linux/arch/arm/mm/fault.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/mm/fault.c
   3 *
   4 *  Copyright (C) 1995  Linus Torvalds
   5 *  Modifications for ARM processor (c) 1995-2004 Russell King
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/extable.h>
  12#include <linux/signal.h>
  13#include <linux/mm.h>
  14#include <linux/hardirq.h>
  15#include <linux/init.h>
  16#include <linux/kprobes.h>
  17#include <linux/uaccess.h>
  18#include <linux/page-flags.h>
  19#include <linux/sched/signal.h>
  20#include <linux/sched/debug.h>
  21#include <linux/highmem.h>
  22#include <linux/perf_event.h>
  23
  24#include <asm/pgtable.h>
  25#include <asm/system_misc.h>
  26#include <asm/system_info.h>
  27#include <asm/tlbflush.h>
  28
  29#include "fault.h"
  30
  31#ifdef CONFIG_MMU
  32
  33#ifdef CONFIG_KPROBES
  34static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
  35{
  36        int ret = 0;
  37
  38        if (!user_mode(regs)) {
  39                /* kprobe_running() needs smp_processor_id() */
  40                preempt_disable();
  41                if (kprobe_running() && kprobe_fault_handler(regs, fsr))
  42                        ret = 1;
  43                preempt_enable();
  44        }
  45
  46        return ret;
  47}
  48#else
  49static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
  50{
  51        return 0;
  52}
  53#endif
  54
  55/*
  56 * This is useful to dump out the page tables associated with
  57 * 'addr' in mm 'mm'.
  58 */
  59void show_pte(struct mm_struct *mm, unsigned long addr)
  60{
  61        pgd_t *pgd;
  62
  63        if (!mm)
  64                mm = &init_mm;
  65
  66        pr_alert("pgd = %p\n", mm->pgd);
  67        pgd = pgd_offset(mm, addr);
  68        pr_alert("[%08lx] *pgd=%08llx",
  69                        addr, (long long)pgd_val(*pgd));
  70
  71        do {
  72                pud_t *pud;
  73                pmd_t *pmd;
  74                pte_t *pte;
  75
  76                if (pgd_none(*pgd))
  77                        break;
  78
  79                if (pgd_bad(*pgd)) {
  80                        pr_cont("(bad)");
  81                        break;
  82                }
  83
  84                pud = pud_offset(pgd, addr);
  85                if (PTRS_PER_PUD != 1)
  86                        pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
  87
  88                if (pud_none(*pud))
  89                        break;
  90
  91                if (pud_bad(*pud)) {
  92                        pr_cont("(bad)");
  93                        break;
  94                }
  95
  96                pmd = pmd_offset(pud, addr);
  97                if (PTRS_PER_PMD != 1)
  98                        pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
  99
 100                if (pmd_none(*pmd))
 101                        break;
 102
 103                if (pmd_bad(*pmd)) {
 104                        pr_cont("(bad)");
 105                        break;
 106                }
 107
 108                /* We must not map this if we have highmem enabled */
 109                if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
 110                        break;
 111
 112                pte = pte_offset_map(pmd, addr);
 113                pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
 114#ifndef CONFIG_ARM_LPAE
 115                pr_cont(", *ppte=%08llx",
 116                       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
 117#endif
 118                pte_unmap(pte);
 119        } while(0);
 120
 121        pr_cont("\n");
 122}
 123#else                                   /* CONFIG_MMU */
 124void show_pte(struct mm_struct *mm, unsigned long addr)
 125{ }
 126#endif                                  /* CONFIG_MMU */
 127
 128/*
 129 * Oops.  The kernel tried to access some page that wasn't present.
 130 */
 131static void
 132__do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
 133                  struct pt_regs *regs)
 134{
 135        /*
 136         * Are we prepared to handle this kernel fault?
