linux/arch/powerpc/kernel/eeh_cache.c
<<
>>
Prefs
   1/*
   2 * PCI address cache; allows the lookup of PCI devices based on I/O address
   3 *
   4 * Copyright IBM Corporation 2004
   5 * Copyright Linas Vepstas <linas@austin.ibm.com> 2004
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  20 */
  21
  22#include <linux/list.h>
  23#include <linux/pci.h>
  24#include <linux/rbtree.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27#include <linux/atomic.h>
  28#include <asm/pci-bridge.h>
  29#include <asm/ppc-pci.h>
  30
  31
  32/**
  33 * The pci address cache subsystem.  This subsystem places
  34 * PCI device address resources into a red-black tree, sorted
  35 * according to the address range, so that given only an i/o
  36 * address, the corresponding PCI device can be **quickly**
  37 * found. It is safe to perform an address lookup in an interrupt
  38 * context; this ability is an important feature.
  39 *
  40 * Currently, the only customer of this code is the EEH subsystem;
  41 * thus, this code has been somewhat tailored to suit EEH better.
  42 * In particular, the cache does *not* hold the addresses of devices
  43 * for which EEH is not enabled.
  44 *
  45 * (Implementation Note: The RB tree seems to be better/faster
  46 * than any hash algo I could think of for this problem, even
  47 * with the penalty of slow pointer chases for d-cache misses).
  48 */
  49struct pci_io_addr_range {
  50        struct rb_node rb_node;
  51        resource_size_t addr_lo;
  52        resource_size_t addr_hi;
  53        struct eeh_dev *edev;
  54        struct pci_dev *pcidev;
  55        unsigned long flags;
  56};
  57
  58static struct pci_io_addr_cache {
  59        struct rb_root rb_root;
  60        spinlock_t piar_lock;
  61} pci_io_addr_cache_root;
  62
  63static inline struct eeh_dev *__eeh_addr_cache_get_device(unsigned long addr)
  64{
  65        struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
  66
  67        while (n) {
  68                struct pci_io_addr_range *piar;
  69                piar = rb_entry(n, struct pci_io_addr_range, rb_node);
  70
  71                if (addr < piar->addr_lo)
  72                        n = n->rb_left;
  73                else if (addr > piar->addr_hi)
  74                        n = n->rb_right;
  75                else
  76                        return piar->edev;
  77        }
  78
  79        return NULL;
  80}
  81
  82/**
  83 * eeh_addr_cache_get_dev - Get device, given only address
  84 * @addr: mmio (PIO) phys address or i/o port number
  85 *
  86 * Given an mmio phys address, or a port number, find a pci device
  87 * that implements this address.  I/O port numbers are assumed to be offset
  88 * from zero (that is, they do *not* have pci_io_addr added in).
  89 * It is safe to call this function within an interrupt.
  90 */
  91struct eeh_dev *eeh_addr_cache_get_dev(unsigned long addr)
  92{
  93        struct eeh_dev *edev;
  94        unsigned long flags;
  95
  96        spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
  97        edev = __eeh_addr_cache_get_device(addr);
  98        spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
  99        return edev;
 100}
 101
 102#ifdef DEBUG
 103/*
 104 * Handy-dandy debug print routine, does nothing more
 105 * than print out the contents of our addr cache.
 106 */
 107static void eeh_addr_cache_print(struct pci_io_addr_cache *cache)
 108{
 109        struct rb_node *n;
 110        int cnt = 0;
 111
 112        n = rb_first(&cache->rb_root);
 113        while (n) {
 114                struct pci_io_addr_range *piar;
 115                piar = rb_entry(n, struct pci_io_addr_range, rb_node);
 116                pr_debug("PCI: %s addr range %d [%pap-%pap]: %s\n",
 117                       (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
 118                       &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev));
 119                cnt++;
 120                n = rb_next(n);
 121        }
 122}
 123#endif
 124
 125/* Insert address range into the rb tree. */
 126static struct pci_io_addr_range *
 127eeh_addr_cache_insert(struct pci_dev *dev, resource_size_t alo,
 128                      resource_size_t ahi, unsigned long flags)
 129{
 130        struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
 131        struct rb_node *parent = NULL;
 132        struct pci_io_addr_range *piar;
 133
 134        /* Walk tree, find a place to insert into tree */
 135        while (*p) {
 136                parent = *p;
 137                piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
 138                if (ahi < piar->addr_lo) {
 139                        p = &parent->rb_left;
 140                } else if (alo > piar->addr_hi) {
 141                        p = &parent->rb_right;
 142                } else {
 143                        if (dev != piar->pcidev ||
 144                            alo != piar->addr_lo || ahi != piar->addr_hi) {
 145                                pr_warn("PIAR: overlapping address range\n");
 146                        }
 147                        return piar;
 148                }
 149        }
 150        piar = kzalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
 151        if (!piar)
 152                return NULL;
 153
 154        piar->addr_lo = alo;
 155        piar->addr_hi = ahi;
 156        piar->edev = pci_dev_to_eeh_dev(dev);
 157        piar->pcidev = dev;
 158        piar->flags = flags;
 159
 160#ifdef DEBUG
 161        pr_debug("PIAR: insert range=[%pap:%pap] dev=%s\n",
 162                 &alo, &ahi, pci_name(dev));
 163#endif
 164
 165        rb_link_node(&piar->rb_node, parent, p);
 166        rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
 167
 168        return piar;
 169}
 170
 171static void __eeh_addr_cache_insert_dev(struct pci_dev *dev)
 172{
 173        struct pci_dn *pdn;
 174        struct eeh_dev *edev;
 175        int i;
 176
 177        pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
 178        if (!pdn) {
 179                pr_warn("PCI: no pci dn found for dev=%s\n",
 180                        pci_name(dev));
 181                return;
 182        }
 183
 184        edev = pdn_to_eeh_dev(pdn);
 185        if (!edev) {
 186                pr_warn("PCI: no EEH dev found for %s\n",
 187                        pci_name(dev));
 188                return;
 189        }
 190
 191        /* Skip any devices for which EEH is not enabled. */
 192        if (!edev->pe) {
 193                dev_dbg(&dev->dev, "EEH: Skip building address cache\n");
 194                return;
 195        }
 196
 197        /*
 198         * Walk resources on this device, poke the first 7 (6 normal BAR and 1
 199         * ROM BAR) into the tree.
