linux/arch/powerpc/kvm/book3s_hv.c
<<
>>
Prefs
   1/*
   2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
   4 *
   5 * Authors:
   6 *    Paul Mackerras <paulus@au1.ibm.com>
   7 *    Alexander Graf <agraf@suse.de>
   8 *    Kevin Wolf <mail@kevin-wolf.de>
   9 *
  10 * Description: KVM functions specific to running on Book 3S
  11 * processors in hypervisor mode (specifically POWER7 and later).
  12 *
  13 * This file is derived from arch/powerpc/kvm/book3s.c,
  14 * by Alexander Graf <agraf@suse.de>.
  15 *
  16 * This program is free software; you can redistribute it and/or modify
  17 * it under the terms of the GNU General Public License, version 2, as
  18 * published by the Free Software Foundation.
  19 */
  20
  21#include <linux/kvm_host.h>
  22#include <linux/kernel.h>
  23#include <linux/err.h>
  24#include <linux/slab.h>
  25#include <linux/preempt.h>
  26#include <linux/sched/signal.h>
  27#include <linux/sched/stat.h>
  28#include <linux/delay.h>
  29#include <linux/export.h>
  30#include <linux/fs.h>
  31#include <linux/anon_inodes.h>
  32#include <linux/cpu.h>
  33#include <linux/cpumask.h>
  34#include <linux/spinlock.h>
  35#include <linux/page-flags.h>
  36#include <linux/srcu.h>
  37#include <linux/miscdevice.h>
  38#include <linux/debugfs.h>
  39#include <linux/gfp.h>
  40#include <linux/vmalloc.h>
  41#include <linux/highmem.h>
  42#include <linux/hugetlb.h>
  43#include <linux/kvm_irqfd.h>
  44#include <linux/irqbypass.h>
  45#include <linux/module.h>
  46#include <linux/compiler.h>
  47#include <linux/of.h>
  48
  49#include <asm/ftrace.h>
  50#include <asm/reg.h>
  51#include <asm/ppc-opcode.h>
  52#include <asm/asm-prototypes.h>
  53#include <asm/debug.h>
  54#include <asm/disassemble.h>
  55#include <asm/cputable.h>
  56#include <asm/cacheflush.h>
  57#include <linux/uaccess.h>
  58#include <asm/io.h>
  59#include <asm/kvm_ppc.h>
  60#include <asm/kvm_book3s.h>
  61#include <asm/mmu_context.h>
  62#include <asm/lppaca.h>
  63#include <asm/processor.h>
  64#include <asm/cputhreads.h>
  65#include <asm/page.h>
  66#include <asm/hvcall.h>
  67#include <asm/switch_to.h>
  68#include <asm/smp.h>
  69#include <asm/dbell.h>
  70#include <asm/hmi.h>
  71#include <asm/pnv-pci.h>
  72#include <asm/mmu.h>
  73#include <asm/opal.h>
  74#include <asm/xics.h>
  75#include <asm/xive.h>
  76
  77#include "book3s.h"
  78
  79#define CREATE_TRACE_POINTS
  80#include "trace_hv.h"
  81
  82/* #define EXIT_DEBUG */
  83/* #define EXIT_DEBUG_SIMPLE */
  84/* #define EXIT_DEBUG_INT */
  85
  86/* Used to indicate that a guest page fault needs to be handled */
  87#define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
  88/* Used to indicate that a guest passthrough interrupt needs to be handled */
  89#define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
  90
  91/* Used as a "null" value for timebase values */
  92#define TB_NIL  (~(u64)0)
  93
  94static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
  95
  96static int dynamic_mt_modes = 6;
  97module_param(dynamic_mt_modes, int, 0644);
  98MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
  99static int target_smt_mode;
 100module_param(target_smt_mode, int, 0644);
 101MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
 102
 103static bool indep_threads_mode = true;
 104module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
 105MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
 106
 107#ifdef CONFIG_KVM_XICS
 108static struct kernel_param_ops module_param_ops = {
 109        .set = param_set_int,
 110        .get = param_get_int,
 111};
 112
 113module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
 114MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
 115
 116module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
 117MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
 118#endif
 119
 120/* If set, the threads on each CPU core have to be in the same MMU mode */
 121static bool no_mixing_hpt_and_radix;
 122
 123static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
 124static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
 125
 126/*
 127 * RWMR values for POWER8.  These control the rate at which PURR
 128 * and SPURR count and should be set according to the number of
 129 * online threads in the vcore being run.
 130 */
 131#define RWMR_RPA_P8_1THREAD     0x164520C62609AECAUL
 132#define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9UL
 133#define RWMR_RPA_P8_3THREAD     0x164520C62609AECAUL
 134#define RWMR_RPA_P8_4THREAD     0x199A421245058DA9UL
 135#define RWMR_RPA_P8_5THREAD     0x164520C62609AECAUL
 136#define RWMR_RPA_P8_6THREAD     0x164520C62609AECAUL
 137#define RWMR_RPA_P8_7THREAD     0x164520C62609AECAUL
 138#define RWMR_RPA_P8_8THREAD     0x164520C62609AECAUL
 139
 140static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
 141        RWMR_RPA_P8_1THREAD,
 142        RWMR_RPA_P8_1THREAD,
 143        RWMR_RPA_P8_2THREAD,
 144        RWMR_RPA_P8_3THREAD,
 145        RWMR_RPA_P8_4THREAD,
 146        RWMR_RPA_P8_5THREAD,
 147        RWMR_RPA_P8_6THREAD,
 148        RWMR_RPA_P8_7THREAD,
 149        RWMR_RPA_P8_8THREAD,
 150};
 151
 152static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
 153                int *ip)
 154{
 155        int i = *ip;
 156        struct kvm_vcpu *vcpu;
 157
 158        while (++i < MAX_SMT_THREADS) {
 159                vcpu = READ_ONCE(vc->runnable_threads[i]);
 160                if (vcpu) {
 161                        *ip = i;
 162                        return vcpu;
 163                }
 164        }
 165        return NULL;
 166}
 167
 168/* Used to traverse the list of runnable threads for a given vcore */
 169#define for_each_runnable_thread(i, vcpu, vc) \
 170        for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
 171
 172static bool kvmppc_ipi_thread(int cpu)
 173{
 174        unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
 175
 176        /* On POWER9 we can use msgsnd to IPI any cpu */
 177        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 178                msg |= get_hard_smp_processor_id(cpu);
 179                smp_mb();
 180                __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
 181                return true;
 182        }
 183
 184        /* On POWER8 for IPIs to threads in the same core, use msgsnd */
 185        if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
 186                preempt_disable();
 187                if (cpu_first_thread_sibling(cpu) ==
 188                    cpu_first_thread_sibling(smp_processor_id())) {
 189                        msg |= cpu_thread_in_core(cpu);
 190                        smp_mb();
 191                        __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
 192                        preempt_enable();
 193                        return true;
 194                }
 195                preempt_enable();
 196        }
 197
 198#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
 199        if (cpu >= 0 && cpu < nr_cpu_ids) {
 200                if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
 201                        xics_wake_cpu(cpu);
 202                        return true;
 203                }
 204                opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
 205                return true;
 206        }
 207#endif
 208
 209        return false;
 210}
 211
 212static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
 213{
 214        int cpu;
 215        struct swait_queue_head *wqp;
 216
 217        wqp = kvm_arch_vcpu_wq(vcpu);
 218        if (swq_has_sleeper(wqp)) {
 219                swake_up_one(wqp);
 220                ++vcpu->stat.halt_wakeup;
 221        }
 222
 223        cpu = READ_ONCE(vcpu->arch.thread_cpu);
 224        if (cpu >= 0 && kvmppc_ipi_thread(cpu))
 225                return;
 226
 227        /* CPU points to the first thread of the core */
 228        cpu = vcpu->cpu;
 229        if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
 230                smp_send_reschedule(cpu);
 231}
 232
 233/*
 234 * We use the vcpu_load/put functions to measure stolen time.
 235 * Stolen time is counted as time when either the vcpu is able to
 236 * run as part of a virtual core, but the task running the vcore
 237 * is preempted or sleeping, or when the vcpu needs something done
 238 * in the kernel by the task running the vcpu, but that task is
 239 * preempted or sleeping.  Those two things have to be counted
 240 * separately, since one of the vcpu tasks will take on the job
 241 * of running the core, and the other vcpu tasks in the vcore will
 242 * sleep waiting for it to do that, but that sleep shouldn't count
 243 * as stolen time.
 244 *
 245 * Hence we accumulate stolen time when the vcpu can run as part of
 246 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 247 * needs its task to do other things in the kernel (for example,
 248 * service a page fault) in busy_stolen.  We don't accumulate
 249 * stolen time for a vcore when it is inactive, or for a vcpu
 250 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 251 * a misnomer; it means that the vcpu task is not executing in
 252 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 253 * the kernel.  We don't have any way of dividing up that time
 254 * between time that the vcpu is genuinely stopped, time that
 255 * the task is actively working on behalf of the vcpu, and time
 256 * that the task is preempted, so we don't count any of it as
 257 * stolen.
 258 *
 259 * Updates to busy_stolen are protected by arch.tbacct_lock;
 260 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 261 * lock.  The stolen times are measured in units of timebase ticks.
 262 * (Note that the != TB_NIL checks below are purely defensive;
 263 * they should never fail.)
 264 */
 265
 266static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
 267{
 268        unsigned long flags;
 269
 270        spin_lock_irqsave(&vc->stoltb_lock, flags);
 271        vc->preempt_tb = mftb();
 272        spin_unlock_irqrestore(&vc->stoltb_lock, flags);
 273}
 274
 275static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
 276{
 277        unsigned long flags;
 278
 279        spin_lock_irqsave(&vc->stoltb_lock, flags);
 280        if (vc->preempt_tb != TB_NIL) {
 281                vc->stolen_tb += mftb() - vc->preempt_tb;
 282                vc->preempt_tb = TB_NIL;
 283        }
 284        spin_unlock_irqrestore(&vc->stoltb_lock, flags);
 285}
 286
 287static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
 288{
 289        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 290        unsigned long flags;
 291
 292        /*
 293         * We can test vc->runner without taking the vcore lock,
 294         * because only this task ever sets vc->runner to this
 295         * vcpu, and once it is set to this vcpu, only this task
 296         * ever sets it to NULL.
 297         */
 298        if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
 299                kvmppc_core_end_stolen(vc);
 300
 301        spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
 302        if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
 303            vcpu->arch.busy_preempt != TB_NIL) {
 304                vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
 305                vcpu->arch.busy_preempt = TB_NIL;
 306        }
 307        spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
 308}
 309
 310static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
 311{
 312        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 313        unsigned long flags;
 314
 315        if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
 316                kvmppc_core_start_stolen(vc);
 317
 318        spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
 319        if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
 320                vcpu->arch.busy_preempt = mftb();
 321        spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
 322}
 323
 324static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
 325{
 326        /*
 327         * Check for illegal transactional state bit combination
 328         * and if we find it, force the TS field to a safe state.
 329         */
 330        if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
 331                msr &= ~MSR_TS_MASK;
 332        vcpu->arch.shregs.msr = msr;
 333        kvmppc_end_cede(vcpu);
 334}
 335
 336static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
 337{
 338        vcpu->arch.pvr = pvr;
 339}
 340
 341/* Dummy value used in computing PCR value below */
 342#define PCR_ARCH_300    (PCR_ARCH_207 << 1)
 343
 344static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
 345{
 346        unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
 347        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 348
 349        /* We can (emulate) our own architecture version and anything older */
 350        if (cpu_has_feature(CPU_FTR_ARCH_300))
 351                host_pcr_bit = PCR_ARCH_300;
 352        else if (cpu_has_feature(CPU_FTR_ARCH_207S))
 353                host_pcr_bit = PCR_ARCH_207;
 354        else if (cpu_has_feature(CPU_FTR_ARCH_206))
 355                host_pcr_bit = PCR_ARCH_206;
 356        else
 357                host_pcr_bit = PCR_ARCH_205;
 358
 359        /* Determine lowest PCR bit needed to run guest in given PVR level */
 360        guest_pcr_bit = host_pcr_bit;
 361        if (arch_compat) {
 362                switch (arch_compat) {
 363                case PVR_ARCH_205:
 364                        guest_pcr_bit = PCR_ARCH_205;
 365                        break;
 366                case PVR_ARCH_206:
 367                case PVR_ARCH_206p:
 368                        guest_pcr_bit = PCR_ARCH_206;
 369                        break;
 370                case PVR_ARCH_207:
 371                        guest_pcr_bit = PCR_ARCH_207;
 372                        break;
 373                case PVR_ARCH_300:
 374                        guest_pcr_bit = PCR_ARCH_300;
 375                        break;
 376                default:
 377                        return -EINVAL;
 378                }
 379        }
 380
 381        /* Check requested PCR bits don't exceed our capabilities */
 382        if (guest_pcr_bit > host_pcr_bit)
 383                return -EINVAL;
 384
 385        spin_lock(&vc->lock);
 386        vc->arch_compat = arch_compat;
 387        /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
 388        vc->pcr = host_pcr_bit - guest_pcr_bit;
 389        spin_unlock(&vc->lock);
 390
 391        return 0;
 392}
 393
 394static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
 395{
 396        int r;
 397
 398        pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
 399        pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
 400               vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
 401        for (r = 0; r < 16; ++r)
 402                pr_err("r%2d = %.16lx  r%d = %.16lx\n",
 403                       r, kvmppc_get_gpr(vcpu, r),
 404                       r+16, kvmppc_get_gpr(vcpu, r+16));
 405        pr_err("ctr = %.16lx  lr  = %.16lx\n",
 406               vcpu->arch.regs.ctr, vcpu->arch.regs.link);
 407        pr_err("srr0 = %.16llx srr1 = %.16llx\n",
 408               vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
 409        pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
 410               vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
 411        pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
 412               vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
 413        pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
 414               vcpu->arch.cr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
 415        pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
 416        pr_err("fault dar = %.16lx dsisr = %.8x\n",
 417               vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
 418        pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
 419        for (r = 0; r < vcpu->arch.slb_max; ++r)
 420                pr_err("  ESID = %.16llx VSID = %.16llx\n",
 421                       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
 422        pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
 423               vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
 424               vcpu->arch.last_inst);
 425}
 426
 427static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
 428{
 429        struct kvm_vcpu *ret;
 430
 431        mutex_lock(&kvm->lock);
 432        ret = kvm_get_vcpu_by_id(kvm, id);
 433        mutex_unlock(&kvm->lock);
 434        return ret;
 435}
 436
 437static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
 438{
 439        vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
 440        vpa->yield_count = cpu_to_be32(1);
 441}
 442
 443static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
 444                   unsigned long addr, unsigned long len)
 445{
 446        /* check address is cacheline aligned */
 447        if (addr & (L1_CACHE_BYTES - 1))
 448                return -EINVAL;
 449        spin_lock(&vcpu->arch.vpa_update_lock);
 450        if (v->next_gpa != addr || v->len != len) {
 451                v->next_gpa = addr;
 452                v->len = addr ? len : 0;
 453                v->update_pending = 1;
 454        }
 455        spin_unlock(&vcpu->arch.vpa_update_lock);
 456        return 0;
 457}
 458
 459/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
 460struct reg_vpa {
 461        u32 dummy;
 462        union {
 463                __be16 hword;
 464                __be32 word;
 465        } length;
 466};
 467
 468static int vpa_is_registered(struct kvmppc_vpa *vpap)
 469{
 470        if (vpap->update_pending)
 471                return vpap->next_gpa != 0;
 472        return vpap->pinned_addr != NULL;
 473}
 474
 475static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
 476                                       unsigned long flags,
 477                                       unsigned long vcpuid, unsigned long vpa)
 478{
 479        struct kvm *kvm = vcpu->kvm;
 480        unsigned long len, nb;
 481        void *va;
 482        struct kvm_vcpu *tvcpu;
 483        int err;
 484        int subfunc;
 485        struct kvmppc_vpa *vpap;
 486
 487        tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
 488        if (!tvcpu)
 489                return H_PARAMETER;
 490
 491        subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
 492        if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
 493            subfunc == H_VPA_REG_SLB) {
 494                /* Registering new area - address must be cache-line aligned */
 495                if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
 496                        return H_PARAMETER;
 497
 498                /* convert logical addr to kernel addr and read length */
 499                va = kvmppc_pin_guest_page(kvm, vpa, &nb);
 500                if (va == NULL)
 501                        return H_PARAMETER;
 502                if (subfunc == H_VPA_REG_VPA)
 503                        len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
 504                else
 505                        len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
 506                kvmppc_unpin_guest_page(kvm, va, vpa, false);
 507
 508                /* Check length */
 509                if (len > nb || len < sizeof(struct reg_vpa))
 510                        return H_PARAMETER;
 511        } else {
 512                vpa = 0;
 513                len = 0;
 514        }
 515
 516        err = H_PARAMETER;
 517        vpap = NULL;
 518        spin_lock(&tvcpu->arch.vpa_update_lock);
 519
 520        switch (subfunc) {
 521        case H_VPA_REG_VPA:             /* register VPA */
 522                /*
 523                 * The size of our lppaca is 1kB because of the way we align
 524                 * it for the guest to avoid crossing a 4kB boundary. We only
 525                 * use 640 bytes of the structure though, so we should accept
 526                 * clients that set a size of 640.
