629        }
 630
 631        /* Must invert the tuple if skb has been transformed by NAT. */
 632        if (natted) {
 633                struct nf_conntrack_tuple inverse;
 634
 635                if (!nf_ct_invert_tuple(&inverse, &tuple, l3proto, l4proto)) {
 636                        pr_debug("ovs_ct_find_existing: Inversion failed!\n");
 637                        return NULL;
 638                }
 639                tuple = inverse;
 640        }
 641
 642        /* look for tuple match */
 643        h = nf_conntrack_find_get(net, zone, &tuple);
 644        if (!h)
 645                return NULL;   /* Not found. */
 646
 647        ct = nf_ct_tuplehash_to_ctrack(h);
 648
 649        /* Inverted packet tuple matches the reverse direction conntrack tuple,
 650         * select the other tuplehash to get the right 'ctinfo' bits for this
 651         * packet.
 652         */
 653        if (natted)
 654                h = &ct->tuplehash[!h->tuple.dst.dir];
 655
 656        nf_ct_set(skb, ct, ovs_ct_get_info(h));
 657        return ct;
 658}
 659
 660static
 661struct nf_conn *ovs_ct_executed(struct net *net,
 662                                const struct sw_flow_key *key,
 663                                const struct ovs_conntrack_info *info,
 664                                struct sk_buff *skb,
 665                                bool *ct_executed)
 666{
 667        struct nf_conn *ct = NULL;
 668
 669        /* If no ct, check if we have evidence that an existing conntrack entry
 670         * might be found for this skb.  This happens when we lose a skb->_nfct
 671         * due to an upcall, or if the direction is being forced.  If the
 672         * connection was not confirmed, it is not cached and needs to be run
 673         * through conntrack again.
 674         */
 675        *ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
 676                       !(key->ct_state & OVS_CS_F_INVALID) &&
 677                       (key->ct_zone == info->zone.id);
 678
 679        if (*ct_executed || (!key->ct_state && info->force)) {
 680                ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
 681                                          !!(key->ct_state &
 682                                          OVS_CS_F_NAT_MASK));
 683        }
 684
 685        return ct;
 686}
 687
 688/* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
 689static bool skb_nfct_cached(struct net *net,
 690                            const struct sw_flow_key *key,
 691                            const struct ovs_conntrack_info *info,
 692                            struct sk_buff *skb)
 693{
 694        enum ip_conntrack_info ctinfo;
 695        struct nf_conn *ct;
 696        bool ct_executed = true;
 697
 698        ct = nf_ct_get(skb, &ctinfo);
 699        if (!ct)
 700                ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
 701
 702        if (ct)
 703                nf_ct_get(skb, &ctinfo);
 704        else
 705                return false;
 706
 707        if (!net_eq(net, read_pnet(&ct->ct_net)))
 708                return false;
 709        if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
 710                return false;
 711        if (info->helper) {
 712                struct nf_conn_help *help;
 713
 714                help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
 715                if (help && rcu_access_pointer(help->helper) != info->helper)
 716                        return false;
 717        }
 718        /* Force conntrack entry direction to the current packet? */
 719        if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
 720                /* Delete the conntrack entry if confirmed, else just release
 721                 * the reference.
 722                 */
 723                if (nf_ct_is_confirmed(ct))
 724                        nf_ct_delete(ct, 0, 0);
 725
 726                nf_conntrack_put(&ct->ct_general);
 727                nf_ct_set(skb, NULL, 0);
 728                return false;
 729        }
 730
 731        return ct_executed;
 732}
 733
 734#ifdef CONFIG_NF_NAT_NEEDED
 735/* Modelled after nf_nat_ipv[46]_fn().
 736 * range is only used for new, uninitialized NAT state.
 737 * Returns either NF_ACCEPT or NF_DROP.
 738 */
 739static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
 740                              enum ip_conntrack_info ctinfo,
 741                              const struct nf_nat_range2 *range,
 742                              enum nf_nat_manip_type maniptype)
 743{
 744        int hooknum, nh_off, err = NF_ACCEPT;
 745
 746        nh_off = skb_network_offset(skb);
 747        skb_pull_rcsum(skb, nh_off);
 748
 749        /* See HOOK2MANIP(). */
 750        if (maniptype == NF_NAT_MANIP_SRC)
 751                hooknum = NF_INET_LOCAL_IN; /* Source NAT */
 752        else
 753                hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
 754
 755        switch (ctinfo) {
 756        case IP_CT_RELATED:
 757        case IP_CT_RELATED_REPLY:
 758                if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
 759                    skb->protocol == htons(ETH_P_IP) &&
 760                    ip_hdr(skb)->protocol == IPPROTO_ICMP) {
 761                        if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
 762                                                           hooknum))
 763                                err = NF_DROP;
 764                        goto push;
 765                } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
 766                           skb->protocol == htons(ETH_P_IPV6)) {
 767                        __be16 frag_off;
 768                        u8 nexthdr = ipv6_hdr(skb)->nexthdr;
 769                        int hdrlen = ipv6_skip_exthdr(skb,
 770                                                      sizeof(struct ipv6hdr),
 771                                                      &nexthdr, &frag_off);
 772
 773                        if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
 774                                if (!nf_nat_icmpv6_reply_translation(skb, ct,
 775                                                                     ctinfo,
 776                                                                     hooknum,
 777                                                                     hdrlen))
 778                                        err = NF_DROP;
 779                                goto push;
 780                        }
 781                }
 782                /* Non-ICMP, fall thru to initialize if needed. */
 783                /* fall through */
 784        case IP_CT_NEW:
 785                /* Seen it before?  This can happen for loopback, retrans,
 786                 * or local packets.
 787                 */
 788                if (!nf_nat_initialized(ct, maniptype)) {
 789                        /* Initialize according to the NAT action. */
 790                        err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
 791                                /* Action is set up to establish a new
 792                                 * mapping.
