linux/sound/x86/intel_hdmi_audio.c
<<
>>
Prefs
   1/*
   2 *   intel_hdmi_audio.c - Intel HDMI audio driver
   3 *
   4 *  Copyright (C) 2016 Intel Corp
   5 *  Authors:    Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
   6 *              Ramesh Babu K V <ramesh.babu@intel.com>
   7 *              Vaibhav Agarwal <vaibhav.agarwal@intel.com>
   8 *              Jerome Anand <jerome.anand@intel.com>
   9 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  10 *
  11 *  This program is free software; you can redistribute it and/or modify
  12 *  it under the terms of the GNU General Public License as published by
  13 *  the Free Software Foundation; version 2 of the License.
  14 *
  15 *  This program is distributed in the hope that it will be useful, but
  16 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  17 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 *  General Public License for more details.
  19 *
  20 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  21 * ALSA driver for Intel HDMI audio
  22 */
  23
  24#include <linux/types.h>
  25#include <linux/platform_device.h>
  26#include <linux/io.h>
  27#include <linux/slab.h>
  28#include <linux/module.h>
  29#include <linux/interrupt.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/dma-mapping.h>
  32#include <linux/delay.h>
  33#include <asm/set_memory.h>
  34#include <sound/core.h>
  35#include <sound/asoundef.h>
  36#include <sound/pcm.h>
  37#include <sound/pcm_params.h>
  38#include <sound/initval.h>
  39#include <sound/control.h>
  40#include <sound/jack.h>
  41#include <drm/drm_edid.h>
  42#include <drm/intel_lpe_audio.h>
  43#include "intel_hdmi_audio.h"
  44
  45#define for_each_pipe(card_ctx, pipe) \
  46        for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
  47#define for_each_port(card_ctx, port) \
  48        for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
  49
  50/*standard module options for ALSA. This module supports only one card*/
  51static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
  52static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
  53static bool single_port;
  54
  55module_param_named(index, hdmi_card_index, int, 0444);
  56MODULE_PARM_DESC(index,
  57                "Index value for INTEL Intel HDMI Audio controller.");
  58module_param_named(id, hdmi_card_id, charp, 0444);
  59MODULE_PARM_DESC(id,
  60                "ID string for INTEL Intel HDMI Audio controller.");
  61module_param(single_port, bool, 0444);
  62MODULE_PARM_DESC(single_port,
  63                "Single-port mode (for compatibility)");
  64
  65/*
  66 * ELD SA bits in the CEA Speaker Allocation data block
  67 */
  68static const int eld_speaker_allocation_bits[] = {
  69        [0] = FL | FR,
  70        [1] = LFE,
  71        [2] = FC,
  72        [3] = RL | RR,
  73        [4] = RC,
  74        [5] = FLC | FRC,
  75        [6] = RLC | RRC,
  76        /* the following are not defined in ELD yet */
  77        [7] = 0,
  78};
  79
  80/*
  81 * This is an ordered list!
  82 *
  83 * The preceding ones have better chances to be selected by
  84 * hdmi_channel_allocation().
  85 */
  86static struct cea_channel_speaker_allocation channel_allocations[] = {
  87/*                        channel:   7     6    5    4    3     2    1    0  */
  88{ .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
  89                                /* 2.1 */
  90{ .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
  91                                /* Dolby Surround */
  92{ .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
  93                                /* surround40 */
  94{ .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
  95                                /* surround41 */
  96{ .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
  97                                /* surround50 */
  98{ .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
  99                                /* surround51 */
 100{ .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
 101                                /* 6.1 */
 102{ .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
 103                                /* surround71 */
 104{ .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
 105
 106{ .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
 107{ .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
 108{ .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
 109{ .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
 110{ .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
 111{ .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
 112{ .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
 113{ .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
 114{ .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
 115{ .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
 116{ .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
 117{ .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
 118{ .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
 119{ .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
 120{ .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
 121{ .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
 122{ .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
 123{ .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
 124{ .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
 125{ .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
 126{ .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
 127{ .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
 128{ .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
 129};
 130
 131static const struct channel_map_table map_tables[] = {
 132        { SNDRV_CHMAP_FL,       0x00,   FL },
 133        { SNDRV_CHMAP_FR,       0x01,   FR },
 134        { SNDRV_CHMAP_RL,       0x04,   RL },
 135        { SNDRV_CHMAP_RR,       0x05,   RR },
 136        { SNDRV_CHMAP_LFE,      0x02,   LFE },
 137        { SNDRV_CHMAP_FC,       0x03,   FC },
 138        { SNDRV_CHMAP_RLC,      0x06,   RLC },
 139        { SNDRV_CHMAP_RRC,      0x07,   RRC },
 140        {} /* terminator */
 141};
 142
 143/* hardware capability structure */
 144static const struct snd_pcm_hardware had_pcm_hardware = {
 145        .info = (SNDRV_PCM_INFO_INTERLEAVED |
 146                SNDRV_PCM_INFO_MMAP |
 147                SNDRV_PCM_INFO_MMAP_VALID |
 148                SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
 149        .formats = (SNDRV_PCM_FMTBIT_S16_LE |
 150                    SNDRV_PCM_FMTBIT_S24_LE |
 151                    SNDRV_PCM_FMTBIT_S32_LE),
 152        .rates = SNDRV_PCM_RATE_32000 |
 153                SNDRV_PCM_RATE_44100 |
 154                SNDRV_PCM_RATE_48000 |
 155                SNDRV_PCM_RATE_88200 |
 156                SNDRV_PCM_RATE_96000 |
 157                SNDRV_PCM_RATE_176400 |
 158                SNDRV_PCM_RATE_192000,
 159        .rate_min = HAD_MIN_RATE,
 160        .rate_max = HAD_MAX_RATE,
 161        .channels_min = HAD_MIN_CHANNEL,
 162        .channels_max = HAD_MAX_CHANNEL,
 163        .buffer_bytes_max = HAD_MAX_BUFFER,
 164        .period_bytes_min = HAD_MIN_PERIOD_BYTES,
 165        .period_bytes_max = HAD_MAX_PERIOD_BYTES,
 166        .periods_min = HAD_MIN_PERIODS,
 167        .periods_max = HAD_MAX_PERIODS,
 168        .fifo_size = HAD_FIFO_SIZE,
 169};
 170
 171/* Get the active PCM substream;
 172 * Call had_substream_put() for unreferecing.
 173 * Don't call this inside had_spinlock, as it takes by itself
 174 */
 175static struct snd_pcm_substream *
 176had_substream_get(struct snd_intelhad *intelhaddata)
 177{
 178        struct snd_pcm_substream *substream;
 179        unsigned long flags;
 180
 181        spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
 182        substream = intelhaddata->stream_info.substream;
 183        if (substream)
 184                intelhaddata->stream_info.substream_refcount++;
 185        spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
 186        return substream;
 187}
 188
 189/* Unref the active PCM substream;
 190 * Don't call this inside had_spinlock, as it takes by itself
 191 */
 192static void had_substream_put(struct snd_intelhad *intelhaddata)
 193{
 194        unsigned long flags;
 195
 196        spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
 197        intelhaddata->stream_info.substream_refcount--;
 198        spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
 199}
 200
 201static u32 had_config_offset(int pipe)
 202{
 203        switch (pipe) {
 204        default:
 205        case 0:
 206                return AUDIO_HDMI_CONFIG_A;
 207        case 1:
 208                return AUDIO_HDMI_CONFIG_B;
 209        case 2:
 210                return AUDIO_HDMI_CONFIG_C;
 211        }
 212}
 213
 214/* Register access functions */
 215static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
 216                                 int pipe, u32 reg)
 217{
 218        return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
 219}
 220
 221static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
 222                                   int pipe, u32 reg, u32 val)
 223{
 224        iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
 225}
 226
 227static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
 228{
 229        if (!ctx->connected)
 230                *val = 0;
 231        else
 232                *val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
 233}
 234
 235static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
 236{
 237        if (ctx->connected)
 238                had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
 239}
 240
 241/*
 242 * enable / disable audio configuration
 243 *
 244 * The normal read/modify should not directly be used on VLV2 for
 245 * updating AUD_CONFIG register.
