linux/tools/perf/util/machine.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
   6#include "callchain.h"
   7#include "debug.h"
   8#include "event.h"
   9#include "evsel.h"
  10#include "hist.h"
  11#include "machine.h"
  12#include "map.h"
  13#include "sort.h"
  14#include "strlist.h"
  15#include "thread.h"
  16#include "vdso.h"
  17#include <stdbool.h>
  18#include <sys/types.h>
  19#include <sys/stat.h>
  20#include <unistd.h>
  21#include "unwind.h"
  22#include "linux/hash.h"
  23#include "asm/bug.h"
  24
  25#include "sane_ctype.h"
  26#include <symbol/kallsyms.h>
  27#include <linux/mman.h>
  28
  29static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
  30
  31static void dsos__init(struct dsos *dsos)
  32{
  33        INIT_LIST_HEAD(&dsos->head);
  34        dsos->root = RB_ROOT;
  35        init_rwsem(&dsos->lock);
  36}
  37
  38static void machine__threads_init(struct machine *machine)
  39{
  40        int i;
  41
  42        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
  43                struct threads *threads = &machine->threads[i];
  44                threads->entries = RB_ROOT;
  45                init_rwsem(&threads->lock);
  46                threads->nr = 0;
  47                INIT_LIST_HEAD(&threads->dead);
  48                threads->last_match = NULL;
  49        }
  50}
  51
  52static int machine__set_mmap_name(struct machine *machine)
  53{
  54        if (machine__is_host(machine))
  55                machine->mmap_name = strdup("[kernel.kallsyms]");
  56        else if (machine__is_default_guest(machine))
  57                machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  58        else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  59                          machine->pid) < 0)
  60                machine->mmap_name = NULL;
  61
  62        return machine->mmap_name ? 0 : -ENOMEM;
  63}
  64
  65int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  66{
  67        int err = -ENOMEM;
  68
  69        memset(machine, 0, sizeof(*machine));
  70        map_groups__init(&machine->kmaps, machine);
  71        RB_CLEAR_NODE(&machine->rb_node);
  72        dsos__init(&machine->dsos);
  73
  74        machine__threads_init(machine);
  75
  76        machine->vdso_info = NULL;
  77        machine->env = NULL;
  78
  79        machine->pid = pid;
  80
  81        machine->id_hdr_size = 0;
  82        machine->kptr_restrict_warned = false;
  83        machine->comm_exec = false;
  84        machine->kernel_start = 0;
  85        machine->vmlinux_map = NULL;
  86
  87        machine->root_dir = strdup(root_dir);
  88        if (machine->root_dir == NULL)
  89                return -ENOMEM;
  90
  91        if (machine__set_mmap_name(machine))
  92                goto out;
  93
  94        if (pid != HOST_KERNEL_ID) {
  95                struct thread *thread = machine__findnew_thread(machine, -1,
  96                                                                pid);
  97                char comm[64];
  98
  99                if (thread == NULL)
 100                        goto out;
 101
 102                snprintf(comm, sizeof(comm), "[guest/%d]", pid);
 103                thread__set_comm(thread, comm, 0);
 104                thread__put(thread);
 105        }
 106
 107        machine->current_tid = NULL;
 108        err = 0;
 109
 110out:
 111        if (err) {
 112                zfree(&machine->root_dir);
 113                zfree(&machine->mmap_name);
 114        }
 115        return 0;
 116}
 117
 118struct machine *machine__new_host(void)
 119{
 120        struct machine *machine = malloc(sizeof(*machine));
 121
 122        if (machine != NULL) {
 123                machine__init(machine, "", HOST_KERNEL_ID);
 124
 125                if (machine__create_kernel_maps(machine) < 0)
 126                        goto out_delete;
 127        }
 128
 129        return machine;
 130out_delete:
 131        free(machine);
 132        return NULL;
 133}
 134
 135struct machine *machine__new_kallsyms(void)
 136{
 137        struct machine *machine = machine__new_host();
 138        /*
 139         * FIXME:
 140         * 1) We should switch to machine__load_kallsyms(), i.e. not explicitely
 141         *    ask for not using the kcore parsing code, once this one is fixed
 142         *    to create a map per module.
 143         */
 144        if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
 145                machine__delete(machine);
 146                machine = NULL;
 147        }
 148
 149        return machine;
 150}
 151
 152static void dsos__purge(struct dsos *dsos)
 153{
 154        struct dso *pos, *n;
 155
 156        down_write(&dsos->lock);
 157
 158        list_for_each_entry_safe(pos, n, &dsos->head, node) {
 159                RB_CLEAR_NODE(&pos->rb_node);
 160                pos->root = NULL;
 161                list_del_init(&pos->node);
 162                dso__put(pos);
 163        }
 164
 165        up_write(&dsos->lock);
 166}
 167
 168static void dsos__exit(struct dsos *dsos)
 169{
 170        dsos__purge(dsos);
 171        exit_rwsem(&dsos->lock);
 172}
 173
 174void machine__delete_threads(struct machine *machine)
 175{
 176        struct rb_node *nd;
 177        int i;
 178
 179        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 180                struct threads *threads = &machine->threads[i];
 181                down_write(&threads->lock);
 182                nd = rb_first(&threads->entries);
 183                while (nd) {
 184                        struct thread *t = rb_entry(nd, struct thread, rb_node);
 185
 186                        nd = rb_next(nd);
 187                        __machine__remove_thread(machine, t, false);
 188                }
 189                up_write(&threads->lock);
 190        }
 191}
 192
 193void machine__exit(struct machine *machine)
 194{
 195        int i;
 196
 197        if (machine == NULL)
 198                return;
 199
 200        machine__destroy_kernel_maps(machine);
 201        map_groups__exit(&machine->kmaps);
 202        dsos__exit(&machine->dsos);
 203        machine__exit_vdso(machine);
 204        zfree(&machine->root_dir);
 205        zfree(&machine->mmap_name);
 206        zfree(&machine->current_tid);
 207
 208        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 209                struct threads *threads = &machine->threads[i];
 210                exit_rwsem(&threads->lock);
 211        }
 212}
 213
 214void machine__delete(struct machine *machine)
 215{
 216        if (machine) {
 217                machine__exit(machine);
 218                free(machine);
 219        }
 220}
 221
 222void machines__init(struct machines *machines)
 223{
 224        machine__init(&machines->host, "", HOST_KERNEL_ID);
 225        machines->guests = RB_ROOT;
 226}
 227
 228void machines__exit(struct machines *machines)
 229{
 230        machine__exit(&machines->host);
 231        /* XXX exit guest */
 232}
 233
 234struct machine *machines__add(struct machines *machines, pid_t pid,
 235                              const char *root_dir)
 236{
 237        struct rb_node **p = &machines->guests.rb_node;
 238        struct rb_node *parent = NULL;
 239        struct machine *pos, *machine = malloc(sizeof(*machine));
 240
 241        if (machine == NULL)
 242                return NULL;
 243
 244        if (machine__init(machine, root_dir, pid) != 0) {
 245                free(machine);
 246                return NULL;
 247        }
 248
 249        while (*p != NULL) {
 250                parent = *p;
 251                pos = rb_entry(parent, struct machine, rb_node);
 252                if (pid < pos->pid)
 253                        p = &(*p)->rb_left;
 254                else
 255                        p = &(*p)->rb_right;
 256        }
 257
 258        rb_link_node(&machine->rb_node, parent, p);
 259        rb_insert_color(&machine->rb_node, &machines->guests);
 260
 261        return machine;
 262}
 263
 264void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 265{
 266        struct rb_node *nd;
 267
 268        machines->host.comm_exec = comm_exec;
 269
 270        for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 271                struct machine *machine = rb_entry(nd, struct machine, rb_node);
 272
 273                machine->comm_exec = comm_exec;
 274        }
 275}
 276
 277struct machine *machines__find(struct machines *machines, pid_t pid)
 278{
 279        struct rb_node **p = &machines->guests.rb_node;
 280        struct rb_node *parent = NULL;
 281        struct machine *machine;
 282        struct machine *default_machine = NULL;
 283
 284        if (pid == HOST_KERNEL_ID)
 285                return &machines->host;
 286
 287        while (*p != NULL) {
 288                parent = *p;
 289                machine = rb_entry(parent, struct machine, rb_node);
 290                if (pid < machine->pid)
 291                        p = &(*p)->rb_left;
 292                else if (pid > machine->pid)
 293                        p = &(*p)->rb_right;
 294                else
 295                        return machine;
 296                if (!machine->pid)
 297                        default_machine = machine;
 298        }
 299
 300        return default_machine;
 301}
 302
 303struct machine *machines__findnew(struct machines *machines, pid_t pid)
 304{
 305        char path[PATH_MAX];
 306        const char *root_dir = "";
 307        struct machine *machine = machines__find(machines, pid);
 308
 309        if (machine && (machine->pid == pid))
 310                goto out;
 311
 312        if ((pid != HOST_KERNEL_ID) &&
 313            (pid != DEFAULT_GUEST_KERNEL_ID) &&
 314            (symbol_conf.guestmount)) {
 315                sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 316                if (access(path, R_OK)) {
 317                        static struct strlist *seen;
 318
 319                        if (!seen)
 320                                seen = strlist__new(NULL, NULL);
 321
 322                        if (!strlist__has_entry(seen, path)) {
 323                                pr_err("Can't access file %s\n", path);
 324                                strlist__add(seen, path);
 325                        }
 326                        machine = NULL;
 327                        goto out;
 328                }
 329                root_dir = path;
 330        }
 331
 332        machine = machines__add(machines, pid, root_dir);
 333out:
 334        return machine;
 335}
 336
 337void machines__process_guests(struct machines *machines,
 338                              machine__process_t process, void *data)
 339{
 340        struct rb_node *nd;
 341
 342        for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 343                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 344                process(pos, data);
 345        }
 346}
 347
 348void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 349{
 350        struct rb_node *node;
 351        struct machine *machine;
 352
 353        machines->host.id_hdr_size = id_hdr_size;
 354
 355        for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
 356                machine = rb_entry(node, struct machine, rb_node);
 357                machine->id_hdr_size = id_hdr_size;
 358        }
 359
 360        return;
 361}
 362
 363static void machine__update_thread_pid(struct machine *machine,
 364                                       struct thread *th, pid_t pid)
 365{
 366        struct thread *leader;
 367
 368        if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 369                return;
 370
 371        th->pid_ = pid;
 372
 373        if (th->pid_ == th->tid)
 374                return;
 375
 376        leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 377        if (!leader)
 378                goto out_err;
 379
 380        if (!leader->mg)
 381                leader->mg = map_groups__new(machine);
 382
 383        if (!leader->mg)
 384                goto out_err;
 385
 386        if (th->mg == leader->mg)
 387                return;
 388
 389        if (th->mg) {
 390                /*
 391                 * Maps are created from MMAP events which provide the pid and
 392                 * tid.  Consequently there never should be any maps on a thread
 393                 * with an unknown pid.  Just print an error if there are.