 793                                 */
 794                                ? nf_nat_setup_info(ct, range, maniptype)
 795                                : nf_nat_alloc_null_binding(ct, hooknum);
 796                        if (err != NF_ACCEPT)
 797                                goto push;
 798                }
 799                break;
 800
 801        case IP_CT_ESTABLISHED:
 802        case IP_CT_ESTABLISHED_REPLY:
 803                break;
 804
 805        default:
 806                err = NF_DROP;
 807                goto push;
 808        }
 809
 810        err = nf_nat_packet(ct, ctinfo, hooknum, skb);
 811push:
 812        skb_push(skb, nh_off);
 813        skb_postpush_rcsum(skb, skb->data, nh_off);
 814
 815        return err;
 816}
 817
 818static void ovs_nat_update_key(struct sw_flow_key *key,
 819                               const struct sk_buff *skb,
 820                               enum nf_nat_manip_type maniptype)
 821{
 822        if (maniptype == NF_NAT_MANIP_SRC) {
 823                __be16 src;
 824
 825                key->ct_state |= OVS_CS_F_SRC_NAT;
 826                if (key->eth.type == htons(ETH_P_IP))
 827                        key->ipv4.addr.src = ip_hdr(skb)->saddr;
 828                else if (key->eth.type == htons(ETH_P_IPV6))
 829                        memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
 830                               sizeof(key->ipv6.addr.src));
 831                else
 832                        return;
 833
 834                if (key->ip.proto == IPPROTO_UDP)
 835                        src = udp_hdr(skb)->source;
 836                else if (key->ip.proto == IPPROTO_TCP)
 837                        src = tcp_hdr(skb)->source;
 838                else if (key->ip.proto == IPPROTO_SCTP)
 839                        src = sctp_hdr(skb)->source;
 840                else
 841                        return;
 842
 843                key->tp.src = src;
 844        } else {
 845                __be16 dst;
 846
 847                key->ct_state |= OVS_CS_F_DST_NAT;
 848                if (key->eth.type == htons(ETH_P_IP))
 849                        key->ipv4.addr.dst = ip_hdr(skb)->daddr;
 850                else if (key->eth.type == htons(ETH_P_IPV6))
 851                        memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
 852                               sizeof(key->ipv6.addr.dst));
 853                else
 854                        return;
 855
 856                if (key->ip.proto == IPPROTO_UDP)
 857                        dst = udp_hdr(skb)->dest;
 858                else if (key->ip.proto == IPPROTO_TCP)
 859                        dst = tcp_hdr(skb)->dest;
 860                else if (key->ip.proto == IPPROTO_SCTP)
 861                        dst = sctp_hdr(skb)->dest;
 862                else
 863                        return;
 864
 865                key->tp.dst = dst;
 866        }
 867}
 868
 869/* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
 870static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
 871                      const struct ovs_conntrack_info *info,
 872                      struct sk_buff *skb, struct nf_conn *ct,
 873                      enum ip_conntrack_info ctinfo)
 874{
 875        enum nf_nat_manip_type maniptype;
 876        int err;
 877
 878        /* Add NAT extension if not confirmed yet. */
 879        if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
 880                return NF_ACCEPT;   /* Can't NAT. */
 881
 882        /* Determine NAT type.
 883         * Check if the NAT type can be deduced from the tracked connection.
 884         * Make sure new expected connections (IP_CT_RELATED) are NATted only
 885         * when committing.
 886         */
 887        if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
 888            ct->status & IPS_NAT_MASK &&
 889            (ctinfo != IP_CT_RELATED || info->commit)) {
 890                /* NAT an established or related connection like before. */
 891                if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
 892                        /* This is the REPLY direction for a connection
 893                         * for which NAT was applied in the forward
 894                         * direction.  Do the reverse NAT.
 895                         */
 896                        maniptype = ct->status & IPS_SRC_NAT
 897                                ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
 898                else
 899                        maniptype = ct->status & IPS_SRC_NAT
 900                                ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
 901        } else if (info->nat & OVS_CT_SRC_NAT) {
 902                maniptype = NF_NAT_MANIP_SRC;
 903        } else if (info->nat & OVS_CT_DST_NAT) {
 904                maniptype = NF_NAT_MANIP_DST;
 905        } else {
 906                return NF_ACCEPT; /* Connection is not NATed. */
 907        }
 908        err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
 909
 910        /* Mark NAT done if successful and update the flow key. */
 911        if (err == NF_ACCEPT)
 912                ovs_nat_update_key(key, skb, maniptype);
 913
 914        return err;
 915}
 916#else /* !CONFIG_NF_NAT_NEEDED */
 917static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
 918                      const struct ovs_conntrack_info *info,
 919                      struct sk_buff *skb, struct nf_conn *ct,
 920                      enum ip_conntrack_info ctinfo)
 921{
 922        return NF_ACCEPT;
 923}
 924#endif
 925
 926/* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
 927 * not done already.  Update key with new CT state after passing the packet
 928 * through conntrack.
 929 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
 930 * set to NULL and 0 will be returned.
 931 */
 932static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
 933                           const struct ovs_conntrack_info *info,
 934                           struct sk_buff *skb)
 935{
 936        /* If we are recirculating packets to match on conntrack fields and
 937         * committing with a separate conntrack action,  then we don't need to
 938         * actually run the packet through conntrack twice unless it's for a
 939         * different zone.
 940         */
 941        bool cached = skb_nfct_cached(net, key, info, skb);
 942        enum ip_conntrack_info ctinfo;
 943        struct nf_conn *ct;
 944
 945        if (!cached) {
 946                struct nf_conn *tmpl = info->ct;
 947                int err;
 948
 949                /* Associate skb with specified zone. */
 950                if (tmpl) {
 951                        if (skb_nfct(skb))
 952                                nf_conntrack_put(skb_nfct(skb));
 953                        nf_conntrack_get(&tmpl->ct_general);
 954                        nf_ct_set(skb, tmpl, IP_CT_NEW);
 955                }
 956
 957                err = nf_conntrack_in(net, info->family,
 958                                      NF_INET_PRE_ROUTING, skb);
 959                if (err != NF_ACCEPT)
 960                        return -ENOENT;
 961
 962                /* Clear CT state NAT flags to mark that we have not yet done
 963                 * NAT after the nf_conntrack_in() call.  We can actually clear
 964                 * the whole state, as it will be re-initialized below.
 965                 */
 966                key->ct_state = 0;
 967
 968                /* Update the key, but keep the NAT flags. */
 969                ovs_ct_update_key(skb, info, key, true, true);
 970        }
 971
 972        ct = nf_ct_get(skb, &ctinfo);
 973        if (ct) {
 974                /* Packets starting a new connection must be NATted before the
 975                 * helper, so that the helper knows about the NAT.  We enforce
 976                 * this by delaying both NAT and helper calls for unconfirmed
 977                 * connections until the committing CT action.  For later
 978                 * packets NAT and Helper may be called in either order.