 137         */
 138        if (fixup_exception(regs))
 139                return;
 140
 141        /*
 142         * No handler, we'll have to terminate things with extreme prejudice.
 143         */
 144        bust_spinlocks(1);
 145        pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
 146                 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
 147                 "paging request", addr);
 148
 149        show_pte(mm, addr);
 150        die("Oops", regs, fsr);
 151        bust_spinlocks(0);
 152        do_exit(SIGKILL);
 153}
 154
 155/*
 156 * Something tried to access memory that isn't in our memory map..
 157 * User mode accesses just cause a SIGSEGV
 158 */
 159static void
 160__do_user_fault(struct task_struct *tsk, unsigned long addr,
 161                unsigned int fsr, unsigned int sig, int code,
 162                struct pt_regs *regs)
 163{
 164        struct siginfo si;
 165
 166        if (addr > TASK_SIZE)
 167                harden_branch_predictor();
 168
 169        clear_siginfo(&si);
 170
 171#ifdef CONFIG_DEBUG_USER
 172        if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
 173            ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
 174                printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
 175                       tsk->comm, sig, addr, fsr);
 176                show_pte(tsk->mm, addr);
 177                show_regs(regs);
 178        }
 179#endif
 180
 181        tsk->thread.address = addr;
 182        tsk->thread.error_code = fsr;
 183        tsk->thread.trap_no = 14;
 184        si.si_signo = sig;
 185        si.si_errno = 0;
 186        si.si_code = code;
 187        si.si_addr = (void __user *)addr;
 188        force_sig_info(sig, &si, tsk);
 189}
 190
 191void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 192{
 193        struct task_struct *tsk = current;
 194        struct mm_struct *mm = tsk->active_mm;
 195
 196        /*
 197         * If we are in kernel mode at this point, we
 198         * have no context to handle this fault with.
 199         */
 200        if (user_mode(regs))
 201                __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
 202        else
 203                __do_kernel_fault(mm, addr, fsr, regs);
 204}
 205
 206#ifdef CONFIG_MMU
 207#define VM_FAULT_BADMAP         0x010000
 208#define VM_FAULT_BADACCESS      0x020000
 209
 210/*
 211 * Check that the permissions on the VMA allow for the fault which occurred.
 212 * If we encountered a write fault, we must have write permission, otherwise
 213 * we allow any permission.
 214 */
 215static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
 216{
 217        unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
 218
 219        if (fsr & FSR_WRITE)
 220                mask = VM_WRITE;
 221        if (fsr & FSR_LNX_PF)
 222                mask = VM_EXEC;
 223
 224        return vma->vm_flags & mask ? false : true;
 225}
 226
 227static vm_fault_t __kprobes
 228__do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
 229                unsigned int flags, struct task_struct *tsk)
 230{
 231        struct vm_area_struct *vma;
 232        vm_fault_t fault;
 233
 234        vma = find_vma(mm, addr);
 235        fault = VM_FAULT_BADMAP;
 236        if (unlikely(!vma))
 237                goto out;
 238        if (unlikely(vma->vm_start > addr))
 239                goto check_stack;
 240
 241        /*
 242         * Ok, we have a good vm_area for this
 243         * memory access, so we can handle it.
 244         */
 245good_area:
 246        if (access_error(fsr, vma)) {
 247                fault = VM_FAULT_BADACCESS;
 248                goto out;
 249        }
 250
 251        return handle_mm_fault(vma, addr & PAGE_MASK, flags);
 252
 253check_stack:
 254        /* Don't allow expansion below FIRST_USER_ADDRESS */
 255        if (vma->vm_flags & VM_GROWSDOWN &&
 256            addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
 257                goto good_area;
 258out:
 259        return fault;
 260}
 261
 262static int __kprobes
 263do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 264{
 265        struct task_struct *tsk;
 266        struct mm_struct *mm;
 267        int sig, code;
 268        vm_fault_t fault;
 269        unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 270
 271        if (notify_page_fault(regs, fsr))
 272                return 0;
 273
 274        tsk = current;
 275        mm  = tsk->mm;
 276
 277        /* Enable interrupts if they were enabled in the parent context. */
 278        if (interrupts_enabled(regs))
 279                local_irq_enable();
 280
 281        /*
 282         * If we're in an interrupt or have no user
 283         * context, we must not take the fault..