 394                 */
 395                if (!map_groups__empty(th->mg))
 396                        pr_err("Discarding thread maps for %d:%d\n",
 397                               th->pid_, th->tid);
 398                map_groups__put(th->mg);
 399        }
 400
 401        th->mg = map_groups__get(leader->mg);
 402out_put:
 403        thread__put(leader);
 404        return;
 405out_err:
 406        pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 407        goto out_put;
 408}
 409
 410/*
 411 * Caller must eventually drop thread->refcnt returned with a successful
 412 * lookup/new thread inserted.
 413 */
 414static struct thread *____machine__findnew_thread(struct machine *machine,
 415                                                  struct threads *threads,
 416                                                  pid_t pid, pid_t tid,
 417                                                  bool create)
 418{
 419        struct rb_node **p = &threads->entries.rb_node;
 420        struct rb_node *parent = NULL;
 421        struct thread *th;
 422
 423        /*
 424         * Front-end cache - TID lookups come in blocks,
 425         * so most of the time we dont have to look up
 426         * the full rbtree:
 427         */
 428        th = threads->last_match;
 429        if (th != NULL) {
 430                if (th->tid == tid) {
 431                        machine__update_thread_pid(machine, th, pid);
 432                        return thread__get(th);
 433                }
 434
 435                threads->last_match = NULL;
 436        }
 437
 438        while (*p != NULL) {
 439                parent = *p;
 440                th = rb_entry(parent, struct thread, rb_node);
 441
 442                if (th->tid == tid) {
 443                        threads->last_match = th;
 444                        machine__update_thread_pid(machine, th, pid);
 445                        return thread__get(th);
 446                }
 447
 448                if (tid < th->tid)
 449                        p = &(*p)->rb_left;
 450                else
 451                        p = &(*p)->rb_right;
 452        }
 453
 454        if (!create)
 455                return NULL;
 456
 457        th = thread__new(pid, tid);
 458        if (th != NULL) {
 459                rb_link_node(&th->rb_node, parent, p);
 460                rb_insert_color(&th->rb_node, &threads->entries);
 461
 462                /*
 463                 * We have to initialize map_groups separately
 464                 * after rb tree is updated.
 465                 *
 466                 * The reason is that we call machine__findnew_thread
 467                 * within thread__init_map_groups to find the thread
 468                 * leader and that would screwed the rb tree.
 469                 */
 470                if (thread__init_map_groups(th, machine)) {
 471                        rb_erase_init(&th->rb_node, &threads->entries);
 472                        RB_CLEAR_NODE(&th->rb_node);
 473                        thread__put(th);
 474                        return NULL;
 475                }
 476                /*
 477                 * It is now in the rbtree, get a ref
 478                 */
 479                thread__get(th);
 480                threads->last_match = th;
 481                ++threads->nr;
 482        }
 483
 484        return th;
 485}
 486
 487struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 488{
 489        return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
 490}
 491
 492struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 493                                       pid_t tid)
 494{
 495        struct threads *threads = machine__threads(machine, tid);
 496        struct thread *th;
 497
 498        down_write(&threads->lock);
 499        th = __machine__findnew_thread(machine, pid, tid);
 500        up_write(&threads->lock);
 501        return th;
 502}
 503
 504struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 505                                    pid_t tid)
 506{
 507        struct threads *threads = machine__threads(machine, tid);
 508        struct thread *th;
 509
 510        down_read(&threads->lock);
 511        th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
 512        up_read(&threads->lock);
 513        return th;
 514}
 515
 516struct comm *machine__thread_exec_comm(struct machine *machine,
 517                                       struct thread *thread)
 518{
 519        if (machine->comm_exec)
 520                return thread__exec_comm(thread);
 521        else
 522                return thread__comm(thread);
 523}
 524
 525int machine__process_comm_event(struct machine *machine, union perf_event *event,
 526                                struct perf_sample *sample)
 527{
 528        struct thread *thread = machine__findnew_thread(machine,
 529                                                        event->comm.pid,
 530                                                        event->comm.tid);
 531        bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 532        int err = 0;
 533
 534        if (exec)
 535                machine->comm_exec = true;
 536
 537        if (dump_trace)
 538                perf_event__fprintf_comm(event, stdout);
 539
 540        if (thread == NULL ||
 541            __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 542                dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 543                err = -1;
 544        }
 545
 546        thread__put(thread);
 547
 548        return err;
 549}
 550
 551int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 552                                      union perf_event *event,
 553                                      struct perf_sample *sample __maybe_unused)
 554{
 555        struct thread *thread = machine__findnew_thread(machine,
 556                                                        event->namespaces.pid,
 557                                                        event->namespaces.tid);
 558        int err = 0;
 559
 560        WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 561                  "\nWARNING: kernel seems to support more namespaces than perf"
 562                  " tool.\nTry updating the perf tool..\n\n");
 563
 564        WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 565                  "\nWARNING: perf tool seems to support more namespaces than"
 566                  " the kernel.\nTry updating the kernel..\n\n");
 567
 568        if (dump_trace)
 569                perf_event__fprintf_namespaces(event, stdout);
 570
 571        if (thread == NULL ||
 572            thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 573                dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 574                err = -1;
 575        }
 576
 577        thread__put(thread);
 578
 579        return err;
 580}
 581
 582int machine__process_lost_event(struct machine *machine __maybe_unused,
 583                                union perf_event *event, struct perf_sample *sample __maybe_unused)
 584{
 585        dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
 586                    event->lost.id, event->lost.lost);
 587        return 0;
 588}
 589
 590int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 591                                        union perf_event *event, struct perf_sample *sample)
 592{
 593        dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
 594                    sample->id, event->lost_samples.lost);
 595        return 0;
 596}
 597
 598static struct dso *machine__findnew_module_dso(struct machine *machine,
 599                                               struct kmod_path *m,
 600                                               const char *filename)
 601{
 602        struct dso *dso;
 603
 604        down_write(&machine->dsos.lock);
 605
 606        dso = __dsos__find(&machine->dsos, m->name, true);
 607        if (!dso) {
 608                dso = __dsos__addnew(&machine->dsos, m->name);
 609                if (dso == NULL)
 610                        goto out_unlock;
 611
 612                dso__set_module_info(dso, m, machine);
 613                dso__set_long_name(dso, strdup(filename), true);
 614        }
 615
 616        dso__get(dso);
 617out_unlock:
 618        up_write(&machine->dsos.lock);
 619        return dso;
 620}
 621
 622int machine__process_aux_event(struct machine *machine __maybe_unused,
 623                               union perf_event *event)
 624{
 625        if (dump_trace)
 626                perf_event__fprintf_aux(event, stdout);
 627        return 0;
 628}
 629
 630int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 631                                        union perf_event *event)
 632{
 633        if (dump_trace)
 634                perf_event__fprintf_itrace_start(event, stdout);
 635        return 0;
 636}
 637
 638int machine__process_switch_event(struct machine *machine __maybe_unused,
 639                                  union perf_event *event)
 640{
 641        if (dump_trace)
 642                perf_event__fprintf_switch(event, stdout);
 643        return 0;
 644}
 645
 646static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
 647{
 648        const char *dup_filename;
 649
 650        if (!filename || !dso || !dso->long_name)
 651                return;
 652        if (dso->long_name[0] != '[')
 653                return;
 654        if (!strchr(filename, '/'))
 655                return;
 656
 657        dup_filename = strdup(filename);
 658        if (!dup_filename)
 659                return;
 660
 661        dso__set_long_name(dso, dup_filename, true);
 662}
 663
 664struct map *machine__findnew_module_map(struct machine *machine, u64 start,
 665                                        const char *filename)
 666{
 667        struct map *map = NULL;
 668        struct dso *dso = NULL;
 669        struct kmod_path m;
 670
 671        if (kmod_path__parse_name(&m, filename))
 672                return NULL;
 673
 674        map = map_groups__find_by_name(&machine->kmaps, m.name);
 675        if (map) {
 676                /*
 677                 * If the map's dso is an offline module, give dso__load()
 678                 * a chance to find the file path of that module by fixing
 679                 * long_name.