 979                 *
 980                 * NAT will be done only if the CT action has NAT, and only
 981                 * once per packet (per zone), as guarded by the NAT bits in
 982                 * the key->ct_state.
 983                 */
 984                if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
 985                    (nf_ct_is_confirmed(ct) || info->commit) &&
 986                    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
 987                        return -EINVAL;
 988                }
 989
 990                /* Userspace may decide to perform a ct lookup without a helper
 991                 * specified followed by a (recirculate and) commit with one.
 992                 * Therefore, for unconfirmed connections which we will commit,
 993                 * we need to attach the helper here.
 994                 */
 995                if (!nf_ct_is_confirmed(ct) && info->commit &&
 996                    info->helper && !nfct_help(ct)) {
 997                        int err = __nf_ct_try_assign_helper(ct, info->ct,
 998                                                            GFP_ATOMIC);
 999                        if (err)
1000                                return err;
1001                }
1002
1003                /* Call the helper only if:
1004                 * - nf_conntrack_in() was executed above ("!cached") for a
1005                 *   confirmed connection, or
1006                 * - When committing an unconfirmed connection.
1007                 */
1008                if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
1009                    ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
1010                        return -EINVAL;
1011                }
1012        }
1013
1014        return 0;
1015}
1016
1017/* Lookup connection and read fields into key. */
1018static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
1019                         const struct ovs_conntrack_info *info,
1020                         struct sk_buff *skb)
1021{
1022        struct nf_conntrack_expect *exp;
1023
1024        /* If we pass an expected packet through nf_conntrack_in() the
1025         * expectation is typically removed, but the packet could still be
1026         * lost in upcall processing.  To prevent this from happening we
1027         * perform an explicit expectation lookup.  Expected connections are
1028         * always new, and will be passed through conntrack only when they are
1029         * committed, as it is OK to remove the expectation at that time.
1030         */
1031        exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
1032        if (exp) {
1033                u8 state;
1034
1035                /* NOTE: New connections are NATted and Helped only when
1036                 * committed, so we are not calling into NAT here.
1037                 */
1038                state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
1039                __ovs_ct_update_key(key, state, &info->zone, exp->master);
1040        } else {
1041                struct nf_conn *ct;
1042                int err;
1043
1044                err = __ovs_ct_lookup(net, key, info, skb);
1045                if (err)
1046                        return err;
1047
1048                ct = (struct nf_conn *)skb_nfct(skb);
1049                if (ct)
1050                        nf_ct_deliver_cached_events(ct);
1051        }
1052
1053        return 0;
1054}
1055
1056static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
1057{
1058        size_t i;
1059
1060        for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
1061                if (labels->ct_labels_32[i])
1062                        return true;
1063
1064        return false;
1065}
1066
1067#if     IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1068static struct hlist_head *ct_limit_hash_bucket(
1069        const struct ovs_ct_limit_info *info, u16 zone)
1070{
1071        return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
1072}
1073
1074/* Call with ovs_mutex */
1075static void ct_limit_set(const struct ovs_ct_limit_info *info,
1076                         struct ovs_ct_limit *new_ct_limit)
1077{
1078        struct ovs_ct_limit *ct_limit;
1079        struct hlist_head *head;
1080
1081        head = ct_limit_hash_bucket(info, new_ct_limit->zone);
1082        hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1083                if (ct_limit->zone == new_ct_limit->zone) {
1084                        hlist_replace_rcu(&ct_limit->hlist_node,
1085                                          &new_ct_limit->hlist_node);
1086                        kfree_rcu(ct_limit, rcu);
1087                        return;
1088                }
1089        }
1090
1091        hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
1092}
1093
1094/* Call with ovs_mutex */
1095static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
1096{
1097        struct ovs_ct_limit *ct_limit;
1098        struct hlist_head *head;
1099        struct hlist_node *n;
1100
1101        head = ct_limit_hash_bucket(info, zone);
1102        hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
1103                if (ct_limit->zone == zone) {
1104                        hlist_del_rcu(&ct_limit->hlist_node);
1105                        kfree_rcu(ct_limit, rcu);
1106                        return;
1107                }
1108        }
1109}
1110
1111/* Call with RCU read lock */
1112static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
1113{
1114        struct ovs_ct_limit *ct_limit;
1115        struct hlist_head *head;
1116
1117        head = ct_limit_hash_bucket(info, zone);
1118        hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1119                if (ct_limit->zone == zone)
1120                        return ct_limit->limit;
1121        }
1122
1123        return info->default_limit;
1124}
1125
1126static int ovs_ct_check_limit(struct net *net,
1127                              const struct ovs_conntrack_info *info,
1128                              const struct nf_conntrack_tuple *tuple)
1129{
1130        struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1131        const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1132        u32 per_zone_limit, connections;
1133        u32 conncount_key;
1134
1135        conncount_key = info->zone.id;
1136
1137        per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
1138        if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
1139                return 0;
1140
1141        connections = nf_conncount_count(net, ct_limit_info->data,
1142                                         &conncount_key, tuple, &info->zone);
1143        if (connections > per_zone_limit)
1144                return -ENOMEM;
1145
1146        return 0;
1147}
1148#endif
1149
1150/* Lookup connection and confirm if unconfirmed. */
1151static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
1152                         const struct ovs_conntrack_info *info,
1153                         struct sk_buff *skb)
1154{
1155        enum ip_conntrack_info ctinfo;
1156        struct nf_conn *ct;
1157        int err;
1158
1159        err = __ovs_ct_lookup(net, key, info, skb);
1160        if (err)
1161                return err;
1162
1163        /* The connection could be invalid, in which case this is a no-op.*/
1164        ct = nf_ct_get(skb, &ctinfo);
1165        if (!ct)
1166                return 0;
1167
1168#if     IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1169        if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
1170                if (!nf_ct_is_confirmed(ct)) {
1171                        err = ovs_ct_check_limit(net, info,
1172                                &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1173                        if (err) {
1174                                net_warn_ratelimited("openvswitch: zone: %u "
1175                                        "execeeds conntrack limit\n",
1176                                        info->zone.id);
1177                                return err;
1178                        }
1179                }
1180        }
1181#endif
1182
1183        /* Set the conntrack event mask if given.  NEW and DELETE events have
1184         * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1185         * typically would receive many kinds of updates.  Setting the event
1186         * mask allows those events to be filtered.  The set event mask will
1187         * remain in effect for the lifetime of the connection unless changed
1188         * by a further CT action with both the commit flag and the eventmask
1189         * option. */
1190        if (info->have_eventmask) {
1191                struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1192
1193                if (cache)
1194                        cache->ctmask = info->eventmask;
1195        }
1196
1197        /* Apply changes before confirming the connection so that the initial
1198         * conntrack NEW netlink event carries the values given in the CT
1199         * action.