 246 * This is because:
 247 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
 248 * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
 249 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
 250 * register. This field should be 1xy binary for configuration with 6 or
 251 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
 252 * causes the "channels" field to be updated as 0xy binary resulting in
 253 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
 254 * appropriate value when doing read-modify of AUD_CONFIG register.
 255 */
 256static void had_enable_audio(struct snd_intelhad *intelhaddata,
 257                             bool enable)
 258{
 259        /* update the cached value */
 260        intelhaddata->aud_config.regx.aud_en = enable;
 261        had_write_register(intelhaddata, AUD_CONFIG,
 262                           intelhaddata->aud_config.regval);
 263}
 264
 265/* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
 266static void had_ack_irqs(struct snd_intelhad *ctx)
 267{
 268        u32 status_reg;
 269
 270        if (!ctx->connected)
 271                return;
 272        had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
 273        status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
 274        had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
 275        had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
 276}
 277
 278/* Reset buffer pointers */
 279static void had_reset_audio(struct snd_intelhad *intelhaddata)
 280{
 281        had_write_register(intelhaddata, AUD_HDMI_STATUS,
 282                           AUD_HDMI_STATUSG_MASK_FUNCRST);
 283        had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
 284}
 285
 286/*
 287 * initialize audio channel status registers
 288 * This function is called in the prepare callback
 289 */
 290static int had_prog_status_reg(struct snd_pcm_substream *substream,
 291                        struct snd_intelhad *intelhaddata)
 292{
 293        union aud_cfg cfg_val = {.regval = 0};
 294        union aud_ch_status_0 ch_stat0 = {.regval = 0};
 295        union aud_ch_status_1 ch_stat1 = {.regval = 0};
 296
 297        ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
 298                                          IEC958_AES0_NONAUDIO) >> 1;
 299        ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
 300                                          IEC958_AES3_CON_CLOCK) >> 4;
 301        cfg_val.regx.val_bit = ch_stat0.regx.lpcm_id;
 302
 303        switch (substream->runtime->rate) {
 304        case AUD_SAMPLE_RATE_32:
 305                ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
 306                break;
 307
 308        case AUD_SAMPLE_RATE_44_1:
 309                ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
 310                break;
 311        case AUD_SAMPLE_RATE_48:
 312                ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
 313                break;
 314        case AUD_SAMPLE_RATE_88_2:
 315                ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
 316                break;
 317        case AUD_SAMPLE_RATE_96:
 318                ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
 319                break;
 320        case AUD_SAMPLE_RATE_176_4:
 321                ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
 322                break;
 323        case AUD_SAMPLE_RATE_192:
 324                ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
 325                break;
 326
 327        default:
 328                /* control should never come here */
 329                return -EINVAL;
 330        }
 331
 332        had_write_register(intelhaddata,
 333                           AUD_CH_STATUS_0, ch_stat0.regval);
 334
 335        switch (substream->runtime->format) {
 336        case SNDRV_PCM_FORMAT_S16_LE:
 337                ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
 338                ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
 339                break;
 340        case SNDRV_PCM_FORMAT_S24_LE:
 341        case SNDRV_PCM_FORMAT_S32_LE:
 342                ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
 343                ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
 344                break;
 345        default:
 346                return -EINVAL;
 347        }
 348
 349        had_write_register(intelhaddata,
 350                           AUD_CH_STATUS_1, ch_stat1.regval);
 351        return 0;
 352}
 353
 354/*
 355 * function to initialize audio
 356 * registers and buffer confgiuration registers
 357 * This function is called in the prepare callback
 358 */
 359static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
 360                               struct snd_intelhad *intelhaddata)
 361{
 362        union aud_cfg cfg_val = {.regval = 0};
 363        union aud_buf_config buf_cfg = {.regval = 0};
 364        u8 channels;
 365
 366        had_prog_status_reg(substream, intelhaddata);
 367
 368        buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
 369        buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
 370        buf_cfg.regx.aud_delay = 0;
 371        had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
 372
 373        channels = substream->runtime->channels;
 374        cfg_val.regx.num_ch = channels - 2;
 375        if (channels <= 2)
 376                cfg_val.regx.layout = LAYOUT0;
 377        else
 378                cfg_val.regx.layout = LAYOUT1;
 379
 380        if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
 381                cfg_val.regx.packet_mode = 1;
 382
 383        if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
 384                cfg_val.regx.left_align = 1;
 385
 386        cfg_val.regx.val_bit = 1;
 387
 388        /* fix up the DP bits */
 389        if (intelhaddata->dp_output) {
 390                cfg_val.regx.dp_modei = 1;
 391                cfg_val.regx.set = 1;
 392        }
 393
 394        had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
 395        intelhaddata->aud_config = cfg_val;
 396        return 0;
 397}
 398
 399/*
 400 * Compute derived values in channel_allocations[].
 401 */
 402static void init_channel_allocations(void)
 403{
 404        int i, j;
 405        struct cea_channel_speaker_allocation *p;
 406
 407        for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
 408                p = channel_allocations + i;
 409                p->channels = 0;
 410                p->spk_mask = 0;
 411                for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
 412                        if (p->speakers[j]) {
 413                                p->channels++;
 414                                p->spk_mask |= p->speakers[j];
 415                        }
 416        }
 417}
 418
 419/*
 420 * The transformation takes two steps:
 421 *
 422 *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
 423 *            spk_mask => (channel_allocations[])         => ai->CA
 424 *
 425 * TODO: it could select the wrong CA from multiple candidates.
 426 */
 427static int had_channel_allocation(struct snd_intelhad *intelhaddata,
 428                                  int channels)
 429{
 430        int i;
 431        int ca = 0;
 432        int spk_mask = 0;
 433
 434        /*
 435         * CA defaults to 0 for basic stereo audio
 436         */
 437        if (channels <= 2)
 438                return 0;
 439
 440        /*
 441         * expand ELD's speaker allocation mask
 442         *
 443         * ELD tells the speaker mask in a compact(paired) form,
 444         * expand ELD's notions to match the ones used by Audio InfoFrame.
 445         */
 446
 447        for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
 448                if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
 449                        spk_mask |= eld_speaker_allocation_bits[i];
 450        }
 451
 452        /* search for the first working match in the CA table */
 453        for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
 454                if (channels == channel_allocations[i].channels &&
 455                (spk_mask & channel_allocations[i].spk_mask) ==
 456                                channel_allocations[i].spk_mask) {
 457                        ca = channel_allocations[i].ca_index;
 458                        break;
 459                }
 460        }
 461
 462        dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
 463
 464        return ca;
 465}
 466
 467/* from speaker bit mask to ALSA API channel position */
 468static int spk_to_chmap(int spk)
 469{
 470        const struct channel_map_table *t = map_tables;
 471
 472        for (; t->map; t++) {
 473                if (t->spk_mask == spk)
 474                        return t->map;
 475        }
 476        return 0;
 477}
 478
 479static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
 480{
 481        int i, c;
 482        int spk_mask = 0;
 483        struct snd_pcm_chmap_elem *chmap;
 484        u8 eld_high, eld_high_mask = 0xF0;
 485        u8 high_msb;
 486
 487        kfree(intelhaddata->chmap->chmap);
 488        intelhaddata->chmap->chmap = NULL;
 489
 490        chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
 491        if (!chmap)
 492                return;
 493
 494        dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
 495                intelhaddata->eld[DRM_ELD_SPEAKER]);
 496
 497        /* WA: Fix the max channel supported to 8 */
 498
 499        /*
 500         * Sink may support more than 8 channels, if eld_high has more than
 501         * one bit set. SOC supports max 8 channels.
