linux/tools/lib/traceevent/kbuffer-parse.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2009, 2010 Red Hat Inc, Steven Rostedt <srostedt@redhat.com>
   3 *
   4 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU Lesser General Public
   7 * License as published by the Free Software Foundation;
   8 * version 2.1 of the License (not later!)
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU Lesser General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU Lesser General Public
  16 * License along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  18 *
  19 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  20 */
  21#include <stdio.h>
  22#include <stdlib.h>
  23#include <string.h>
  24
  25#include "kbuffer.h"
  26
  27#define MISSING_EVENTS (1UL << 31)
  28#define MISSING_STORED (1UL << 30)
  29
  30#define COMMIT_MASK ((1 << 27) - 1)
  31
  32enum {
  33        KBUFFER_FL_HOST_BIG_ENDIAN      = (1<<0),
  34        KBUFFER_FL_BIG_ENDIAN           = (1<<1),
  35        KBUFFER_FL_LONG_8               = (1<<2),
  36        KBUFFER_FL_OLD_FORMAT           = (1<<3),
  37};
  38
  39#define ENDIAN_MASK (KBUFFER_FL_HOST_BIG_ENDIAN | KBUFFER_FL_BIG_ENDIAN)
  40
  41/** kbuffer
  42 * @timestamp           - timestamp of current event
  43 * @lost_events         - # of lost events between this subbuffer and previous
  44 * @flags               - special flags of the kbuffer
  45 * @subbuffer           - pointer to the sub-buffer page
  46 * @data                - pointer to the start of data on the sub-buffer page
  47 * @index               - index from @data to the @curr event data
  48 * @curr                - offset from @data to the start of current event
  49 *                         (includes metadata)
  50 * @next                - offset from @data to the start of next event
  51 * @size                - The size of data on @data
  52 * @start               - The offset from @subbuffer where @data lives
  53 *
  54 * @read_4              - Function to read 4 raw bytes (may swap)
  55 * @read_8              - Function to read 8 raw bytes (may swap)
  56 * @read_long           - Function to read a long word (4 or 8 bytes with needed swap)
  57 */
  58struct kbuffer {
  59        unsigned long long      timestamp;
  60        long long               lost_events;
  61        unsigned long           flags;
  62        void                    *subbuffer;
  63        void                    *data;
  64        unsigned int            index;
  65        unsigned int            curr;
  66        unsigned int            next;
  67        unsigned int            size;
  68        unsigned int            start;
  69
  70        unsigned int (*read_4)(void *ptr);
  71        unsigned long long (*read_8)(void *ptr);
  72        unsigned long long (*read_long)(struct kbuffer *kbuf, void *ptr);
  73        int (*next_event)(struct kbuffer *kbuf);
  74};
  75
  76static void *zmalloc(size_t size)
  77{
  78        return calloc(1, size);
  79}
  80
  81static int host_is_bigendian(void)
  82{
  83        unsigned char str[] = { 0x1, 0x2, 0x3, 0x4 };
  84        unsigned int *ptr;
  85
  86        ptr = (unsigned int *)str;
  87        return *ptr == 0x01020304;
  88}
  89
  90static int do_swap(struct kbuffer *kbuf)
  91{
  92        return ((kbuf->flags & KBUFFER_FL_HOST_BIG_ENDIAN) + kbuf->flags) &
  93                ENDIAN_MASK;
  94}
  95
  96static unsigned long long __read_8(void *ptr)
  97{
  98        unsigned long long data = *(unsigned long long *)ptr;
  99
 100        return data;
 101}
 102
 103static unsigned long long __read_8_sw(void *ptr)
 104{
 105        unsigned long long data = *(unsigned long long *)ptr;
 106        unsigned long long swap;
 107