 284         */
 285        if (faulthandler_disabled() || !mm)
 286                goto no_context;
 287
 288        if (user_mode(regs))
 289                flags |= FAULT_FLAG_USER;
 290        if (fsr & FSR_WRITE)
 291                flags |= FAULT_FLAG_WRITE;
 292
 293        /*
 294         * As per x86, we may deadlock here.  However, since the kernel only
 295         * validly references user space from well defined areas of the code,
 296         * we can bug out early if this is from code which shouldn't.
 297         */
 298        if (!down_read_trylock(&mm->mmap_sem)) {
 299                if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
 300                        goto no_context;
 301retry:
 302                down_read(&mm->mmap_sem);
 303        } else {
 304                /*
 305                 * The above down_read_trylock() might have succeeded in
 306                 * which case, we'll have missed the might_sleep() from
 307                 * down_read()
 308                 */
 309                might_sleep();
 310#ifdef CONFIG_DEBUG_VM
 311                if (!user_mode(regs) &&
 312                    !search_exception_tables(regs->ARM_pc))
 313                        goto no_context;
 314#endif
 315        }
 316
 317        fault = __do_page_fault(mm, addr, fsr, flags, tsk);
 318
 319        /* If we need to retry but a fatal signal is pending, handle the
 320         * signal first. We do not need to release the mmap_sem because
 321         * it would already be released in __lock_page_or_retry in
 322         * mm/filemap.c. */
 323        if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
 324                if (!user_mode(regs))
 325                        goto no_context;
 326                return 0;
 327        }
 328
 329        /*
 330         * Major/minor page fault accounting is only done on the
 331         * initial attempt. If we go through a retry, it is extremely
 332         * likely that the page will be found in page cache at that point.
 333         */
 334
 335        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
 336        if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
 337                if (fault & VM_FAULT_MAJOR) {
 338                        tsk->maj_flt++;
 339                        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
 340                                        regs, addr);
 341                } else {
 342                        tsk->min_flt++;
 343                        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
 344                                        regs, addr);
 345                }
 346                if (fault & VM_FAULT_RETRY) {
 347                        /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
 348                        * of starvation. */
 349                        flags &= ~FAULT_FLAG_ALLOW_RETRY;
 350                        flags |= FAULT_FLAG_TRIED;
 351                        goto retry;
 352                }
 353        }
 354
 355        up_read(&mm->mmap_sem);
 356
 357        /*
 358         * Handle the "normal" case first - VM_FAULT_MAJOR
 359         */
 360        if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
 361                return 0;
 362
 363        /*
 364         * If we are in kernel mode at this point, we
 365         * have no context to handle this fault with.
 366         */
 367        if (!user_mode(regs))
 368                goto no_context;
 369
 370        if (fault & VM_FAULT_OOM) {
 371                /*
 372                 * We ran out of memory, call the OOM killer, and return to
 373                 * userspace (which will retry the fault, or kill us if we
 374                 * got oom-killed)
 375                 */
 376                pagefault_out_of_memory();
 377                return 0;
 378        }
 379
 380        if (fault & VM_FAULT_SIGBUS) {
 381                /*
 382                 * We had some memory, but were unable to
 383                 * successfully fix up this page fault.
 384                 */
 385                sig = SIGBUS;
 386                code = BUS_ADRERR;
 387        } else {
 388                /*
 389                 * Something tried to access memory that
 390                 * isn't in our memory map..
 391                 */
 392                sig = SIGSEGV;
 393                code = fault == VM_FAULT_BADACCESS ?