 502         * Refer eld_speaker_allocation_bits, for sink speaker allocation
 503         */
 504
 505        /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
 506        eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
 507        if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
 508                /* eld_high & (eld_high-1): if more than 1 bit set */
 509                /* 0x1F: 7 channels */
 510                for (i = 1; i < 4; i++) {
 511                        high_msb = eld_high & (0x80 >> i);
 512                        if (high_msb) {
 513                                intelhaddata->eld[DRM_ELD_SPEAKER] &=
 514                                        high_msb | 0xF;
 515                                break;
 516                        }
 517                }
 518        }
 519
 520        for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
 521                if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
 522                        spk_mask |= eld_speaker_allocation_bits[i];
 523        }
 524
 525        for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
 526                if (spk_mask == channel_allocations[i].spk_mask) {
 527                        for (c = 0; c < channel_allocations[i].channels; c++) {
 528                                chmap->map[c] = spk_to_chmap(
 529                                        channel_allocations[i].speakers[
 530                                                (MAX_SPEAKERS - 1) - c]);
 531                        }
 532                        chmap->channels = channel_allocations[i].channels;
 533                        intelhaddata->chmap->chmap = chmap;
 534                        break;
 535                }
 536        }
 537        if (i >= ARRAY_SIZE(channel_allocations))
 538                kfree(chmap);
 539}
 540
 541/*
 542 * ALSA API channel-map control callbacks
 543 */
 544static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
 545                                struct snd_ctl_elem_info *uinfo)
 546{
 547        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 548        uinfo->count = HAD_MAX_CHANNEL;
 549        uinfo->value.integer.min = 0;
 550        uinfo->value.integer.max = SNDRV_CHMAP_LAST;
 551        return 0;
 552}
 553
 554static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
 555                                struct snd_ctl_elem_value *ucontrol)
 556{
 557        struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
 558        struct snd_intelhad *intelhaddata = info->private_data;
 559        int i;
 560        const struct snd_pcm_chmap_elem *chmap;
 561
 562        memset(ucontrol->value.integer.value, 0,
 563               sizeof(long) * HAD_MAX_CHANNEL);
 564        mutex_lock(&intelhaddata->mutex);
 565        if (!intelhaddata->chmap->chmap) {
 566                mutex_unlock(&intelhaddata->mutex);
 567                return 0;
 568        }
 569
 570        chmap = intelhaddata->chmap->chmap;
 571        for (i = 0; i < chmap->channels; i++)
 572                ucontrol->value.integer.value[i] = chmap->map[i];
 573        mutex_unlock(&intelhaddata->mutex);
 574
 575        return 0;
 576}
 577
 578static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
 579                                                struct snd_pcm *pcm)
 580{
 581        int err;
 582
 583        err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
 584                        NULL, 0, (unsigned long)intelhaddata,
 585                        &intelhaddata->chmap);
 586        if (err < 0)
 587                return err;
 588
 589        intelhaddata->chmap->private_data = intelhaddata;
 590        intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
 591        intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
 592        intelhaddata->chmap->chmap = NULL;
 593        return 0;
 594}
 595
 596/*
 597 * Initialize Data Island Packets registers
 598 * This function is called in the prepare callback
 599 */
 600static void had_prog_dip(struct snd_pcm_substream *substream,
 601                         struct snd_intelhad *intelhaddata)
 602{
 603        int i;
 604        union aud_ctrl_st ctrl_state = {.regval = 0};
 605        union aud_info_frame2 frame2 = {.regval = 0};
 606        union aud_info_frame3 frame3 = {.regval = 0};
 607        u8 checksum = 0;
 608        u32 info_frame;
 609        int channels;
 610        int ca;
 611
 612        channels = substream->runtime->channels;
 613
 614        had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
 615
 616        ca = had_channel_allocation(intelhaddata, channels);
 617        if (intelhaddata->dp_output) {
 618                info_frame = DP_INFO_FRAME_WORD1;
 619                frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
 620        } else {
 621                info_frame = HDMI_INFO_FRAME_WORD1;
 622                frame2.regx.chnl_cnt = substream->runtime->channels - 1;
 623                frame3.regx.chnl_alloc = ca;
 624
 625                /* Calculte the byte wide checksum for all valid DIP words */
 626                for (i = 0; i < BYTES_PER_WORD; i++)
 627                        checksum += (info_frame >> (i * 8)) & 0xff;
 628                for (i = 0; i < BYTES_PER_WORD; i++)
 629                        checksum += (frame2.regval >> (i * 8)) & 0xff;
 630                for (i = 0; i < BYTES_PER_WORD; i++)
 631                        checksum += (frame3.regval >> (i * 8)) & 0xff;
 632
 633                frame2.regx.chksum = -(checksum);
 634        }
 635
 636        had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
 637        had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
 638        had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
 639
 640        /* program remaining DIP words with zero */
 641        for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
 642                had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
 643
 644        ctrl_state.regx.dip_freq = 1;
 645        ctrl_state.regx.dip_en_sta = 1;
 646        had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
 647}
 648
 649static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
 650{
 651        u32 maud_val;
 652
 653        /* Select maud according to DP 1.2 spec */
 654        if (link_rate == DP_2_7_GHZ) {
 655                switch (aud_samp_freq) {
 656                case AUD_SAMPLE_RATE_32:
 657                        maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
 658                        break;
 659
 660                case AUD_SAMPLE_RATE_44_1:
 661                        maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
 662                        break;
 663
 664                case AUD_SAMPLE_RATE_48:
 665                        maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
 666                        break;
 667
 668                case AUD_SAMPLE_RATE_88_2:
 669                        maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
 670                        break;
 671
 672                case AUD_SAMPLE_RATE_96:
 673                        maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
 674                        break;
 675
 676                case AUD_SAMPLE_RATE_176_4:
 677                        maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
 678                        break;
 679
 680                case HAD_MAX_RATE:
 681                        maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
 682                        break;
 683
 684                default:
 685                        maud_val = -EINVAL;
 686                        break;
 687                }
 688        } else if (link_rate == DP_1_62_GHZ) {
 689                switch (aud_samp_freq) {
 690                case AUD_SAMPLE_RATE_32:
 691                        maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
 692                        break;
 693
 694                case AUD_SAMPLE_RATE_44_1:
 695                        maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
 696                        break;
 697
 698                case AUD_SAMPLE_RATE_48:
 699                        maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
 700                        break;
 701
 702                case AUD_SAMPLE_RATE_88_2:
 703                        maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
 704                        break;
 705
 706                case AUD_SAMPLE_RATE_96:
 707                        maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
 708                        break;
 709
 710                case AUD_SAMPLE_RATE_176_4:
 711                        maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
 712                        break;
 713
 714                case HAD_MAX_RATE:
 715                        maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
 716                        break;
 717
 718                default:
 719                        maud_val = -EINVAL;
 720                        break;
 721                }
 722        } else
 723                maud_val = -EINVAL;
 724
 725        return maud_val;
 726}
 727
 728/*
 729 * Program HDMI audio CTS value
 730 *
 731 * @aud_samp_freq: sampling frequency of audio data
 732 * @tmds: sampling frequency of the display data
 733 * @link_rate: DP link rate
 734 * @n_param: N value, depends on aud_samp_freq
 735 * @intelhaddata: substream private data
 736 *
 737 * Program CTS register based on the audio and display sampling frequency
 738 */
 739static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
 740                         u32 n_param, struct snd_intelhad *intelhaddata)
 741{
 742        u32 cts_val;
 743        u64 dividend, divisor;
 744
 745        if (intelhaddata->dp_output) {
 746                /* Substitute cts_val with Maud according to DP 1.2 spec*/
 747                cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
 748        } else {
 749                /* Calculate CTS according to HDMI 1.3a spec*/
 750                dividend = (u64)tmds * n_param*1000;
 751                divisor = 128 * aud_samp_freq;
 752                cts_val = div64_u64(dividend, divisor);
 753        }
 754        dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
 755                 tmds, n_param, cts_val);
 756        had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
 757}
 758
 759static int had_calculate_n_value(u32 aud_samp_freq)
 760{
 761        int n_val;
 762
 763        /* Select N according to HDMI 1.3a spec*/
 764        switch (aud_samp_freq) {
 765        case AUD_SAMPLE_RATE_32:
 766                n_val = 4096;
 767                break;
 768
 769        case AUD_SAMPLE_RATE_44_1:
 770                n_val = 6272;
 771                break;
 772
 773        case AUD_SAMPLE_RATE_48:
 774                n_val = 6144;
 775                break;
 776
 777        case AUD_SAMPLE_RATE_88_2:
 778                n_val = 12544;
 779                break;
 780
 781        case AUD_SAMPLE_RATE_96:
 782                n_val = 12288;
 783                break;
 784
 785        case AUD_SAMPLE_RATE_176_4:
 786                n_val = 25088;
 787                break;
 788
 789        case HAD_MAX_RATE:
 790                n_val = 24576;
 791                break;
 792
 793        default:
 794                n_val = -EINVAL;
 795                break;
 796        }
 797        return n_val;
 798}
 799
 800/*
 801 * Program HDMI audio N value
 802 *
 803 * @aud_samp_freq: sampling frequency of audio data
 804 * @n_param: N value, depends on aud_samp_freq
 805 * @intelhaddata: substream private data
 806 *
 807 * This function is called in the prepare callback.