1200         */
1201        if (info->mark.mask) {
1202                err = ovs_ct_set_mark(ct, key, info->mark.value,
1203                                      info->mark.mask);
1204                if (err)
1205                        return err;
1206        }
1207        if (!nf_ct_is_confirmed(ct)) {
1208                err = ovs_ct_init_labels(ct, key, &info->labels.value,
1209                                         &info->labels.mask);
1210                if (err)
1211                        return err;
1212        } else if (labels_nonzero(&info->labels.mask)) {
1213                err = ovs_ct_set_labels(ct, key, &info->labels.value,
1214                                        &info->labels.mask);
1215                if (err)
1216                        return err;
1217        }
1218        /* This will take care of sending queued events even if the connection
1219         * is already confirmed.
1220         */
1221        if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1222                return -EINVAL;
1223
1224        return 0;
1225}
1226
1227/* Trim the skb to the length specified by the IP/IPv6 header,
1228 * removing any trailing lower-layer padding. This prepares the skb
1229 * for higher-layer processing that assumes skb->len excludes padding
1230 * (such as nf_ip_checksum). The caller needs to pull the skb to the
1231 * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
1232 */
1233static int ovs_skb_network_trim(struct sk_buff *skb)
1234{
1235        unsigned int len;
1236        int err;
1237
1238        switch (skb->protocol) {
1239        case htons(ETH_P_IP):
1240                len = ntohs(ip_hdr(skb)->tot_len);
1241                break;
1242        case htons(ETH_P_IPV6):
1243                len = sizeof(struct ipv6hdr)
1244                        + ntohs(ipv6_hdr(skb)->payload_len);
1245                break;
1246        default:
1247                len = skb->len;
1248        }
1249
1250        err = pskb_trim_rcsum(skb, len);
1251        if (err)
1252                kfree_skb(skb);
1253
1254        return err;
1255}
1256
1257/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1258 * value if 'skb' is freed.
1259 */
1260int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1261                   struct sw_flow_key *key,
1262                   const struct ovs_conntrack_info *info)
1263{
1264        int nh_ofs;
1265        int err;
1266
1267        /* The conntrack module expects to be working at L3. */
1268        nh_ofs = skb_network_offset(skb);
1269        skb_pull_rcsum(skb, nh_ofs);
1270
1271        err = ovs_skb_network_trim(skb);
1272        if (err)
1273                return err;
1274
1275        if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1276                err = handle_fragments(net, key, info->zone.id, skb);
1277                if (err)
1278                        return err;
1279        }
1280
1281        if (info->commit)
1282                err = ovs_ct_commit(net, key, info, skb);
1283        else
1284                err = ovs_ct_lookup(net, key, info, skb);
1285
1286        skb_push(skb, nh_ofs);
1287        skb_postpush_rcsum(skb, skb->data, nh_ofs);
1288        if (err)
1289                kfree_skb(skb);
1290        return err;
1291}
1292
1293int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
1294{
1295        if (skb_nfct(skb)) {
1296                nf_conntrack_put(skb_nfct(skb));
1297                nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1298                ovs_ct_fill_key(skb, key);
1299        }
1300
1301        return 0;
1302}
1303
1304static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1305                             const struct sw_flow_key *key, bool log)
1306{
1307        struct nf_conntrack_helper *helper;
1308        struct nf_conn_help *help;
1309
1310        helper = nf_conntrack_helper_try_module_get(name, info->family,
1311                                                    key->ip.proto);
1312        if (!helper) {
1313                OVS_NLERR(log, "Unknown helper \"%s\"", name);
1314                return -EINVAL;
1315        }
1316
1317        help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL);
1318        if (!help) {
1319                nf_conntrack_helper_put(helper);
1320                return -ENOMEM;
1321        }
1322
1323        rcu_assign_pointer(help->helper, helper);
1324        info->helper = helper;
1325        return 0;
1326}
1327
1328#ifdef CONFIG_NF_NAT_NEEDED
1329static int parse_nat(const struct nlattr *attr,
1330                     struct ovs_conntrack_info *info, bool log)
1331{
1332        struct nlattr *a;
1333        int rem;
1334        bool have_ip_max = false;
1335        bool have_proto_max = false;
1336        bool ip_vers = (info->family == NFPROTO_IPV6);
1337
1338        nla_for_each_nested(a, attr, rem) {
1339                static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1340                        [OVS_NAT_ATTR_SRC] = {0, 0},
1341                        [OVS_NAT_ATTR_DST] = {0, 0},
1342                        [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1343                                                 sizeof(struct in6_addr)},
1344                        [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1345                                                 sizeof(struct in6_addr)},
1346                        [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1347                        [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1348                        [OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1349                        [OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1350                        [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1351                };
1352                int type = nla_type(a);
1353
1354                if (type > OVS_NAT_ATTR_MAX) {
1355                        OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
1356                                  type, OVS_NAT_ATTR_MAX);
1357                        return -EINVAL;
1358                }
1359
1360                if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1361                        OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
1362                                  type, nla_len(a),
1363                                  ovs_nat_attr_lens[type][ip_vers]);
1364                        return -EINVAL;
1365                }
1366
1367                switch (type) {
1368                case OVS_NAT_ATTR_SRC:
1369                case OVS_NAT_ATTR_DST:
1370                        if (info->nat) {
1371                                OVS_NLERR(log, "Only one type of NAT may be specified");
1372                                return -ERANGE;
1373                        }
1374                        info->nat |= OVS_CT_NAT;
1375                        info->nat |= ((type == OVS_NAT_ATTR_SRC)
1376                                        ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1377                        break;
1378
1379                case OVS_NAT_ATTR_IP_MIN:
1380                        nla_memcpy(&info->range.min_addr, a,
1381                                   sizeof(info->range.min_addr));
1382                        info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1383                        break;
1384
1385                case OVS_NAT_ATTR_IP_MAX:
1386                        have_ip_max = true;
1387                        nla_memcpy(&info->range.max_addr, a,
1388                                   sizeof(info->range.max_addr));
1389                        info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1390                        break;
1391
1392                case OVS_NAT_ATTR_PROTO_MIN:
1393                        info->range.min_proto.all = htons(nla_get_u16(a));
1394                        info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1395                        break;
1396
1397                case OVS_NAT_ATTR_PROTO_MAX:
1398                        have_proto_max = true;
1399                        info->range.max_proto.all = htons(nla_get_u16(a));
1400                        info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1401                        break;
1402
1403                case OVS_NAT_ATTR_PERSISTENT:
1404                        info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1405                        break;
1406
1407                case OVS_NAT_ATTR_PROTO_HASH:
1408                        info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1409                        break;
1410
1411                case OVS_NAT_ATTR_PROTO_RANDOM:
1412                        info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1413                        break;
1414
1415                default:
1416                        OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1417                        return -EINVAL;
1418                }
1419        }
1420
1421        if (rem > 0) {
1422                OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1423                return -EINVAL;
1424        }
1425        if (!info->nat) {
1426                /* Do not allow flags if no type is given. */
1427                if (info->range.flags) {
1428                        OVS_NLERR(log,
1429                                  "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1430                                  );
1431                        return -EINVAL;
1432                }
1433                info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1434        } else if (!info->commit) {
1435                OVS_NLERR(log,
1436                          "NAT attributes may be specified only when CT COMMIT flag is also specified."