 680                 */
 681                dso__adjust_kmod_long_name(map->dso, filename);
 682                goto out;
 683        }
 684
 685        dso = machine__findnew_module_dso(machine, &m, filename);
 686        if (dso == NULL)
 687                goto out;
 688
 689        map = map__new2(start, dso);
 690        if (map == NULL)
 691                goto out;
 692
 693        map_groups__insert(&machine->kmaps, map);
 694
 695        /* Put the map here because map_groups__insert alread got it */
 696        map__put(map);
 697out:
 698        /* put the dso here, corresponding to  machine__findnew_module_dso */
 699        dso__put(dso);
 700        free(m.name);
 701        return map;
 702}
 703
 704size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 705{
 706        struct rb_node *nd;
 707        size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 708
 709        for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 710                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 711                ret += __dsos__fprintf(&pos->dsos.head, fp);
 712        }
 713
 714        return ret;
 715}
 716
 717size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 718                                     bool (skip)(struct dso *dso, int parm), int parm)
 719{
 720        return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 721}
 722
 723size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 724                                     bool (skip)(struct dso *dso, int parm), int parm)
 725{
 726        struct rb_node *nd;
 727        size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 728
 729        for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 730                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 731                ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 732        }
 733        return ret;
 734}
 735
 736size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 737{
 738        int i;
 739        size_t printed = 0;
 740        struct dso *kdso = machine__kernel_map(machine)->dso;
 741
 742        if (kdso->has_build_id) {
 743                char filename[PATH_MAX];
 744                if (dso__build_id_filename(kdso, filename, sizeof(filename),
 745                                           false))
 746                        printed += fprintf(fp, "[0] %s\n", filename);
 747        }
 748
 749        for (i = 0; i < vmlinux_path__nr_entries; ++i)
 750                printed += fprintf(fp, "[%d] %s\n",
 751                                   i + kdso->has_build_id, vmlinux_path[i]);
 752
 753        return printed;
 754}
 755
 756size_t machine__fprintf(struct machine *machine, FILE *fp)
 757{
 758        struct rb_node *nd;
 759        size_t ret;
 760        int i;
 761
 762        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 763                struct threads *threads = &machine->threads[i];
 764
 765                down_read(&threads->lock);
 766
 767                ret = fprintf(fp, "Threads: %u\n", threads->nr);
 768
 769                for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
 770                        struct thread *pos = rb_entry(nd, struct thread, rb_node);
 771
 772                        ret += thread__fprintf(pos, fp);
 773                }
 774
 775                up_read(&threads->lock);
 776        }
 777        return ret;
 778}
 779
 780static struct dso *machine__get_kernel(struct machine *machine)
 781{
 782        const char *vmlinux_name = machine->mmap_name;
 783        struct dso *kernel;
 784
 785        if (machine__is_host(machine)) {
 786                if (symbol_conf.vmlinux_name)
 787                        vmlinux_name = symbol_conf.vmlinux_name;
 788
 789                kernel = machine__findnew_kernel(machine, vmlinux_name,
 790                                                 "[kernel]", DSO_TYPE_KERNEL);
 791        } else {
 792                if (symbol_conf.default_guest_vmlinux_name)
 793                        vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 794
 795                kernel = machine__findnew_kernel(machine, vmlinux_name,
 796                                                 "[guest.kernel]",
 797                                                 DSO_TYPE_GUEST_KERNEL);
 798        }
 799
 800        if (kernel != NULL && (!kernel->has_build_id))
 801                dso__read_running_kernel_build_id(kernel, machine);
 802
 803        return kernel;
 804}
 805
 806struct process_args {
 807        u64 start;
 808};
 809
 810void machine__get_kallsyms_filename(struct machine *machine, char *buf,
 811                                    size_t bufsz)
 812{
 813        if (machine__is_default_guest(machine))
 814                scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
 815        else
 816                scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
 817}
 818
 819const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
 820
 821/* Figure out the start address of kernel map from /proc/kallsyms.
 822 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 823 * symbol_name if it's not that important.
 824 */
 825static int machine__get_running_kernel_start(struct machine *machine,
 826                                             const char **symbol_name, u64 *start)
 827{
 828        char filename[PATH_MAX];
 829        int i, err = -1;
 830        const char *name;
 831        u64 addr = 0;
 832
 833        machine__get_kallsyms_filename(machine, filename, PATH_MAX);
 834
 835        if (symbol__restricted_filename(filename, "/proc/kallsyms"))
 836                return 0;
 837
 838        for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
 839                err = kallsyms__get_function_start(filename, name, &addr);
 840                if (!err)
 841                        break;
 842        }
 843
 844        if (err)
 845                return -1;
 846
 847        if (symbol_name)
 848                *symbol_name = name;
 849
 850        *start = addr;
 851        return 0;
 852}
 853
 854int machine__create_extra_kernel_map(struct machine *machine,
 855                                     struct dso *kernel,
 856                                     struct extra_kernel_map *xm)
 857{
 858        struct kmap *kmap;
 859        struct map *map;
 860
 861        map = map__new2(xm->start, kernel);
 862        if (!map)
 863                return -1;
 864
 865        map->end   = xm->end;
 866        map->pgoff = xm->pgoff;
 867
 868        kmap = map__kmap(map);
 869
 870        kmap->kmaps = &machine->kmaps;
 871        strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
 872
 873        map_groups__insert(&machine->kmaps, map);
 874
 875        pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
 876                  kmap->name, map->start, map->end);
 877
 878        map__put(map);
 879
 880        return 0;
 881}
 882
 883static u64 find_entry_trampoline(struct dso *dso)
 884{
 885        /* Duplicates are removed so lookup all aliases */
 886        const char *syms[] = {
 887                "_entry_trampoline",
 888                "__entry_trampoline_start",
 889                "entry_SYSCALL_64_trampoline",
 890        };
 891        struct symbol *sym = dso__first_symbol(dso);
 892        unsigned int i;
 893
 894        for (; sym; sym = dso__next_symbol(sym)) {
 895                if (sym->binding != STB_GLOBAL)
 896                        continue;
 897                for (i = 0; i < ARRAY_SIZE(syms); i++) {
 898                        if (!strcmp(sym->name, syms[i]))
 899                                return sym->start;
 900                }
 901        }
 902
 903        return 0;
 904}
 905
 906/*
 907 * These values can be used for kernels that do not have symbols for the entry
 908 * trampolines in kallsyms.
 909 */
 910#define X86_64_CPU_ENTRY_AREA_PER_CPU   0xfffffe0000000000ULL
 911#define X86_64_CPU_ENTRY_AREA_SIZE      0x2c000
 912#define X86_64_ENTRY_TRAMPOLINE         0x6000
 913
 914/* Map x86_64 PTI entry trampolines */
 915int machine__map_x86_64_entry_trampolines(struct machine *machine,
 916                                          struct dso *kernel)
 917{
 918        struct map_groups *kmaps = &machine->kmaps;
 919        struct maps *maps = &kmaps->maps;
 920        int nr_cpus_avail, cpu;
 921        bool found = false;
 922        struct map *map;
 923        u64 pgoff;
 924
 925        /*
 926         * In the vmlinux case, pgoff is a virtual address which must now be
 927         * mapped to a vmlinux offset.