 808 * It programs based on the audio and display sampling frequency
 809 */
 810static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
 811                      struct snd_intelhad *intelhaddata)
 812{
 813        int n_val;
 814
 815        if (intelhaddata->dp_output) {
 816                /*
 817                 * According to DP specs, Maud and Naud values hold
 818                 * a relationship, which is stated as:
 819                 * Maud/Naud = 512 * fs / f_LS_Clk
 820                 * where, fs is the sampling frequency of the audio stream
 821                 * and Naud is 32768 for Async clock.
 822                 */
 823
 824                n_val = DP_NAUD_VAL;
 825        } else
 826                n_val = had_calculate_n_value(aud_samp_freq);
 827
 828        if (n_val < 0)
 829                return n_val;
 830
 831        had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
 832        *n_param = n_val;
 833        return 0;
 834}
 835
 836/*
 837 * PCM ring buffer handling
 838 *
 839 * The hardware provides a ring buffer with the fixed 4 buffer descriptors
 840 * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
 841 * moves at each period elapsed.  The below illustrates how it works:
 842 *
 843 * At time=0
 844 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 845 *  BD  | 0 | 1 | 2 | 3 |
 846 *
 847 * At time=1 (period elapsed)
 848 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 849 *  BD      | 1 | 2 | 3 | 0 |
 850 *
 851 * At time=2 (second period elapsed)
 852 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 853 *  BD          | 2 | 3 | 0 | 1 |
 854 *
 855 * The bd_head field points to the index of the BD to be read.  It's also the
 856 * position to be filled at next.  The pcm_head and the pcm_filled fields
 857 * point to the indices of the current position and of the next position to
 858 * be filled, respectively.  For PCM buffer there are both _head and _filled
 859 * because they may be difference when nperiods > 4.  For example, in the
 860 * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
 861 *
 862 * pcm_head (=1) --v               v-- pcm_filled (=5)
 863 *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 864 *       BD      | 1 | 2 | 3 | 0 |
 865 *  bd_head (=1) --^               ^-- next to fill (= bd_head)
 866 *
 867 * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
 868 * the hardware skips those BDs in the loop.
 869 *
 870 * An exceptional setup is the case with nperiods=1.  Since we have to update
 871 * BDs after finishing one BD processing, we'd need at least two BDs, where
 872 * both BDs point to the same content, the same address, the same size of the
 873 * whole PCM buffer.
 874 */
 875
 876#define AUD_BUF_ADDR(x)         (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
 877#define AUD_BUF_LEN(x)          (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
 878
 879/* Set up a buffer descriptor at the "filled" position */
 880static void had_prog_bd(struct snd_pcm_substream *substream,
 881                        struct snd_intelhad *intelhaddata)
 882{
 883        int idx = intelhaddata->bd_head;
 884        int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
 885        u32 addr = substream->runtime->dma_addr + ofs;
 886
 887        addr |= AUD_BUF_VALID;
 888        if (!substream->runtime->no_period_wakeup)
 889                addr |= AUD_BUF_INTR_EN;
 890        had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
 891        had_write_register(intelhaddata, AUD_BUF_LEN(idx),
 892                           intelhaddata->period_bytes);
 893
 894        /* advance the indices to the next */
 895        intelhaddata->bd_head++;
 896        intelhaddata->bd_head %= intelhaddata->num_bds;
 897        intelhaddata->pcmbuf_filled++;
 898        intelhaddata->pcmbuf_filled %= substream->runtime->periods;
 899}
 900
 901/* invalidate a buffer descriptor with the given index */
 902static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
 903                              int idx)
 904{
 905        had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
 906        had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
 907}
 908
 909/* Initial programming of ring buffer */
 910static void had_init_ringbuf(struct snd_pcm_substream *substream,
 911                             struct snd_intelhad *intelhaddata)
 912{
 913        struct snd_pcm_runtime *runtime = substream->runtime;
 914        int i, num_periods;
 915
 916        num_periods = runtime->periods;
 917        intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
 918        /* set the minimum 2 BDs for num_periods=1 */
 919        intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
 920        intelhaddata->period_bytes =
 921                frames_to_bytes(runtime, runtime->period_size);
 922        WARN_ON(intelhaddata->period_bytes & 0x3f);
 923
 924        intelhaddata->bd_head = 0;
 925        intelhaddata->pcmbuf_head = 0;
 926        intelhaddata->pcmbuf_filled = 0;
 927
 928        for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
 929                if (i < intelhaddata->num_bds)
 930                        had_prog_bd(substream, intelhaddata);
 931                else /* invalidate the rest */
 932                        had_invalidate_bd(intelhaddata, i);
 933        }
 934
 935        intelhaddata->bd_head = 0; /* reset at head again before starting */
 936}
 937
 938/* process a bd, advance to the next */
 939static void had_advance_ringbuf(struct snd_pcm_substream *substream,
 940                                struct snd_intelhad *intelhaddata)
 941{
 942        int num_periods = substream->runtime->periods;
 943
 944        /* reprogram the next buffer */
 945        had_prog_bd(substream, intelhaddata);
 946
 947        /* proceed to next */
 948        intelhaddata->pcmbuf_head++;
 949        intelhaddata->pcmbuf_head %= num_periods;
 950}
 951
 952/* process the current BD(s);
 953 * returns the current PCM buffer byte position, or -EPIPE for underrun.