1437                          );
1438                return -EINVAL;
1439        }
1440        /* Allow missing IP_MAX. */
1441        if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1442                memcpy(&info->range.max_addr, &info->range.min_addr,
1443                       sizeof(info->range.max_addr));
1444        }
1445        /* Allow missing PROTO_MAX. */
1446        if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1447            !have_proto_max) {
1448                info->range.max_proto.all = info->range.min_proto.all;
1449        }
1450        return 0;
1451}
1452#endif
1453
1454static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1455        [OVS_CT_ATTR_COMMIT]    = { .minlen = 0, .maxlen = 0 },
1456        [OVS_CT_ATTR_FORCE_COMMIT]      = { .minlen = 0, .maxlen = 0 },
1457        [OVS_CT_ATTR_ZONE]      = { .minlen = sizeof(u16),
1458                                    .maxlen = sizeof(u16) },
1459        [OVS_CT_ATTR_MARK]      = { .minlen = sizeof(struct md_mark),
1460                                    .maxlen = sizeof(struct md_mark) },
1461        [OVS_CT_ATTR_LABELS]    = { .minlen = sizeof(struct md_labels),
1462                                    .maxlen = sizeof(struct md_labels) },
1463        [OVS_CT_ATTR_HELPER]    = { .minlen = 1,
1464                                    .maxlen = NF_CT_HELPER_NAME_LEN },
1465#ifdef CONFIG_NF_NAT_NEEDED
1466        /* NAT length is checked when parsing the nested attributes. */
1467        [OVS_CT_ATTR_NAT]       = { .minlen = 0, .maxlen = INT_MAX },
1468#endif
1469        [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32),
1470                                    .maxlen = sizeof(u32) },
1471};
1472
1473static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1474                    const char **helper, bool log)
1475{
1476        struct nlattr *a;
1477        int rem;
1478
1479        nla_for_each_nested(a, attr, rem) {
1480                int type = nla_type(a);
1481                int maxlen;
1482                int minlen;
1483
1484                if (type > OVS_CT_ATTR_MAX) {
1485                        OVS_NLERR(log,
1486                                  "Unknown conntrack attr (type=%d, max=%d)",
1487                                  type, OVS_CT_ATTR_MAX);
1488                        return -EINVAL;
1489                }
1490
1491                maxlen = ovs_ct_attr_lens[type].maxlen;
1492                minlen = ovs_ct_attr_lens[type].minlen;
1493                if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1494                        OVS_NLERR(log,
1495                                  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1496                                  type, nla_len(a), maxlen);
1497                        return -EINVAL;
1498                }
1499
1500                switch (type) {
1501                case OVS_CT_ATTR_FORCE_COMMIT:
1502                        info->force = true;
1503                        /* fall through. */
1504                case OVS_CT_ATTR_COMMIT:
1505                        info->commit = true;
1506                        break;
1507#ifdef CONFIG_NF_CONNTRACK_ZONES
1508                case OVS_CT_ATTR_ZONE:
1509                        info->zone.id = nla_get_u16(a);
1510                        break;
1511#endif
1512#ifdef CONFIG_NF_CONNTRACK_MARK
1513                case OVS_CT_ATTR_MARK: {
1514                        struct md_mark *mark = nla_data(a);
1515
1516                        if (!mark->mask) {
1517                                OVS_NLERR(log, "ct_mark mask cannot be 0");
1518                                return -EINVAL;
1519                        }
1520                        info->mark = *mark;
1521                        break;
1522                }
1523#endif
1524#ifdef CONFIG_NF_CONNTRACK_LABELS
1525                case OVS_CT_ATTR_LABELS: {
1526                        struct md_labels *labels = nla_data(a);
1527
1528                        if (!labels_nonzero(&labels->mask)) {
1529                                OVS_NLERR(log, "ct_labels mask cannot be 0");
1530                                return -EINVAL;
1531                        }
1532                        info->labels = *labels;
1533                        break;
1534                }
1535#endif
1536                case OVS_CT_ATTR_HELPER:
1537                        *helper = nla_data(a);
1538                        if (!memchr(*helper, '\0', nla_len(a))) {
1539                                OVS_NLERR(log, "Invalid conntrack helper");
1540                                return -EINVAL;
1541                        }
1542                        break;
1543#ifdef CONFIG_NF_NAT_NEEDED
1544                case OVS_CT_ATTR_NAT: {
1545                        int err = parse_nat(a, info, log);
1546
1547                        if (err)
1548                                return err;
1549                        break;
1550                }
1551#endif
1552                case OVS_CT_ATTR_EVENTMASK:
1553                        info->have_eventmask = true;
1554                        info->eventmask = nla_get_u32(a);
1555                        break;
1556
1557                default:
1558                        OVS_NLERR(log, "Unknown conntrack attr (%d)",
1559                                  type);
1560                        return -EINVAL;
1561                }
1562        }
1563
1564#ifdef CONFIG_NF_CONNTRACK_MARK
1565        if (!info->commit && info->mark.mask) {
1566                OVS_NLERR(log,
1567                          "Setting conntrack mark requires 'commit' flag.");
1568                return -EINVAL;
1569        }
1570#endif
1571#ifdef CONFIG_NF_CONNTRACK_LABELS
1572        if (!info->commit && labels_nonzero(&info->labels.mask)) {
1573                OVS_NLERR(log,
1574                          "Setting conntrack labels requires 'commit' flag.");
1575                return -EINVAL;
1576        }
1577#endif
1578        if (rem > 0) {
1579                OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1580                return -EINVAL;
1581        }
1582
1583        return 0;
1584}
1585
1586bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1587{
1588        if (attr == OVS_KEY_ATTR_CT_STATE)
1589                return true;
1590        if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1591            attr == OVS_KEY_ATTR_CT_ZONE)
1592                return true;
1593        if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1594            attr == OVS_KEY_ATTR_CT_MARK)
1595                return true;
1596        if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1597            attr == OVS_KEY_ATTR_CT_LABELS) {
1598                struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1599
1600                return ovs_net->xt_label;
1601        }
1602
1603        return false;
1604}
1605
1606int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1607                       const struct sw_flow_key *key,
1608                       struct sw_flow_actions **sfa,  bool log)
1609{
1610        struct ovs_conntrack_info ct_info;
1611        const char *helper = NULL;
1612        u16 family;
1613        int err;
1614
1615        family = key_to_nfproto(key);
1616        if (family == NFPROTO_UNSPEC) {
1617                OVS_NLERR(log, "ct family unspecified");
1618                return -EINVAL;
1619        }
1620
1621        memset(&ct_info, 0, sizeof(ct_info));
1622        ct_info.family = family;
1623
1624        nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1625                        NF_CT_DEFAULT_ZONE_DIR, 0);
1626
1627        err = parse_ct(attr, &ct_info, &helper, log);
1628        if (err)
1629                return err;
1630
1631        /* Set up template for tracking connections in specific zones. */