 108        swap = ((data & 0xffULL) << 56) |
 109                ((data & (0xffULL << 8)) << 40) |
 110                ((data & (0xffULL << 16)) << 24) |
 111                ((data & (0xffULL << 24)) << 8) |
 112                ((data & (0xffULL << 32)) >> 8) |
 113                ((data & (0xffULL << 40)) >> 24) |
 114                ((data & (0xffULL << 48)) >> 40) |
 115                ((data & (0xffULL << 56)) >> 56);
 116
 117        return swap;
 118}
 119
 120static unsigned int __read_4(void *ptr)
 121{
 122        unsigned int data = *(unsigned int *)ptr;
 123
 124        return data;
 125}
 126
 127static unsigned int __read_4_sw(void *ptr)
 128{
 129        unsigned int data = *(unsigned int *)ptr;
 130        unsigned int swap;
 131
 132        swap = ((data & 0xffULL) << 24) |
 133                ((data & (0xffULL << 8)) << 8) |
 134                ((data & (0xffULL << 16)) >> 8) |
 135                ((data & (0xffULL << 24)) >> 24);
 136
 137        return swap;
 138}
 139
 140static unsigned long long read_8(struct kbuffer *kbuf, void *ptr)
 141{
 142        return kbuf->read_8(ptr);
 143}
 144
 145static unsigned int read_4(struct kbuffer *kbuf, void *ptr)
 146{
 147        return kbuf->read_4(ptr);
 148}
 149
 150static unsigned long long __read_long_8(struct kbuffer *kbuf, void *ptr)
 151{
 152        return kbuf->read_8(ptr);
 153}
 154
 155static unsigned long long __read_long_4(struct kbuffer *kbuf, void *ptr)
 156{
 157        return kbuf->read_4(ptr);
 158}
 159
 160static unsigned long long read_long(struct kbuffer *kbuf, void *ptr)
 161{
 162        return kbuf->read_long(kbuf, ptr);
 163}
 164
 165static int calc_index(struct kbuffer *kbuf, void *ptr)
 166{
 167        return (unsigned long)ptr - (unsigned long)kbuf->data;
 168}
 169
 170static int __next_event(struct kbuffer *kbuf);
 171
 172/**
 173 * kbuffer_alloc - allocat a new kbuffer
 174 * @size;       enum to denote size of word
 175 * @endian:     enum to denote endianness
 176 *
 177 * Allocates and returns a new kbuffer.
 178 */
 179struct kbuffer *
 180kbuffer_alloc(enum kbuffer_long_size size, enum kbuffer_endian endian)
 181{
 182        struct kbuffer *kbuf;
 183        int flags = 0;
 184
 185        switch (size) {
 186        case KBUFFER_LSIZE_4:
 187                break;
 188        case KBUFFER_LSIZE_8:
 189                flags |= KBUFFER_FL_LONG_8;
 190                break;
 191        default:
 192                return NULL;
 193        }
 194
 195        switch (endian) {
 196        case KBUFFER_ENDIAN_LITTLE:
 197                break;
 198        case KBUFFER_ENDIAN_BIG:
 199                flags |= KBUFFER_FL_BIG_ENDIAN;
 200                break;
 201        default:
 202                return NULL;
 203        }
 204
 205        kbuf = zmalloc(sizeof(*kbuf));
 206        if (!kbuf)
 207                return NULL;
 208
 209        kbuf->flags = flags;
 210
 211        if (host_is_bigendian())
 212                kbuf->flags |= KBUFFER_FL_HOST_BIG_ENDIAN;
 213
 214        if (do_swap(kbuf)) {
 215                kbuf->read_8 = __read_8_sw;
 216                kbuf->read_4 = __read_4_sw;
 217        } else {
 218                kbuf->read_8 = __read_8;
 219                kbuf->read_4 = __read_4;
 220        }
 221
 222        if (kbuf->flags & KBUFFER_FL_LONG_8)
 223                kbuf->read_long = __read_long_8;
 224        else
 225                kbuf->read_long = __read_long_4;
 226
 227        /* May be changed by kbuffer_set_old_format() */
 228        kbuf->next_event = __next_event;
 229
 230        return kbuf;
 231}
 232
 233/** kbuffer_free - free an allocated kbuffer
 234 * @kbuf:       The kbuffer to free
 235 *
 236 * Can take NULL as a parameter.