 954 */
 955static int had_process_ringbuf(struct snd_pcm_substream *substream,
 956                               struct snd_intelhad *intelhaddata)
 957{
 958        int len, processed;
 959        unsigned long flags;
 960
 961        processed = 0;
 962        spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
 963        for (;;) {
 964                /* get the remaining bytes on the buffer */
 965                had_read_register(intelhaddata,
 966                                  AUD_BUF_LEN(intelhaddata->bd_head),
 967                                  &len);
 968                if (len < 0 || len > intelhaddata->period_bytes) {
 969                        dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
 970                                len);
 971                        len = -EPIPE;
 972                        goto out;
 973                }
 974
 975                if (len > 0) /* OK, this is the current buffer */
 976                        break;
 977
 978                /* len=0 => already empty, check the next buffer */
 979                if (++processed >= intelhaddata->num_bds) {
 980                        len = -EPIPE; /* all empty? - report underrun */
 981                        goto out;
 982                }
 983                had_advance_ringbuf(substream, intelhaddata);
 984        }
 985
 986        len = intelhaddata->period_bytes - len;
 987        len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
 988 out:
 989        spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
 990        return len;
 991}
 992
 993/* called from irq handler */
 994static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
 995{
 996        struct snd_pcm_substream *substream;
 997
 998        substream = had_substream_get(intelhaddata);
 999        if (!substream)
1000                return; /* no stream? - bail out */
1001
1002        if (!intelhaddata->connected) {
1003                snd_pcm_stop_xrun(substream);
1004                goto out; /* disconnected? - bail out */
1005        }
1006
1007        /* process or stop the stream */
1008        if (had_process_ringbuf(substream, intelhaddata) < 0)
1009                snd_pcm_stop_xrun(substream);
1010        else
1011                snd_pcm_period_elapsed(substream);
1012
1013 out:
1014        had_substream_put(intelhaddata);
1015}
1016
1017/*
1018 * The interrupt status 'sticky' bits might not be cleared by
1019 * setting '1' to that bit once...
1020 */
1021static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1022{
1023        int i;
1024        u32 val;
1025
1026        for (i = 0; i < 100; i++) {
1027                /* clear bit30, 31 AUD_HDMI_STATUS */
1028                had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1029                if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1030                        return;
1031                udelay(100);
1032                cond_resched();
1033                had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1034        }
1035        dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1036}
1037
1038/* Perform some reset procedure but only when need_reset is set;
1039 * this is called from prepare or hw_free callbacks once after trigger STOP
1040 * or underrun has been processed in order to settle down the h/w state.
1041 */
1042static void had_do_reset(struct snd_intelhad *intelhaddata)
1043{
1044        if (!intelhaddata->need_reset || !intelhaddata->connected)
1045                return;
1046
1047        /* Reset buffer pointers */
1048        had_reset_audio(intelhaddata);
1049        wait_clear_underrun_bit(intelhaddata);
1050        intelhaddata->need_reset = false;
1051}
1052
1053/* called from irq handler */
1054static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1055{
1056        struct snd_pcm_substream *substream;
1057
1058        /* Report UNDERRUN error to above layers */
1059        substream = had_substream_get(intelhaddata);
1060        if (substream) {
1061                snd_pcm_stop_xrun(substream);
1062                had_substream_put(intelhaddata);
1063        }
1064        intelhaddata->need_reset = true;
1065}
1066
1067/*
1068 * ALSA PCM open callback
1069 */
1070static int had_pcm_open(struct snd_pcm_substream *substream)
1071{
1072        struct snd_intelhad *intelhaddata;
1073        struct snd_pcm_runtime *runtime;
1074        int retval;
1075
1076        intelhaddata = snd_pcm_substream_chip(substream);
1077        runtime = substream->runtime;
1078
1079        pm_runtime_get_sync(intelhaddata->dev);
1080
1081        /* set the runtime hw parameter with local snd_pcm_hardware struct */
1082        runtime->hw = had_pcm_hardware;
1083
1084        retval = snd_pcm_hw_constraint_integer(runtime,
1085                         SNDRV_PCM_HW_PARAM_PERIODS);
1086        if (retval < 0)
1087                goto error;
1088
1089        /* Make sure, that the period size is always aligned
1090         * 64byte boundary
1091         */
1092        retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1093                        SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1094        if (retval < 0)
1095                goto error;
1096
1097        retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1098        if (retval < 0)
1099                goto error;
1100
1101        /* expose PCM substream */
1102        spin_lock_irq(&intelhaddata->had_spinlock);
1103        intelhaddata->stream_info.substream = substream;
1104        intelhaddata->stream_info.substream_refcount++;
1105        spin_unlock_irq(&intelhaddata->had_spinlock);
1106
1107        return retval;
1108 error:
1109        pm_runtime_mark_last_busy(intelhaddata->dev);
1110        pm_runtime_put_autosuspend(intelhaddata->dev);
1111        return retval;
1112}
1113
1114/*
1115 * ALSA PCM close callback
1116 */
1117static int had_pcm_close(struct snd_pcm_substream *substream)
1118{
1119        struct snd_intelhad *intelhaddata;
1120
1121        intelhaddata = snd_pcm_substream_chip(substream);
1122
1123        /* unreference and sync with the pending PCM accesses */
1124        spin_lock_irq(&intelhaddata->had_spinlock);
1125        intelhaddata->stream_info.substream = NULL;
1126        intelhaddata->stream_info.substream_refcount--;
1127        while (intelhaddata->stream_info.substream_refcount > 0) {
1128                spin_unlock_irq(&intelhaddata->had_spinlock);
1129                cpu_relax();
1130                spin_lock_irq(&intelhaddata->had_spinlock);
1131        }
1132        spin_unlock_irq(&intelhaddata->had_spinlock);
1133
1134        pm_runtime_mark_last_busy(intelhaddata->dev);
1135        pm_runtime_put_autosuspend(intelhaddata->dev);
1136        return 0;
1137}
1138
1139/*
1140 * ALSA PCM hw_params callback
1141 */
1142static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1143                             struct snd_pcm_hw_params *hw_params)
1144{
1145        struct snd_intelhad *intelhaddata;
1146        unsigned long addr;
1147        int pages, buf_size, retval;
1148
1149        intelhaddata = snd_pcm_substream_chip(substream);
1150        buf_size = params_buffer_bytes(hw_params);
1151        retval = snd_pcm_lib_malloc_pages(substream, buf_size);
1152        if (retval < 0)
1153                return retval;
1154        dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1155                __func__, buf_size);
1156        /* mark the pages as uncached region */
1157        addr = (unsigned long) substream->runtime->dma_area;
1158        pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1159        retval = set_memory_uc(addr, pages);
1160        if (retval) {
1161                dev_err(intelhaddata->dev, "set_memory_uc failed.Error:%d\n",
1162                        retval);
1163                return retval;
1164        }
1165        memset(substream->runtime->dma_area, 0, buf_size);
1166
1167        return retval;
1168}
1169
1170/*
1171 * ALSA PCM hw_free callback
1172 */
1173static int had_pcm_hw_free(struct snd_pcm_substream *substream)
1174{
1175        struct snd_intelhad *intelhaddata;
1176        unsigned long addr;
1177        u32 pages;
1178
1179        intelhaddata = snd_pcm_substream_chip(substream);
1180        had_do_reset(intelhaddata);
1181
1182        /* mark back the pages as cached/writeback region before the free */
1183        if (substream->runtime->dma_area != NULL) {
1184                addr = (unsigned long) substream->runtime->dma_area;
1185                pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) /
1186                                                                PAGE_SIZE;
1187                set_memory_wb(addr, pages);
1188                return snd_pcm_lib_free_pages(substream);
1189        }
1190        return 0;
1191}
1192
1193/*
1194 * ALSA PCM trigger callback
1195 */
1196static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1197{
1198        int retval = 0;
1199        struct snd_intelhad *intelhaddata;
1200
1201        intelhaddata = snd_pcm_substream_chip(substream);
1202
1203        spin_lock(&intelhaddata->had_spinlock);
1204        switch (cmd) {
1205        case SNDRV_PCM_TRIGGER_START:
1206        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1207        case SNDRV_PCM_TRIGGER_RESUME:
1208                /* Enable Audio */
1209                had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1210                had_enable_audio(intelhaddata, true);