 394                        SEGV_ACCERR : SEGV_MAPERR;
 395        }
 396
 397        __do_user_fault(tsk, addr, fsr, sig, code, regs);
 398        return 0;
 399
 400no_context:
 401        __do_kernel_fault(mm, addr, fsr, regs);
 402        return 0;
 403}
 404#else                                   /* CONFIG_MMU */
 405static int
 406do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 407{
 408        return 0;
 409}
 410#endif                                  /* CONFIG_MMU */
 411
 412/*
 413 * First Level Translation Fault Handler
 414 *
 415 * We enter here because the first level page table doesn't contain
 416 * a valid entry for the address.
 417 *
 418 * If the address is in kernel space (>= TASK_SIZE), then we are
 419 * probably faulting in the vmalloc() area.
 420 *
 421 * If the init_task's first level page tables contains the relevant
 422 * entry, we copy the it to this task.  If not, we send the process
 423 * a signal, fixup the exception, or oops the kernel.
 424 *
 425 * NOTE! We MUST NOT take any locks for this case. We may be in an
 426 * interrupt or a critical region, and should only copy the information
 427 * from the master page table, nothing more.
 428 */
 429#ifdef CONFIG_MMU
 430static int __kprobes
 431do_translation_fault(unsigned long addr, unsigned int fsr,
 432                     struct pt_regs *regs)
 433{
 434        unsigned int index;
 435        pgd_t *pgd, *pgd_k;
 436        pud_t *pud, *pud_k;
 437        pmd_t *pmd, *pmd_k;
 438
 439        if (addr < TASK_SIZE)
 440                return do_page_fault(addr, fsr, regs);
 441
 442        if (user_mode(regs))
 443                goto bad_area;
 444
 445        index = pgd_index(addr);
 446
 447        pgd = cpu_get_pgd() + index;
 448        pgd_k = init_mm.pgd + index;
 449
 450        if (pgd_none(*pgd_k))
 451                goto bad_area;
 452        if (!pgd_present(*pgd))
 453                set_pgd(pgd, *pgd_k);
 454
 455        pud = pud_offset(pgd, addr);
 456        pud_k = pud_offset(pgd_k, addr);
 457
 458        if (pud_none(*pud_k))
 459                goto bad_area;
 460        if (!pud_present(*pud))
 461                set_pud(pud, *pud_k);
 462
 463        pmd = pmd_offset(pud, addr);
 464        pmd_k = pmd_offset(pud_k, addr);
 465
 466#ifdef CONFIG_ARM_LPAE
 467        /*
 468         * Only one hardware entry per PMD with LPAE.
 469         */
 470        index = 0;
 471#else
 472        /*
 473         * On ARM one Linux PGD entry contains two hardware entries (see page
 474         * tables layout in pgtable.h). We normally guarantee that we always
 475         * fill both L1 entries. But create_mapping() doesn't follow the rule.
 476         * It can create inidividual L1 entries, so here we have to call
 477         * pmd_none() check for the entry really corresponded to address, not
 478         * for the first of pair.
 479         */
 480        index = (addr >> SECTION_SHIFT) & 1;
 481#endif
 482        if (pmd_none(pmd_k[index]))
 483                goto bad_area;
 484
 485        copy_pmd(pmd, pmd_k);
 486        return 0;
 487
 488bad_area:
 489        do_bad_area(addr, fsr, regs);
 490        return 0;
 491}
 492#else                                   /* CONFIG_MMU */
 493static int
 494do_translation_fault(unsigned long addr, unsigned int fsr,
 495                     struct pt_regs *regs)
 496{
 497        return 0;
 498}
 499#endif                                  /* CONFIG_MMU */
 500
 501/*
 502 * Some section permission faults need to be handled gracefully.
 503 * They can happen due to a __{get,put}_user during an oops.