 928         */
 929        for (map = maps__first(maps); map; map = map__next(map)) {
 930                struct kmap *kmap = __map__kmap(map);
 931                struct map *dest_map;
 932
 933                if (!kmap || !is_entry_trampoline(kmap->name))
 934                        continue;
 935
 936                dest_map = map_groups__find(kmaps, map->pgoff);
 937                if (dest_map != map)
 938                        map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
 939                found = true;
 940        }
 941        if (found || machine->trampolines_mapped)
 942                return 0;
 943
 944        pgoff = find_entry_trampoline(kernel);
 945        if (!pgoff)
 946                return 0;
 947
 948        nr_cpus_avail = machine__nr_cpus_avail(machine);
 949
 950        /* Add a 1 page map for each CPU's entry trampoline */
 951        for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
 952                u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
 953                         cpu * X86_64_CPU_ENTRY_AREA_SIZE +
 954                         X86_64_ENTRY_TRAMPOLINE;
 955                struct extra_kernel_map xm = {
 956                        .start = va,
 957                        .end   = va + page_size,
 958                        .pgoff = pgoff,
 959                };
 960
 961                strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
 962
 963                if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
 964                        return -1;
 965        }
 966
 967        machine->trampolines_mapped = nr_cpus_avail;
 968
 969        return 0;
 970}
 971
 972int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
 973                                             struct dso *kernel __maybe_unused)
 974{
 975        return 0;
 976}
 977
 978static int
 979__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
 980{
 981        struct kmap *kmap;
 982        struct map *map;
 983
 984        /* In case of renewal the kernel map, destroy previous one */
 985        machine__destroy_kernel_maps(machine);
 986
 987        machine->vmlinux_map = map__new2(0, kernel);
 988        if (machine->vmlinux_map == NULL)
 989                return -1;
 990
 991        machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
 992        map = machine__kernel_map(machine);
 993        kmap = map__kmap(map);
 994        if (!kmap)
 995                return -1;
 996
 997        kmap->kmaps = &machine->kmaps;
 998        map_groups__insert(&machine->kmaps, map);
 999
1000        return 0;
1001}
1002
1003void machine__destroy_kernel_maps(struct machine *machine)
1004{
1005        struct kmap *kmap;
1006        struct map *map = machine__kernel_map(machine);
1007
1008        if (map == NULL)
1009                return;
1010
1011        kmap = map__kmap(map);
1012        map_groups__remove(&machine->kmaps, map);
1013        if (kmap && kmap->ref_reloc_sym) {
1014                zfree((char **)&kmap->ref_reloc_sym->name);
1015                zfree(&kmap->ref_reloc_sym);
1016        }
1017
1018        map__zput(machine->vmlinux_map);
1019}
1020
1021int machines__create_guest_kernel_maps(struct machines *machines)
1022{
1023        int ret = 0;
1024        struct dirent **namelist = NULL;
1025        int i, items = 0;
1026        char path[PATH_MAX];
1027        pid_t pid;
1028        char *endp;
1029
1030        if (symbol_conf.default_guest_vmlinux_name ||
1031            symbol_conf.default_guest_modules ||
1032            symbol_conf.default_guest_kallsyms) {
1033                machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1034        }
1035
1036        if (symbol_conf.guestmount) {
1037                items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1038                if (items <= 0)
1039                        return -ENOENT;
1040                for (i = 0; i < items; i++) {
1041                        if (!isdigit(namelist[i]->d_name[0])) {
1042                                /* Filter out . and .. */
1043                                continue;
1044                        }
1045                        pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1046                        if ((*endp != '\0') ||
1047                            (endp == namelist[i]->d_name) ||
1048                            (errno == ERANGE)) {
1049                                pr_debug("invalid directory (%s). Skipping.\n",
1050                                         namelist[i]->d_name);
1051                                continue;
1052                        }
1053                        sprintf(path, "%s/%s/proc/kallsyms",
1054                                symbol_conf.guestmount,
1055                                namelist[i]->d_name);
1056                        ret = access(path, R_OK);
1057                        if (ret) {
1058                                pr_debug("Can't access file %s\n", path);
1059                                goto failure;
1060                        }
1061                        machines__create_kernel_maps(machines, pid);
1062                }
1063failure:
1064                free(namelist);
1065        }
1066
1067        return ret;
1068}
1069
1070void machines__destroy_kernel_maps(struct machines *machines)
1071{
1072        struct rb_node *next = rb_first(&machines->guests);
1073
1074        machine__destroy_kernel_maps(&machines->host);
1075
1076        while (next) {
1077                struct machine *pos = rb_entry(next, struct machine, rb_node);
1078
1079                next = rb_next(&pos->rb_node);
1080                rb_erase(&pos->rb_node, &machines->guests);
1081                machine__delete(pos);
1082        }
1083}
1084
1085int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1086{
1087        struct machine *machine = machines__findnew(machines, pid);
1088
1089        if (machine == NULL)
1090                return -1;
1091
1092        return machine__create_kernel_maps(machine);
1093}
1094
1095int machine__load_kallsyms(struct machine *machine, const char *filename)
1096{
1097        struct map *map = machine__kernel_map(machine);
1098        int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1099
1100        if (ret > 0) {
1101                dso__set_loaded(map->dso);
1102                /*
1103                 * Since /proc/kallsyms will have multiple sessions for the
1104                 * kernel, with modules between them, fixup the end of all
1105                 * sections.
1106                 */
1107                map_groups__fixup_end(&machine->kmaps);
1108        }
1109
1110        return ret;
1111}
1112
1113int machine__load_vmlinux_path(struct machine *machine)
1114{
1115        struct map *map = machine__kernel_map(machine);
1116        int ret = dso__load_vmlinux_path(map->dso, map);
1117
1118        if (ret > 0)
1119                dso__set_loaded(map->dso);
1120
1121        return ret;
1122}
1123
1124static char *get_kernel_version(const char *root_dir)
1125{
1126        char version[PATH_MAX];
1127        FILE *file;
1128        char *name, *tmp;
1129        const char *prefix = "Linux version ";
1130
1131        sprintf(version, "%s/proc/version", root_dir);
1132        file = fopen(version, "r");
1133        if (!file)
1134                return NULL;
1135
1136        version[0] = '\0';
1137        tmp = fgets(version, sizeof(version), file);
1138        fclose(file);
1139
1140        name = strstr(version, prefix);
1141        if (!name)
1142                return NULL;
1143        name += strlen(prefix);
1144        tmp = strchr(name, ' ');
1145        if (tmp)
1146                *tmp = '\0';
1147
1148        return strdup(name);
1149}
1150
1151static bool is_kmod_dso(struct dso *dso)
1152{
1153        return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1154               dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1155}
1156
1157static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1158                                       struct kmod_path *m)
1159{
1160        char *long_name;
1161        struct map *map = map_groups__find_by_name(mg, m->name);
1162
1163        if (map == NULL)
1164                return 0;
1165
1166        long_name = strdup(path);
1167        if (long_name == NULL)
1168                return -ENOMEM;
1169
1170        dso__set_long_name(map->dso, long_name, true);
1171        dso__kernel_module_get_build_id(map->dso, "");
1172
1173        /*
1174         * Full name could reveal us kmod compression, so
1175         * we need to update the symtab_type if needed.
1176         */
1177        if (m->comp && is_kmod_dso(map->dso))
1178                map->dso->symtab_type++;
1179
1180        return 0;
1181}
1182
1183static int map_groups__set_modules_path_dir(struct map_groups *mg,
1184                                const char *dir_name, int depth)
1185{
1186        struct dirent *dent;
1187        DIR *dir = opendir(dir_name);
1188        int ret = 0;
1189
1190        if (!dir) {
1191                pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1192                return -1;
1193        }
1194
1195        while ((dent = readdir(dir)) != NULL) {
1196                char path[PATH_MAX];
1197                struct stat st;
1198
1199                /*sshfs might return bad dent->d_type, so we have to stat*/
1200                snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1201                if (stat(path, &st))
1202                        continue;
1203
1204                if (S_ISDIR(st.st_mode)) {
1205                        if (!strcmp(dent->d_name, ".") ||
1206                            !strcmp(dent->d_name, ".."))
1207                                continue;
1208
1209                        /* Do not follow top-level source and build symlinks */
1210                        if (depth == 0) {
1211                                if (!strcmp(dent->d_name, "source") ||
1212                                    !strcmp(dent->d_name, "build"))
1213                                        continue;
1214                        }
1215
1216                        ret = map_groups__set_modules_path_dir(mg, path,
1217                                                               depth + 1);
1218                        if (ret < 0)
1219                                goto out;
1220                } else {
1221                        struct kmod_path m;
1222
1223                        ret = kmod_path__parse_name(&m, dent->d_name);
1224                        if (ret)
1225                                goto out;
1226
1227                        if (m.kmod)
1228                                ret = map_groups__set_module_path(mg, path, &m);
1229
1230                        free(m.name);
1231
1232                        if (ret)
1233                                goto out;
1234                }
1235        }
1236
1237out:
1238        closedir(dir);
1239        return ret;
1240}
1241
1242static int machine__set_modules_path(struct machine *machine)
1243{
1244        char *version;
1245        char modules_path[PATH_MAX];
1246
1247        version = get_kernel_version(machine->root_dir);
1248        if (!version)
1249                return -1;
1250
1251        snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1252                 machine->root_dir, version);
1253        free(version);
1254
1255        return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1256}
1257int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1258                                const char *name __maybe_unused)
1259{
1260        return 0;
1261}
1262
1263static int machine__create_module(void *arg, const char *name, u64 start,
1264                                  u64 size)
1265{
1266        struct machine *machine = arg;
1267        struct map *map;
1268
1269        if (arch__fix_module_text_start(&start, name) < 0)
1270                return -1;
1271
1272        map = machine__findnew_module_map(machine, start, name);
1273        if (map == NULL)
1274                return -1;
1275        map->end = start + size;
1276
1277        dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1278
1279        return 0;
1280}
1281
1282static int machine__create_modules(struct machine *machine)
1283{
1284        const char *modules;
1285        char path[PATH_MAX];
1286
1287        if (machine__is_default_guest(machine)) {
1288                modules = symbol_conf.default_guest_modules;
1289        } else {
1290                snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1291                modules = path;
1292        }
1293
1294        if (symbol__restricted_filename(modules, "/proc/modules"))
1295                return -1;
1296
1297        if (modules__parse(modules, machine, machine__create_module))
1298                return -1;
1299
1300        if (!machine__set_modules_path(machine))
1301                return 0;
1302
1303        pr_debug("Problems setting modules path maps, continuing anyway...\n");
1304
1305        return 0;
1306}
1307
1308static void machine__set_kernel_mmap(struct machine *machine,
1309                                     u64 start, u64 end)
1310{
1311        machine->vmlinux_map->start = start;
1312        machine->vmlinux_map->end   = end;
1313        /*
1314         * Be a bit paranoid here, some perf.data file came with
1315         * a zero sized synthesized MMAP event for the kernel.