 527                 */
 528                BUILD_BUG_ON(sizeof(struct lppaca) != 640);
 529                if (len < sizeof(struct lppaca))
 530                        break;
 531                vpap = &tvcpu->arch.vpa;
 532                err = 0;
 533                break;
 534
 535        case H_VPA_REG_DTL:             /* register DTL */
 536                if (len < sizeof(struct dtl_entry))
 537                        break;
 538                len -= len % sizeof(struct dtl_entry);
 539
 540                /* Check that they have previously registered a VPA */
 541                err = H_RESOURCE;
 542                if (!vpa_is_registered(&tvcpu->arch.vpa))
 543                        break;
 544
 545                vpap = &tvcpu->arch.dtl;
 546                err = 0;
 547                break;
 548
 549        case H_VPA_REG_SLB:             /* register SLB shadow buffer */
 550                /* Check that they have previously registered a VPA */
 551                err = H_RESOURCE;
 552                if (!vpa_is_registered(&tvcpu->arch.vpa))
 553                        break;
 554
 555                vpap = &tvcpu->arch.slb_shadow;
 556                err = 0;
 557                break;
 558
 559        case H_VPA_DEREG_VPA:           /* deregister VPA */
 560                /* Check they don't still have a DTL or SLB buf registered */
 561                err = H_RESOURCE;
 562                if (vpa_is_registered(&tvcpu->arch.dtl) ||
 563                    vpa_is_registered(&tvcpu->arch.slb_shadow))
 564                        break;
 565
 566                vpap = &tvcpu->arch.vpa;
 567                err = 0;
 568                break;
 569
 570        case H_VPA_DEREG_DTL:           /* deregister DTL */
 571                vpap = &tvcpu->arch.dtl;
 572                err = 0;
 573                break;
 574
 575        case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
 576                vpap = &tvcpu->arch.slb_shadow;
 577                err = 0;
 578                break;
 579        }
 580
 581        if (vpap) {
 582                vpap->next_gpa = vpa;
 583                vpap->len = len;
 584                vpap->update_pending = 1;
 585        }
 586
 587        spin_unlock(&tvcpu->arch.vpa_update_lock);
 588
 589        return err;
 590}
 591
 592static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
 593{
 594        struct kvm *kvm = vcpu->kvm;
 595        void *va;
 596        unsigned long nb;
 597        unsigned long gpa;
 598
 599        /*
 600         * We need to pin the page pointed to by vpap->next_gpa,
 601         * but we can't call kvmppc_pin_guest_page under the lock
 602         * as it does get_user_pages() and down_read().  So we
 603         * have to drop the lock, pin the page, then get the lock
 604         * again and check that a new area didn't get registered
 605         * in the meantime.
 606         */
 607        for (;;) {
 608                gpa = vpap->next_gpa;
 609                spin_unlock(&vcpu->arch.vpa_update_lock);
 610                va = NULL;
 611                nb = 0;
 612                if (gpa)
 613                        va = kvmppc_pin_guest_page(kvm, gpa, &nb);
 614                spin_lock(&vcpu->arch.vpa_update_lock);
 615                if (gpa == vpap->next_gpa)
 616                        break;
 617                /* sigh... unpin that one and try again */
 618                if (va)
 619                        kvmppc_unpin_guest_page(kvm, va, gpa, false);
 620        }
 621
 622        vpap->update_pending = 0;
 623        if (va && nb < vpap->len) {
 624                /*
 625                 * If it's now too short, it must be that userspace
 626                 * has changed the mappings underlying guest memory,
 627                 * so unregister the region.
 628                 */
 629                kvmppc_unpin_guest_page(kvm, va, gpa, false);
 630                va = NULL;
 631        }
 632        if (vpap->pinned_addr)
 633                kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
 634                                        vpap->dirty);
 635        vpap->gpa = gpa;
 636        vpap->pinned_addr = va;
 637        vpap->dirty = false;
 638        if (va)
 639                vpap->pinned_end = va + vpap->len;
 640}
 641
 642static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
 643{
 644        if (!(vcpu->arch.vpa.update_pending ||
 645              vcpu->arch.slb_shadow.update_pending ||
 646              vcpu->arch.dtl.update_pending))
 647                return;
 648
 649        spin_lock(&vcpu->arch.vpa_update_lock);
 650        if (vcpu->arch.vpa.update_pending) {
 651                kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
 652                if (vcpu->arch.vpa.pinned_addr)
 653                        init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
 654        }
 655        if (vcpu->arch.dtl.update_pending) {
 656                kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
 657                vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
 658                vcpu->arch.dtl_index = 0;
 659        }
 660        if (vcpu->arch.slb_shadow.update_pending)
 661                kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
 662        spin_unlock(&vcpu->arch.vpa_update_lock);
 663}
 664
 665/*
 666 * Return the accumulated stolen time for the vcore up until `now'.
 667 * The caller should hold the vcore lock.
 668 */
 669static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
 670{
 671        u64 p;
 672        unsigned long flags;
 673
 674        spin_lock_irqsave(&vc->stoltb_lock, flags);
 675        p = vc->stolen_tb;
 676        if (vc->vcore_state != VCORE_INACTIVE &&
 677            vc->preempt_tb != TB_NIL)
 678                p += now - vc->preempt_tb;
 679        spin_unlock_irqrestore(&vc->stoltb_lock, flags);
 680        return p;
 681}
 682
 683static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
 684                                    struct kvmppc_vcore *vc)
 685{
 686        struct dtl_entry *dt;
 687        struct lppaca *vpa;
 688        unsigned long stolen;
 689        unsigned long core_stolen;
 690        u64 now;
 691        unsigned long flags;
 692
 693        dt = vcpu->arch.dtl_ptr;
 694        vpa = vcpu->arch.vpa.pinned_addr;
 695        now = mftb();
 696        core_stolen = vcore_stolen_time(vc, now);
 697        stolen = core_stolen - vcpu->arch.stolen_logged;
 698        vcpu->arch.stolen_logged = core_stolen;
 699        spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
 700        stolen += vcpu->arch.busy_stolen;
 701        vcpu->arch.busy_stolen = 0;
 702        spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
 703        if (!dt || !vpa)
 704                return;
 705        memset(dt, 0, sizeof(struct dtl_entry));
 706        dt->dispatch_reason = 7;
 707        dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
 708        dt->timebase = cpu_to_be64(now + vc->tb_offset);
 709        dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
 710        dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
 711        dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
 712        ++dt;
 713        if (dt == vcpu->arch.dtl.pinned_end)
 714                dt = vcpu->arch.dtl.pinned_addr;
 715        vcpu->arch.dtl_ptr = dt;
 716        /* order writing *dt vs. writing vpa->dtl_idx */
 717        smp_wmb();
 718        vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
 719        vcpu->arch.dtl.dirty = true;
 720}
 721
 722/* See if there is a doorbell interrupt pending for a vcpu */
 723static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
 724{
 725        int thr;
 726        struct kvmppc_vcore *vc;
 727
 728        if (vcpu->arch.doorbell_request)
 729                return true;
 730        /*
 731         * Ensure that the read of vcore->dpdes comes after the read
 732         * of vcpu->doorbell_request.  This barrier matches the
 733         * lwsync in book3s_hv_rmhandlers.S just before the
 734         * fast_guest_return label.
 735         */
 736        smp_rmb();
 737        vc = vcpu->arch.vcore;
 738        thr = vcpu->vcpu_id - vc->first_vcpuid;
 739        return !!(vc->dpdes & (1 << thr));
 740}
 741
 742static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
 743{
 744        if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
 745                return true;
 746        if ((!vcpu->arch.vcore->arch_compat) &&
 747            cpu_has_feature(CPU_FTR_ARCH_207S))
 748                return true;
 749        return false;
 750}
 751
 752static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
 753                             unsigned long resource, unsigned long value1,
 754                             unsigned long value2)
 755{
 756        switch (resource) {
 757        case H_SET_MODE_RESOURCE_SET_CIABR:
 758                if (!kvmppc_power8_compatible(vcpu))
 759                        return H_P2;
 760                if (value2)
 761                        return H_P4;
 762                if (mflags)
 763                        return H_UNSUPPORTED_FLAG_START;
 764                /* Guests can't breakpoint the hypervisor */
 765                if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
 766                        return H_P3;
 767                vcpu->arch.ciabr  = value1;
 768                return H_SUCCESS;
 769        case H_SET_MODE_RESOURCE_SET_DAWR:
 770                if (!kvmppc_power8_compatible(vcpu))
 771                        return H_P2;
 772                if (!ppc_breakpoint_available())
 773                        return H_P2;
 774                if (mflags)
 775                        return H_UNSUPPORTED_FLAG_START;
 776                if (value2 & DABRX_HYP)
 777                        return H_P4;
 778                vcpu->arch.dawr  = value1;
 779                vcpu->arch.dawrx = value2;
 780                return H_SUCCESS;
 781        default:
 782                return H_TOO_HARD;
 783        }
 784}
 785
 786static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
 787{
 788        struct kvmppc_vcore *vcore = target->arch.vcore;
 789
 790        /*
 791         * We expect to have been called by the real mode handler
 792         * (kvmppc_rm_h_confer()) which would have directly returned
 793         * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
 794         * have useful work to do and should not confer) so we don't
 795         * recheck that here.
 796         */
 797
 798        spin_lock(&vcore->lock);
 799        if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
 800            vcore->vcore_state != VCORE_INACTIVE &&
 801            vcore->runner)
 802                target = vcore->runner;
 803        spin_unlock(&vcore->lock);
 804
 805        return kvm_vcpu_yield_to(target);
 806}
 807
 808static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
 809{
 810        int yield_count = 0;
 811        struct lppaca *lppaca;
 812
 813        spin_lock(&vcpu->arch.vpa_update_lock);
 814        lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
 815        if (lppaca)
 816                yield_count = be32_to_cpu(lppaca->yield_count);
 817        spin_unlock(&vcpu->arch.vpa_update_lock);
 818        return yield_count;
 819}
 820
 821int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
 822{
 823        unsigned long req = kvmppc_get_gpr(vcpu, 3);
 824        unsigned long target, ret = H_SUCCESS;
 825        int yield_count;
 826        struct kvm_vcpu *tvcpu;
 827        int idx, rc;
 828
 829        if (req <= MAX_HCALL_OPCODE &&
 830            !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
 831                return RESUME_HOST;
 832
 833        switch (req) {
 834        case H_CEDE:
 835                break;
 836        case H_PROD:
 837                target = kvmppc_get_gpr(vcpu, 4);
 838                tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
 839                if (!tvcpu) {
 840                        ret = H_PARAMETER;
 841                        break;
 842                }
 843                tvcpu->arch.prodded = 1;
 844                smp_mb();
 845                if (tvcpu->arch.ceded)
 846                        kvmppc_fast_vcpu_kick_hv(tvcpu);
 847                break;
 848        case H_CONFER:
 849                target = kvmppc_get_gpr(vcpu, 4);
 850                if (target == -1)
 851                        break;
 852                tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
 853                if (!tvcpu) {
 854                        ret = H_PARAMETER;
 855                        break;
 856                }
 857                yield_count = kvmppc_get_gpr(vcpu, 5);
 858                if (kvmppc_get_yield_count(tvcpu) != yield_count)
 859                        break;
 860                kvm_arch_vcpu_yield_to(tvcpu);
 861                break;
 862        case H_REGISTER_VPA:
 863                ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
 864                                        kvmppc_get_gpr(vcpu, 5),
 865                                        kvmppc_get_gpr(vcpu, 6));
 866                break;
 867        case H_RTAS:
 868                if (list_empty(&vcpu->kvm->arch.rtas_tokens))
 869                        return RESUME_HOST;
 870
 871                idx = srcu_read_lock(&vcpu->kvm->srcu);
 872                rc = kvmppc_rtas_hcall(vcpu);
 873                srcu_read_unlock(&vcpu->kvm->srcu, idx);
 874
 875                if (rc == -ENOENT)
 876                        return RESUME_HOST;
 877                else if (rc == 0)
 878                        break;
 879
 880                /* Send the error out to userspace via KVM_RUN */
 881                return rc;
 882        case H_LOGICAL_CI_LOAD:
 883                ret = kvmppc_h_logical_ci_load(vcpu);
 884                if (ret == H_TOO_HARD)
 885                        return RESUME_HOST;
 886                break;
 887        case H_LOGICAL_CI_STORE:
 888                ret = kvmppc_h_logical_ci_store(vcpu);
 889                if (ret == H_TOO_HARD)
 890                        return RESUME_HOST;
 891                break;
 892        case H_SET_MODE:
 893                ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
 894                                        kvmppc_get_gpr(vcpu, 5),
 895                                        kvmppc_get_gpr(vcpu, 6),
 896                                        kvmppc_get_gpr(vcpu, 7));
 897                if (ret == H_TOO_HARD)
 898                        return RESUME_HOST;
 899                break;
 900        case H_XIRR:
 901        case H_CPPR:
 902        case H_EOI:
 903        case H_IPI:
 904        case H_IPOLL:
 905        case H_XIRR_X:
 906                if (kvmppc_xics_enabled(vcpu)) {
 907                        if (xive_enabled()) {
 908                                ret = H_NOT_AVAILABLE;
 909                                return RESUME_GUEST;
 910                        }
 911                        ret = kvmppc_xics_hcall(vcpu, req);
 912                        break;
 913                }
 914                return RESUME_HOST;
 915        case H_PUT_TCE:
 916                ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
 917                                                kvmppc_get_gpr(vcpu, 5),
 918                                                kvmppc_get_gpr(vcpu, 6));
 919                if (ret == H_TOO_HARD)
 920                        return RESUME_HOST;
 921                break;
 922        case H_PUT_TCE_INDIRECT:
 923                ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
 924                                                kvmppc_get_gpr(vcpu, 5),
 925                                                kvmppc_get_gpr(vcpu, 6),
 926                                                kvmppc_get_gpr(vcpu, 7));
 927                if (ret == H_TOO_HARD)
 928                        return RESUME_HOST;
 929                break;
 930        case H_STUFF_TCE:
 931                ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
 932                                                kvmppc_get_gpr(vcpu, 5),
 933                                                kvmppc_get_gpr(vcpu, 6),
 934                                                kvmppc_get_gpr(vcpu, 7));
 935                if (ret == H_TOO_HARD)
 936                        return RESUME_HOST;
 937                break;
 938        default:
 939                return RESUME_HOST;
 940        }
 941        kvmppc_set_gpr(vcpu, 3, ret);
 942        vcpu->arch.hcall_needed = 0;
 943        return RESUME_GUEST;
 944}
 945
 946static int kvmppc_hcall_impl_hv(unsigned long cmd)
 947{
 948        switch (cmd) {
 949        case H_CEDE:
 950        case H_PROD:
 951        case H_CONFER:
 952        case H_REGISTER_VPA:
 953        case H_SET_MODE:
 954        case H_LOGICAL_CI_LOAD:
 955        case H_LOGICAL_CI_STORE:
 956#ifdef CONFIG_KVM_XICS
 957        case H_XIRR:
 958        case H_CPPR:
 959        case H_EOI:
 960        case H_IPI:
 961        case H_IPOLL:
 962        case H_XIRR_X:
 963#endif
 964                return 1;
 965        }
 966
 967        /* See if it's in the real-mode table */
 968        return kvmppc_hcall_impl_hv_realmode(cmd);
 969}
 970
 971static int kvmppc_emulate_debug_inst(struct kvm_run *run,
 972                                        struct kvm_vcpu *vcpu)
 973{
 974        u32 last_inst;
 975
 976        if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
 977                                        EMULATE_DONE) {
 978                /*
 979                 * Fetch failed, so return to guest and
 980                 * try executing it again.
 981                 */
 982                return RESUME_GUEST;
 983        }
 984
 985        if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
 986                run->exit_reason = KVM_EXIT_DEBUG;
 987                run->debug.arch.address = kvmppc_get_pc(vcpu);
 988                return RESUME_HOST;
 989        } else {
 990                kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
 991                return RESUME_GUEST;
 992        }
 993}
 994
 995static void do_nothing(void *x)
 996{
 997}
 998
 999static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1000{
1001        int thr, cpu, pcpu, nthreads;
1002        struct kvm_vcpu *v;
1003        unsigned long dpdes;
1004
1005        nthreads = vcpu->kvm->arch.emul_smt_mode;
1006        dpdes = 0;
1007        cpu = vcpu->vcpu_id & ~(nthreads - 1);
1008        for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1009                v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1010                if (!v)
1011                        continue;
1012                /*
1013                 * If the vcpu is currently running on a physical cpu thread,
1014                 * interrupt it in order to pull it out of the guest briefly,
1015                 * which will update its vcore->dpdes value.
1016                 */
1017                pcpu = READ_ONCE(v->cpu);
1018                if (pcpu >= 0)
1019                        smp_call_function_single(pcpu, do_nothing, NULL, 1);
1020                if (kvmppc_doorbell_pending(v))
1021                        dpdes |= 1 << thr;
1022        }
1023        return dpdes;
1024}
1025
1026/*
1027 * On POWER9, emulate doorbell-related instructions in order to
1028 * give the guest the illusion of running on a multi-threaded core.
1029 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1030 * and mfspr DPDES.