1632        ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1633        if (!ct_info.ct) {
1634                OVS_NLERR(log, "Failed to allocate conntrack template");
1635                return -ENOMEM;
1636        }
1637
1638        __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1639        nf_conntrack_get(&ct_info.ct->ct_general);
1640
1641        if (helper) {
1642                err = ovs_ct_add_helper(&ct_info, helper, key, log);
1643                if (err)
1644                        goto err_free_ct;
1645        }
1646
1647        err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1648                                 sizeof(ct_info), log);
1649        if (err)
1650                goto err_free_ct;
1651
1652        return 0;
1653err_free_ct:
1654        __ovs_ct_free_action(&ct_info);
1655        return err;
1656}
1657
1658#ifdef CONFIG_NF_NAT_NEEDED
1659static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1660                               struct sk_buff *skb)
1661{
1662        struct nlattr *start;
1663
1664        start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1665        if (!start)
1666                return false;
1667
1668        if (info->nat & OVS_CT_SRC_NAT) {
1669                if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1670                        return false;
1671        } else if (info->nat & OVS_CT_DST_NAT) {
1672                if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1673                        return false;
1674        } else {
1675                goto out;
1676        }
1677
1678        if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1679                if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1680                    info->family == NFPROTO_IPV4) {
1681                        if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1682                                            info->range.min_addr.ip) ||
1683                            (info->range.max_addr.ip
1684                             != info->range.min_addr.ip &&
1685                             (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1686                                              info->range.max_addr.ip))))
1687                                return false;
1688                } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1689                           info->family == NFPROTO_IPV6) {
1690                        if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1691                                             &info->range.min_addr.in6) ||
1692                            (memcmp(&info->range.max_addr.in6,
1693                                    &info->range.min_addr.in6,
1694                                    sizeof(info->range.max_addr.in6)) &&
1695                             (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1696                                               &info->range.max_addr.in6))))
1697                                return false;
1698                } else {
1699                        return false;
1700                }
1701        }
1702        if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1703            (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1704                         ntohs(info->range.min_proto.all)) ||
1705             (info->range.max_proto.all != info->range.min_proto.all &&
1706              nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1707                          ntohs(info->range.max_proto.all)))))
1708                return false;
1709
1710        if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1711            nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1712                return false;
1713        if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1714            nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1715                return false;
1716        if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1717            nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1718                return false;
1719out:
1720        nla_nest_end(skb, start);
1721
1722        return true;
1723}
1724#endif
1725
1726int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1727                          struct sk_buff *skb)
1728{
1729        struct nlattr *start;
1730
1731        start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1732        if (!start)
1733                return -EMSGSIZE;
1734
1735        if (ct_info->commit && nla_put_flag(skb, ct_info->force
1736                                            ? OVS_CT_ATTR_FORCE_COMMIT
1737                                            : OVS_CT_ATTR_COMMIT))
1738                return -EMSGSIZE;
1739        if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1740            nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1741                return -EMSGSIZE;
1742        if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1743            nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1744                    &ct_info->mark))
1745                return -EMSGSIZE;
1746        if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1747            labels_nonzero(&ct_info->labels.mask) &&
1748            nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1749                    &ct_info->labels))
1750                return -EMSGSIZE;
1751        if (ct_info->helper) {
1752                if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1753                                   ct_info->helper->name))
1754                        return -EMSGSIZE;
1755        }
1756        if (ct_info->have_eventmask &&
1757            nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1758                return -EMSGSIZE;
1759
1760#ifdef CONFIG_NF_NAT_NEEDED
1761        if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1762                return -EMSGSIZE;
1763#endif
1764        nla_nest_end(skb, start);
1765
1766        return 0;
1767}
1768
1769void ovs_ct_free_action(const struct nlattr *a)
1770{
1771        struct ovs_conntrack_info *ct_info = nla_data(a);
1772
1773        __ovs_ct_free_action(ct_info);
1774}
1775
1776static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1777{
1778        if (ct_info->helper)
1779                nf_conntrack_helper_put(ct_info->helper);
1780        if (ct_info->ct)
1781                nf_ct_tmpl_free(ct_info->ct);
1782}
1783
1784#if     IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1785static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1786{
1787        int i, err;
1788
1789        ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1790                                         GFP_KERNEL);
1791        if (!ovs_net->ct_limit_info)
1792                return -ENOMEM;
1793
1794        ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1795        ovs_net->ct_limit_info->limits =
1796                kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1797                              GFP_KERNEL);
1798        if (!ovs_net->ct_limit_info->limits) {
1799                kfree(ovs_net->ct_limit_info);
1800                return -ENOMEM;
1801        }
1802
1803        for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1804                INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1805
1806        ovs_net->ct_limit_info->data =
1807                nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1808
1809        if (IS_ERR(ovs_net->ct_limit_info->data)) {
1810                err = PTR_ERR(ovs_net->ct_limit_info->data);
1811                kfree(ovs_net->ct_limit_info->limits);
1812                kfree(ovs_net->ct_limit_info);
1813                pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1814                return err;