 237 */
 238void kbuffer_free(struct kbuffer *kbuf)
 239{
 240        free(kbuf);
 241}
 242
 243static unsigned int type4host(struct kbuffer *kbuf,
 244                              unsigned int type_len_ts)
 245{
 246        if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
 247                return (type_len_ts >> 29) & 3;
 248        else
 249                return type_len_ts & 3;
 250}
 251
 252static unsigned int len4host(struct kbuffer *kbuf,
 253                             unsigned int type_len_ts)
 254{
 255        if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
 256                return (type_len_ts >> 27) & 7;
 257        else
 258                return (type_len_ts >> 2) & 7;
 259}
 260
 261static unsigned int type_len4host(struct kbuffer *kbuf,
 262                                  unsigned int type_len_ts)
 263{
 264        if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
 265                return (type_len_ts >> 27) & ((1 << 5) - 1);
 266        else
 267                return type_len_ts & ((1 << 5) - 1);
 268}
 269
 270static unsigned int ts4host(struct kbuffer *kbuf,
 271                            unsigned int type_len_ts)
 272{
 273        if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
 274                return type_len_ts & ((1 << 27) - 1);
 275        else
 276                return type_len_ts >> 5;
 277}
 278
 279/*
 280 * Linux 2.6.30 and earlier (not much ealier) had a different
 281 * ring buffer format. It should be obsolete, but we handle it anyway.
 282 */
 283enum old_ring_buffer_type {
 284        OLD_RINGBUF_TYPE_PADDING,
 285        OLD_RINGBUF_TYPE_TIME_EXTEND,
 286        OLD_RINGBUF_TYPE_TIME_STAMP,
 287        OLD_RINGBUF_TYPE_DATA,
 288};
 289
 290static unsigned int old_update_pointers(struct kbuffer *kbuf)
 291{
 292        unsigned long long extend;
 293        unsigned int type_len_ts;
 294        unsigned int type;
 295        unsigned int len;
 296        unsigned int delta;
 297        unsigned int length;
 298        void *ptr = kbuf->data + kbuf->curr;
 299
 300        type_len_ts = read_4(kbuf, ptr);
 301        ptr += 4;
 302
 303        type = type4host(kbuf, type_len_ts);
 304        len = len4host(kbuf, type_len_ts);
 305        delta = ts4host(kbuf, type_len_ts);
 306
 307        switch (type) {
 308        case OLD_RINGBUF_TYPE_PADDING:
 309                kbuf->next = kbuf->size;
 310                return 0;
 311
 312        case OLD_RINGBUF_TYPE_TIME_EXTEND:
 313                extend = read_4(kbuf, ptr);
 314                extend <<= TS_SHIFT;
 315                extend += delta;
 316                delta = extend;
 317                ptr += 4;
 318                length = 0;
 319                break;
 320
 321        case OLD_RINGBUF_TYPE_TIME_STAMP:
 322                /* should never happen! */
 323                kbuf->curr = kbuf->size;
 324                kbuf->next = kbuf->size;
 325                kbuf->index = kbuf->size;
 326                return -1;
 327        default:
 328                if (len)
 329                        length = len * 4;
 330                else {
 331                        length = read_4(kbuf, ptr);
 332                        length -= 4;
 333                        ptr += 4;
 334                }
 335                break;
 336        }
 337
 338        kbuf->timestamp += delta;
 339        kbuf->index = calc_index(kbuf, ptr);
 340        kbuf->next = kbuf->index + length;
 341
 342        return type;
 343}
 344
 345static int __old_next_event(struct kbuffer *kbuf)
 346{
 347        int type;
 348
 349        do {
 350                kbuf->curr = kbuf->next;
 351                if (kbuf->next >= kbuf->size)
 352                        return -1;
 353                type = old_update_pointers(kbuf);
 354        } while (type == OLD_RINGBUF_TYPE_TIME_EXTEND || type == OLD_RINGBUF_TYPE_PADDING);
 355
 356        return 0;
 357}
 358
 359static unsigned int
 360translate_data(struct kbuffer *kbuf, void *data, void **rptr,
 361               unsigned long long *delta, int *length)
 362{
 363        unsigned long long extend;