1031 */
1032static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1033{
1034        u32 inst, rb, thr;
1035        unsigned long arg;
1036        struct kvm *kvm = vcpu->kvm;
1037        struct kvm_vcpu *tvcpu;
1038
1039        if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1040                return RESUME_GUEST;
1041        if (get_op(inst) != 31)
1042                return EMULATE_FAIL;
1043        rb = get_rb(inst);
1044        thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1045        switch (get_xop(inst)) {
1046        case OP_31_XOP_MSGSNDP:
1047                arg = kvmppc_get_gpr(vcpu, rb);
1048                if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1049                        break;
1050                arg &= 0x3f;
1051                if (arg >= kvm->arch.emul_smt_mode)
1052                        break;
1053                tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1054                if (!tvcpu)
1055                        break;
1056                if (!tvcpu->arch.doorbell_request) {
1057                        tvcpu->arch.doorbell_request = 1;
1058                        kvmppc_fast_vcpu_kick_hv(tvcpu);
1059                }
1060                break;
1061        case OP_31_XOP_MSGCLRP:
1062                arg = kvmppc_get_gpr(vcpu, rb);
1063                if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1064                        break;
1065                vcpu->arch.vcore->dpdes = 0;
1066                vcpu->arch.doorbell_request = 0;
1067                break;
1068        case OP_31_XOP_MFSPR:
1069                switch (get_sprn(inst)) {
1070                case SPRN_TIR:
1071                        arg = thr;
1072                        break;
1073                case SPRN_DPDES:
1074                        arg = kvmppc_read_dpdes(vcpu);
1075                        break;
1076                default:
1077                        return EMULATE_FAIL;
1078                }
1079                kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1080                break;
1081        default:
1082                return EMULATE_FAIL;
1083        }
1084        kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1085        return RESUME_GUEST;
1086}
1087
1088/* Called with vcpu->arch.vcore->lock held */
1089static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1090                                 struct task_struct *tsk)
1091{
1092        int r = RESUME_HOST;
1093
1094        vcpu->stat.sum_exits++;
1095
1096        /*
1097         * This can happen if an interrupt occurs in the last stages
1098         * of guest entry or the first stages of guest exit (i.e. after
1099         * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1100         * and before setting it to KVM_GUEST_MODE_HOST_HV).
1101         * That can happen due to a bug, or due to a machine check
1102         * occurring at just the wrong time.
1103         */
1104        if (vcpu->arch.shregs.msr & MSR_HV) {
1105                printk(KERN_EMERG "KVM trap in HV mode!\n");
1106                printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1107                        vcpu->arch.trap, kvmppc_get_pc(vcpu),
1108                        vcpu->arch.shregs.msr);
1109                kvmppc_dump_regs(vcpu);
1110                run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1111                run->hw.hardware_exit_reason = vcpu->arch.trap;
1112                return RESUME_HOST;
1113        }
1114        run->exit_reason = KVM_EXIT_UNKNOWN;
1115        run->ready_for_interrupt_injection = 1;
1116        switch (vcpu->arch.trap) {
1117        /* We're good on these - the host merely wanted to get our attention */
1118        case BOOK3S_INTERRUPT_HV_DECREMENTER:
1119                vcpu->stat.dec_exits++;
1120                r = RESUME_GUEST;
1121                break;
1122        case BOOK3S_INTERRUPT_EXTERNAL:
1123        case BOOK3S_INTERRUPT_H_DOORBELL:
1124        case BOOK3S_INTERRUPT_H_VIRT:
1125                vcpu->stat.ext_intr_exits++;
1126                r = RESUME_GUEST;
1127                break;
1128        /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1129        case BOOK3S_INTERRUPT_HMI:
1130        case BOOK3S_INTERRUPT_PERFMON:
1131        case BOOK3S_INTERRUPT_SYSTEM_RESET:
1132                r = RESUME_GUEST;
1133                break;
1134        case BOOK3S_INTERRUPT_MACHINE_CHECK:
1135                /* Exit to guest with KVM_EXIT_NMI as exit reason */
1136                run->exit_reason = KVM_EXIT_NMI;
1137                run->hw.hardware_exit_reason = vcpu->arch.trap;
1138                /* Clear out the old NMI status from run->flags */
1139                run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1140                /* Now set the NMI status */
1141                if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1142                        run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1143                else
1144                        run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1145
1146                r = RESUME_HOST;
1147                /* Print the MCE event to host console. */
1148                machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1149                break;
1150        case BOOK3S_INTERRUPT_PROGRAM:
1151        {
1152                ulong flags;
1153                /*
1154                 * Normally program interrupts are delivered directly
1155                 * to the guest by the hardware, but we can get here
1156                 * as a result of a hypervisor emulation interrupt
1157                 * (e40) getting turned into a 700 by BML RTAS.
1158                 */
1159                flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1160                kvmppc_core_queue_program(vcpu, flags);
1161                r = RESUME_GUEST;
1162                break;
1163        }
1164        case BOOK3S_INTERRUPT_SYSCALL:
1165        {
1166                /* hcall - punt to userspace */
1167                int i;
1168
1169                /* hypercall with MSR_PR has already been handled in rmode,
1170                 * and never reaches here.
1171                 */
1172
1173                run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1174                for (i = 0; i < 9; ++i)
1175                        run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1176                run->exit_reason = KVM_EXIT_PAPR_HCALL;
1177                vcpu->arch.hcall_needed = 1;
1178                r = RESUME_HOST;
1179                break;
1180        }
1181        /*
1182         * We get these next two if the guest accesses a page which it thinks
1183         * it has mapped but which is not actually present, either because
1184         * it is for an emulated I/O device or because the corresonding
1185         * host page has been paged out.  Any other HDSI/HISI interrupts
1186         * have been handled already.
1187         */
1188        case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1189                r = RESUME_PAGE_FAULT;
1190                break;
1191        case BOOK3S_INTERRUPT_H_INST_STORAGE:
1192                vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1193                vcpu->arch.fault_dsisr = 0;
1194                r = RESUME_PAGE_FAULT;
1195                break;
1196        /*
1197         * This occurs if the guest executes an illegal instruction.
1198         * If the guest debug is disabled, generate a program interrupt
1199         * to the guest. If guest debug is enabled, we need to check
1200         * whether the instruction is a software breakpoint instruction.
1201         * Accordingly return to Guest or Host.
1202         */
1203        case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1204                if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1205                        vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1206                                swab32(vcpu->arch.emul_inst) :
1207                                vcpu->arch.emul_inst;
1208                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1209                        /* Need vcore unlocked to call kvmppc_get_last_inst */
1210                        spin_unlock(&vcpu->arch.vcore->lock);
1211                        r = kvmppc_emulate_debug_inst(run, vcpu);
1212                        spin_lock(&vcpu->arch.vcore->lock);
1213                } else {
1214                        kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1215                        r = RESUME_GUEST;
1216                }
1217                break;
1218        /*
1219         * This occurs if the guest (kernel or userspace), does something that
1220         * is prohibited by HFSCR.
1221         * On POWER9, this could be a doorbell instruction that we need
1222         * to emulate.
1223         * Otherwise, we just generate a program interrupt to the guest.
1224         */
1225        case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1226                r = EMULATE_FAIL;
1227                if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1228                    cpu_has_feature(CPU_FTR_ARCH_300)) {
1229                        /* Need vcore unlocked to call kvmppc_get_last_inst */
1230                        spin_unlock(&vcpu->arch.vcore->lock);
1231                        r = kvmppc_emulate_doorbell_instr(vcpu);
1232                        spin_lock(&vcpu->arch.vcore->lock);
1233                }
1234                if (r == EMULATE_FAIL) {
1235                        kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1236                        r = RESUME_GUEST;
1237                }
1238                break;
1239
1240#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1241        case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1242                /*
1243                 * This occurs for various TM-related instructions that
1244                 * we need to emulate on POWER9 DD2.2.  We have already
1245                 * handled the cases where the guest was in real-suspend
1246                 * mode and was transitioning to transactional state.
1247                 */
1248                r = kvmhv_p9_tm_emulation(vcpu);
1249                break;
1250#endif
1251
1252        case BOOK3S_INTERRUPT_HV_RM_HARD:
1253                r = RESUME_PASSTHROUGH;
1254                break;
1255        default:
1256                kvmppc_dump_regs(vcpu);
1257                printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1258                        vcpu->arch.trap, kvmppc_get_pc(vcpu),
1259                        vcpu->arch.shregs.msr);
1260                run->hw.hardware_exit_reason = vcpu->arch.trap;
1261                r = RESUME_HOST;
1262                break;
1263        }
1264
1265        return r;
1266}
1267
1268static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1269                                            struct kvm_sregs *sregs)
1270{
1271        int i;
1272
1273        memset(sregs, 0, sizeof(struct kvm_sregs));
1274        sregs->pvr = vcpu->arch.pvr;
1275        for (i = 0; i < vcpu->arch.slb_max; i++) {
1276                sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1277                sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1278        }
1279
1280        return 0;
1281}
1282
1283static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1284                                            struct kvm_sregs *sregs)
1285{
1286        int i, j;
1287
1288        /* Only accept the same PVR as the host's, since we can't spoof it */
1289        if (sregs->pvr != vcpu->arch.pvr)
1290                return -EINVAL;
1291
1292        j = 0;
1293        for (i = 0; i < vcpu->arch.slb_nr; i++) {
1294                if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1295                        vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1296                        vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1297                        ++j;
1298                }
1299        }
1300        vcpu->arch.slb_max = j;
1301
1302        return 0;
1303}
1304
1305static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1306                bool preserve_top32)
1307{
1308        struct kvm *kvm = vcpu->kvm;
1309        struct kvmppc_vcore *vc = vcpu->arch.vcore;
1310        u64 mask;
1311
1312        mutex_lock(&kvm->lock);
1313        spin_lock(&vc->lock);
1314        /*
1315         * If ILE (interrupt little-endian) has changed, update the
1316         * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1317         */
1318        if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1319                struct kvm_vcpu *vcpu;
1320                int i;
1321
1322                kvm_for_each_vcpu(i, vcpu, kvm) {
1323                        if (vcpu->arch.vcore != vc)
1324                                continue;
1325                        if (new_lpcr & LPCR_ILE)
1326                                vcpu->arch.intr_msr |= MSR_LE;
1327                        else
1328                                vcpu->arch.intr_msr &= ~MSR_LE;
1329                }
1330        }
1331
1332        /*
1333         * Userspace can only modify DPFD (default prefetch depth),
1334         * ILE (interrupt little-endian) and TC (translation control).
1335         * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1336         */
1337        mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1338        if (cpu_has_feature(CPU_FTR_ARCH_207S))
1339                mask |= LPCR_AIL;
1340        /*
1341         * On POWER9, allow userspace to enable large decrementer for the
1342         * guest, whether or not the host has it enabled.
1343         */
1344        if (cpu_has_feature(CPU_FTR_ARCH_300))
1345                mask |= LPCR_LD;
1346
1347        /* Broken 32-bit version of LPCR must not clear top bits */
1348        if (preserve_top32)
1349                mask &= 0xFFFFFFFF;
1350        vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1351        spin_unlock(&vc->lock);
1352        mutex_unlock(&kvm->lock);
1353}
1354
1355static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1356                                 union kvmppc_one_reg *val)
1357{
1358        int r = 0;
1359        long int i;
1360
1361        switch (id) {
1362        case KVM_REG_PPC_DEBUG_INST:
1363                *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1364                break;
1365        case KVM_REG_PPC_HIOR:
1366                *val = get_reg_val(id, 0);
1367                break;
1368        case KVM_REG_PPC_DABR:
1369                *val = get_reg_val(id, vcpu->arch.dabr);
1370                break;
1371        case KVM_REG_PPC_DABRX:
1372                *val = get_reg_val(id, vcpu->arch.dabrx);
1373                break;
1374        case KVM_REG_PPC_DSCR:
1375                *val = get_reg_val(id, vcpu->arch.dscr);
1376                break;
1377        case KVM_REG_PPC_PURR:
1378                *val = get_reg_val(id, vcpu->arch.purr);
1379                break;
1380        case KVM_REG_PPC_SPURR:
1381                *val = get_reg_val(id, vcpu->arch.spurr);
1382                break;
1383        case KVM_REG_PPC_AMR:
1384                *val = get_reg_val(id, vcpu->arch.amr);
1385                break;
1386        case KVM_REG_PPC_UAMOR:
1387                *val = get_reg_val(id, vcpu->arch.uamor);
1388                break;
1389        case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1390                i = id - KVM_REG_PPC_MMCR0;
1391                *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1392                break;
1393        case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1394                i = id - KVM_REG_PPC_PMC1;
1395                *val = get_reg_val(id, vcpu->arch.pmc[i]);
1396                break;
1397        case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1398                i = id - KVM_REG_PPC_SPMC1;
1399                *val = get_reg_val(id, vcpu->arch.spmc[i]);
1400                break;
1401        case KVM_REG_PPC_SIAR:
1402                *val = get_reg_val(id, vcpu->arch.siar);
1403                break;
1404        case KVM_REG_PPC_SDAR:
1405                *val = get_reg_val(id, vcpu->arch.sdar);
1406                break;
1407        case KVM_REG_PPC_SIER:
1408                *val = get_reg_val(id, vcpu->arch.sier);
1409                break;
1410        case KVM_REG_PPC_IAMR:
1411                *val = get_reg_val(id, vcpu->arch.iamr);
1412                break;
1413        case KVM_REG_PPC_PSPB:
1414                *val = get_reg_val(id, vcpu->arch.pspb);
1415                break;
1416        case KVM_REG_PPC_DPDES:
1417                *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1418                break;
1419        case KVM_REG_PPC_VTB:
1420                *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1421                break;
1422        case KVM_REG_PPC_DAWR:
1423                *val = get_reg_val(id, vcpu->arch.dawr);
1424                break;
1425        case KVM_REG_PPC_DAWRX:
1426                *val = get_reg_val(id, vcpu->arch.dawrx);
1427                break;
1428        case KVM_REG_PPC_CIABR:
1429                *val = get_reg_val(id, vcpu->arch.ciabr);
1430                break;
1431        case KVM_REG_PPC_CSIGR:
1432                *val = get_reg_val(id, vcpu->arch.csigr);
1433                break;
1434        case KVM_REG_PPC_TACR:
1435                *val = get_reg_val(id, vcpu->arch.tacr);
1436                break;
1437        case KVM_REG_PPC_TCSCR:
1438                *val = get_reg_val(id, vcpu->arch.tcscr);
1439                break;
1440        case KVM_REG_PPC_PID:
1441                *val = get_reg_val(id, vcpu->arch.pid);
1442                break;
1443        case KVM_REG_PPC_ACOP:
1444                *val = get_reg_val(id, vcpu->arch.acop);
1445                break;
1446        case KVM_REG_PPC_WORT:
1447                *val = get_reg_val(id, vcpu->arch.wort);
1448                break;
1449        case KVM_REG_PPC_TIDR:
1450                *val = get_reg_val(id, vcpu->arch.tid);
1451                break;
1452        case KVM_REG_PPC_PSSCR:
1453                *val = get_reg_val(id, vcpu->arch.psscr);
1454                break;
1455        case KVM_REG_PPC_VPA_ADDR:
1456                spin_lock(&vcpu->arch.vpa_update_lock);
1457                *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1458                spin_unlock(&vcpu->arch.vpa_update_lock);
1459                break;
1460        case KVM_REG_PPC_VPA_SLB:
1461                spin_lock(&vcpu->arch.vpa_update_lock);
1462                val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1463                val->vpaval.length = vcpu->arch.slb_shadow.len;
1464                spin_unlock(&vcpu->arch.vpa_update_lock);
1465                break;
1466        case KVM_REG_PPC_VPA_DTL:
1467                spin_lock(&vcpu->arch.vpa_update_lock);
1468                val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1469                val->vpaval.length = vcpu->arch.dtl.len;
1470                spin_unlock(&vcpu->arch.vpa_update_lock);
1471                break;
1472        case KVM_REG_PPC_TB_OFFSET:
1473                *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1474                break;
1475        case KVM_REG_PPC_LPCR:
1476        case KVM_REG_PPC_LPCR_64:
1477                *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1478                break;
1479        case KVM_REG_PPC_PPR:
1480                *val = get_reg_val(id, vcpu->arch.ppr);
1481                break;
1482#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1483        case KVM_REG_PPC_TFHAR:
1484                *val = get_reg_val(id, vcpu->arch.tfhar);
1485                break;
1486        case KVM_REG_PPC_TFIAR:
1487                *val = get_reg_val(id, vcpu->arch.tfiar);
1488                break;
1489        case KVM_REG_PPC_TEXASR:
1490                *val = get_reg_val(id, vcpu->arch.texasr);
1491                break;
1492        case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1493                i = id - KVM_REG_PPC_TM_GPR0;
1494                *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1495                break;
1496        case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1497        {
1498                int j;
1499                i = id - KVM_REG_PPC_TM_VSR0;
1500                if (i < 32)
1501                        for (j = 0; j < TS_FPRWIDTH; j++)
1502                                val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1503                else {