1211                break;
1212
1213        case SNDRV_PCM_TRIGGER_STOP:
1214        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1215                /* Disable Audio */
1216                had_enable_audio(intelhaddata, false);
1217                intelhaddata->need_reset = true;
1218                break;
1219
1220        default:
1221                retval = -EINVAL;
1222        }
1223        spin_unlock(&intelhaddata->had_spinlock);
1224        return retval;
1225}
1226
1227/*
1228 * ALSA PCM prepare callback
1229 */
1230static int had_pcm_prepare(struct snd_pcm_substream *substream)
1231{
1232        int retval;
1233        u32 disp_samp_freq, n_param;
1234        u32 link_rate = 0;
1235        struct snd_intelhad *intelhaddata;
1236        struct snd_pcm_runtime *runtime;
1237
1238        intelhaddata = snd_pcm_substream_chip(substream);
1239        runtime = substream->runtime;
1240
1241        dev_dbg(intelhaddata->dev, "period_size=%d\n",
1242                (int)frames_to_bytes(runtime, runtime->period_size));
1243        dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1244        dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1245                (int)snd_pcm_lib_buffer_bytes(substream));
1246        dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1247        dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1248
1249        had_do_reset(intelhaddata);
1250
1251        /* Get N value in KHz */
1252        disp_samp_freq = intelhaddata->tmds_clock_speed;
1253
1254        retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1255        if (retval) {
1256                dev_err(intelhaddata->dev,
1257                        "programming N value failed %#x\n", retval);
1258                goto prep_end;
1259        }
1260
1261        if (intelhaddata->dp_output)
1262                link_rate = intelhaddata->link_rate;
1263
1264        had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1265                     n_param, intelhaddata);
1266
1267        had_prog_dip(substream, intelhaddata);
1268
1269        retval = had_init_audio_ctrl(substream, intelhaddata);
1270
1271        /* Prog buffer address */
1272        had_init_ringbuf(substream, intelhaddata);
1273
1274        /*
1275         * Program channel mapping in following order:
1276         * FL, FR, C, LFE, RL, RR
1277         */
1278
1279        had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1280
1281prep_end:
1282        return retval;
1283}
1284
1285/*
1286 * ALSA PCM pointer callback
1287 */
1288static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1289{
1290        struct snd_intelhad *intelhaddata;
1291        int len;
1292
1293        intelhaddata = snd_pcm_substream_chip(substream);
1294
1295        if (!intelhaddata->connected)
1296                return SNDRV_PCM_POS_XRUN;
1297
1298        len = had_process_ringbuf(substream, intelhaddata);
1299        if (len < 0)
1300                return SNDRV_PCM_POS_XRUN;
1301        len = bytes_to_frames(substream->runtime, len);
1302        /* wrapping may happen when periods=1 */
1303        len %= substream->runtime->buffer_size;
1304        return len;
1305}
1306
1307/*
1308 * ALSA PCM mmap callback
1309 */
1310static int had_pcm_mmap(struct snd_pcm_substream *substream,
1311                        struct vm_area_struct *vma)
1312{
1313        vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1314        return remap_pfn_range(vma, vma->vm_start,
1315                        substream->dma_buffer.addr >> PAGE_SHIFT,
1316                        vma->vm_end - vma->vm_start, vma->vm_page_prot);
1317}
1318
1319/*
1320 * ALSA PCM ops
1321 */
1322static const struct snd_pcm_ops had_pcm_ops = {
1323        .open =         had_pcm_open,
1324        .close =        had_pcm_close,
1325        .ioctl =        snd_pcm_lib_ioctl,
1326        .hw_params =    had_pcm_hw_params,
1327        .hw_free =      had_pcm_hw_free,
1328        .prepare =      had_pcm_prepare,
1329        .trigger =      had_pcm_trigger,
1330        .pointer =      had_pcm_pointer,
1331        .mmap =         had_pcm_mmap,
1332};
1333
1334/* process mode change of the running stream; called in mutex */
1335static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1336{
1337        struct snd_pcm_substream *substream;
1338        int retval = 0;
1339        u32 disp_samp_freq, n_param;
1340        u32 link_rate = 0;
1341
1342        substream = had_substream_get(intelhaddata);
1343        if (!substream)
1344                return 0;
1345
1346        /* Disable Audio */
1347        had_enable_audio(intelhaddata, false);
1348
1349        /* Update CTS value */
1350        disp_samp_freq = intelhaddata->tmds_clock_speed;
1351
1352        retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1353        if (retval) {
1354                dev_err(intelhaddata->dev,
1355                        "programming N value failed %#x\n", retval);
1356                goto out;
1357        }
1358
1359        if (intelhaddata->dp_output)
1360                link_rate = intelhaddata->link_rate;
1361
1362        had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1363                     n_param, intelhaddata);
1364
1365        /* Enable Audio */
1366        had_enable_audio(intelhaddata, true);
1367
1368out:
1369        had_substream_put(intelhaddata);
1370        return retval;
1371}
1372
1373/* process hot plug, called from wq with mutex locked */
1374static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1375{
1376        struct snd_pcm_substream *substream;
1377
1378        spin_lock_irq(&intelhaddata->had_spinlock);
1379        if (intelhaddata->connected) {
1380                dev_dbg(intelhaddata->dev, "Device already connected\n");
1381                spin_unlock_irq(&intelhaddata->had_spinlock);
1382                return;
1383        }
1384
1385        /* Disable Audio */
1386        had_enable_audio(intelhaddata, false);
1387
1388        intelhaddata->connected = true;
1389        dev_dbg(intelhaddata->dev,
1390                "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1391                        __func__, __LINE__);
1392        spin_unlock_irq(&intelhaddata->had_spinlock);
1393
1394        had_build_channel_allocation_map(intelhaddata);
1395
1396        /* Report to above ALSA layer */
1397        substream = had_substream_get(intelhaddata);
1398        if (substream) {
1399                snd_pcm_stop_xrun(substream);
1400                had_substream_put(intelhaddata);
1401        }
1402
1403        snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1404}
1405
1406/* process hot unplug, called from wq with mutex locked */
1407static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1408{
1409        struct snd_pcm_substream *substream;
1410
1411        spin_lock_irq(&intelhaddata->had_spinlock);
1412        if (!intelhaddata->connected) {
1413                dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1414                spin_unlock_irq(&intelhaddata->had_spinlock);
1415                return;
1416
1417        }
1418
1419        /* Disable Audio */
1420        had_enable_audio(intelhaddata, false);
1421
1422        intelhaddata->connected = false;
1423        dev_dbg(intelhaddata->dev,
1424                "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1425                        __func__, __LINE__);
1426        spin_unlock_irq(&intelhaddata->had_spinlock);
1427
1428        kfree(intelhaddata->chmap->chmap);
1429        intelhaddata->chmap->chmap = NULL;
1430
1431        /* Report to above ALSA layer */
1432        substream = had_substream_get(intelhaddata);
1433        if (substream) {
1434                snd_pcm_stop_xrun(substream);
1435                had_substream_put(intelhaddata);
1436        }
1437
1438        snd_jack_report(intelhaddata->jack, 0);
1439}
1440
1441/*
1442 * ALSA iec958 and ELD controls
1443 */
1444
1445static int had_iec958_info(struct snd_kcontrol *kcontrol,
1446                                struct snd_ctl_elem_info *uinfo)
1447{
1448        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1449        uinfo->count = 1;
1450        return 0;
1451}
1452
1453static int had_iec958_get(struct snd_kcontrol *kcontrol,
1454                                struct snd_ctl_elem_value *ucontrol)
1455{
1456        struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1457
1458        mutex_lock(&intelhaddata->mutex);
1459        ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1460        ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1461        ucontrol->value.iec958.status[2] =
1462                                        (intelhaddata->aes_bits >> 16) & 0xff;
1463        ucontrol->value.iec958.status[3] =
1464                                        (intelhaddata->aes_bits >> 24) & 0xff;
1465        mutex_unlock(&intelhaddata->mutex);
1466        return 0;
1467}
1468
1469static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1470                                struct snd_ctl_elem_value *ucontrol)
1471{
1472        ucontrol->value.iec958.status[0] = 0xff;
1473        ucontrol->value.iec958.status[1] = 0xff;
1474        ucontrol->value.iec958.status[2] = 0xff;
1475        ucontrol->value.iec958.status[3] = 0xff;
1476        return 0;
1477}
1478
1479static int had_iec958_put(struct snd_kcontrol *kcontrol,
1480                                struct snd_ctl_elem_value *ucontrol)
1481{
1482        unsigned int val;