1316         */
1317        if (start == 0 && end == 0)
1318                machine->vmlinux_map->end = ~0ULL;
1319}
1320
1321int machine__create_kernel_maps(struct machine *machine)
1322{
1323        struct dso *kernel = machine__get_kernel(machine);
1324        const char *name = NULL;
1325        struct map *map;
1326        u64 addr = 0;
1327        int ret;
1328
1329        if (kernel == NULL)
1330                return -1;
1331
1332        ret = __machine__create_kernel_maps(machine, kernel);
1333        if (ret < 0)
1334                goto out_put;
1335
1336        if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1337                if (machine__is_host(machine))
1338                        pr_debug("Problems creating module maps, "
1339                                 "continuing anyway...\n");
1340                else
1341                        pr_debug("Problems creating module maps for guest %d, "
1342                                 "continuing anyway...\n", machine->pid);
1343        }
1344
1345        if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1346                if (name &&
1347                    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, addr)) {
1348                        machine__destroy_kernel_maps(machine);
1349                        ret = -1;
1350                        goto out_put;
1351                }
1352
1353                /* we have a real start address now, so re-order the kmaps */
1354                map = machine__kernel_map(machine);
1355
1356                map__get(map);
1357                map_groups__remove(&machine->kmaps, map);
1358
1359                /* assume it's the last in the kmaps */
1360                machine__set_kernel_mmap(machine, addr, ~0ULL);
1361
1362                map_groups__insert(&machine->kmaps, map);
1363                map__put(map);
1364        }
1365
1366        if (machine__create_extra_kernel_maps(machine, kernel))
1367                pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1368
1369        /* update end address of the kernel map using adjacent module address */
1370        map = map__next(machine__kernel_map(machine));
1371        if (map)
1372                machine__set_kernel_mmap(machine, addr, map->start);
1373out_put:
1374        dso__put(kernel);
1375        return ret;
1376}
1377
1378static bool machine__uses_kcore(struct machine *machine)
1379{
1380        struct dso *dso;
1381
1382        list_for_each_entry(dso, &machine->dsos.head, node) {
1383                if (dso__is_kcore(dso))
1384                        return true;
1385        }
1386
1387        return false;
1388}
1389
1390static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1391                                             union perf_event *event)
1392{
1393        return machine__is(machine, "x86_64") &&
1394               is_entry_trampoline(event->mmap.filename);
1395}
1396
1397static int machine__process_extra_kernel_map(struct machine *machine,
1398                                             union perf_event *event)
1399{
1400        struct map *kernel_map = machine__kernel_map(machine);
1401        struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1402        struct extra_kernel_map xm = {
1403                .start = event->mmap.start,
1404                .end   = event->mmap.start + event->mmap.len,
1405                .pgoff = event->mmap.pgoff,
1406        };
1407
1408        if (kernel == NULL)
1409                return -1;
1410
1411        strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1412
1413        return machine__create_extra_kernel_map(machine, kernel, &xm);
1414}
1415
1416static int machine__process_kernel_mmap_event(struct machine *machine,
1417                                              union perf_event *event)
1418{
1419        struct map *map;
1420        enum dso_kernel_type kernel_type;
1421        bool is_kernel_mmap;
1422
1423        /* If we have maps from kcore then we do not need or want any others */
1424        if (machine__uses_kcore(machine))
1425                return 0;
1426
1427        if (machine__is_host(machine))
1428                kernel_type = DSO_TYPE_KERNEL;
1429        else
1430                kernel_type = DSO_TYPE_GUEST_KERNEL;
1431
1432        is_kernel_mmap = memcmp(event->mmap.filename,
1433                                machine->mmap_name,
1434                                strlen(machine->mmap_name) - 1) == 0;
1435        if (event->mmap.filename[0] == '/' ||
1436            (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1437                map = machine__findnew_module_map(machine, event->mmap.start,
1438                                                  event->mmap.filename);
1439                if (map == NULL)
1440                        goto out_problem;
1441
1442                map->end = map->start + event->mmap.len;
1443        } else if (is_kernel_mmap) {
1444                const char *symbol_name = (event->mmap.filename +
1445                                strlen(machine->mmap_name));
1446                /*
1447                 * Should be there already, from the build-id table in
1448                 * the header.
1449                 */
1450                struct dso *kernel = NULL;
1451                struct dso *dso;
1452
1453                down_read(&machine->dsos.lock);
1454
1455                list_for_each_entry(dso, &machine->dsos.head, node) {
1456
1457                        /*
1458                         * The cpumode passed to is_kernel_module is not the
1459                         * cpumode of *this* event. If we insist on passing
1460                         * correct cpumode to is_kernel_module, we should
1461                         * record the cpumode when we adding this dso to the
1462                         * linked list.
1463                         *
1464                         * However we don't really need passing correct
1465                         * cpumode.  We know the correct cpumode must be kernel
1466                         * mode (if not, we should not link it onto kernel_dsos
1467                         * list).
1468                         *
1469                         * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1470                         * is_kernel_module() treats it as a kernel cpumode.
1471                         */
1472
1473                        if (!dso->kernel ||
1474                            is_kernel_module(dso->long_name,
1475                                             PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1476                                continue;
1477
1478
1479                        kernel = dso;
1480                        break;
1481                }
1482
1483                up_read(&machine->dsos.lock);
1484
1485                if (kernel == NULL)
1486                        kernel = machine__findnew_dso(machine, machine->mmap_name);
1487                if (kernel == NULL)
1488                        goto out_problem;
1489
1490                kernel->kernel = kernel_type;
1491                if (__machine__create_kernel_maps(machine, kernel) < 0) {
1492                        dso__put(kernel);
1493                        goto out_problem;
1494                }
1495
1496                if (strstr(kernel->long_name, "vmlinux"))
1497                        dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1498
1499                machine__set_kernel_mmap(machine, event->mmap.start,
1500                                         event->mmap.start + event->mmap.len);
1501
1502                /*
1503                 * Avoid using a zero address (kptr_restrict) for the ref reloc
1504                 * symbol. Effectively having zero here means that at record
1505                 * time /proc/sys/kernel/kptr_restrict was non zero.
1506                 */
1507                if (event->mmap.pgoff != 0) {
1508                        map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1509                                                        symbol_name,
1510                                                        event->mmap.pgoff);
1511                }
1512
1513                if (machine__is_default_guest(machine)) {
1514                        /*
1515                         * preload dso of guest kernel and modules
1516                         */
1517                        dso__load(kernel, machine__kernel_map(machine));
1518                }
1519        } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1520                return machine__process_extra_kernel_map(machine, event);
1521        }
1522        return 0;
1523out_problem:
1524        return -1;
1525}
1526
1527int machine__process_mmap2_event(struct machine *machine,
1528                                 union perf_event *event,
1529                                 struct perf_sample *sample)
1530{
1531        struct thread *thread;
1532        struct map *map;
1533        int ret = 0;
1534
1535        if (dump_trace)
1536                perf_event__fprintf_mmap2(event, stdout);
1537
1538        if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1539            sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1540                ret = machine__process_kernel_mmap_event(machine, event);
1541                if (ret < 0)
1542                        goto out_problem;
1543                return 0;
1544        }
1545
1546        thread = machine__findnew_thread(machine, event->mmap2.pid,
1547                                        event->mmap2.tid);
1548        if (thread == NULL)
1549                goto out_problem;
1550
1551        map = map__new(machine, event->mmap2.start,
1552                        event->mmap2.len, event->mmap2.pgoff,
1553                        event->mmap2.maj,
1554                        event->mmap2.min, event->mmap2.ino,
1555                        event->mmap2.ino_generation,
1556                        event->mmap2.prot,
1557                        event->mmap2.flags,
1558                        event->mmap2.filename, thread);
1559
1560        if (map == NULL)
1561                goto out_problem_map;
1562
1563        ret = thread__insert_map(thread, map);
1564        if (ret)
1565                goto out_problem_insert;
1566
1567        thread__put(thread);
1568        map__put(map);
1569        return 0;
1570
1571out_problem_insert:
1572        map__put(map);
1573out_problem_map:
1574        thread__put(thread);
1575out_problem:
1576        dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1577        return 0;
1578}
1579
1580int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1581                                struct perf_sample *sample)
1582{
1583        struct thread *thread;
1584        struct map *map;
1585        u32 prot = 0;
1586        int ret = 0;
1587
1588        if (dump_trace)
1589                perf_event__fprintf_mmap(event, stdout);
1590
1591        if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1592            sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1593                ret = machine__process_kernel_mmap_event(machine, event);
1594                if (ret < 0)
1595                        goto out_problem;
1596                return 0;
1597        }
1598
1599        thread = machine__findnew_thread(machine, event->mmap.pid,
1600                                         event->mmap.tid);
1601        if (thread == NULL)
1602                goto out_problem;
1603
1604        if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1605                prot = PROT_EXEC;
1606
1607        map = map__new(machine, event->mmap.start,
1608                        event->mmap.len, event->mmap.pgoff,
1609                        0, 0, 0, 0, prot, 0,
1610                        event->mmap.filename,
1611                        thread);
1612
1613        if (map == NULL)
1614                goto out_problem_map;
1615
1616        ret = thread__insert_map(thread, map);
1617        if (ret)
1618                goto out_problem_insert;
1619
1620        thread__put(thread);
1621        map__put(map);
1622        return 0;
1623
1624out_problem_insert:
1625        map__put(map);
1626out_problem_map:
1627        thread__put(thread);
1628out_problem:
1629        dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1630        return 0;
1631}
1632
1633static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1634{
1635        struct threads *threads = machine__threads(machine, th->tid);
1636
1637        if (threads->last_match == th)
1638                threads->last_match = NULL;
1639
1640        BUG_ON(refcount_read(&th->refcnt) == 0);
1641        if (lock)
1642                down_write(&threads->lock);
1643        rb_erase_init(&th->rb_node, &threads->entries);
1644        RB_CLEAR_NODE(&th->rb_node);
1645        --threads->nr;
1646        /*
1647         * Move it first to the dead_threads list, then drop the reference,
1648         * if this is the last reference, then the thread__delete destructor
1649         * will be called and we will remove it from the dead_threads list.