1504                        if (cpu_has_feature(CPU_FTR_ALTIVEC))
1505                                val->vval = vcpu->arch.vr_tm.vr[i-32];
1506                        else
1507                                r = -ENXIO;
1508                }
1509                break;
1510        }
1511        case KVM_REG_PPC_TM_CR:
1512                *val = get_reg_val(id, vcpu->arch.cr_tm);
1513                break;
1514        case KVM_REG_PPC_TM_XER:
1515                *val = get_reg_val(id, vcpu->arch.xer_tm);
1516                break;
1517        case KVM_REG_PPC_TM_LR:
1518                *val = get_reg_val(id, vcpu->arch.lr_tm);
1519                break;
1520        case KVM_REG_PPC_TM_CTR:
1521                *val = get_reg_val(id, vcpu->arch.ctr_tm);
1522                break;
1523        case KVM_REG_PPC_TM_FPSCR:
1524                *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1525                break;
1526        case KVM_REG_PPC_TM_AMR:
1527                *val = get_reg_val(id, vcpu->arch.amr_tm);
1528                break;
1529        case KVM_REG_PPC_TM_PPR:
1530                *val = get_reg_val(id, vcpu->arch.ppr_tm);
1531                break;
1532        case KVM_REG_PPC_TM_VRSAVE:
1533                *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1534                break;
1535        case KVM_REG_PPC_TM_VSCR:
1536                if (cpu_has_feature(CPU_FTR_ALTIVEC))
1537                        *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1538                else
1539                        r = -ENXIO;
1540                break;
1541        case KVM_REG_PPC_TM_DSCR:
1542                *val = get_reg_val(id, vcpu->arch.dscr_tm);
1543                break;
1544        case KVM_REG_PPC_TM_TAR:
1545                *val = get_reg_val(id, vcpu->arch.tar_tm);
1546                break;
1547#endif
1548        case KVM_REG_PPC_ARCH_COMPAT:
1549                *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1550                break;
1551        case KVM_REG_PPC_DEC_EXPIRY:
1552                *val = get_reg_val(id, vcpu->arch.dec_expires +
1553                                   vcpu->arch.vcore->tb_offset);
1554                break;
1555        case KVM_REG_PPC_ONLINE:
1556                *val = get_reg_val(id, vcpu->arch.online);
1557                break;
1558        default:
1559                r = -EINVAL;
1560                break;
1561        }
1562
1563        return r;
1564}
1565
1566static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1567                                 union kvmppc_one_reg *val)
1568{
1569        int r = 0;
1570        long int i;
1571        unsigned long addr, len;
1572
1573        switch (id) {
1574        case KVM_REG_PPC_HIOR:
1575                /* Only allow this to be set to zero */
1576                if (set_reg_val(id, *val))
1577                        r = -EINVAL;
1578                break;
1579        case KVM_REG_PPC_DABR:
1580                vcpu->arch.dabr = set_reg_val(id, *val);
1581                break;
1582        case KVM_REG_PPC_DABRX:
1583                vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1584                break;
1585        case KVM_REG_PPC_DSCR:
1586                vcpu->arch.dscr = set_reg_val(id, *val);
1587                break;
1588        case KVM_REG_PPC_PURR:
1589                vcpu->arch.purr = set_reg_val(id, *val);
1590                break;
1591        case KVM_REG_PPC_SPURR:
1592                vcpu->arch.spurr = set_reg_val(id, *val);
1593                break;
1594        case KVM_REG_PPC_AMR:
1595                vcpu->arch.amr = set_reg_val(id, *val);
1596                break;
1597        case KVM_REG_PPC_UAMOR:
1598                vcpu->arch.uamor = set_reg_val(id, *val);
1599                break;
1600        case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1601                i = id - KVM_REG_PPC_MMCR0;
1602                vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1603                break;
1604        case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1605                i = id - KVM_REG_PPC_PMC1;
1606                vcpu->arch.pmc[i] = set_reg_val(id, *val);
1607                break;
1608        case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1609                i = id - KVM_REG_PPC_SPMC1;
1610                vcpu->arch.spmc[i] = set_reg_val(id, *val);
1611                break;
1612        case KVM_REG_PPC_SIAR:
1613                vcpu->arch.siar = set_reg_val(id, *val);
1614                break;
1615        case KVM_REG_PPC_SDAR:
1616                vcpu->arch.sdar = set_reg_val(id, *val);
1617                break;
1618        case KVM_REG_PPC_SIER:
1619                vcpu->arch.sier = set_reg_val(id, *val);
1620                break;
1621        case KVM_REG_PPC_IAMR:
1622                vcpu->arch.iamr = set_reg_val(id, *val);
1623                break;
1624        case KVM_REG_PPC_PSPB:
1625                vcpu->arch.pspb = set_reg_val(id, *val);
1626                break;
1627        case KVM_REG_PPC_DPDES:
1628                vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1629                break;
1630        case KVM_REG_PPC_VTB:
1631                vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1632                break;
1633        case KVM_REG_PPC_DAWR:
1634                vcpu->arch.dawr = set_reg_val(id, *val);
1635                break;
1636        case KVM_REG_PPC_DAWRX:
1637                vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1638                break;
1639        case KVM_REG_PPC_CIABR:
1640                vcpu->arch.ciabr = set_reg_val(id, *val);
1641                /* Don't allow setting breakpoints in hypervisor code */
1642                if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1643                        vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1644                break;
1645        case KVM_REG_PPC_CSIGR:
1646                vcpu->arch.csigr = set_reg_val(id, *val);
1647                break;
1648        case KVM_REG_PPC_TACR:
1649                vcpu->arch.tacr = set_reg_val(id, *val);
1650                break;
1651        case KVM_REG_PPC_TCSCR:
1652                vcpu->arch.tcscr = set_reg_val(id, *val);
1653                break;
1654        case KVM_REG_PPC_PID:
1655                vcpu->arch.pid = set_reg_val(id, *val);
1656                break;
1657        case KVM_REG_PPC_ACOP:
1658                vcpu->arch.acop = set_reg_val(id, *val);
1659                break;
1660        case KVM_REG_PPC_WORT:
1661                vcpu->arch.wort = set_reg_val(id, *val);
1662                break;
1663        case KVM_REG_PPC_TIDR:
1664                vcpu->arch.tid = set_reg_val(id, *val);
1665                break;
1666        case KVM_REG_PPC_PSSCR:
1667                vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1668                break;
1669        case KVM_REG_PPC_VPA_ADDR:
1670                addr = set_reg_val(id, *val);
1671                r = -EINVAL;
1672                if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1673                              vcpu->arch.dtl.next_gpa))
1674                        break;
1675                r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1676                break;
1677        case KVM_REG_PPC_VPA_SLB:
1678                addr = val->vpaval.addr;
1679                len = val->vpaval.length;
1680                r = -EINVAL;
1681                if (addr && !vcpu->arch.vpa.next_gpa)
1682                        break;
1683                r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1684                break;
1685        case KVM_REG_PPC_VPA_DTL:
1686                addr = val->vpaval.addr;
1687                len = val->vpaval.length;
1688                r = -EINVAL;
1689                if (addr && (len < sizeof(struct dtl_entry) ||
1690                             !vcpu->arch.vpa.next_gpa))
1691                        break;
1692                len -= len % sizeof(struct dtl_entry);
1693                r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1694                break;
1695        case KVM_REG_PPC_TB_OFFSET:
1696                /* round up to multiple of 2^24 */
1697                vcpu->arch.vcore->tb_offset =
1698                        ALIGN(set_reg_val(id, *val), 1UL << 24);
1699                break;
1700        case KVM_REG_PPC_LPCR:
1701                kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1702                break;
1703        case KVM_REG_PPC_LPCR_64:
1704                kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1705                break;
1706        case KVM_REG_PPC_PPR:
1707                vcpu->arch.ppr = set_reg_val(id, *val);
1708                break;
1709#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1710        case KVM_REG_PPC_TFHAR:
1711                vcpu->arch.tfhar = set_reg_val(id, *val);
1712                break;
1713        case KVM_REG_PPC_TFIAR:
1714                vcpu->arch.tfiar = set_reg_val(id, *val);
1715                break;
1716        case KVM_REG_PPC_TEXASR:
1717                vcpu->arch.texasr = set_reg_val(id, *val);
1718                break;
1719        case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1720                i = id - KVM_REG_PPC_TM_GPR0;
1721                vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1722                break;
1723        case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1724        {
1725                int j;
1726                i = id - KVM_REG_PPC_TM_VSR0;
1727                if (i < 32)
1728                        for (j = 0; j < TS_FPRWIDTH; j++)
1729                                vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1730                else
1731                        if (cpu_has_feature(CPU_FTR_ALTIVEC))
1732                                vcpu->arch.vr_tm.vr[i-32] = val->vval;
1733                        else
1734                                r = -ENXIO;
1735                break;
1736        }
1737        case KVM_REG_PPC_TM_CR:
1738                vcpu->arch.cr_tm = set_reg_val(id, *val);
1739                break;
1740        case KVM_REG_PPC_TM_XER:
1741                vcpu->arch.xer_tm = set_reg_val(id, *val);
1742                break;
1743        case KVM_REG_PPC_TM_LR:
1744                vcpu->arch.lr_tm = set_reg_val(id, *val);
1745                break;
1746        case KVM_REG_PPC_TM_CTR:
1747                vcpu->arch.ctr_tm = set_reg_val(id, *val);
1748                break;
1749        case KVM_REG_PPC_TM_FPSCR:
1750                vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1751                break;
1752        case KVM_REG_PPC_TM_AMR:
1753                vcpu->arch.amr_tm = set_reg_val(id, *val);
1754                break;
1755        case KVM_REG_PPC_TM_PPR:
1756                vcpu->arch.ppr_tm = set_reg_val(id, *val);
1757                break;
1758        case KVM_REG_PPC_TM_VRSAVE:
1759                vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1760                break;
1761        case KVM_REG_PPC_TM_VSCR:
1762                if (cpu_has_feature(CPU_FTR_ALTIVEC))
1763                        vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1764                else
1765                        r = - ENXIO;
1766                break;
1767        case KVM_REG_PPC_TM_DSCR:
1768                vcpu->arch.dscr_tm = set_reg_val(id, *val);
1769                break;
1770        case KVM_REG_PPC_TM_TAR:
1771                vcpu->arch.tar_tm = set_reg_val(id, *val);
1772                break;
1773#endif
1774        case KVM_REG_PPC_ARCH_COMPAT:
1775                r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1776                break;
1777        case KVM_REG_PPC_DEC_EXPIRY:
1778                vcpu->arch.dec_expires = set_reg_val(id, *val) -
1779                        vcpu->arch.vcore->tb_offset;
1780                break;
1781        case KVM_REG_PPC_ONLINE:
1782                i = set_reg_val(id, *val);
1783                if (i && !vcpu->arch.online)
1784                        atomic_inc(&vcpu->arch.vcore->online_count);
1785                else if (!i && vcpu->arch.online)
1786                        atomic_dec(&vcpu->arch.vcore->online_count);
1787                vcpu->arch.online = i;
1788                break;
1789        default:
1790                r = -EINVAL;
1791                break;
1792        }
1793
1794        return r;
1795}
1796
1797/*
1798 * On POWER9, threads are independent and can be in different partitions.
1799 * Therefore we consider each thread to be a subcore.
1800 * There is a restriction that all threads have to be in the same
1801 * MMU mode (radix or HPT), unfortunately, but since we only support
1802 * HPT guests on a HPT host so far, that isn't an impediment yet.
1803 */
1804static int threads_per_vcore(struct kvm *kvm)
1805{
1806        if (kvm->arch.threads_indep)
1807                return 1;
1808        return threads_per_subcore;
1809}
1810
1811static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
1812{
1813        struct kvmppc_vcore *vcore;
1814
1815        vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1816
1817        if (vcore == NULL)
1818                return NULL;
1819
1820        spin_lock_init(&vcore->lock);
1821        spin_lock_init(&vcore->stoltb_lock);
1822        init_swait_queue_head(&vcore->wq);
1823        vcore->preempt_tb = TB_NIL;
1824        vcore->lpcr = kvm->arch.lpcr;
1825        vcore->first_vcpuid = id;
1826        vcore->kvm = kvm;
1827        INIT_LIST_HEAD(&vcore->preempt_list);
1828
1829        return vcore;
1830}
1831
1832#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1833static struct debugfs_timings_element {
1834        const char *name;
1835        size_t offset;
1836} timings[] = {
1837        {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
1838        {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
1839        {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
1840        {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
1841        {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
1842};
1843
1844#define N_TIMINGS       (ARRAY_SIZE(timings))
1845
1846struct debugfs_timings_state {
1847        struct kvm_vcpu *vcpu;
1848        unsigned int    buflen;
1849        char            buf[N_TIMINGS * 100];
1850};
1851
1852static int debugfs_timings_open(struct inode *inode, struct file *file)
1853{
1854        struct kvm_vcpu *vcpu = inode->i_private;
1855        struct debugfs_timings_state *p;
1856
1857        p = kzalloc(sizeof(*p), GFP_KERNEL);
1858        if (!p)
1859                return -ENOMEM;
1860
1861        kvm_get_kvm(vcpu->kvm);
1862        p->vcpu = vcpu;
1863        file->private_data = p;
1864
1865        return nonseekable_open(inode, file);
1866}
1867
1868static int debugfs_timings_release(struct inode *inode, struct file *file)
1869{
1870        struct debugfs_timings_state *p = file->private_data;
1871
1872        kvm_put_kvm(p->vcpu->kvm);
1873        kfree(p);
1874        return 0;
1875}
1876
1877static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1878                                    size_t len, loff_t *ppos)
1879{
1880        struct debugfs_timings_state *p = file->private_data;
1881        struct kvm_vcpu *vcpu = p->vcpu;
1882        char *s, *buf_end;
1883        struct kvmhv_tb_accumulator tb;
1884        u64 count;
1885        loff_t pos;
1886        ssize_t n;
1887        int i, loops;
1888        bool ok;
1889
1890        if (!p->buflen) {
1891                s = p->buf;
1892                buf_end = s + sizeof(p->buf);
1893                for (i = 0; i < N_TIMINGS; ++i) {
1894                        struct kvmhv_tb_accumulator *acc;
1895
1896                        acc = (struct kvmhv_tb_accumulator *)
1897                                ((unsigned long)vcpu + timings[i].offset);
1898                        ok = false;
1899                        for (loops = 0; loops < 1000; ++loops) {
1900                                count = acc->seqcount;
1901                                if (!(count & 1)) {
1902                                        smp_rmb();
1903                                        tb = *acc;
1904                                        smp_rmb();
1905                                        if (count == acc->seqcount) {
1906                                                ok = true;
1907                                                break;
1908                                        }
1909                                }
1910                                udelay(1);
1911                        }
1912                        if (!ok)
1913                                snprintf(s, buf_end - s, "%s: stuck\n",
1914                                        timings[i].name);
1915                        else
1916                                snprintf(s, buf_end - s,
1917                                        "%s: %llu %llu %llu %llu\n",
1918                                        timings[i].name, count / 2,
1919                                        tb_to_ns(tb.tb_total),
1920                                        tb_to_ns(tb.tb_min),
1921                                        tb_to_ns(tb.tb_max));
1922                        s += strlen(s);
1923                }
1924                p->buflen = s - p->buf;
1925        }
1926
1927        pos = *ppos;
1928        if (pos >= p->buflen)
1929                return 0;
1930        if (len > p->buflen - pos)
1931                len = p->buflen - pos;
1932        n = copy_to_user(buf, p->buf + pos, len);
1933        if (n) {
1934                if (n == len)
1935                        return -EFAULT;
1936                len -= n;
1937        }
1938        *ppos = pos + len;
1939        return len;
1940}
1941
1942static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1943                                     size_t len, loff_t *ppos)
1944{
1945        return -EACCES;
1946}
1947
1948static const struct file_operations debugfs_timings_ops = {
1949        .owner   = THIS_MODULE,
1950        .open    = debugfs_timings_open,
1951        .release = debugfs_timings_release,
1952        .read    = debugfs_timings_read,
1953        .write   = debugfs_timings_write,
1954        .llseek  = generic_file_llseek,
1955};
1956
1957/* Create a debugfs directory for the vcpu */
1958static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1959{
1960        char buf[16];
1961        struct kvm *kvm = vcpu->kvm;
1962
1963        snprintf(buf, sizeof(buf), "vcpu%u", id);
1964        if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1965                return;
1966        vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1967        if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1968                return;
1969        vcpu->arch.debugfs_timings =
1970                debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1971                                    vcpu, &debugfs_timings_ops);
1972}
1973
1974#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1975static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1976{
1977}
1978#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1979
1980static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1981                                                   unsigned int id)
1982{
1983        struct kvm_vcpu *vcpu;
1984        int err;
1985        int core;
1986        struct kvmppc_vcore *vcore;
1987
1988        err = -ENOMEM;
1989        vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1990        if (!vcpu)
1991                goto out;
1992
1993        err = kvm_vcpu_init(vcpu, kvm, id);
1994        if (err)
1995                goto free_vcpu;
1996
1997        vcpu->arch.shared = &vcpu->arch.shregs;
1998#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1999        /*
2000         * The shared struct is never shared on HV,
2001         * so we can always use host endianness
2002         */
2003#ifdef __BIG_ENDIAN__
2004        vcpu->arch.shared_big_endian = true;
2005#else
2006        vcpu->arch.shared_big_endian = false;
2007#endif
2008#endif
2009        vcpu->arch.mmcr[0] = MMCR0_FC;
2010        vcpu->arch.ctrl = CTRL_RUNLATCH;
2011        /* default to host PVR, since we can't spoof it */
2012        kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2013        spin_lock_init(&vcpu->arch.vpa_update_lock);
2014        spin_lock_init(&vcpu->arch.tbacct_lock);
2015        vcpu->arch.busy_preempt = TB_NIL;
2016        vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2017
2018        /*
2019         * Set the default HFSCR for the guest from the host value.