 364        unsigned int type_len_ts;
 365        unsigned int type_len;
 366
 367        type_len_ts = read_4(kbuf, data);
 368        data += 4;
 369
 370        type_len = type_len4host(kbuf, type_len_ts);
 371        *delta = ts4host(kbuf, type_len_ts);
 372
 373        switch (type_len) {
 374        case KBUFFER_TYPE_PADDING:
 375                *length = read_4(kbuf, data);
 376                break;
 377
 378        case KBUFFER_TYPE_TIME_EXTEND:
 379                extend = read_4(kbuf, data);
 380                data += 4;
 381                extend <<= TS_SHIFT;
 382                extend += *delta;
 383                *delta = extend;
 384                *length = 0;
 385                break;
 386
 387        case KBUFFER_TYPE_TIME_STAMP:
 388                data += 12;
 389                *length = 0;
 390                break;
 391        case 0:
 392                *length = read_4(kbuf, data) - 4;
 393                *length = (*length + 3) & ~3;
 394                data += 4;
 395                break;
 396        default:
 397                *length = type_len * 4;
 398                break;
 399        }
 400
 401        *rptr = data;
 402
 403        return type_len;
 404}
 405
 406static unsigned int update_pointers(struct kbuffer *kbuf)
 407{
 408        unsigned long long delta;
 409        unsigned int type_len;
 410        int length;
 411        void *ptr = kbuf->data + kbuf->curr;
 412
 413        type_len = translate_data(kbuf, ptr, &ptr, &delta, &length);
 414
 415        kbuf->timestamp += delta;
 416        kbuf->index = calc_index(kbuf, ptr);
 417        kbuf->next = kbuf->index + length;
 418
 419        return type_len;
 420}
 421
 422/**
 423 * kbuffer_translate_data - read raw data to get a record
 424 * @swap:       Set to 1 if bytes in words need to be swapped when read
 425 * @data:       The raw data to read
 426 * @size:       Address to store the size of the event data.
 427 *
 428 * Returns a pointer to the event data. To determine the entire
 429 * record size (record metadata + data) just add the difference between
 430 * @data and the returned value to @size.
 431 */
 432void *kbuffer_translate_data(int swap, void *data, unsigned int *size)
 433{
 434        unsigned long long delta;
 435        struct kbuffer kbuf;
 436        int type_len;
 437        int length;
 438        void *ptr;
 439
 440        if (swap) {
 441                kbuf.read_8 = __read_8_sw;
 442                kbuf.read_4 = __read_4_sw;
 443                kbuf.flags = host_is_bigendian() ? 0 : KBUFFER_FL_BIG_ENDIAN;
 444        } else {
 445                kbuf.read_8 = __read_8;
 446                kbuf.read_4 = __read_4;
 447                kbuf.flags = host_is_bigendian() ? KBUFFER_FL_BIG_ENDIAN: 0;
 448        }
 449
 450        type_len = translate_data(&kbuf, data, &ptr, &delta, &length);
 451        switch (type_len) {
 452        case KBUFFER_TYPE_PADDING:
 453        case KBUFFER_TYPE_TIME_EXTEND:
 454        case KBUFFER_TYPE_TIME_STAMP:
 455                return NULL;
 456        };
 457
 458        *size = length;
 459
 460        return ptr;
 461}
 462
 463static int __next_event(struct kbuffer *kbuf)
 464{
 465        int type;
 466
 467        do {
 468                kbuf->curr = kbuf->next;
 469                if (kbuf->next >= kbuf->size)
 470                        return -1;
 471                type = update_pointers(kbuf);
 472        } while (type == KBUFFER_TYPE_TIME_EXTEND || type == KBUFFER_TYPE_PADDING);
 473
 474        return 0;
 475}
 476
 477static int next_event(struct kbuffer *kbuf)
 478{
 479        return kbuf->next_event(kbuf);
 480}
 481
 482/**
 483 * kbuffer_next_event - increment the current pointer
 484 * @kbuf:       The kbuffer to read
 485 * @ts:         Address to store the next record's timestamp (may be NULL to ignore)
 486 *
 487 * Increments the pointers into the subbuffer of the kbuffer to point to the
 488 * next event so that the next kbuffer_read_event() will return a
 489 * new event.
 490 *
 491 * Returns the data of the next event if a new event exists on the subbuffer,
 492 * NULL otherwise.