 200         */
 201        for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
 202                resource_size_t start = pci_resource_start(dev,i);
 203                resource_size_t end = pci_resource_end(dev,i);
 204                unsigned long flags = pci_resource_flags(dev,i);
 205
 206                /* We are interested only bus addresses, not dma or other stuff */
 207                if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
 208                        continue;
 209                if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
 210                         continue;
 211                eeh_addr_cache_insert(dev, start, end, flags);
 212        }
 213}
 214
 215/**
 216 * eeh_addr_cache_insert_dev - Add a device to the address cache
 217 * @dev: PCI device whose I/O addresses we are interested in.
 218 *
 219 * In order to support the fast lookup of devices based on addresses,
 220 * we maintain a cache of devices that can be quickly searched.
 221 * This routine adds a device to that cache.
 222 */
 223void eeh_addr_cache_insert_dev(struct pci_dev *dev)
 224{
 225        unsigned long flags;
 226
 227        spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
 228        __eeh_addr_cache_insert_dev(dev);
 229        spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
 230}
 231
 232static inline void __eeh_addr_cache_rmv_dev(struct pci_dev *dev)
 233{
 234        struct rb_node *n;
 235
 236restart:
 237        n = rb_first(&pci_io_addr_cache_root.rb_root);
 238        while (n) {
 239                struct pci_io_addr_range *piar;
 240                piar = rb_entry(n, struct pci_io_addr_range, rb_node);
 241
 242                if (piar->pcidev == dev) {
 243                        rb_erase(n, &pci_io_addr_cache_root.rb_root);
 244                        kfree(piar);
 245                        goto restart;
 246                }
 247                n = rb_next(n);
 248        }
 249}
 250
 251/**
 252 * eeh_addr_cache_rmv_dev - remove pci device from addr cache
 253 * @dev: device to remove
 254 *
 255 * Remove a device from the addr-cache tree.
 256 * This is potentially expensive, since it will walk
 257 * the tree multiple times (once per resource).
 258 * But so what; device removal doesn't need to be that fast.
 259 */
 260void eeh_addr_cache_rmv_dev(struct pci_dev *dev)
 261{
 262        unsigned long flags;
 263
 264        spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
 265        __eeh_addr_cache_rmv_dev(dev);
 266        spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
 267}
 268
 269/**
 270 * eeh_addr_cache_build - Build a cache of I/O addresses
 271 *
 272 * Build a cache of pci i/o addresses.  This cache will be used to
 273 * find the pci device that corresponds to a given address.
 274 * This routine scans all pci busses to build the cache.
 275 * Must be run late in boot process, after the pci controllers
 276 * have been scanned for devices (after all device resources are known).
 277 */
 278void eeh_addr_cache_build(void)
 279{
 280        struct pci_dn *pdn;
 281        struct eeh_dev *edev;
 282        struct pci_dev *dev = NULL;
 283
 284        spin_lock_init(&pci_io_addr_cache_root.piar_lock);
 285
 286        for_each_pci_dev(dev) {
 287                pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
 288                if (!pdn)
 289                        continue;
 290
 291                edev = pdn_to_eeh_dev(pdn);
 292                if (!edev)
 293                        continue;
 294
 295                dev->dev.archdata.edev = edev;
 296                edev->pdev = dev;
 297
 298                eeh_addr_cache_insert_dev(dev);
 299                eeh_sysfs_add_device(dev);
 300        }
 301
 302#ifdef DEBUG
 303        /* Verify tree built up above, echo back the list of addrs. */
 304        eeh_addr_cache_print(&pci_io_addr_cache_root);
 305#endif
 306}
 307