2020         * This value is only used on POWER9.
2021         * On POWER9, we want to virtualize the doorbell facility, so we
2022         * turn off the HFSCR bit, which causes those instructions to trap.
2023         */
2024        vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
2025        if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2026                vcpu->arch.hfscr |= HFSCR_TM;
2027        else if (!cpu_has_feature(CPU_FTR_TM_COMP))
2028                vcpu->arch.hfscr &= ~HFSCR_TM;
2029        if (cpu_has_feature(CPU_FTR_ARCH_300))
2030                vcpu->arch.hfscr &= ~HFSCR_MSGP;
2031
2032        kvmppc_mmu_book3s_hv_init(vcpu);
2033
2034        vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2035
2036        init_waitqueue_head(&vcpu->arch.cpu_run);
2037
2038        mutex_lock(&kvm->lock);
2039        vcore = NULL;
2040        err = -EINVAL;
2041        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2042                if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2043                        pr_devel("KVM: VCPU ID too high\n");
2044                        core = KVM_MAX_VCORES;
2045                } else {
2046                        BUG_ON(kvm->arch.smt_mode != 1);
2047                        core = kvmppc_pack_vcpu_id(kvm, id);
2048                }
2049        } else {
2050                core = id / kvm->arch.smt_mode;
2051        }
2052        if (core < KVM_MAX_VCORES) {
2053                vcore = kvm->arch.vcores[core];
2054                if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2055                        pr_devel("KVM: collision on id %u", id);
2056                        vcore = NULL;
2057                } else if (!vcore) {
2058                        err = -ENOMEM;
2059                        vcore = kvmppc_vcore_create(kvm,
2060                                        id & ~(kvm->arch.smt_mode - 1));
2061                        kvm->arch.vcores[core] = vcore;
2062                        kvm->arch.online_vcores++;
2063                }
2064        }
2065        mutex_unlock(&kvm->lock);
2066
2067        if (!vcore)
2068                goto free_vcpu;
2069
2070        spin_lock(&vcore->lock);
2071        ++vcore->num_threads;
2072        spin_unlock(&vcore->lock);
2073        vcpu->arch.vcore = vcore;
2074        vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2075        vcpu->arch.thread_cpu = -1;
2076        vcpu->arch.prev_cpu = -1;
2077
2078        vcpu->arch.cpu_type = KVM_CPU_3S_64;
2079        kvmppc_sanity_check(vcpu);
2080
2081        debugfs_vcpu_init(vcpu, id);
2082
2083        return vcpu;
2084
2085free_vcpu:
2086        kmem_cache_free(kvm_vcpu_cache, vcpu);
2087out:
2088        return ERR_PTR(err);
2089}
2090
2091static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2092                              unsigned long flags)
2093{
2094        int err;
2095        int esmt = 0;
2096
2097        if (flags)
2098                return -EINVAL;
2099        if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2100                return -EINVAL;
2101        if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2102                /*
2103                 * On POWER8 (or POWER7), the threading mode is "strict",
2104                 * so we pack smt_mode vcpus per vcore.
2105                 */
2106                if (smt_mode > threads_per_subcore)
2107                        return -EINVAL;
2108        } else {
2109                /*
2110                 * On POWER9, the threading mode is "loose",
2111                 * so each vcpu gets its own vcore.
2112                 */
2113                esmt = smt_mode;
2114                smt_mode = 1;
2115        }
2116        mutex_lock(&kvm->lock);
2117        err = -EBUSY;
2118        if (!kvm->arch.online_vcores) {
2119                kvm->arch.smt_mode = smt_mode;
2120                kvm->arch.emul_smt_mode = esmt;
2121                err = 0;
2122        }
2123        mutex_unlock(&kvm->lock);
2124
2125        return err;
2126}
2127
2128static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2129{
2130        if (vpa->pinned_addr)
2131                kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2132                                        vpa->dirty);
2133}
2134
2135static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2136{
2137        spin_lock(&vcpu->arch.vpa_update_lock);
2138        unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2139        unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2140        unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2141        spin_unlock(&vcpu->arch.vpa_update_lock);
2142        kvm_vcpu_uninit(vcpu);
2143        kmem_cache_free(kvm_vcpu_cache, vcpu);
2144}
2145
2146static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2147{
2148        /* Indicate we want to get back into the guest */
2149        return 1;
2150}
2151
2152static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2153{
2154        unsigned long dec_nsec, now;
2155
2156        now = get_tb();
2157        if (now > vcpu->arch.dec_expires) {
2158                /* decrementer has already gone negative */
2159                kvmppc_core_queue_dec(vcpu);
2160                kvmppc_core_prepare_to_enter(vcpu);
2161                return;
2162        }
2163        dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2164                   / tb_ticks_per_sec;
2165        hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2166        vcpu->arch.timer_running = 1;
2167}
2168
2169static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2170{
2171        vcpu->arch.ceded = 0;
2172        if (vcpu->arch.timer_running) {
2173                hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2174                vcpu->arch.timer_running = 0;
2175        }
2176}
2177
2178extern int __kvmppc_vcore_entry(void);
2179
2180static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2181                                   struct kvm_vcpu *vcpu)
2182{
2183        u64 now;
2184
2185        if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2186                return;
2187        spin_lock_irq(&vcpu->arch.tbacct_lock);
2188        now = mftb();
2189        vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2190                vcpu->arch.stolen_logged;
2191        vcpu->arch.busy_preempt = now;
2192        vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2193        spin_unlock_irq(&vcpu->arch.tbacct_lock);
2194        --vc->n_runnable;
2195        WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2196}
2197
2198static int kvmppc_grab_hwthread(int cpu)
2199{
2200        struct paca_struct *tpaca;
2201        long timeout = 10000;
2202
2203        tpaca = paca_ptrs[cpu];
2204
2205        /* Ensure the thread won't go into the kernel if it wakes */
2206        tpaca->kvm_hstate.kvm_vcpu = NULL;
2207        tpaca->kvm_hstate.kvm_vcore = NULL;
2208        tpaca->kvm_hstate.napping = 0;
2209        smp_wmb();
2210        tpaca->kvm_hstate.hwthread_req = 1;
2211
2212        /*
2213         * If the thread is already executing in the kernel (e.g. handling
2214         * a stray interrupt), wait for it to get back to nap mode.
2215         * The smp_mb() is to ensure that our setting of hwthread_req
2216         * is visible before we look at hwthread_state, so if this
2217         * races with the code at system_reset_pSeries and the thread
2218         * misses our setting of hwthread_req, we are sure to see its
2219         * setting of hwthread_state, and vice versa.
2220         */
2221        smp_mb();
2222        while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2223                if (--timeout <= 0) {
2224                        pr_err("KVM: couldn't grab cpu %d\n", cpu);
2225                        return -EBUSY;
2226                }
2227                udelay(1);
2228        }
2229        return 0;
2230}
2231
2232static void kvmppc_release_hwthread(int cpu)
2233{
2234        struct paca_struct *tpaca;
2235
2236        tpaca = paca_ptrs[cpu];
2237        tpaca->kvm_hstate.hwthread_req = 0;
2238        tpaca->kvm_hstate.kvm_vcpu = NULL;
2239        tpaca->kvm_hstate.kvm_vcore = NULL;
2240        tpaca->kvm_hstate.kvm_split_mode = NULL;
2241}
2242
2243static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2244{
2245        int i;
2246
2247        cpu = cpu_first_thread_sibling(cpu);
2248        cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2249        /*
2250         * Make sure setting of bit in need_tlb_flush precedes
2251         * testing of cpu_in_guest bits.  The matching barrier on
2252         * the other side is the first smp_mb() in kvmppc_run_core().
2253         */
2254        smp_mb();
2255        for (i = 0; i < threads_per_core; ++i)
2256                if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2257                        smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2258}
2259
2260static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2261{
2262        struct kvm *kvm = vcpu->kvm;
2263
2264        /*
2265         * With radix, the guest can do TLB invalidations itself,
2266         * and it could choose to use the local form (tlbiel) if
2267         * it is invalidating a translation that has only ever been
2268         * used on one vcpu.  However, that doesn't mean it has
2269         * only ever been used on one physical cpu, since vcpus
2270         * can move around between pcpus.  To cope with this, when
2271         * a vcpu moves from one pcpu to another, we need to tell
2272         * any vcpus running on the same core as this vcpu previously
2273         * ran to flush the TLB.  The TLB is shared between threads,
2274         * so we use a single bit in .need_tlb_flush for all 4 threads.
2275         */
2276        if (vcpu->arch.prev_cpu != pcpu) {
2277                if (vcpu->arch.prev_cpu >= 0 &&
2278                    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2279                    cpu_first_thread_sibling(pcpu))
2280                        radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2281                vcpu->arch.prev_cpu = pcpu;
2282        }
2283}
2284
2285static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2286{
2287        int cpu;
2288        struct paca_struct *tpaca;
2289        struct kvm *kvm = vc->kvm;
2290
2291        cpu = vc->pcpu;
2292        if (vcpu) {
2293                if (vcpu->arch.timer_running) {
2294                        hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2295                        vcpu->arch.timer_running = 0;
2296                }
2297                cpu += vcpu->arch.ptid;
2298                vcpu->cpu = vc->pcpu;
2299                vcpu->arch.thread_cpu = cpu;
2300                cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2301        }
2302        tpaca = paca_ptrs[cpu];
2303        tpaca->kvm_hstate.kvm_vcpu = vcpu;
2304        tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2305        tpaca->kvm_hstate.fake_suspend = 0;
2306        /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2307        smp_wmb();
2308        tpaca->kvm_hstate.kvm_vcore = vc;
2309        if (cpu != smp_processor_id())
2310                kvmppc_ipi_thread(cpu);
2311}
2312
2313static void kvmppc_wait_for_nap(int n_threads)
2314{
2315        int cpu = smp_processor_id();
2316        int i, loops;
2317
2318        if (n_threads <= 1)
2319                return;
2320        for (loops = 0; loops < 1000000; ++loops) {
2321                /*
2322                 * Check if all threads are finished.
2323                 * We set the vcore pointer when starting a thread
2324                 * and the thread clears it when finished, so we look
2325                 * for any threads that still have a non-NULL vcore ptr.
2326                 */
2327                for (i = 1; i < n_threads; ++i)
2328                        if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2329                                break;
2330                if (i == n_threads) {
2331                        HMT_medium();
2332                        return;
2333                }
2334                HMT_low();
2335        }
2336        HMT_medium();
2337        for (i = 1; i < n_threads; ++i)
2338                if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2339                        pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2340}
2341
2342/*
2343 * Check that we are on thread 0 and that any other threads in
2344 * this core are off-line.  Then grab the threads so they can't
2345 * enter the kernel.
2346 */
2347static int on_primary_thread(void)
2348{
2349        int cpu = smp_processor_id();
2350        int thr;
2351
2352        /* Are we on a primary subcore? */
2353        if (cpu_thread_in_subcore(cpu))
2354                return 0;
2355
2356        thr = 0;
2357        while (++thr < threads_per_subcore)
2358                if (cpu_online(cpu + thr))
2359                        return 0;
2360
2361        /* Grab all hw threads so they can't go into the kernel */
2362        for (thr = 1; thr < threads_per_subcore; ++thr) {
2363                if (kvmppc_grab_hwthread(cpu + thr)) {
2364                        /* Couldn't grab one; let the others go */
2365                        do {
2366                                kvmppc_release_hwthread(cpu + thr);
2367                        } while (--thr > 0);
2368                        return 0;
2369                }
2370        }
2371        return 1;
2372}
2373
2374/*
2375 * A list of virtual cores for each physical CPU.
2376 * These are vcores that could run but their runner VCPU tasks are
2377 * (or may be) preempted.
2378 */
2379struct preempted_vcore_list {
2380        struct list_head        list;
2381        spinlock_t              lock;
2382};
2383
2384static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2385
2386static void init_vcore_lists(void)
2387{
2388        int cpu;
2389
2390        for_each_possible_cpu(cpu) {
2391                struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2392                spin_lock_init(&lp->lock);
2393                INIT_LIST_HEAD(&lp->list);
2394        }
2395}
2396
2397static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2398{
2399        struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2400
2401        vc->vcore_state = VCORE_PREEMPT;
2402        vc->pcpu = smp_processor_id();
2403        if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2404                spin_lock(&lp->lock);
2405                list_add_tail(&vc->preempt_list, &lp->list);
2406                spin_unlock(&lp->lock);
2407        }
2408
2409        /* Start accumulating stolen time */
2410        kvmppc_core_start_stolen(vc);
2411}
2412
2413static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2414{
2415        struct preempted_vcore_list *lp;
2416
2417        kvmppc_core_end_stolen(vc);
2418        if (!list_empty(&vc->preempt_list)) {
2419                lp = &per_cpu(preempted_vcores, vc->pcpu);
2420                spin_lock(&lp->lock);
2421                list_del_init(&vc->preempt_list);
2422                spin_unlock(&lp->lock);
2423        }
2424        vc->vcore_state = VCORE_INACTIVE;
2425}
2426
2427/*
2428 * This stores information about the virtual cores currently
2429 * assigned to a physical core.
2430 */
2431struct core_info {
2432        int             n_subcores;
2433        int             max_subcore_threads;
2434        int             total_threads;
2435        int             subcore_threads[MAX_SUBCORES];
2436        struct kvmppc_vcore *vc[MAX_SUBCORES];
2437};
2438
2439/*
2440 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2441 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2442 */
2443static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2444
2445static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2446{
2447        memset(cip, 0, sizeof(*cip));
2448        cip->n_subcores = 1;
2449        cip->max_subcore_threads = vc->num_threads;
2450        cip->total_threads = vc->num_threads;
2451        cip->subcore_threads[0] = vc->num_threads;
2452        cip->vc[0] = vc;
2453}
2454
2455static bool subcore_config_ok(int n_subcores, int n_threads)
2456{
2457        /*
2458         * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2459         * split-core mode, with one thread per subcore.
2460         */
2461        if (cpu_has_feature(CPU_FTR_ARCH_300))
2462                return n_subcores <= 4 && n_threads == 1;
2463
2464        /* On POWER8, can only dynamically split if unsplit to begin with */
2465        if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2466                return false;
2467        if (n_subcores > MAX_SUBCORES)
2468                return false;
2469        if (n_subcores > 1) {
2470                if (!(dynamic_mt_modes & 2))
2471                        n_subcores = 4;
2472                if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2473                        return false;
2474        }
2475
2476        return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2477}
2478
2479static void init_vcore_to_run(struct kvmppc_vcore *vc)
2480{
2481        vc->entry_exit_map = 0;
2482        vc->in_guest = 0;
2483        vc->napping_threads = 0;
2484        vc->conferring_threads = 0;
2485        vc->tb_offset_applied = 0;
2486}
2487
2488static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2489{
2490        int n_threads = vc->num_threads;
2491        int sub;
2492
2493        if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2494                return false;
2495
2496        /* Some POWER9 chips require all threads to be in the same MMU mode */
2497        if (no_mixing_hpt_and_radix &&
2498            kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2499                return false;
2500
2501        if (n_threads < cip->max_subcore_threads)
2502                n_threads = cip->max_subcore_threads;
2503        if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2504                return false;
2505        cip->max_subcore_threads = n_threads;
2506
2507        sub = cip->n_subcores;
2508        ++cip->n_subcores;
2509        cip->total_threads += vc->num_threads;
2510        cip->subcore_threads[sub] = vc->num_threads;
2511        cip->vc[sub] = vc;
2512        init_vcore_to_run(vc);
2513        list_del_init(&vc->preempt_list);
2514
2515        return true;
2516}
2517
2518/*
2519 * Work out whether it is possible to piggyback the execution of
2520 * vcore *pvc onto the execution of the other vcores described in *cip.