 493 */
 494void *kbuffer_next_event(struct kbuffer *kbuf, unsigned long long *ts)
 495{
 496        int ret;
 497
 498        if (!kbuf || !kbuf->subbuffer)
 499                return NULL;
 500
 501        ret = next_event(kbuf);
 502        if (ret < 0)
 503                return NULL;
 504
 505        if (ts)
 506                *ts = kbuf->timestamp;
 507
 508        return kbuf->data + kbuf->index;
 509}
 510
 511/**
 512 * kbuffer_load_subbuffer - load a new subbuffer into the kbuffer
 513 * @kbuf:       The kbuffer to load
 514 * @subbuffer:  The subbuffer to load into @kbuf.
 515 *
 516 * Load a new subbuffer (page) into @kbuf. This will reset all
 517 * the pointers and update the @kbuf timestamp. The next read will
 518 * return the first event on @subbuffer.
 519 *
 520 * Returns 0 on succes, -1 otherwise.
 521 */
 522int kbuffer_load_subbuffer(struct kbuffer *kbuf, void *subbuffer)
 523{
 524        unsigned long long flags;
 525        void *ptr = subbuffer;
 526
 527        if (!kbuf || !subbuffer)
 528                return -1;
 529
 530        kbuf->subbuffer = subbuffer;
 531
 532        kbuf->timestamp = read_8(kbuf, ptr);
 533        ptr += 8;
 534
 535        kbuf->curr = 0;
 536
 537        if (kbuf->flags & KBUFFER_FL_LONG_8)
 538                kbuf->start = 16;
 539        else
 540                kbuf->start = 12;
 541
 542        kbuf->data = subbuffer + kbuf->start;
 543
 544        flags = read_long(kbuf, ptr);
 545        kbuf->size = (unsigned int)flags & COMMIT_MASK;
 546
 547        if (flags & MISSING_EVENTS) {
 548                if (flags & MISSING_STORED) {
 549                        ptr = kbuf->data + kbuf->size;
 550                        kbuf->lost_events = read_long(kbuf, ptr);
 551                } else
 552                        kbuf->lost_events = -1;
 553        } else
 554                kbuf->lost_events = 0;
 555
 556        kbuf->index = 0;
 557        kbuf->next = 0;
 558
 559        next_event(kbuf);
 560
 561        return 0;
 562}
 563
 564/**
 565 * kbuffer_read_event - read the next event in the kbuffer subbuffer
 566 * @kbuf:       The kbuffer to read from
 567 * @ts:         The address to store the timestamp of the event (may be NULL to ignore)
 568 *
 569 * Returns a pointer to the data part of the current event.
 570 * NULL if no event is left on the subbuffer.
 571 */
 572void *kbuffer_read_event(struct kbuffer *kbuf, unsigned long long *ts)
 573{
 574        if (!kbuf || !kbuf->subbuffer)
 575                return NULL;
 576
 577        if (kbuf->curr >= kbuf->size)
 578                return NULL;
 579
 580        if (ts)
 581                *ts = kbuf->timestamp;
 582        return kbuf->data + kbuf->index;
 583}
 584
 585/**
 586 * kbuffer_timestamp - Return the timestamp of the current event
 587 * @kbuf:       The kbuffer to read from
 588 *
 589 * Returns the timestamp of the current (next) event.
 590 */
 591unsigned long long kbuffer_timestamp(struct kbuffer *kbuf)
 592{
 593        return kbuf->timestamp;
 594}
 595
 596/**
 597 * kbuffer_read_at_offset - read the event that is at offset
 598 * @kbuf:       The kbuffer to read from
 599 * @offset:     The offset into the subbuffer
 600 * @ts:         The address to store the timestamp of the event (may be NULL to ignore)
 601 *
 602 * The @offset must be an index from the @kbuf subbuffer beginning.
 603 * If @offset is bigger than the stored subbuffer, NULL will be returned.
 604 *
 605 * Returns the data of the record that is at @offset. Note, @offset does
 606 * not need to be the start of the record, the offset just needs to be
 607 * in the record (or beginning of it).
 608 *
 609 * Note, the kbuf timestamp and pointers are updated to the
 610 * returned record. That is, kbuffer_read_event() will return the same
 611 * data and timestamp, and kbuffer_next_event() will increment from
 612 * this record.