1650         */
1651        list_add_tail(&th->node, &threads->dead);
1652        if (lock)
1653                up_write(&threads->lock);
1654        thread__put(th);
1655}
1656
1657void machine__remove_thread(struct machine *machine, struct thread *th)
1658{
1659        return __machine__remove_thread(machine, th, true);
1660}
1661
1662int machine__process_fork_event(struct machine *machine, union perf_event *event,
1663                                struct perf_sample *sample)
1664{
1665        struct thread *thread = machine__find_thread(machine,
1666                                                     event->fork.pid,
1667                                                     event->fork.tid);
1668        struct thread *parent = machine__findnew_thread(machine,
1669                                                        event->fork.ppid,
1670                                                        event->fork.ptid);
1671        int err = 0;
1672
1673        if (dump_trace)
1674                perf_event__fprintf_task(event, stdout);
1675
1676        /*
1677         * There may be an existing thread that is not actually the parent,
1678         * either because we are processing events out of order, or because the
1679         * (fork) event that would have removed the thread was lost. Assume the
1680         * latter case and continue on as best we can.
1681         */
1682        if (parent->pid_ != (pid_t)event->fork.ppid) {
1683                dump_printf("removing erroneous parent thread %d/%d\n",
1684                            parent->pid_, parent->tid);
1685                machine__remove_thread(machine, parent);
1686                thread__put(parent);
1687                parent = machine__findnew_thread(machine, event->fork.ppid,
1688                                                 event->fork.ptid);
1689        }
1690
1691        /* if a thread currently exists for the thread id remove it */
1692        if (thread != NULL) {
1693                machine__remove_thread(machine, thread);
1694                thread__put(thread);
1695        }
1696
1697        thread = machine__findnew_thread(machine, event->fork.pid,
1698                                         event->fork.tid);
1699
1700        if (thread == NULL || parent == NULL ||
1701            thread__fork(thread, parent, sample->time) < 0) {
1702                dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1703                err = -1;
1704        }
1705        thread__put(thread);
1706        thread__put(parent);
1707
1708        return err;
1709}
1710
1711int machine__process_exit_event(struct machine *machine, union perf_event *event,
1712                                struct perf_sample *sample __maybe_unused)
1713{
1714        struct thread *thread = machine__find_thread(machine,
1715                                                     event->fork.pid,
1716                                                     event->fork.tid);
1717
1718        if (dump_trace)
1719                perf_event__fprintf_task(event, stdout);
1720
1721        if (thread != NULL) {
1722                thread__exited(thread);
1723                thread__put(thread);
1724        }
1725
1726        return 0;
1727}
1728
1729int machine__process_event(struct machine *machine, union perf_event *event,
1730                           struct perf_sample *sample)
1731{
1732        int ret;
1733
1734        switch (event->header.type) {
1735        case PERF_RECORD_COMM:
1736                ret = machine__process_comm_event(machine, event, sample); break;
1737        case PERF_RECORD_MMAP:
1738                ret = machine__process_mmap_event(machine, event, sample); break;
1739        case PERF_RECORD_NAMESPACES:
1740                ret = machine__process_namespaces_event(machine, event, sample); break;
1741        case PERF_RECORD_MMAP2:
1742                ret = machine__process_mmap2_event(machine, event, sample); break;
1743        case PERF_RECORD_FORK:
1744                ret = machine__process_fork_event(machine, event, sample); break;
1745        case PERF_RECORD_EXIT:
1746                ret = machine__process_exit_event(machine, event, sample); break;
1747        case PERF_RECORD_LOST:
1748                ret = machine__process_lost_event(machine, event, sample); break;
1749        case PERF_RECORD_AUX:
1750                ret = machine__process_aux_event(machine, event); break;
1751        case PERF_RECORD_ITRACE_START:
1752                ret = machine__process_itrace_start_event(machine, event); break;
1753        case PERF_RECORD_LOST_SAMPLES:
1754                ret = machine__process_lost_samples_event(machine, event, sample); break;
1755        case PERF_RECORD_SWITCH:
1756        case PERF_RECORD_SWITCH_CPU_WIDE:
1757                ret = machine__process_switch_event(machine, event); break;
1758        default:
1759                ret = -1;
1760                break;
1761        }
1762
1763        return ret;
1764}
1765
1766static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1767{
1768        if (!regexec(regex, sym->name, 0, NULL, 0))
1769                return 1;
1770        return 0;
1771}
1772
1773static void ip__resolve_ams(struct thread *thread,
1774                            struct addr_map_symbol *ams,
1775                            u64 ip)
1776{
1777        struct addr_location al;
1778
1779        memset(&al, 0, sizeof(al));
1780        /*
1781         * We cannot use the header.misc hint to determine whether a
1782         * branch stack address is user, kernel, guest, hypervisor.
1783         * Branches may straddle the kernel/user/hypervisor boundaries.
1784         * Thus, we have to try consecutively until we find a match
1785         * or else, the symbol is unknown
1786         */
1787        thread__find_cpumode_addr_location(thread, ip, &al);
1788
1789        ams->addr = ip;
1790        ams->al_addr = al.addr;
1791        ams->sym = al.sym;
1792        ams->map = al.map;
1793        ams->phys_addr = 0;
1794}
1795
1796static void ip__resolve_data(struct thread *thread,
1797                             u8 m, struct addr_map_symbol *ams,
1798                             u64 addr, u64 phys_addr)
1799{
1800        struct addr_location al;
1801
1802        memset(&al, 0, sizeof(al));
1803
1804        thread__find_symbol(thread, m, addr, &al);
1805
1806        ams->addr = addr;
1807        ams->al_addr = al.addr;
1808        ams->sym = al.sym;
1809        ams->map = al.map;
1810        ams->phys_addr = phys_addr;
1811}
1812
1813struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1814                                     struct addr_location *al)
1815{
1816        struct mem_info *mi = mem_info__new();
1817
1818        if (!mi)
1819                return NULL;
1820
1821        ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1822        ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1823                         sample->addr, sample->phys_addr);
1824        mi->data_src.val = sample->data_src;
1825
1826        return mi;
1827}
1828
1829static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1830{
1831        char *srcline = NULL;
1832
1833        if (!map || callchain_param.key == CCKEY_FUNCTION)
1834                return srcline;
1835
1836        srcline = srcline__tree_find(&map->dso->srclines, ip);
1837        if (!srcline) {
1838                bool show_sym = false;
1839                bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1840
1841                srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1842                                      sym, show_sym, show_addr, ip);
1843                srcline__tree_insert(&map->dso->srclines, ip, srcline);
1844        }
1845
1846        return srcline;
1847}
1848
1849struct iterations {
1850        int nr_loop_iter;
1851        u64 cycles;
1852};
1853
1854static int add_callchain_ip(struct thread *thread,
1855                            struct callchain_cursor *cursor,
1856                            struct symbol **parent,
1857                            struct addr_location *root_al,
1858                            u8 *cpumode,
1859                            u64 ip,
1860                            bool branch,
1861                            struct branch_flags *flags,
1862                            struct iterations *iter,
1863                            u64 branch_from)
1864{
1865        struct addr_location al;
1866        int nr_loop_iter = 0;
1867        u64 iter_cycles = 0;
1868        const char *srcline = NULL;
1869
1870        al.filtered = 0;
1871        al.sym = NULL;
1872        if (!cpumode) {
1873                thread__find_cpumode_addr_location(thread, ip, &al);
1874        } else {
1875                if (ip >= PERF_CONTEXT_MAX) {
1876                        switch (ip) {
1877                        case PERF_CONTEXT_HV:
1878                                *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1879                                break;
1880                        case PERF_CONTEXT_KERNEL:
1881                                *cpumode = PERF_RECORD_MISC_KERNEL;
1882                                break;
1883                        case PERF_CONTEXT_USER:
1884                                *cpumode = PERF_RECORD_MISC_USER;
1885                                break;
1886                        default:
1887                                pr_debug("invalid callchain context: "
1888                                         "%"PRId64"\n", (s64) ip);
1889                                /*
1890                                 * It seems the callchain is corrupted.
1891                                 * Discard all.