1483        struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1484        int changed = 0;
1485
1486        val = (ucontrol->value.iec958.status[0] << 0) |
1487                (ucontrol->value.iec958.status[1] << 8) |
1488                (ucontrol->value.iec958.status[2] << 16) |
1489                (ucontrol->value.iec958.status[3] << 24);
1490        mutex_lock(&intelhaddata->mutex);
1491        if (intelhaddata->aes_bits != val) {
1492                intelhaddata->aes_bits = val;
1493                changed = 1;
1494        }
1495        mutex_unlock(&intelhaddata->mutex);
1496        return changed;
1497}
1498
1499static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1500                            struct snd_ctl_elem_info *uinfo)
1501{
1502        uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1503        uinfo->count = HDMI_MAX_ELD_BYTES;
1504        return 0;
1505}
1506
1507static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1508                           struct snd_ctl_elem_value *ucontrol)
1509{
1510        struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1511
1512        mutex_lock(&intelhaddata->mutex);
1513        memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1514               HDMI_MAX_ELD_BYTES);
1515        mutex_unlock(&intelhaddata->mutex);
1516        return 0;
1517}
1518
1519static const struct snd_kcontrol_new had_controls[] = {
1520        {
1521                .access = SNDRV_CTL_ELEM_ACCESS_READ,
1522                .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1523                .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1524                .info = had_iec958_info, /* shared */
1525                .get = had_iec958_mask_get,
1526        },
1527        {
1528                .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1529                .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1530                .info = had_iec958_info,
1531                .get = had_iec958_get,
1532                .put = had_iec958_put,
1533        },
1534        {
1535                .access = (SNDRV_CTL_ELEM_ACCESS_READ |
1536                           SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1537                .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1538                .name = "ELD",
1539                .info = had_ctl_eld_info,
1540                .get = had_ctl_eld_get,
1541        },
1542};
1543
1544/*
1545 * audio interrupt handler
1546 */
1547static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1548{
1549        struct snd_intelhad_card *card_ctx = dev_id;
1550        u32 audio_stat[3] = {};
1551        int pipe, port;
1552
1553        for_each_pipe(card_ctx, pipe) {
1554                /* use raw register access to ack IRQs even while disconnected */
1555                audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1556                                                         AUD_HDMI_STATUS) &
1557                        (HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1558
1559                if (audio_stat[pipe])
1560                        had_write_register_raw(card_ctx, pipe,
1561                                               AUD_HDMI_STATUS, audio_stat[pipe]);
1562        }
1563
1564        for_each_port(card_ctx, port) {
1565                struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1566                int pipe = ctx->pipe;
1567
1568                if (pipe < 0)
1569                        continue;
1570
1571                if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1572                        had_process_buffer_done(ctx);
1573                if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1574                        had_process_buffer_underrun(ctx);
1575        }
1576
1577        return IRQ_HANDLED;
1578}
1579
1580/*
1581 * monitor plug/unplug notification from i915; just kick off the work
1582 */
1583static void notify_audio_lpe(struct platform_device *pdev, int port)
1584{
1585        struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1586        struct snd_intelhad *ctx;
1587
1588        ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1589        if (single_port)
1590                ctx->port = port;
1591
1592        schedule_work(&ctx->hdmi_audio_wq);
1593}
1594
1595/* the work to handle monitor hot plug/unplug */
1596static void had_audio_wq(struct work_struct *work)
1597{
1598        struct snd_intelhad *ctx =
1599                container_of(work, struct snd_intelhad, hdmi_audio_wq);
1600        struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1601        struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1602
1603        pm_runtime_get_sync(ctx->dev);
1604        mutex_lock(&ctx->mutex);
1605        if (ppdata->pipe < 0) {
1606                dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1607                        __func__, ctx->port);
1608
1609                memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1610
1611                ctx->dp_output = false;
1612                ctx->tmds_clock_speed = 0;
1613                ctx->link_rate = 0;
1614
1615                /* Shut down the stream */
1616                had_process_hot_unplug(ctx);
1617
1618                ctx->pipe = -1;
1619        } else {
1620                dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1621                        __func__, ctx->port, ppdata->ls_clock);
1622
1623                memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1624
1625                ctx->dp_output = ppdata->dp_output;
1626                if (ctx->dp_output) {
1627                        ctx->tmds_clock_speed = 0;
1628                        ctx->link_rate = ppdata->ls_clock;
1629                } else {
1630                        ctx->tmds_clock_speed = ppdata->ls_clock;
1631                        ctx->link_rate = 0;
1632                }
1633
1634                /*
1635                 * Shut down the stream before we change
1636                 * the pipe assignment for this pcm device
1637                 */
1638                had_process_hot_plug(ctx);
1639
1640                ctx->pipe = ppdata->pipe;
1641
1642                /* Restart the stream if necessary */
1643                had_process_mode_change(ctx);
1644        }
1645
1646        mutex_unlock(&ctx->mutex);
1647        pm_runtime_mark_last_busy(ctx->dev);
1648        pm_runtime_put_autosuspend(ctx->dev);
1649}
1650
1651/*
1652 * Jack interface
1653 */
1654static int had_create_jack(struct snd_intelhad *ctx,
1655                           struct snd_pcm *pcm)
1656{
1657        char hdmi_str[32];
1658        int err;
1659
1660        snprintf(hdmi_str, sizeof(hdmi_str),
1661                 "HDMI/DP,pcm=%d", pcm->device);
1662
1663        err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1664                           SND_JACK_AVOUT, &ctx->jack,
1665                           true, false);
1666        if (err < 0)
1667                return err;
1668        ctx->jack->private_data = ctx;
1669        return 0;
1670}
1671
1672/*
1673 * PM callbacks
1674 */
1675
1676static int hdmi_lpe_audio_runtime_suspend(struct device *dev)
1677{
1678        struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1679        int port;
1680
1681        for_each_port(card_ctx, port) {
1682                struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1683                struct snd_pcm_substream *substream;
1684
1685                substream = had_substream_get(ctx);
1686                if (substream) {
1687                        snd_pcm_suspend(substream);
1688                        had_substream_put(ctx);
1689                }
1690        }
1691
1692        return 0;
1693}
1694
1695static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1696{
1697        struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1698        int err;
1699
1700        err = hdmi_lpe_audio_runtime_suspend(dev);
1701        if (!err)
1702                snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1703        return err;
1704}
1705
1706static int hdmi_lpe_audio_runtime_resume(struct device *dev)
1707{
1708        pm_runtime_mark_last_busy(dev);
1709        return 0;
1710}
1711
1712static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1713{
1714        struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1715
1716        hdmi_lpe_audio_runtime_resume(dev);
1717        snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1718        return 0;
1719}
1720
1721/* release resources */
1722static void hdmi_lpe_audio_free(struct snd_card *card)
1723{
1724        struct snd_intelhad_card *card_ctx = card->private_data;
1725        struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1726        int port;
1727
1728        spin_lock_irq(&pdata->lpe_audio_slock);
1729        pdata->notify_audio_lpe = NULL;
1730        spin_unlock_irq(&pdata->lpe_audio_slock);
1731
1732        for_each_port(card_ctx, port) {
1733                struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1734
1735                cancel_work_sync(&ctx->hdmi_audio_wq);
1736        }
1737
1738        if (card_ctx->mmio_start)
1739                iounmap(card_ctx->mmio_start);
1740        if (card_ctx->irq >= 0)
1741                free_irq(card_ctx->irq, card_ctx);
1742}
1743
1744/*
1745 * hdmi_lpe_audio_probe - start bridge with i915
1746 *
1747 * This function is called when the i915 driver creates the
1748 * hdmi-lpe-audio platform device.