 613 */
 614void *kbuffer_read_at_offset(struct kbuffer *kbuf, int offset,
 615                             unsigned long long *ts)
 616{
 617        void *data;
 618
 619        if (offset < kbuf->start)
 620                offset = 0;
 621        else
 622                offset -= kbuf->start;
 623
 624        /* Reset the buffer */
 625        kbuffer_load_subbuffer(kbuf, kbuf->subbuffer);
 626        data = kbuffer_read_event(kbuf, ts);
 627
 628        while (kbuf->curr < offset) {
 629                data = kbuffer_next_event(kbuf, ts);
 630                if (!data)
 631                        break;
 632        }
 633
 634        return data;
 635}
 636
 637/**
 638 * kbuffer_subbuffer_size - the size of the loaded subbuffer
 639 * @kbuf:       The kbuffer to read from
 640 *
 641 * Returns the size of the subbuffer. Note, this size is
 642 * where the last event resides. The stored subbuffer may actually be
 643 * bigger due to padding and such.
 644 */
 645int kbuffer_subbuffer_size(struct kbuffer *kbuf)
 646{
 647        return kbuf->size;
 648}
 649
 650/**
 651 * kbuffer_curr_index - Return the index of the record
 652 * @kbuf:       The kbuffer to read from
 653 *
 654 * Returns the index from the start of the data part of
 655 * the subbuffer to the current location. Note this is not
 656 * from the start of the subbuffer. An index of zero will
 657 * point to the first record. Use kbuffer_curr_offset() for
 658 * the actually offset (that can be used by kbuffer_read_at_offset())
 659 */
 660int kbuffer_curr_index(struct kbuffer *kbuf)
 661{
 662        return kbuf->curr;
 663}
 664
 665/**
 666 * kbuffer_curr_offset - Return the offset of the record
 667 * @kbuf:       The kbuffer to read from
 668 *
 669 * Returns the offset from the start of the subbuffer to the
 670 * current location.
 671 */
 672int kbuffer_curr_offset(struct kbuffer *kbuf)
 673{
 674        return kbuf->curr + kbuf->start;
 675}
 676
 677/**
 678 * kbuffer_event_size - return the size of the event data
 679 * @kbuf:       The kbuffer to read
 680 *
 681 * Returns the size of the event data (the payload not counting
 682 * the meta data of the record) of the current event.
 683 */
 684int kbuffer_event_size(struct kbuffer *kbuf)
 685{
 686        return kbuf->next - kbuf->index;
 687}
 688
 689/**
 690 * kbuffer_curr_size - return the size of the entire record
 691 * @kbuf:       The kbuffer to read
 692 *
 693 * Returns the size of the entire record (meta data and payload)
 694 * of the current event.
 695 */
 696int kbuffer_curr_size(struct kbuffer *kbuf)
 697{
 698        return kbuf->next - kbuf->curr;
 699}
 700
 701/**
 702 * kbuffer_missed_events - return the # of missed events from last event.
 703 * @kbuf:       The kbuffer to read from
 704 *
 705 * Returns the # of missed events (if recorded) before the current
 706 * event. Note, only events on the beginning of a subbuffer can
 707 * have missed events, all other events within the buffer will be
 708 * zero.
 709 */
 710int kbuffer_missed_events(struct kbuffer *kbuf)
 711{
 712        /* Only the first event can have missed events */
 713        if (kbuf->curr)
 714                return 0;
 715
 716        return kbuf->lost_events;
 717}
 718
 719/**
 720 * kbuffer_set_old_forma - set the kbuffer to use the old format parsing
 721 * @kbuf:       The kbuffer to set
 722 *
 723 * This is obsolete (or should be). The first kernels to use the
 724 * new ring buffer had a slightly different ring buffer format
 725 * (2.6.30 and earlier). It is still somewhat supported by kbuffer,
 726 * but should not be counted on in the future.
 727 */
 728void kbuffer_set_old_format(struct kbuffer *kbuf)
 729{
 730        kbuf->flags |= KBUFFER_FL_OLD_FORMAT;
 731
 732        kbuf->next_event = __old_next_event;
 733}
 734
 735/**
 736 * kbuffer_start_of_data - return offset of where data starts on subbuffer
 737 * @kbuf:       The kbuffer
 738 *
 739 * Returns the location on the subbuffer where the data starts.
 740 */
 741int kbuffer_start_of_data(struct kbuffer *kbuf)
 742{
 743        return kbuf->start;
 744}
 745