2521 */
2522static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2523                          int target_threads)
2524{
2525        if (cip->total_threads + pvc->num_threads > target_threads)
2526                return false;
2527
2528        return can_dynamic_split(pvc, cip);
2529}
2530
2531static void prepare_threads(struct kvmppc_vcore *vc)
2532{
2533        int i;
2534        struct kvm_vcpu *vcpu;
2535
2536        for_each_runnable_thread(i, vcpu, vc) {
2537                if (signal_pending(vcpu->arch.run_task))
2538                        vcpu->arch.ret = -EINTR;
2539                else if (vcpu->arch.vpa.update_pending ||
2540                         vcpu->arch.slb_shadow.update_pending ||
2541                         vcpu->arch.dtl.update_pending)
2542                        vcpu->arch.ret = RESUME_GUEST;
2543                else
2544                        continue;
2545                kvmppc_remove_runnable(vc, vcpu);
2546                wake_up(&vcpu->arch.cpu_run);
2547        }
2548}
2549
2550static void collect_piggybacks(struct core_info *cip, int target_threads)
2551{
2552        struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2553        struct kvmppc_vcore *pvc, *vcnext;
2554
2555        spin_lock(&lp->lock);
2556        list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2557                if (!spin_trylock(&pvc->lock))
2558                        continue;
2559                prepare_threads(pvc);
2560                if (!pvc->n_runnable) {
2561                        list_del_init(&pvc->preempt_list);
2562                        if (pvc->runner == NULL) {
2563                                pvc->vcore_state = VCORE_INACTIVE;
2564                                kvmppc_core_end_stolen(pvc);
2565                        }
2566                        spin_unlock(&pvc->lock);
2567                        continue;
2568                }
2569                if (!can_piggyback(pvc, cip, target_threads)) {
2570                        spin_unlock(&pvc->lock);
2571                        continue;
2572                }
2573                kvmppc_core_end_stolen(pvc);
2574                pvc->vcore_state = VCORE_PIGGYBACK;
2575                if (cip->total_threads >= target_threads)
2576                        break;
2577        }
2578        spin_unlock(&lp->lock);
2579}
2580
2581static bool recheck_signals(struct core_info *cip)
2582{
2583        int sub, i;
2584        struct kvm_vcpu *vcpu;
2585
2586        for (sub = 0; sub < cip->n_subcores; ++sub)
2587                for_each_runnable_thread(i, vcpu, cip->vc[sub])
2588                        if (signal_pending(vcpu->arch.run_task))
2589                                return true;
2590        return false;
2591}
2592
2593static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2594{
2595        int still_running = 0, i;
2596        u64 now;
2597        long ret;
2598        struct kvm_vcpu *vcpu;
2599
2600        spin_lock(&vc->lock);
2601        now = get_tb();
2602        for_each_runnable_thread(i, vcpu, vc) {
2603                /* cancel pending dec exception if dec is positive */
2604                if (now < vcpu->arch.dec_expires &&
2605                    kvmppc_core_pending_dec(vcpu))
2606                        kvmppc_core_dequeue_dec(vcpu);
2607
2608                trace_kvm_guest_exit(vcpu);
2609
2610                ret = RESUME_GUEST;
2611                if (vcpu->arch.trap)
2612                        ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2613                                                    vcpu->arch.run_task);
2614
2615                vcpu->arch.ret = ret;
2616                vcpu->arch.trap = 0;
2617
2618                if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2619                        if (vcpu->arch.pending_exceptions)
2620                                kvmppc_core_prepare_to_enter(vcpu);
2621                        if (vcpu->arch.ceded)
2622                                kvmppc_set_timer(vcpu);
2623                        else
2624                                ++still_running;
2625                } else {
2626                        kvmppc_remove_runnable(vc, vcpu);
2627                        wake_up(&vcpu->arch.cpu_run);
2628                }
2629        }
2630        if (!is_master) {
2631                if (still_running > 0) {
2632                        kvmppc_vcore_preempt(vc);
2633                } else if (vc->runner) {
2634                        vc->vcore_state = VCORE_PREEMPT;
2635                        kvmppc_core_start_stolen(vc);
2636                } else {
2637                        vc->vcore_state = VCORE_INACTIVE;
2638                }
2639                if (vc->n_runnable > 0 && vc->runner == NULL) {
2640                        /* make sure there's a candidate runner awake */
2641                        i = -1;
2642                        vcpu = next_runnable_thread(vc, &i);
2643                        wake_up(&vcpu->arch.cpu_run);
2644                }
2645        }
2646        spin_unlock(&vc->lock);
2647}
2648
2649/*
2650 * Clear core from the list of active host cores as we are about to
2651 * enter the guest. Only do this if it is the primary thread of the
2652 * core (not if a subcore) that is entering the guest.
2653 */
2654static inline int kvmppc_clear_host_core(unsigned int cpu)
2655{
2656        int core;
2657
2658        if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2659                return 0;
2660        /*
2661         * Memory barrier can be omitted here as we will do a smp_wmb()
2662         * later in kvmppc_start_thread and we need ensure that state is
2663         * visible to other CPUs only after we enter guest.
2664         */
2665        core = cpu >> threads_shift;
2666        kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2667        return 0;
2668}
2669
2670/*
2671 * Advertise this core as an active host core since we exited the guest
2672 * Only need to do this if it is the primary thread of the core that is
2673 * exiting.
2674 */
2675static inline int kvmppc_set_host_core(unsigned int cpu)
2676{
2677        int core;
2678
2679        if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2680                return 0;
2681
2682        /*
2683         * Memory barrier can be omitted here because we do a spin_unlock
2684         * immediately after this which provides the memory barrier.
2685         */
2686        core = cpu >> threads_shift;
2687        kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2688        return 0;
2689}
2690
2691static void set_irq_happened(int trap)
2692{
2693        switch (trap) {
2694        case BOOK3S_INTERRUPT_EXTERNAL:
2695                local_paca->irq_happened |= PACA_IRQ_EE;
2696                break;
2697        case BOOK3S_INTERRUPT_H_DOORBELL:
2698                local_paca->irq_happened |= PACA_IRQ_DBELL;
2699                break;
2700        case BOOK3S_INTERRUPT_HMI:
2701                local_paca->irq_happened |= PACA_IRQ_HMI;
2702                break;
2703        case BOOK3S_INTERRUPT_SYSTEM_RESET:
2704                replay_system_reset();
2705                break;
2706        }
2707}
2708
2709/*
2710 * Run a set of guest threads on a physical core.
2711 * Called with vc->lock held.
2712 */
2713static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2714{
2715        struct kvm_vcpu *vcpu;
2716        int i;
2717        int srcu_idx;
2718        struct core_info core_info;
2719        struct kvmppc_vcore *pvc;
2720        struct kvm_split_mode split_info, *sip;
2721        int split, subcore_size, active;
2722        int sub;
2723        bool thr0_done;
2724        unsigned long cmd_bit, stat_bit;
2725        int pcpu, thr;
2726        int target_threads;
2727        int controlled_threads;
2728        int trap;
2729        bool is_power8;
2730        bool hpt_on_radix;
2731
2732        /*
2733         * Remove from the list any threads that have a signal pending
2734         * or need a VPA update done
2735         */
2736        prepare_threads(vc);
2737
2738        /* if the runner is no longer runnable, let the caller pick a new one */
2739        if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2740                return;
2741
2742        /*
2743         * Initialize *vc.
2744         */
2745        init_vcore_to_run(vc);
2746        vc->preempt_tb = TB_NIL;
2747
2748        /*
2749         * Number of threads that we will be controlling: the same as
2750         * the number of threads per subcore, except on POWER9,
2751         * where it's 1 because the threads are (mostly) independent.
2752         */
2753        controlled_threads = threads_per_vcore(vc->kvm);
2754
2755        /*
2756         * Make sure we are running on primary threads, and that secondary
2757         * threads are offline.  Also check if the number of threads in this
2758         * guest are greater than the current system threads per guest.
2759         * On POWER9, we need to be not in independent-threads mode if
2760         * this is a HPT guest on a radix host machine where the
2761         * CPU threads may not be in different MMU modes.
2762         */
2763        hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
2764                !kvm_is_radix(vc->kvm);
2765        if (((controlled_threads > 1) &&
2766             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
2767            (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2768                for_each_runnable_thread(i, vcpu, vc) {
2769                        vcpu->arch.ret = -EBUSY;
2770                        kvmppc_remove_runnable(vc, vcpu);
2771                        wake_up(&vcpu->arch.cpu_run);
2772                }
2773                goto out;
2774        }
2775
2776        /*
2777         * See if we could run any other vcores on the physical core
2778         * along with this one.
2779         */
2780        init_core_info(&core_info, vc);
2781        pcpu = smp_processor_id();
2782        target_threads = controlled_threads;
2783        if (target_smt_mode && target_smt_mode < target_threads)
2784                target_threads = target_smt_mode;
2785        if (vc->num_threads < target_threads)
2786                collect_piggybacks(&core_info, target_threads);
2787
2788        /*
2789         * On radix, arrange for TLB flushing if necessary.
2790         * This has to be done before disabling interrupts since
2791         * it uses smp_call_function().
2792         */
2793        pcpu = smp_processor_id();
2794        if (kvm_is_radix(vc->kvm)) {
2795                for (sub = 0; sub < core_info.n_subcores; ++sub)
2796                        for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2797                                kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2798        }
2799
2800        /*
2801         * Hard-disable interrupts, and check resched flag and signals.
2802         * If we need to reschedule or deliver a signal, clean up
2803         * and return without going into the guest(s).
2804         * If the mmu_ready flag has been cleared, don't go into the
2805         * guest because that means a HPT resize operation is in progress.
2806         */
2807        local_irq_disable();
2808        hard_irq_disable();
2809        if (lazy_irq_pending() || need_resched() ||
2810            recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2811                local_irq_enable();
2812                vc->vcore_state = VCORE_INACTIVE;
2813                /* Unlock all except the primary vcore */
2814                for (sub = 1; sub < core_info.n_subcores; ++sub) {
2815                        pvc = core_info.vc[sub];
2816                        /* Put back on to the preempted vcores list */
2817                        kvmppc_vcore_preempt(pvc);
2818                        spin_unlock(&pvc->lock);
2819                }
2820                for (i = 0; i < controlled_threads; ++i)
2821                        kvmppc_release_hwthread(pcpu + i);
2822                return;
2823        }
2824
2825        kvmppc_clear_host_core(pcpu);
2826
2827        /* Decide on micro-threading (split-core) mode */
2828        subcore_size = threads_per_subcore;
2829        cmd_bit = stat_bit = 0;
2830        split = core_info.n_subcores;
2831        sip = NULL;
2832        is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
2833                && !cpu_has_feature(CPU_FTR_ARCH_300);
2834
2835        if (split > 1 || hpt_on_radix) {
2836                sip = &split_info;
2837                memset(&split_info, 0, sizeof(split_info));
2838                for (sub = 0; sub < core_info.n_subcores; ++sub)
2839                        split_info.vc[sub] = core_info.vc[sub];
2840
2841                if (is_power8) {
2842                        if (split == 2 && (dynamic_mt_modes & 2)) {
2843                                cmd_bit = HID0_POWER8_1TO2LPAR;
2844                                stat_bit = HID0_POWER8_2LPARMODE;
2845                        } else {
2846                                split = 4;
2847                                cmd_bit = HID0_POWER8_1TO4LPAR;
2848                                stat_bit = HID0_POWER8_4LPARMODE;
2849                        }
2850                        subcore_size = MAX_SMT_THREADS / split;
2851                        split_info.rpr = mfspr(SPRN_RPR);
2852                        split_info.pmmar = mfspr(SPRN_PMMAR);
2853                        split_info.ldbar = mfspr(SPRN_LDBAR);
2854                        split_info.subcore_size = subcore_size;
2855                } else {
2856                        split_info.subcore_size = 1;
2857                        if (hpt_on_radix) {
2858                                /* Use the split_info for LPCR/LPIDR changes */
2859                                split_info.lpcr_req = vc->lpcr;
2860                                split_info.lpidr_req = vc->kvm->arch.lpid;
2861                                split_info.host_lpcr = vc->kvm->arch.host_lpcr;
2862                                split_info.do_set = 1;
2863                        }
2864                }
2865
2866                /* order writes to split_info before kvm_split_mode pointer */
2867                smp_wmb();
2868        }
2869
2870        for (thr = 0; thr < controlled_threads; ++thr) {
2871                struct paca_struct *paca = paca_ptrs[pcpu + thr];
2872
2873                paca->kvm_hstate.tid = thr;
2874                paca->kvm_hstate.napping = 0;
2875                paca->kvm_hstate.kvm_split_mode = sip;
2876        }
2877
2878        /* Initiate micro-threading (split-core) on POWER8 if required */
2879        if (cmd_bit) {
2880                unsigned long hid0 = mfspr(SPRN_HID0);
2881
2882                hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2883                mb();
2884                mtspr(SPRN_HID0, hid0);
2885                isync();
2886                for (;;) {
2887                        hid0 = mfspr(SPRN_HID0);
2888                        if (hid0 & stat_bit)
2889                                break;
2890                        cpu_relax();
2891                }
2892        }
2893
2894        /*
2895         * On POWER8, set RWMR register.
2896         * Since it only affects PURR and SPURR, it doesn't affect
2897         * the host, so we don't save/restore the host value.
2898         */
2899        if (is_power8) {
2900                unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
2901                int n_online = atomic_read(&vc->online_count);
2902
2903                /*
2904                 * Use the 8-thread value if we're doing split-core
2905                 * or if the vcore's online count looks bogus.
2906                 */
2907                if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
2908                    n_online >= 1 && n_online <= MAX_SMT_THREADS)
2909                        rwmr_val = p8_rwmr_values[n_online];
2910                mtspr(SPRN_RWMR, rwmr_val);
2911        }
2912
2913        /* Start all the threads */
2914        active = 0;
2915        for (sub = 0; sub < core_info.n_subcores; ++sub) {
2916                thr = is_power8 ? subcore_thread_map[sub] : sub;
2917                thr0_done = false;
2918                active |= 1 << thr;
2919                pvc = core_info.vc[sub];
2920                pvc->pcpu = pcpu + thr;
2921                for_each_runnable_thread(i, vcpu, pvc) {
2922                        kvmppc_start_thread(vcpu, pvc);
2923                        kvmppc_create_dtl_entry(vcpu, pvc);
2924                        trace_kvm_guest_enter(vcpu);
2925                        if (!vcpu->arch.ptid)
2926                                thr0_done = true;
2927                        active |= 1 << (thr + vcpu->arch.ptid);
2928                }
2929                /*
2930                 * We need to start the first thread of each subcore
2931                 * even if it doesn't have a vcpu.
2932                 */
2933                if (!thr0_done)
2934                        kvmppc_start_thread(NULL, pvc);
2935        }
2936
2937        /*
2938         * Ensure that split_info.do_nap is set after setting
2939         * the vcore pointer in the PACA of the secondaries.
2940         */
2941        smp_mb();
2942
2943        /*
2944         * When doing micro-threading, poke the inactive threads as well.
2945         * This gets them to the nap instruction after kvm_do_nap,
2946         * which reduces the time taken to unsplit later.
2947         * For POWER9 HPT guest on radix host, we need all the secondary
2948         * threads woken up so they can do the LPCR/LPIDR change.
2949         */
2950        if (cmd_bit || hpt_on_radix) {
2951                split_info.do_nap = 1;  /* ask secondaries to nap when done */
2952                for (thr = 1; thr < threads_per_subcore; ++thr)
2953                        if (!(active & (1 << thr)))
2954                                kvmppc_ipi_thread(pcpu + thr);
2955        }
2956
2957        vc->vcore_state = VCORE_RUNNING;
2958        preempt_disable();
2959
2960        trace_kvmppc_run_core(vc, 0);
2961
2962        for (sub = 0; sub < core_info.n_subcores; ++sub)
2963                spin_unlock(&core_info.vc[sub]->lock);
2964
2965        if (kvm_is_radix(vc->kvm)) {
2966                int tmp = pcpu;
2967
2968                /*
2969                 * Do we need to flush the process scoped TLB for the LPAR?
2970                 *
2971                 * On POWER9, individual threads can come in here, but the
2972                 * TLB is shared between the 4 threads in a core, hence
2973                 * invalidating on one thread invalidates for all.
2974                 * Thus we make all 4 threads use the same bit here.
2975                 *
2976                 * Hash must be flushed in realmode in order to use tlbiel.
2977                 */
2978                mtspr(SPRN_LPID, vc->kvm->arch.lpid);
2979                isync();
2980
2981                if (cpu_has_feature(CPU_FTR_ARCH_300))
2982                        tmp &= ~0x3UL;
2983
2984                if (cpumask_test_cpu(tmp, &vc->kvm->arch.need_tlb_flush)) {
2985                        radix__local_flush_tlb_lpid_guest(vc->kvm->arch.lpid);
2986                        /* Clear the bit after the TLB flush */
2987                        cpumask_clear_cpu(tmp, &vc->kvm->arch.need_tlb_flush);
2988                }
2989        }
2990
2991        /*
2992         * Interrupts will be enabled once we get into the guest,
2993         * so tell lockdep that we're about to enable interrupts.
2994         */
2995        trace_hardirqs_on();
2996
2997        guest_enter_irqoff();
2998
2999        srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3000
3001        this_cpu_disable_ftrace();
3002
3003        trap = __kvmppc_vcore_entry();
3004
3005        this_cpu_enable_ftrace();
3006
3007        srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3008
3009        trace_hardirqs_off();
3010        set_irq_happened(trap);
3011
3012        spin_lock(&vc->lock);
3013        /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3014        vc->vcore_state = VCORE_EXITING;
3015
3016        /* wait for secondary threads to finish writing their state to memory */
3017        kvmppc_wait_for_nap(controlled_threads);
3018
3019        /* Return to whole-core mode if we split the core earlier */
3020        if (cmd_bit) {
3021                unsigned long hid0 = mfspr(SPRN_HID0);
3022                unsigned long loops = 0;
3023
3024                hid0 &= ~HID0_POWER8_DYNLPARDIS;
3025                stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3026                mb();
3027                mtspr(SPRN_HID0, hid0);
3028                isync();
3029                for (;;) {
3030                        hid0 = mfspr(SPRN_HID0);
3031                        if (!(hid0 & stat_bit))
3032                                break;
3033                        cpu_relax();
3034                        ++loops;
3035                }
3036        } else if (hpt_on_radix) {
3037                /* Wait for all threads to have seen final sync */
3038                for (thr = 1; thr < controlled_threads; ++thr) {
3039                        struct paca_struct *paca = paca_ptrs[pcpu + thr];
3040
3041                        while (paca->kvm_hstate.kvm_split_mode) {
3042                                HMT_low();
3043                                barrier();
3044                        }
3045                        HMT_medium();
3046                }
3047        }
3048        split_info.do_nap = 0;
3049
3050        kvmppc_set_host_core(pcpu);
3051
3052        local_irq_enable();
3053        guest_exit();
3054
3055        /* Let secondaries go back to the offline loop */
3056        for (i = 0; i < controlled_threads; ++i) {
3057                kvmppc_release_hwthread(pcpu + i);
3058                if (sip && sip->napped[i])
3059                        kvmppc_ipi_thread(pcpu + i);
3060                cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3061        }
3062
3063        spin_unlock(&vc->lock);
3064
3065        /* make sure updates to secondary vcpu structs are visible now */
3066        smp_mb();
3067
3068        preempt_enable();
3069
3070        for (sub = 0; sub < core_info.n_subcores; ++sub) {
3071                pvc = core_info.vc[sub];
3072                post_guest_process(pvc, pvc == vc);
3073        }
3074
3075        spin_lock(&vc->lock);
3076
3077 out:
3078        vc->vcore_state = VCORE_INACTIVE;
3079        trace_kvmppc_run_core(vc, 1);
3080}
3081
3082/*
3083 * Wait for some other vcpu thread to execute us, and
3084 * wake us up when we need to handle something in the host.