1749 */
1750static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1751{
1752        struct snd_card *card;
1753        struct snd_intelhad_card *card_ctx;
1754        struct snd_intelhad *ctx;
1755        struct snd_pcm *pcm;
1756        struct intel_hdmi_lpe_audio_pdata *pdata;
1757        int irq;
1758        struct resource *res_mmio;
1759        int port, ret;
1760
1761        pdata = pdev->dev.platform_data;
1762        if (!pdata) {
1763                dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1764                return -EINVAL;
1765        }
1766
1767        /* get resources */
1768        irq = platform_get_irq(pdev, 0);
1769        if (irq < 0) {
1770                dev_err(&pdev->dev, "Could not get irq resource: %d\n", irq);
1771                return irq;
1772        }
1773
1774        res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1775        if (!res_mmio) {
1776                dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1777                return -ENXIO;
1778        }
1779
1780        /* create a card instance with ALSA framework */
1781        ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1782                           THIS_MODULE, sizeof(*card_ctx), &card);
1783        if (ret)
1784                return ret;
1785
1786        card_ctx = card->private_data;
1787        card_ctx->dev = &pdev->dev;
1788        card_ctx->card = card;
1789        strcpy(card->driver, INTEL_HAD);
1790        strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1791        strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1792
1793        card_ctx->irq = -1;
1794
1795        card->private_free = hdmi_lpe_audio_free;
1796
1797        platform_set_drvdata(pdev, card_ctx);
1798
1799        card_ctx->num_pipes = pdata->num_pipes;
1800        card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1801
1802        for_each_port(card_ctx, port) {
1803                ctx = &card_ctx->pcm_ctx[port];
1804                ctx->card_ctx = card_ctx;
1805                ctx->dev = card_ctx->dev;
1806                ctx->port = single_port ? -1 : port;
1807                ctx->pipe = -1;
1808
1809                spin_lock_init(&ctx->had_spinlock);
1810                mutex_init(&ctx->mutex);
1811                INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1812        }
1813
1814        dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1815                __func__, (unsigned int)res_mmio->start,
1816                (unsigned int)res_mmio->end);
1817
1818        card_ctx->mmio_start = ioremap_nocache(res_mmio->start,
1819                                               (size_t)(resource_size(res_mmio)));
1820        if (!card_ctx->mmio_start) {
1821                dev_err(&pdev->dev, "Could not get ioremap\n");
1822                ret = -EACCES;
1823                goto err;
1824        }
1825
1826        /* setup interrupt handler */
1827        ret = request_irq(irq, display_pipe_interrupt_handler, 0,
1828                          pdev->name, card_ctx);
1829        if (ret < 0) {
1830                dev_err(&pdev->dev, "request_irq failed\n");
1831                goto err;
1832        }
1833
1834        card_ctx->irq = irq;
1835
1836        /* only 32bit addressable */
1837        dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1838        dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1839
1840        init_channel_allocations();
1841
1842        card_ctx->num_pipes = pdata->num_pipes;
1843        card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1844
1845        for_each_port(card_ctx, port) {
1846                int i;
1847
1848                ctx = &card_ctx->pcm_ctx[port];
1849                ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1850                                  MAX_CAP_STREAMS, &pcm);
1851                if (ret)
1852                        goto err;
1853
1854                /* setup private data which can be retrieved when required */
1855                pcm->private_data = ctx;
1856                pcm->info_flags = 0;
1857                strncpy(pcm->name, card->shortname, strlen(card->shortname));
1858                /* setup the ops for playabck */
1859                snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1860
1861                /* allocate dma pages;
1862                 * try to allocate 600k buffer as default which is large enough
1863                 */
1864                snd_pcm_lib_preallocate_pages_for_all(pcm,
1865                                                      SNDRV_DMA_TYPE_DEV, NULL,
1866                                                      HAD_DEFAULT_BUFFER, HAD_MAX_BUFFER);
1867
1868                /* create controls */
1869                for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1870                        struct snd_kcontrol *kctl;
1871
1872                        kctl = snd_ctl_new1(&had_controls[i], ctx);
1873                        if (!kctl) {
1874                                ret = -ENOMEM;
1875                                goto err;
1876                        }
1877
1878                        kctl->id.device = pcm->device;
1879
1880                        ret = snd_ctl_add(card, kctl);
1881                        if (ret < 0)
1882                                goto err;
1883                }
1884
1885                /* Register channel map controls */
1886                ret = had_register_chmap_ctls(ctx, pcm);
1887                if (ret < 0)
1888                        goto err;
1889
1890                ret = had_create_jack(ctx, pcm);
1891                if (ret < 0)
1892                        goto err;
1893        }
1894
1895        ret = snd_card_register(card);
1896        if (ret)
1897                goto err;
1898
1899        spin_lock_irq(&pdata->lpe_audio_slock);
1900        pdata->notify_audio_lpe = notify_audio_lpe;
1901        spin_unlock_irq(&pdata->lpe_audio_slock);
1902
1903        pm_runtime_use_autosuspend(&pdev->dev);
1904        pm_runtime_mark_last_busy(&pdev->dev);
1905        pm_runtime_set_active(&pdev->dev);
1906
1907        dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1908        for_each_port(card_ctx, port) {
1909                struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1910
1911                schedule_work(&ctx->hdmi_audio_wq);
1912        }
1913
1914        return 0;
1915
1916err:
1917        snd_card_free(card);
1918        return ret;
1919}
1920
1921/*
1922 * hdmi_lpe_audio_remove - stop bridge with i915
1923 *
1924 * This function is called when the platform device is destroyed.
1925 */
1926static int hdmi_lpe_audio_remove(struct platform_device *pdev)
1927{
1928        struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1929
1930        snd_card_free(card_ctx->card);
1931        return 0;
1932}
1933
1934static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1935        SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1936        SET_RUNTIME_PM_OPS(hdmi_lpe_audio_runtime_suspend,
1937                           hdmi_lpe_audio_runtime_resume, NULL)
1938};
1939
1940static struct platform_driver hdmi_lpe_audio_driver = {
1941        .driver         = {
1942                .name  = "hdmi-lpe-audio",
1943                .pm = &hdmi_lpe_audio_pm,
1944        },
1945        .probe          = hdmi_lpe_audio_probe,
1946        .remove         = hdmi_lpe_audio_remove,
1947};
1948
1949module_platform_driver(hdmi_lpe_audio_driver);
1950MODULE_ALIAS("platform:hdmi_lpe_audio");
1951
1952MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1953MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1954MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1955MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1956MODULE_DESCRIPTION("Intel HDMI Audio driver");
1957MODULE_LICENSE("GPL v2");
1958MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");
1959