1815        }
1816        return 0;
1817}
1818
1819static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1820{
1821        const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1822        int i;
1823
1824        nf_conncount_destroy(net, NFPROTO_INET, info->data);
1825        for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1826                struct hlist_head *head = &info->limits[i];
1827                struct ovs_ct_limit *ct_limit;
1828
1829                hlist_for_each_entry_rcu(ct_limit, head, hlist_node)
1830                        kfree_rcu(ct_limit, rcu);
1831        }
1832        kfree(ovs_net->ct_limit_info->limits);
1833        kfree(ovs_net->ct_limit_info);
1834}
1835
1836static struct sk_buff *
1837ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1838                             struct ovs_header **ovs_reply_header)
1839{
1840        struct ovs_header *ovs_header = info->userhdr;
1841        struct sk_buff *skb;
1842
1843        skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1844        if (!skb)
1845                return ERR_PTR(-ENOMEM);
1846
1847        *ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1848                                        info->snd_seq,
1849                                        &dp_ct_limit_genl_family, 0, cmd);
1850
1851        if (!*ovs_reply_header) {
1852                nlmsg_free(skb);
1853                return ERR_PTR(-EMSGSIZE);
1854        }
1855        (*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1856
1857        return skb;
1858}
1859
1860static bool check_zone_id(int zone_id, u16 *pzone)
1861{
1862        if (zone_id >= 0 && zone_id <= 65535) {
1863                *pzone = (u16)zone_id;
1864                return true;
1865        }
1866        return false;
1867}
1868
1869static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1870                                       struct ovs_ct_limit_info *info)
1871{
1872        struct ovs_zone_limit *zone_limit;
1873        int rem;
1874        u16 zone;
1875
1876        rem = NLA_ALIGN(nla_len(nla_zone_limit));
1877        zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1878
1879        while (rem >= sizeof(*zone_limit)) {
1880                if (unlikely(zone_limit->zone_id ==
1881                                OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1882                        ovs_lock();
1883                        info->default_limit = zone_limit->limit;
1884                        ovs_unlock();
1885                } else if (unlikely(!check_zone_id(
1886                                zone_limit->zone_id, &zone))) {
1887                        OVS_NLERR(true, "zone id is out of range");
1888                } else {
1889                        struct ovs_ct_limit *ct_limit;
1890
1891                        ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL);
1892                        if (!ct_limit)
1893                                return -ENOMEM;
1894
1895                        ct_limit->zone = zone;
1896                        ct_limit->limit = zone_limit->limit;
1897
1898                        ovs_lock();
1899                        ct_limit_set(info, ct_limit);
1900                        ovs_unlock();
1901                }
1902                rem -= NLA_ALIGN(sizeof(*zone_limit));
1903                zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1904                                NLA_ALIGN(sizeof(*zone_limit)));
1905        }
1906
1907        if (rem)
1908                OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1909
1910        return 0;
1911}
1912
1913static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1914                                       struct ovs_ct_limit_info *info)
1915{
1916        struct ovs_zone_limit *zone_limit;
1917        int rem;
1918        u16 zone;
1919
1920        rem = NLA_ALIGN(nla_len(nla_zone_limit));
1921        zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1922
1923        while (rem >= sizeof(*zone_limit)) {
1924                if (unlikely(zone_limit->zone_id ==
1925                                OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1926                        ovs_lock();
1927                        info->default_limit = OVS_CT_LIMIT_DEFAULT;
1928                        ovs_unlock();
1929                } else if (unlikely(!check_zone_id(
1930                                zone_limit->zone_id, &zone))) {
1931                        OVS_NLERR(true, "zone id is out of range");
1932                } else {
1933                        ovs_lock();
1934                        ct_limit_del(info, zone);
1935                        ovs_unlock();
1936                }
1937                rem -= NLA_ALIGN(sizeof(*zone_limit));
1938                zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1939                                NLA_ALIGN(sizeof(*zone_limit)));
1940        }
1941
1942        if (rem)
1943                OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
1944
1945        return 0;
1946}
1947
1948static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
1949                                          struct sk_buff *reply)
1950{
1951        struct ovs_zone_limit zone_limit;
1952        int err;
1953
1954        zone_limit.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE;
1955        zone_limit.limit = info->default_limit;
1956        err = nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1957        if (err)
1958                return err;
1959
1960        return 0;
1961}
1962
1963static int __ovs_ct_limit_get_zone_limit(struct net *net,
1964                                         struct nf_conncount_data *data,
1965                                         u16 zone_id, u32 limit,
1966                                         struct sk_buff *reply)
1967{
1968        struct nf_conntrack_zone ct_zone;
1969        struct ovs_zone_limit zone_limit;
1970        u32 conncount_key = zone_id;
1971
1972        zone_limit.zone_id = zone_id;
1973        zone_limit.limit = limit;
1974        nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
1975
1976        zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
1977                                              &ct_zone);
1978        return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1979}
1980
1981static int ovs_ct_limit_get_zone_limit(struct net *net,
1982                                       struct nlattr *nla_zone_limit,
1983                                       struct ovs_ct_limit_info *info,
1984                                       struct sk_buff *reply)
1985{
1986        struct ovs_zone_limit *zone_limit;
1987        int rem, err;
1988        u32 limit;
1989        u16 zone;
1990
1991        rem = NLA_ALIGN(nla_len(nla_zone_limit));
1992        zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1993
1994        while (rem >= sizeof(*zone_limit)) {
1995                if (unlikely(zone_limit->zone_id ==
1996                                OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1997                        err = ovs_ct_limit_get_default_limit(info, reply);
1998                        if (err)
1999                                return err;
2000                } else if (unlikely(!check_zone_id(zone_limit->zone_id,
2001                                                        &zone))) {
2002                        OVS_NLERR(true, "zone id is out of range");
2003                } else {
2004                        rcu_read_lock();
2005                        limit = ct_limit_get(info, zone);
2006                        rcu_read_unlock();
2007
2008                        err = __ovs_ct_limit_get_zone_limit(
2009                                net, info->data, zone, limit, reply);