1892                                 */
1893                                callchain_cursor_reset(cursor);
1894                                return 1;
1895                        }
1896                        return 0;
1897                }
1898                thread__find_symbol(thread, *cpumode, ip, &al);
1899        }
1900
1901        if (al.sym != NULL) {
1902                if (perf_hpp_list.parent && !*parent &&
1903                    symbol__match_regex(al.sym, &parent_regex))
1904                        *parent = al.sym;
1905                else if (have_ignore_callees && root_al &&
1906                  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1907                        /* Treat this symbol as the root,
1908                           forgetting its callees. */
1909                        *root_al = al;
1910                        callchain_cursor_reset(cursor);
1911                }
1912        }
1913
1914        if (symbol_conf.hide_unresolved && al.sym == NULL)
1915                return 0;
1916
1917        if (iter) {
1918                nr_loop_iter = iter->nr_loop_iter;
1919                iter_cycles = iter->cycles;
1920        }
1921
1922        srcline = callchain_srcline(al.map, al.sym, al.addr);
1923        return callchain_cursor_append(cursor, ip, al.map, al.sym,
1924                                       branch, flags, nr_loop_iter,
1925                                       iter_cycles, branch_from, srcline);
1926}
1927
1928struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1929                                           struct addr_location *al)
1930{
1931        unsigned int i;
1932        const struct branch_stack *bs = sample->branch_stack;
1933        struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1934
1935        if (!bi)
1936                return NULL;
1937
1938        for (i = 0; i < bs->nr; i++) {
1939                ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1940                ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1941                bi[i].flags = bs->entries[i].flags;
1942        }
1943        return bi;
1944}
1945
1946static void save_iterations(struct iterations *iter,
1947                            struct branch_entry *be, int nr)
1948{
1949        int i;
1950
1951        iter->nr_loop_iter = nr;
1952        iter->cycles = 0;
1953
1954        for (i = 0; i < nr; i++)
1955                iter->cycles += be[i].flags.cycles;
1956}
1957
1958#define CHASHSZ 127
1959#define CHASHBITS 7
1960#define NO_ENTRY 0xff
1961
1962#define PERF_MAX_BRANCH_DEPTH 127
1963
1964/* Remove loops. */
1965static int remove_loops(struct branch_entry *l, int nr,
1966                        struct iterations *iter)
1967{
1968        int i, j, off;
1969        unsigned char chash[CHASHSZ];
1970
1971        memset(chash, NO_ENTRY, sizeof(chash));
1972
1973        BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1974
1975        for (i = 0; i < nr; i++) {
1976                int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1977
1978                /* no collision handling for now */
1979                if (chash[h] == NO_ENTRY) {
1980                        chash[h] = i;
1981                } else if (l[chash[h]].from == l[i].from) {
1982                        bool is_loop = true;
1983                        /* check if it is a real loop */
1984                        off = 0;
1985                        for (j = chash[h]; j < i && i + off < nr; j++, off++)
1986                                if (l[j].from != l[i + off].from) {
1987                                        is_loop = false;
1988                                        break;
1989                                }
1990                        if (is_loop) {
1991                                j = nr - (i + off);
1992                                if (j > 0) {
1993                                        save_iterations(iter + i + off,
1994                                                l + i, off);
1995
1996                                        memmove(iter + i, iter + i + off,
1997                                                j * sizeof(*iter));
1998
1999                                        memmove(l + i, l + i + off,
2000                                                j * sizeof(*l));
2001                                }
2002
2003                                nr -= off;
2004                        }
2005                }
2006        }
2007        return nr;
2008}
2009
2010/*
2011 * Recolve LBR callstack chain sample
2012 * Return:
2013 * 1 on success get LBR callchain information
2014 * 0 no available LBR callchain information, should try fp
2015 * negative error code on other errors.
2016 */
2017static int resolve_lbr_callchain_sample(struct thread *thread,
2018                                        struct callchain_cursor *cursor,
2019                                        struct perf_sample *sample,
2020                                        struct symbol **parent,
2021                                        struct addr_location *root_al,
2022                                        int max_stack)
2023{
2024        struct ip_callchain *chain = sample->callchain;
2025        int chain_nr = min(max_stack, (int)chain->nr), i;
2026        u8 cpumode = PERF_RECORD_MISC_USER;
2027        u64 ip, branch_from = 0;
2028
2029        for (i = 0; i < chain_nr; i++) {
2030                if (chain->ips[i] == PERF_CONTEXT_USER)
2031                        break;
2032        }
2033
2034        /* LBR only affects the user callchain */
2035        if (i != chain_nr) {
2036                struct branch_stack *lbr_stack = sample->branch_stack;
2037                int lbr_nr = lbr_stack->nr, j, k;
2038                bool branch;
2039                struct branch_flags *flags;
2040                /*
2041                 * LBR callstack can only get user call chain.
2042                 * The mix_chain_nr is kernel call chain
2043                 * number plus LBR user call chain number.
2044                 * i is kernel call chain number,
2045                 * 1 is PERF_CONTEXT_USER,
2046                 * lbr_nr + 1 is the user call chain number.
2047                 * For details, please refer to the comments
2048                 * in callchain__printf
2049                 */
2050                int mix_chain_nr = i + 1 + lbr_nr + 1;
2051
2052                for (j = 0; j < mix_chain_nr; j++) {
2053                        int err;
2054                        branch = false;
2055                        flags = NULL;
2056
2057                        if (callchain_param.order == ORDER_CALLEE) {
2058                                if (j < i + 1)
2059                                        ip = chain->ips[j];
2060                                else if (j > i + 1) {
2061                                        k = j - i - 2;
2062                                        ip = lbr_stack->entries[k].from;
2063                                        branch = true;
2064                                        flags = &lbr_stack->entries[k].flags;
2065                                } else {
2066                                        ip = lbr_stack->entries[0].to;
2067                                        branch = true;
2068                                        flags = &lbr_stack->entries[0].flags;
2069                                        branch_from =
2070                                                lbr_stack->entries[0].from;
2071                                }
2072                        } else {
2073                                if (j < lbr_nr) {
2074                                        k = lbr_nr - j - 1;
2075                                        ip = lbr_stack->entries[k].from;
2076                                        branch = true;
2077                                        flags = &lbr_stack->entries[k].flags;
2078                                }
2079                                else if (j > lbr_nr)
2080                                        ip = chain->ips[i + 1 - (j - lbr_nr)];
2081                                else {
2082                                        ip = lbr_stack->entries[0].to;
2083                                        branch = true;
2084                                        flags = &lbr_stack->entries[0].flags;
2085                                        branch_from =
2086                                                lbr_stack->entries[0].from;
2087                                }
2088                        }
2089
2090                        err = add_callchain_ip(thread, cursor, parent,
2091                                               root_al, &cpumode, ip,
2092                                               branch, flags, NULL,
2093                                               branch_from);
2094                        if (err)
2095                                return (err < 0) ? err : 0;
2096                }
2097                return 1;
2098        }
2099
2100        return 0;
2101}
2102
2103static int thread__resolve_callchain_sample(struct thread *thread,
2104                                            struct callchain_cursor *cursor,
2105                                            struct perf_evsel *evsel,
2106                                            struct perf_sample *sample,
2107                                            struct symbol **parent,
2108                                            struct addr_location *root_al,
2109                                            int max_stack)
2110{
2111        struct branch_stack *branch = sample->branch_stack;
2112        struct ip_callchain *chain = sample->callchain;
2113        int chain_nr = 0;
2114        u8 cpumode = PERF_RECORD_MISC_USER;
2115        int i, j, err, nr_entries;
2116        int skip_idx = -1;
2117        int first_call = 0;
2118
2119        if (chain)
2120                chain_nr = chain->nr;
2121
2122        if (perf_evsel__has_branch_callstack(evsel)) {
2123                err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2124                                                   root_al, max_stack);
2125                if (err)
2126                        return (err < 0) ? err : 0;
2127        }
2128
2129        /*
2130         * Based on DWARF debug information, some architectures skip
2131         * a callchain entry saved by the kernel.
2132         */
2133        skip_idx = arch_skip_callchain_idx(thread, chain);
2134
2135        /*
2136         * Add branches to call stack for easier browsing. This gives
2137         * more context for a sample than just the callers.
2138         *
2139         * This uses individual histograms of paths compared to the
2140         * aggregated histograms the normal LBR mode uses.
2141         *
2142         * Limitations for now:
2143         * - No extra filters
2144         * - No annotations (should annotate somehow)
2145         */
2146
2147        if (branch && callchain_param.branch_callstack) {
2148                int nr = min(max_stack, (int)branch->nr);
2149                struct branch_entry be[nr];
2150                struct iterations iter[nr];
2151
2152                if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2153                        pr_warning("corrupted branch chain. skipping...\n");
2154                        goto check_calls;
2155                }
2156
2157                for (i = 0; i < nr; i++) {
2158                        if (callchain_param.order == ORDER_CALLEE) {
2159                                be[i] = branch->entries[i];
2160
2161                                if (chain == NULL)
2162                                        continue;
2163
2164                                /*
2165                                 * Check for overlap into the callchain.
2166                                 * The return address is one off compared to
2167                                 * the branch entry. To adjust for this
2168                                 * assume the calling instruction is not longer
2169                                 * than 8 bytes.