3085 */
3086static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3087                                 struct kvm_vcpu *vcpu, int wait_state)
3088{
3089        DEFINE_WAIT(wait);
3090
3091        prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3092        if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3093                spin_unlock(&vc->lock);
3094                schedule();
3095                spin_lock(&vc->lock);
3096        }
3097        finish_wait(&vcpu->arch.cpu_run, &wait);
3098}
3099
3100static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3101{
3102        /* 10us base */
3103        if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
3104                vc->halt_poll_ns = 10000;
3105        else
3106                vc->halt_poll_ns *= halt_poll_ns_grow;
3107}
3108
3109static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3110{
3111        if (halt_poll_ns_shrink == 0)
3112                vc->halt_poll_ns = 0;
3113        else
3114                vc->halt_poll_ns /= halt_poll_ns_shrink;
3115}
3116
3117#ifdef CONFIG_KVM_XICS
3118static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3119{
3120        if (!xive_enabled())
3121                return false;
3122        return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3123                vcpu->arch.xive_saved_state.cppr;
3124}
3125#else
3126static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3127{
3128        return false;
3129}
3130#endif /* CONFIG_KVM_XICS */
3131
3132static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3133{
3134        if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3135            kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3136                return true;
3137
3138        return false;
3139}
3140
3141/*
3142 * Check to see if any of the runnable vcpus on the vcore have pending
3143 * exceptions or are no longer ceded
3144 */
3145static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3146{
3147        struct kvm_vcpu *vcpu;
3148        int i;
3149
3150        for_each_runnable_thread(i, vcpu, vc) {
3151                if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3152                        return 1;
3153        }
3154
3155        return 0;
3156}
3157
3158/*
3159 * All the vcpus in this vcore are idle, so wait for a decrementer
3160 * or external interrupt to one of the vcpus.  vc->lock is held.
3161 */
3162static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3163{
3164        ktime_t cur, start_poll, start_wait;
3165        int do_sleep = 1;
3166        u64 block_ns;
3167        DECLARE_SWAITQUEUE(wait);
3168
3169        /* Poll for pending exceptions and ceded state */
3170        cur = start_poll = ktime_get();
3171        if (vc->halt_poll_ns) {
3172                ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3173                ++vc->runner->stat.halt_attempted_poll;
3174
3175                vc->vcore_state = VCORE_POLLING;
3176                spin_unlock(&vc->lock);
3177
3178                do {
3179                        if (kvmppc_vcore_check_block(vc)) {
3180                                do_sleep = 0;
3181                                break;
3182                        }
3183                        cur = ktime_get();
3184                } while (single_task_running() && ktime_before(cur, stop));
3185
3186                spin_lock(&vc->lock);
3187                vc->vcore_state = VCORE_INACTIVE;
3188
3189                if (!do_sleep) {
3190                        ++vc->runner->stat.halt_successful_poll;
3191                        goto out;
3192                }
3193        }
3194
3195        prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3196
3197        if (kvmppc_vcore_check_block(vc)) {
3198                finish_swait(&vc->wq, &wait);
3199                do_sleep = 0;
3200                /* If we polled, count this as a successful poll */
3201                if (vc->halt_poll_ns)
3202                        ++vc->runner->stat.halt_successful_poll;
3203                goto out;
3204        }
3205
3206        start_wait = ktime_get();
3207
3208        vc->vcore_state = VCORE_SLEEPING;
3209        trace_kvmppc_vcore_blocked(vc, 0);
3210        spin_unlock(&vc->lock);
3211        schedule();
3212        finish_swait(&vc->wq, &wait);
3213        spin_lock(&vc->lock);
3214        vc->vcore_state = VCORE_INACTIVE;
3215        trace_kvmppc_vcore_blocked(vc, 1);
3216        ++vc->runner->stat.halt_successful_wait;
3217
3218        cur = ktime_get();
3219
3220out:
3221        block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3222
3223        /* Attribute wait time */
3224        if (do_sleep) {
3225                vc->runner->stat.halt_wait_ns +=
3226                        ktime_to_ns(cur) - ktime_to_ns(start_wait);
3227                /* Attribute failed poll time */
3228                if (vc->halt_poll_ns)
3229                        vc->runner->stat.halt_poll_fail_ns +=
3230                                ktime_to_ns(start_wait) -
3231                                ktime_to_ns(start_poll);
3232        } else {
3233                /* Attribute successful poll time */
3234                if (vc->halt_poll_ns)
3235                        vc->runner->stat.halt_poll_success_ns +=
3236                                ktime_to_ns(cur) -
3237                                ktime_to_ns(start_poll);
3238        }
3239
3240        /* Adjust poll time */
3241        if (halt_poll_ns) {
3242                if (block_ns <= vc->halt_poll_ns)
3243                        ;
3244                /* We slept and blocked for longer than the max halt time */
3245                else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3246                        shrink_halt_poll_ns(vc);
3247                /* We slept and our poll time is too small */
3248                else if (vc->halt_poll_ns < halt_poll_ns &&
3249                                block_ns < halt_poll_ns)
3250                        grow_halt_poll_ns(vc);
3251                if (vc->halt_poll_ns > halt_poll_ns)
3252                        vc->halt_poll_ns = halt_poll_ns;
3253        } else
3254                vc->halt_poll_ns = 0;
3255
3256        trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3257}
3258
3259static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3260{
3261        int r = 0;
3262        struct kvm *kvm = vcpu->kvm;
3263
3264        mutex_lock(&kvm->lock);
3265        if (!kvm->arch.mmu_ready) {
3266                if (!kvm_is_radix(kvm))
3267                        r = kvmppc_hv_setup_htab_rma(vcpu);
3268                if (!r) {
3269                        if (cpu_has_feature(CPU_FTR_ARCH_300))
3270                                kvmppc_setup_partition_table(kvm);
3271                        kvm->arch.mmu_ready = 1;
3272                }
3273        }
3274        mutex_unlock(&kvm->lock);
3275        return r;
3276}
3277
3278static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3279{
3280        int n_ceded, i, r;
3281        struct kvmppc_vcore *vc;
3282        struct kvm_vcpu *v;
3283
3284        trace_kvmppc_run_vcpu_enter(vcpu);
3285
3286        kvm_run->exit_reason = 0;
3287        vcpu->arch.ret = RESUME_GUEST;
3288        vcpu->arch.trap = 0;
3289        kvmppc_update_vpas(vcpu);
3290
3291        /*
3292         * Synchronize with other threads in this virtual core
3293         */
3294        vc = vcpu->arch.vcore;
3295        spin_lock(&vc->lock);
3296        vcpu->arch.ceded = 0;
3297        vcpu->arch.run_task = current;
3298        vcpu->arch.kvm_run = kvm_run;
3299        vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3300        vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3301        vcpu->arch.busy_preempt = TB_NIL;
3302        WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3303        ++vc->n_runnable;
3304
3305        /*
3306         * This happens the first time this is called for a vcpu.
3307         * If the vcore is already running, we may be able to start
3308         * this thread straight away and have it join in.
3309         */
3310        if (!signal_pending(current)) {
3311                if ((vc->vcore_state == VCORE_PIGGYBACK ||
3312                     vc->vcore_state == VCORE_RUNNING) &&
3313                           !VCORE_IS_EXITING(vc)) {
3314                        kvmppc_create_dtl_entry(vcpu, vc);
3315                        kvmppc_start_thread(vcpu, vc);
3316                        trace_kvm_guest_enter(vcpu);
3317                } else if (vc->vcore_state == VCORE_SLEEPING) {
3318                        swake_up_one(&vc->wq);
3319                }
3320
3321        }
3322
3323        while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3324               !signal_pending(current)) {
3325                /* See if the MMU is ready to go */
3326                if (!vcpu->kvm->arch.mmu_ready) {
3327                        spin_unlock(&vc->lock);
3328                        r = kvmhv_setup_mmu(vcpu);
3329                        spin_lock(&vc->lock);
3330                        if (r) {
3331                                kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3332                                kvm_run->fail_entry.
3333                                        hardware_entry_failure_reason = 0;
3334                                vcpu->arch.ret = r;
3335                                break;
3336                        }
3337                }
3338
3339                if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3340                        kvmppc_vcore_end_preempt(vc);
3341
3342                if (vc->vcore_state != VCORE_INACTIVE) {
3343                        kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3344                        continue;
3345                }
3346                for_each_runnable_thread(i, v, vc) {
3347                        kvmppc_core_prepare_to_enter(v);
3348                        if (signal_pending(v->arch.run_task)) {
3349                                kvmppc_remove_runnable(vc, v);
3350                                v->stat.signal_exits++;
3351                                v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3352                                v->arch.ret = -EINTR;
3353                                wake_up(&v->arch.cpu_run);
3354                        }
3355                }
3356                if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3357                        break;
3358                n_ceded = 0;
3359                for_each_runnable_thread(i, v, vc) {
3360                        if (!kvmppc_vcpu_woken(v))
3361                                n_ceded += v->arch.ceded;
3362                        else
3363                                v->arch.ceded = 0;
3364                }
3365                vc->runner = vcpu;
3366                if (n_ceded == vc->n_runnable) {
3367                        kvmppc_vcore_blocked(vc);
3368                } else if (need_resched()) {
3369                        kvmppc_vcore_preempt(vc);
3370                        /* Let something else run */
3371                        cond_resched_lock(&vc->lock);
3372                        if (vc->vcore_state == VCORE_PREEMPT)
3373                                kvmppc_vcore_end_preempt(vc);
3374                } else {
3375                        kvmppc_run_core(vc);
3376                }
3377                vc->runner = NULL;
3378        }
3379
3380        while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3381               (vc->vcore_state == VCORE_RUNNING ||
3382                vc->vcore_state == VCORE_EXITING ||
3383                vc->vcore_state == VCORE_PIGGYBACK))
3384                kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3385
3386        if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3387                kvmppc_vcore_end_preempt(vc);
3388
3389        if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3390                kvmppc_remove_runnable(vc, vcpu);
3391                vcpu->stat.signal_exits++;
3392                kvm_run->exit_reason = KVM_EXIT_INTR;
3393                vcpu->arch.ret = -EINTR;
3394        }
3395
3396        if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3397                /* Wake up some vcpu to run the core */
3398                i = -1;
3399                v = next_runnable_thread(vc, &i);
3400                wake_up(&v->arch.cpu_run);
3401        }
3402
3403        trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3404        spin_unlock(&vc->lock);
3405        return vcpu->arch.ret;
3406}
3407
3408static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3409{
3410        int r;
3411        int srcu_idx;
3412        unsigned long ebb_regs[3] = {}; /* shut up GCC */
3413        unsigned long user_tar = 0;
3414        unsigned int user_vrsave;
3415        struct kvm *kvm;
3416
3417        if (!vcpu->arch.sane) {
3418                run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3419                return -EINVAL;
3420        }
3421
3422        /*
3423         * Don't allow entry with a suspended transaction, because
3424         * the guest entry/exit code will lose it.
3425         * If the guest has TM enabled, save away their TM-related SPRs
3426         * (they will get restored by the TM unavailable interrupt).
3427         */
3428#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3429        if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3430            (current->thread.regs->msr & MSR_TM)) {
3431                if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3432                        run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3433                        run->fail_entry.hardware_entry_failure_reason = 0;
3434                        return -EINVAL;
3435                }
3436                /* Enable TM so we can read the TM SPRs */
3437                mtmsr(mfmsr() | MSR_TM);
3438                current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3439                current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3440                current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3441                current->thread.regs->msr &= ~MSR_TM;
3442        }
3443#endif
3444
3445        /*
3446         * Force online to 1 for the sake of old userspace which doesn't
3447         * set it.
3448         */
3449        if (!vcpu->arch.online) {
3450                atomic_inc(&vcpu->arch.vcore->online_count);
3451                vcpu->arch.online = 1;
3452        }
3453
3454        kvmppc_core_prepare_to_enter(vcpu);
3455
3456        /* No need to go into the guest when all we'll do is come back out */
3457        if (signal_pending(current)) {
3458                run->exit_reason = KVM_EXIT_INTR;
3459                return -EINTR;
3460        }
3461
3462        kvm = vcpu->kvm;
3463        atomic_inc(&kvm->arch.vcpus_running);
3464        /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3465        smp_mb();
3466
3467        flush_all_to_thread(current);
3468
3469        /* Save userspace EBB and other register values */
3470        if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3471                ebb_regs[0] = mfspr(SPRN_EBBHR);
3472                ebb_regs[1] = mfspr(SPRN_EBBRR);
3473                ebb_regs[2] = mfspr(SPRN_BESCR);
3474                user_tar = mfspr(SPRN_TAR);
3475        }
3476        user_vrsave = mfspr(SPRN_VRSAVE);
3477
3478        vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3479        vcpu->arch.pgdir = current->mm->pgd;
3480        vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3481
3482        do {
3483                r = kvmppc_run_vcpu(run, vcpu);
3484
3485                if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3486                    !(vcpu->arch.shregs.msr & MSR_PR)) {
3487                        trace_kvm_hcall_enter(vcpu);
3488                        r = kvmppc_pseries_do_hcall(vcpu);
3489                        trace_kvm_hcall_exit(vcpu, r);
3490                        kvmppc_core_prepare_to_enter(vcpu);
3491                } else if (r == RESUME_PAGE_FAULT) {
3492                        srcu_idx = srcu_read_lock(&kvm->srcu);
3493                        r = kvmppc_book3s_hv_page_fault(run, vcpu,
3494                                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3495                        srcu_read_unlock(&kvm->srcu, srcu_idx);
3496                } else if (r == RESUME_PASSTHROUGH) {
3497                        if (WARN_ON(xive_enabled()))
3498                                r = H_SUCCESS;
3499                        else
3500                                r = kvmppc_xics_rm_complete(vcpu, 0);
3501                }
3502        } while (is_kvmppc_resume_guest(r));
3503
3504        /* Restore userspace EBB and other register values */
3505        if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3506                mtspr(SPRN_EBBHR, ebb_regs[0]);
3507                mtspr(SPRN_EBBRR, ebb_regs[1]);
3508                mtspr(SPRN_BESCR, ebb_regs[2]);
3509                mtspr(SPRN_TAR, user_tar);
3510                mtspr(SPRN_FSCR, current->thread.fscr);
3511        }
3512        mtspr(SPRN_VRSAVE, user_vrsave);
3513
3514        vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3515        atomic_dec(&kvm->arch.vcpus_running);
3516        return r;
3517}
3518
3519static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3520                                     int shift, int sllp)
3521{
3522        (*sps)->page_shift = shift;
3523        (*sps)->slb_enc = sllp;
3524        (*sps)->enc[0].page_shift = shift;
3525        (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3526        /*
3527         * Add 16MB MPSS support (may get filtered out by userspace)
3528         */
3529        if (shift != 24) {
3530                int penc = kvmppc_pgsize_lp_encoding(shift, 24);
3531                if (penc != -1) {
3532                        (*sps)->enc[1].page_shift = 24;
3533                        (*sps)->enc[1].pte_enc = penc;
3534                }
3535        }
3536        (*sps)++;
3537}
3538
3539static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3540                                         struct kvm_ppc_smmu_info *info)
3541{
3542        struct kvm_ppc_one_seg_page_size *sps;
3543
3544        /*
3545         * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3546         * POWER7 doesn't support keys for instruction accesses,
3547         * POWER8 and POWER9 do.
3548         */
3549        info->data_keys = 32;
3550        info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3551
3552        /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
3553        info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
3554        info->slb_size = 32;
3555
3556        /* We only support these sizes for now, and no muti-size segments */
3557        sps = &info->sps[0];
3558        kvmppc_add_seg_page_size(&sps, 12, 0);
3559        kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
3560        kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3561
3562        return 0;
3563}
3564
3565/*
3566 * Get (and clear) the dirty memory log for a memory slot.
3567 */
3568static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3569                                         struct kvm_dirty_log *log)
3570{
3571        struct kvm_memslots *slots;
3572        struct kvm_memory_slot *memslot;
3573        int i, r;
3574        unsigned long n;
3575        unsigned long *buf, *p;
3576        struct kvm_vcpu *vcpu;
3577
3578        mutex_lock(&kvm->slots_lock);
3579
3580        r = -EINVAL;
3581        if (log->slot >= KVM_USER_MEM_SLOTS)
3582                goto out;
3583
3584        slots = kvm_memslots(kvm);
3585        memslot = id_to_memslot(slots, log->slot);
3586        r = -ENOENT;
3587        if (!memslot->dirty_bitmap)
3588                goto out;
3589
3590        /*
3591         * Use second half of bitmap area because both HPT and radix
3592         * accumulate bits in the first half.