2010                        if (err)
2011                                return err;
2012                }
2013                rem -= NLA_ALIGN(sizeof(*zone_limit));
2014                zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2015                                NLA_ALIGN(sizeof(*zone_limit)));
2016        }
2017
2018        if (rem)
2019                OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
2020
2021        return 0;
2022}
2023
2024static int ovs_ct_limit_get_all_zone_limit(struct net *net,
2025                                           struct ovs_ct_limit_info *info,
2026                                           struct sk_buff *reply)
2027{
2028        struct ovs_ct_limit *ct_limit;
2029        struct hlist_head *head;
2030        int i, err = 0;
2031
2032        err = ovs_ct_limit_get_default_limit(info, reply);
2033        if (err)
2034                return err;
2035
2036        rcu_read_lock();
2037        for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
2038                head = &info->limits[i];
2039                hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
2040                        err = __ovs_ct_limit_get_zone_limit(net, info->data,
2041                                ct_limit->zone, ct_limit->limit, reply);
2042                        if (err)
2043                                goto exit_err;
2044                }
2045        }
2046
2047exit_err:
2048        rcu_read_unlock();
2049        return err;
2050}
2051
2052static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
2053{
2054        struct nlattr **a = info->attrs;
2055        struct sk_buff *reply;
2056        struct ovs_header *ovs_reply_header;
2057        struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2058        struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2059        int err;
2060
2061        reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
2062                                             &ovs_reply_header);
2063        if (IS_ERR(reply))
2064                return PTR_ERR(reply);
2065
2066        if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2067                err = -EINVAL;
2068                goto exit_err;
2069        }
2070
2071        err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2072                                          ct_limit_info);
2073        if (err)
2074                goto exit_err;
2075
2076        static_branch_enable(&ovs_ct_limit_enabled);
2077
2078        genlmsg_end(reply, ovs_reply_header);
2079        return genlmsg_reply(reply, info);
2080
2081exit_err:
2082        nlmsg_free(reply);
2083        return err;
2084}
2085
2086static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
2087{
2088        struct nlattr **a = info->attrs;
2089        struct sk_buff *reply;
2090        struct ovs_header *ovs_reply_header;
2091        struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2092        struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2093        int err;
2094
2095        reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
2096                                             &ovs_reply_header);
2097        if (IS_ERR(reply))
2098                return PTR_ERR(reply);
2099
2100        if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2101                err = -EINVAL;
2102                goto exit_err;
2103        }
2104
2105        err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2106                                          ct_limit_info);
2107        if (err)
2108                goto exit_err;
2109
2110        genlmsg_end(reply, ovs_reply_header);
2111        return genlmsg_reply(reply, info);
2112
2113exit_err:
2114        nlmsg_free(reply);
2115        return err;
2116}
2117
2118static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
2119{
2120        struct nlattr **a = info->attrs;
2121        struct nlattr *nla_reply;
2122        struct sk_buff *reply;
2123        struct ovs_header *ovs_reply_header;
2124        struct net *net = sock_net(skb->sk);
2125        struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2126        struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2127        int err;
2128
2129        reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
2130                                             &ovs_reply_header);
2131        if (IS_ERR(reply))
2132                return PTR_ERR(reply);
2133
2134        nla_reply = nla_nest_start(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
2135
2136        if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2137                err = ovs_ct_limit_get_zone_limit(
2138                        net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
2139                        reply);
2140                if (err)
2141                        goto exit_err;
2142        } else {
2143                err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
2144                                                      reply);
2145                if (err)
2146                        goto exit_err;
2147        }
2148
2149        nla_nest_end(reply, nla_reply);
2150        genlmsg_end(reply, ovs_reply_header);
2151        return genlmsg_reply(reply, info);
2152
2153exit_err:
2154        nlmsg_free(reply);
2155        return err;
2156}
2157
2158static struct genl_ops ct_limit_genl_ops[] = {
2159        { .cmd = OVS_CT_LIMIT_CMD_SET,
2160                .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2161                                           * privilege. */
2162                .policy = ct_limit_policy,
2163                .doit = ovs_ct_limit_cmd_set,
2164        },
2165        { .cmd = OVS_CT_LIMIT_CMD_DEL,
2166                .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2167                                           * privilege. */
2168                .policy = ct_limit_policy,
2169                .doit = ovs_ct_limit_cmd_del,
2170        },
2171        { .cmd = OVS_CT_LIMIT_CMD_GET,
2172                .flags = 0,               /* OK for unprivileged users. */
2173                .policy = ct_limit_policy,
2174                .doit = ovs_ct_limit_cmd_get,
2175        },
2176};
2177
2178static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
2179        .name = OVS_CT_LIMIT_MCGROUP,
2180};
2181
2182struct genl_family dp_ct_limit_genl_family __ro_after_init = {
2183        .hdrsize = sizeof(struct ovs_header),
2184        .name = OVS_CT_LIMIT_FAMILY,
2185        .version = OVS_CT_LIMIT_VERSION,
2186        .maxattr = OVS_CT_LIMIT_ATTR_MAX,
2187        .netnsok = true,
2188        .parallel_ops = true,
2189        .ops = ct_limit_genl_ops,
2190        .n_ops = ARRAY_SIZE(ct_limit_genl_ops),
2191        .mcgrps = &ovs_ct_limit_multicast_group,
2192        .n_mcgrps = 1,
2193        .module = THIS_MODULE,
2194};
2195#endif
2196
2197int ovs_ct_init(struct net *net)
2198{
2199        unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
2200        struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2201
2202        if (nf_connlabels_get(net, n_bits - 1)) {
2203                ovs_net->xt_label = false;
2204                OVS_NLERR(true, "Failed to set connlabel length");
2205        } else {
2206                ovs_net->xt_label = true;
2207        }
2208
2209#if     IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2210        return ovs_ct_limit_init(net, ovs_net);
2211#else
2212        return 0;
2213#endif
2214}
2215
2216void ovs_ct_exit(struct net *net)
2217{
2218        struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2219
2220#if     IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2221        ovs_ct_limit_exit(net, ovs_net);
2222#endif
2223
2224        if (ovs_net->xt_label)
2225                nf_connlabels_put(net);
2226}
2227