 504 */
 505#ifndef CONFIG_ARM_LPAE
 506static int
 507do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 508{
 509        do_bad_area(addr, fsr, regs);
 510        return 0;
 511}
 512#endif /* CONFIG_ARM_LPAE */
 513
 514/*
 515 * This abort handler always returns "fault".
 516 */
 517static int
 518do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 519{
 520        return 1;
 521}
 522
 523struct fsr_info {
 524        int     (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
 525        int     sig;
 526        int     code;
 527        const char *name;
 528};
 529
 530/* FSR definition */
 531#ifdef CONFIG_ARM_LPAE
 532#include "fsr-3level.c"
 533#else
 534#include "fsr-2level.c"
 535#endif
 536
 537void __init
 538hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
 539                int sig, int code, const char *name)
 540{
 541        if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
 542                BUG();
 543
 544        fsr_info[nr].fn   = fn;
 545        fsr_info[nr].sig  = sig;
 546        fsr_info[nr].code = code;
 547        fsr_info[nr].name = name;
 548}
 549
 550/*
 551 * Dispatch a data abort to the relevant handler.
 552 */
 553asmlinkage void
 554do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 555{
 556        const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
 557        struct siginfo info;
 558
 559        if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
 560                return;
 561
 562        pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
 563                inf->name, fsr, addr);
 564        show_pte(current->mm, addr);
 565
 566        clear_siginfo(&info);
 567        info.si_signo = inf->sig;
 568        info.si_errno = 0;
 569        info.si_code  = inf->code;
 570        info.si_addr  = (void __user *)addr;
 571        arm_notify_die("", regs, &info, fsr, 0);
 572}
 573
 574void __init
 575hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
 576                 int sig, int code, const char *name)
 577{
 578        if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
 579                BUG();
 580
 581        ifsr_info[nr].fn   = fn;
 582        ifsr_info[nr].sig  = sig;
 583        ifsr_info[nr].code = code;
 584        ifsr_info[nr].name = name;
 585}
 586
 587asmlinkage void
 588do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
 589{
 590        const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
 591        struct siginfo info;
 592
 593        if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
 594                return;
 595
 596        pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
 597                inf->name, ifsr, addr);
 598
 599        clear_siginfo(&info);
 600        info.si_signo = inf->sig;
 601        info.si_errno = 0;
 602        info.si_code  = inf->code;
 603        info.si_addr  = (void __user *)addr;
 604        arm_notify_die("", regs, &info, ifsr, 0);
 605}
 606
 607/*
 608 * Abort handler to be used only during first unmasking of asynchronous aborts
 609 * on the boot CPU. This makes sure that the machine will not die if the
 610 * firmware/bootloader left an imprecise abort pending for us to trip over.
 611 */
 612static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
 613                                      struct pt_regs *regs)
 614{
 615        pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
 616                "first unmask, this is most likely caused by a "
 617                "firmware/bootloader bug.\n", fsr);
 618
 619        return 0;
 620}
 621
 622void __init early_abt_enable(void)
 623{
 624        fsr_info[FSR_FS_AEA].fn = early_abort_handler;
 625        local_abt_enable();
 626        fsr_info[FSR_FS_AEA].fn = do_bad;
 627}
 628
 629#ifndef CONFIG_ARM_LPAE
 630static int __init exceptions_init(void)
 631{
 632        if (cpu_architecture() >= CPU_ARCH_ARMv6) {
 633                hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
 634                                "I-cache maintenance fault");
 635        }
 636
 637        if (cpu_architecture() >= CPU_ARCH_ARMv7) {
 638                /*
 639                 * TODO: Access flag faults introduced in ARMv6K.
 640                 * Runtime check for 'K' extension is needed
 641                 */
 642                hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
 643                                "section access flag fault");
 644                hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
 645                                "section access flag fault");
 646        }
 647
 648        return 0;
 649}
 650
 651arch_initcall(exceptions_init);
 652#endif
 653