2170                                 */
2171                                if (i == skip_idx ||
2172                                    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2173                                        first_call++;
2174                                else if (be[i].from < chain->ips[first_call] &&
2175                                    be[i].from >= chain->ips[first_call] - 8)
2176                                        first_call++;
2177                        } else
2178                                be[i] = branch->entries[branch->nr - i - 1];
2179                }
2180
2181                memset(iter, 0, sizeof(struct iterations) * nr);
2182                nr = remove_loops(be, nr, iter);
2183
2184                for (i = 0; i < nr; i++) {
2185                        err = add_callchain_ip(thread, cursor, parent,
2186                                               root_al,
2187                                               NULL, be[i].to,
2188                                               true, &be[i].flags,
2189                                               NULL, be[i].from);
2190
2191                        if (!err)
2192                                err = add_callchain_ip(thread, cursor, parent, root_al,
2193                                                       NULL, be[i].from,
2194                                                       true, &be[i].flags,
2195                                                       &iter[i], 0);
2196                        if (err == -EINVAL)
2197                                break;
2198                        if (err)
2199                                return err;
2200                }
2201
2202                if (chain_nr == 0)
2203                        return 0;
2204
2205                chain_nr -= nr;
2206        }
2207
2208check_calls:
2209        for (i = first_call, nr_entries = 0;
2210             i < chain_nr && nr_entries < max_stack; i++) {
2211                u64 ip;
2212
2213                if (callchain_param.order == ORDER_CALLEE)
2214                        j = i;
2215                else
2216                        j = chain->nr - i - 1;
2217
2218#ifdef HAVE_SKIP_CALLCHAIN_IDX
2219                if (j == skip_idx)
2220                        continue;
2221#endif
2222                ip = chain->ips[j];
2223
2224                if (ip < PERF_CONTEXT_MAX)
2225                       ++nr_entries;
2226
2227                err = add_callchain_ip(thread, cursor, parent,
2228                                       root_al, &cpumode, ip,
2229                                       false, NULL, NULL, 0);
2230
2231                if (err)
2232                        return (err < 0) ? err : 0;
2233        }
2234
2235        return 0;
2236}
2237
2238static int append_inlines(struct callchain_cursor *cursor,
2239                          struct map *map, struct symbol *sym, u64 ip)
2240{
2241        struct inline_node *inline_node;
2242        struct inline_list *ilist;
2243        u64 addr;
2244        int ret = 1;
2245
2246        if (!symbol_conf.inline_name || !map || !sym)
2247                return ret;
2248
2249        addr = map__rip_2objdump(map, ip);
2250
2251        inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2252        if (!inline_node) {
2253                inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2254                if (!inline_node)
2255                        return ret;
2256                inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2257        }
2258
2259        list_for_each_entry(ilist, &inline_node->val, list) {
2260                ret = callchain_cursor_append(cursor, ip, map,
2261                                              ilist->symbol, false,
2262                                              NULL, 0, 0, 0, ilist->srcline);
2263
2264                if (ret != 0)
2265                        return ret;
2266        }
2267
2268        return ret;
2269}
2270
2271static int unwind_entry(struct unwind_entry *entry, void *arg)
2272{
2273        struct callchain_cursor *cursor = arg;
2274        const char *srcline = NULL;
2275
2276        if (symbol_conf.hide_unresolved && entry->sym == NULL)
2277                return 0;
2278
2279        if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2280                return 0;
2281
2282        srcline = callchain_srcline(entry->map, entry->sym, entry->ip);
2283        return callchain_cursor_append(cursor, entry->ip,
2284                                       entry->map, entry->sym,
2285                                       false, NULL, 0, 0, 0, srcline);
2286}
2287
2288static int thread__resolve_callchain_unwind(struct thread *thread,
2289                                            struct callchain_cursor *cursor,
2290                                            struct perf_evsel *evsel,
2291                                            struct perf_sample *sample,
2292                                            int max_stack)
2293{
2294        /* Can we do dwarf post unwind? */
2295        if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2296              (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2297                return 0;
2298
2299        /* Bail out if nothing was captured. */
2300        if ((!sample->user_regs.regs) ||
2301            (!sample->user_stack.size))
2302                return 0;
2303
2304        return unwind__get_entries(unwind_entry, cursor,
2305                                   thread, sample, max_stack);
2306}
2307
2308int thread__resolve_callchain(struct thread *thread,
2309                              struct callchain_cursor *cursor,
2310                              struct perf_evsel *evsel,
2311                              struct perf_sample *sample,
2312                              struct symbol **parent,
2313                              struct addr_location *root_al,
2314                              int max_stack)
2315{
2316        int ret = 0;
2317
2318        callchain_cursor_reset(cursor);
2319
2320        if (callchain_param.order == ORDER_CALLEE) {
2321                ret = thread__resolve_callchain_sample(thread, cursor,
2322                                                       evsel, sample,
2323                                                       parent, root_al,
2324                                                       max_stack);
2325                if (ret)
2326                        return ret;
2327                ret = thread__resolve_callchain_unwind(thread, cursor,
2328                                                       evsel, sample,
2329                                                       max_stack);
2330        } else {
2331                ret = thread__resolve_callchain_unwind(thread, cursor,
2332                                                       evsel, sample,
2333                                                       max_stack);
2334                if (ret)
2335                        return ret;
2336                ret = thread__resolve_callchain_sample(thread, cursor,
2337                                                       evsel, sample,
2338                                                       parent, root_al,
2339                                                       max_stack);
2340        }
2341
2342        return ret;
2343}
2344
2345int machine__for_each_thread(struct machine *machine,
2346                             int (*fn)(struct thread *thread, void *p),
2347                             void *priv)
2348{
2349        struct threads *threads;
2350        struct rb_node *nd;
2351        struct thread *thread;
2352        int rc = 0;
2353        int i;
2354
2355        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2356                threads = &machine->threads[i];
2357                for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
2358                        thread = rb_entry(nd, struct thread, rb_node);
2359                        rc = fn(thread, priv);
2360                        if (rc != 0)
2361                                return rc;
2362                }
2363
2364                list_for_each_entry(thread, &threads->dead, node) {
2365                        rc = fn(thread, priv);
2366                        if (rc != 0)
2367                                return rc;
2368                }
2369        }
2370        return rc;
2371}
2372
2373int machines__for_each_thread(struct machines *machines,
2374                              int (*fn)(struct thread *thread, void *p),
2375                              void *priv)
2376{
2377        struct rb_node *nd;
2378        int rc = 0;
2379
2380        rc = machine__for_each_thread(&machines->host, fn, priv);
2381        if (rc != 0)
2382                return rc;
2383
2384        for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2385                struct machine *machine = rb_entry(nd, struct machine, rb_node);
2386
2387                rc = machine__for_each_thread(machine, fn, priv);
2388                if (rc != 0)
2389                        return rc;
2390        }
2391        return rc;
2392}
2393
2394int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2395                                  struct target *target, struct thread_map *threads,
2396                                  perf_event__handler_t process, bool data_mmap,
2397                                  unsigned int proc_map_timeout,
2398                                  unsigned int nr_threads_synthesize)
2399{
2400        if (target__has_task(target))
2401                return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2402        else if (target__has_cpu(target))
2403                return perf_event__synthesize_threads(tool, process,
2404                                                      machine, data_mmap,
2405                                                      proc_map_timeout,
2406                                                      nr_threads_synthesize);
2407        /* command specified */
2408        return 0;
2409}
2410
2411pid_t machine__get_current_tid(struct machine *machine, int cpu)
2412{
2413        if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2414                return -1;
2415
2416        return machine->current_tid[cpu];
2417}
2418
2419int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2420                             pid_t tid)
2421{
2422        struct thread *thread;
2423
2424        if (cpu < 0)
2425                return -EINVAL;
2426
2427        if (!machine->current_tid) {
2428                int i;
2429
2430                machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2431                if (!machine->current_tid)
2432                        return -ENOMEM;
2433                for (i = 0; i < MAX_NR_CPUS; i++)
2434                        machine->current_tid[i] = -1;
2435        }
2436
2437        if (cpu >= MAX_NR_CPUS) {
2438                pr_err("Requested CPU %d too large. ", cpu);
2439                pr_err("Consider raising MAX_NR_CPUS\n");
2440                return -EINVAL;
2441        }
2442
2443        machine->current_tid[cpu] = tid;
2444
2445        thread = machine__findnew_thread(machine, pid, tid);
2446        if (!thread)
2447                return -ENOMEM;
2448
2449        thread->cpu = cpu;
2450        thread__put(thread);
2451
2452        return 0;
2453}
2454
2455/*
2456 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2457 * normalized arch is needed.
2458 */
2459bool machine__is(struct machine *machine, const char *arch)
2460{
2461        return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2462}
2463
2464int machine__nr_cpus_avail(struct machine *machine)
2465{
2466        return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2467}
2468
2469int machine__get_kernel_start(struct machine *machine)
2470{
2471        struct map *map = machine__kernel_map(machine);
2472        int err = 0;
2473
2474        /*
2475         * The only addresses above 2^63 are kernel addresses of a 64-bit
2476         * kernel.  Note that addresses are unsigned so that on a 32-bit system
2477         * all addresses including kernel addresses are less than 2^32.  In
2478         * that case (32-bit system), if the kernel mapping is unknown, all
2479         * addresses will be assumed to be in user space - see
2480         * machine__kernel_ip().
2481         */
2482        machine->kernel_start = 1ULL << 63;
2483        if (map) {
2484                err = map__load(map);
2485                /*
2486                 * On x86_64, PTI entry trampolines are less than the
2487                 * start of kernel text, but still above 2^63. So leave
2488                 * kernel_start = 1ULL << 63 for x86_64.
2489                 */
2490                if (!err && !machine__is(machine, "x86_64"))
2491                        machine->kernel_start = map->start;
2492        }
2493        return err;
2494}
2495
2496struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2497{
2498        return dsos__findnew(&machine->dsos, filename);
2499}
2500
2501char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2502{
2503        struct machine *machine = vmachine;
2504        struct map *map;
2505        struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2506
2507        if (sym == NULL)
2508                return NULL;
2509
2510        *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2511        *addrp = map->unmap_ip(map, sym->start);
2512        return sym->name;
2513}
2514