3593         */
3594        n = kvm_dirty_bitmap_bytes(memslot);
3595        buf = memslot->dirty_bitmap + n / sizeof(long);
3596        memset(buf, 0, n);
3597
3598        if (kvm_is_radix(kvm))
3599                r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3600        else
3601                r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3602        if (r)
3603                goto out;
3604
3605        /*
3606         * We accumulate dirty bits in the first half of the
3607         * memslot's dirty_bitmap area, for when pages are paged
3608         * out or modified by the host directly.  Pick up these
3609         * bits and add them to the map.
3610         */
3611        p = memslot->dirty_bitmap;
3612        for (i = 0; i < n / sizeof(long); ++i)
3613                buf[i] |= xchg(&p[i], 0);
3614
3615        /* Harvest dirty bits from VPA and DTL updates */
3616        /* Note: we never modify the SLB shadow buffer areas */
3617        kvm_for_each_vcpu(i, vcpu, kvm) {
3618                spin_lock(&vcpu->arch.vpa_update_lock);
3619                kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3620                kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3621                spin_unlock(&vcpu->arch.vpa_update_lock);
3622        }
3623
3624        r = -EFAULT;
3625        if (copy_to_user(log->dirty_bitmap, buf, n))
3626                goto out;
3627
3628        r = 0;
3629out:
3630        mutex_unlock(&kvm->slots_lock);
3631        return r;
3632}
3633
3634static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3635                                        struct kvm_memory_slot *dont)
3636{
3637        if (!dont || free->arch.rmap != dont->arch.rmap) {
3638                vfree(free->arch.rmap);
3639                free->arch.rmap = NULL;
3640        }
3641}
3642
3643static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3644                                         unsigned long npages)
3645{
3646        slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
3647        if (!slot->arch.rmap)
3648                return -ENOMEM;
3649
3650        return 0;
3651}
3652
3653static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3654                                        struct kvm_memory_slot *memslot,
3655                                        const struct kvm_userspace_memory_region *mem)
3656{
3657        return 0;
3658}
3659
3660static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3661                                const struct kvm_userspace_memory_region *mem,
3662                                const struct kvm_memory_slot *old,
3663                                const struct kvm_memory_slot *new)
3664{
3665        unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3666
3667        /*
3668         * If we are making a new memslot, it might make
3669         * some address that was previously cached as emulated
3670         * MMIO be no longer emulated MMIO, so invalidate
3671         * all the caches of emulated MMIO translations.
3672         */
3673        if (npages)
3674                atomic64_inc(&kvm->arch.mmio_update);
3675}
3676
3677/*
3678 * Update LPCR values in kvm->arch and in vcores.
3679 * Caller must hold kvm->lock.
3680 */
3681void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3682{
3683        long int i;
3684        u32 cores_done = 0;
3685
3686        if ((kvm->arch.lpcr & mask) == lpcr)
3687                return;
3688
3689        kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3690
3691        for (i = 0; i < KVM_MAX_VCORES; ++i) {
3692                struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3693                if (!vc)
3694                        continue;
3695                spin_lock(&vc->lock);
3696                vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3697                spin_unlock(&vc->lock);
3698                if (++cores_done >= kvm->arch.online_vcores)
3699                        break;
3700        }
3701}
3702
3703static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3704{
3705        return;
3706}
3707
3708void kvmppc_setup_partition_table(struct kvm *kvm)
3709{
3710        unsigned long dw0, dw1;
3711
3712        if (!kvm_is_radix(kvm)) {
3713                /* PS field - page size for VRMA */
3714                dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3715                        ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3716                /* HTABSIZE and HTABORG fields */
3717                dw0 |= kvm->arch.sdr1;
3718
3719                /* Second dword as set by userspace */
3720                dw1 = kvm->arch.process_table;
3721        } else {
3722                dw0 = PATB_HR | radix__get_tree_size() |
3723                        __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3724                dw1 = PATB_GR | kvm->arch.process_table;
3725        }
3726
3727        mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3728}
3729
3730/*
3731 * Set up HPT (hashed page table) and RMA (real-mode area).
3732 * Must be called with kvm->lock held.
3733 */
3734static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3735{
3736        int err = 0;
3737        struct kvm *kvm = vcpu->kvm;
3738        unsigned long hva;
3739        struct kvm_memory_slot *memslot;
3740        struct vm_area_struct *vma;
3741        unsigned long lpcr = 0, senc;
3742        unsigned long psize, porder;
3743        int srcu_idx;
3744
3745        /* Allocate hashed page table (if not done already) and reset it */
3746        if (!kvm->arch.hpt.virt) {
3747                int order = KVM_DEFAULT_HPT_ORDER;
3748                struct kvm_hpt_info info;
3749
3750                err = kvmppc_allocate_hpt(&info, order);
3751                /* If we get here, it means userspace didn't specify a
3752                 * size explicitly.  So, try successively smaller
3753                 * sizes if the default failed. */
3754                while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3755                        err  = kvmppc_allocate_hpt(&info, order);
3756
3757                if (err < 0) {
3758                        pr_err("KVM: Couldn't alloc HPT\n");
3759                        goto out;
3760                }
3761
3762                kvmppc_set_hpt(kvm, &info);
3763        }
3764
3765        /* Look up the memslot for guest physical address 0 */
3766        srcu_idx = srcu_read_lock(&kvm->srcu);
3767        memslot = gfn_to_memslot(kvm, 0);
3768
3769        /* We must have some memory at 0 by now */
3770        err = -EINVAL;
3771        if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3772                goto out_srcu;
3773
3774        /* Look up the VMA for the start of this memory slot */
3775        hva = memslot->userspace_addr;
3776        down_read(&current->mm->mmap_sem);
3777        vma = find_vma(current->mm, hva);
3778        if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3779                goto up_out;
3780
3781        psize = vma_kernel_pagesize(vma);
3782
3783        up_read(&current->mm->mmap_sem);
3784
3785        /* We can handle 4k, 64k or 16M pages in the VRMA */
3786        if (psize >= 0x1000000)
3787                psize = 0x1000000;
3788        else if (psize >= 0x10000)
3789                psize = 0x10000;
3790        else
3791                psize = 0x1000;
3792        porder = __ilog2(psize);
3793
3794        senc = slb_pgsize_encoding(psize);
3795        kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3796                (VRMA_VSID << SLB_VSID_SHIFT_1T);
3797        /* Create HPTEs in the hash page table for the VRMA */
3798        kvmppc_map_vrma(vcpu, memslot, porder);
3799
3800        /* Update VRMASD field in the LPCR */
3801        if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3802                /* the -4 is to account for senc values starting at 0x10 */
3803                lpcr = senc << (LPCR_VRMASD_SH - 4);
3804                kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3805        }
3806
3807        /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
3808        smp_wmb();
3809        err = 0;
3810 out_srcu:
3811        srcu_read_unlock(&kvm->srcu, srcu_idx);
3812 out:
3813        return err;
3814
3815 up_out:
3816        up_read(&current->mm->mmap_sem);
3817        goto out_srcu;
3818}
3819
3820/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3821int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
3822{
3823        kvmppc_free_radix(kvm);
3824        kvmppc_update_lpcr(kvm, LPCR_VPM1,
3825                           LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3826        kvmppc_rmap_reset(kvm);
3827        kvm->arch.radix = 0;
3828        kvm->arch.process_table = 0;
3829        return 0;
3830}
3831
3832/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3833int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
3834{
3835        int err;
3836
3837        err = kvmppc_init_vm_radix(kvm);
3838        if (err)
3839                return err;
3840
3841        kvmppc_free_hpt(&kvm->arch.hpt);
3842        kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
3843                           LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3844        kvm->arch.radix = 1;
3845        return 0;
3846}
3847
3848#ifdef CONFIG_KVM_XICS
3849/*
3850 * Allocate a per-core structure for managing state about which cores are
3851 * running in the host versus the guest and for exchanging data between
3852 * real mode KVM and CPU running in the host.
3853 * This is only done for the first VM.
3854 * The allocated structure stays even if all VMs have stopped.
3855 * It is only freed when the kvm-hv module is unloaded.
3856 * It's OK for this routine to fail, we just don't support host
3857 * core operations like redirecting H_IPI wakeups.
3858 */
3859void kvmppc_alloc_host_rm_ops(void)
3860{
3861        struct kvmppc_host_rm_ops *ops;
3862        unsigned long l_ops;
3863        int cpu, core;
3864        int size;
3865
3866        /* Not the first time here ? */
3867        if (kvmppc_host_rm_ops_hv != NULL)
3868                return;
3869
3870        ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3871        if (!ops)
3872                return;
3873
3874        size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3875        ops->rm_core = kzalloc(size, GFP_KERNEL);
3876
3877        if (!ops->rm_core) {
3878                kfree(ops);
3879                return;
3880        }
3881
3882        cpus_read_lock();
3883
3884        for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3885                if (!cpu_online(cpu))
3886                        continue;
3887
3888                core = cpu >> threads_shift;
3889                ops->rm_core[core].rm_state.in_host = 1;
3890        }
3891
3892        ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3893
3894        /*
3895         * Make the contents of the kvmppc_host_rm_ops structure visible
3896         * to other CPUs before we assign it to the global variable.
3897         * Do an atomic assignment (no locks used here), but if someone
3898         * beats us to it, just free our copy and return.
3899         */
3900        smp_wmb();
3901        l_ops = (unsigned long) ops;
3902
3903        if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3904                cpus_read_unlock();
3905                kfree(ops->rm_core);
3906                kfree(ops);
3907                return;
3908        }
3909
3910        cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3911                                             "ppc/kvm_book3s:prepare",
3912                                             kvmppc_set_host_core,
3913                                             kvmppc_clear_host_core);
3914        cpus_read_unlock();
3915}
3916
3917void kvmppc_free_host_rm_ops(void)
3918{
3919        if (kvmppc_host_rm_ops_hv) {
3920                cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3921                kfree(kvmppc_host_rm_ops_hv->rm_core);
3922                kfree(kvmppc_host_rm_ops_hv);
3923                kvmppc_host_rm_ops_hv = NULL;
3924        }
3925}
3926#endif
3927
3928static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3929{
3930        unsigned long lpcr, lpid;
3931        char buf[32];
3932        int ret;
3933
3934        /* Allocate the guest's logical partition ID */
3935
3936        lpid = kvmppc_alloc_lpid();
3937        if ((long)lpid < 0)
3938                return -ENOMEM;
3939        kvm->arch.lpid = lpid;
3940
3941        kvmppc_alloc_host_rm_ops();
3942
3943        /*
3944         * Since we don't flush the TLB when tearing down a VM,
3945         * and this lpid might have previously been used,
3946         * make sure we flush on each core before running the new VM.
3947         * On POWER9, the tlbie in mmu_partition_table_set_entry()
3948         * does this flush for us.
3949         */
3950        if (!cpu_has_feature(CPU_FTR_ARCH_300))
3951                cpumask_setall(&kvm->arch.need_tlb_flush);
3952
3953        /* Start out with the default set of hcalls enabled */
3954        memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3955               sizeof(kvm->arch.enabled_hcalls));
3956
3957        if (!cpu_has_feature(CPU_FTR_ARCH_300))
3958                kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3959
3960        /* Init LPCR for virtual RMA mode */
3961        kvm->arch.host_lpid = mfspr(SPRN_LPID);
3962        kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3963        lpcr &= LPCR_PECE | LPCR_LPES;
3964        lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3965                LPCR_VPM0 | LPCR_VPM1;
3966        kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3967                (VRMA_VSID << SLB_VSID_SHIFT_1T);
3968        /* On POWER8 turn on online bit to enable PURR/SPURR */
3969        if (cpu_has_feature(CPU_FTR_ARCH_207S))
3970                lpcr |= LPCR_ONL;
3971        /*
3972         * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3973         * Set HVICE bit to enable hypervisor virtualization interrupts.
3974         * Set HEIC to prevent OS interrupts to go to hypervisor (should
3975         * be unnecessary but better safe than sorry in case we re-enable
3976         * EE in HV mode with this LPCR still set)
3977         */
3978        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3979                lpcr &= ~LPCR_VPM0;
3980                lpcr |= LPCR_HVICE | LPCR_HEIC;
3981
3982                /*
3983                 * If xive is enabled, we route 0x500 interrupts directly
3984                 * to the guest.
3985                 */
3986                if (xive_enabled())
3987                        lpcr |= LPCR_LPES;
3988        }
3989
3990        /*
3991         * If the host uses radix, the guest starts out as radix.
3992         */
3993        if (radix_enabled()) {
3994                kvm->arch.radix = 1;
3995                kvm->arch.mmu_ready = 1;
3996                lpcr &= ~LPCR_VPM1;
3997                lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3998                ret = kvmppc_init_vm_radix(kvm);
3999                if (ret) {
4000                        kvmppc_free_lpid(kvm->arch.lpid);
4001                        return ret;
4002                }
4003                kvmppc_setup_partition_table(kvm);
4004        }
4005
4006        kvm->arch.lpcr = lpcr;
4007
4008        /* Initialization for future HPT resizes */
4009        kvm->arch.resize_hpt = NULL;
4010
4011        /*
4012         * Work out how many sets the TLB has, for the use of
4013         * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4014         */
4015        if (radix_enabled())
4016                kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
4017        else if (cpu_has_feature(CPU_FTR_ARCH_300))
4018                kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
4019        else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4020                kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
4021        else
4022                kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
4023
4024        /*
4025         * Track that we now have a HV mode VM active. This blocks secondary
4026         * CPU threads from coming online.
4027         * On POWER9, we only need to do this if the "indep_threads_mode"
4028         * module parameter has been set to N.
4029         */
4030        if (cpu_has_feature(CPU_FTR_ARCH_300))
4031                kvm->arch.threads_indep = indep_threads_mode;
4032        if (!kvm->arch.threads_indep)
4033                kvm_hv_vm_activated();
4034
4035        /*
4036         * Initialize smt_mode depending on processor.
4037         * POWER8 and earlier have to use "strict" threading, where
4038         * all vCPUs in a vcore have to run on the same (sub)core,
4039         * whereas on POWER9 the threads can each run a different
4040         * guest.
4041         */
4042        if (!cpu_has_feature(CPU_FTR_ARCH_300))
4043                kvm->arch.smt_mode = threads_per_subcore;
4044        else
4045                kvm->arch.smt_mode = 1;
4046        kvm->arch.emul_smt_mode = 1;
4047
4048        /*
4049         * Create a debugfs directory for the VM
4050         */
4051        snprintf(buf, sizeof(buf), "vm%d", current->pid);
4052        kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4053        kvmppc_mmu_debugfs_init(kvm);
4054
4055        return 0;
4056}
4057
4058static void kvmppc_free_vcores(struct kvm *kvm)
4059{
4060        long int i;
4061
4062        for (i = 0; i < KVM_MAX_VCORES; ++i)
4063                kfree(kvm->arch.vcores[i]);
4064        kvm->arch.online_vcores = 0;
4065}
4066
4067static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4068{
4069        debugfs_remove_recursive(kvm->arch.debugfs_dir);
4070
4071        if (!kvm->arch.threads_indep)
4072                kvm_hv_vm_deactivated();
4073
4074        kvmppc_free_vcores(kvm);
4075
4076        kvmppc_free_lpid(kvm->arch.lpid);
4077
4078        if (kvm_is_radix(kvm))
4079                kvmppc_free_radix(kvm);
4080        else
4081                kvmppc_free_hpt(&kvm->arch.hpt);
4082
4083        kvmppc_free_pimap(kvm);
4084}
4085
4086/* We don't need to emulate any privileged instructions or dcbz */
4087static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
4088                                     unsigned int inst, int *advance)
4089{
4090        return EMULATE_FAIL;
4091}
4092
4093static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
4094                                        ulong spr_val)
4095{
4096        return EMULATE_FAIL;
4097}
4098
4099static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4100                                        ulong *spr_val)
4101{
4102        return EMULATE_FAIL;
4103}
4104
4105static int kvmppc_core_check_processor_compat_hv(void)
4106{
4107        if (!cpu_has_feature(CPU_FTR_HVMODE) ||
4108            !cpu_has_feature(CPU_FTR_ARCH_206))
4109                return -EIO;
4110
4111        return 0;
4112}
4113
4114#ifdef CONFIG_KVM_XICS
4115
4116void kvmppc_free_pimap(struct kvm *kvm)
4117{
4118        kfree(kvm->arch.pimap);
4119}
4120
4121static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4122{
4123        return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
4124}
4125
4126static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4127{
4128        struct irq_desc *desc;
4129        struct kvmppc_irq_map *irq_map;
4130        struct kvmppc_passthru_irqmap *pimap;
4131        struct irq_chip *chip;
4132        int i, rc = 0;
4133
4134        if (!kvm_irq_bypass)
4135                return 1;
4136
4137        desc = irq_to_desc(host_irq);
4138        if (!desc)
4139                return -EIO;
4140
4141        mutex_lock(&kvm->lock);
4142
4143        pimap = kvm->arch.pimap;
4144        if (pimap == NULL) {
4145                /* First call, allocate structure to hold IRQ map */
4146                pimap = kvmppc_alloc_pimap();
4147                if (pimap == NULL) {
4148                        mutex_unlock(&kvm->lock);
4149                        return -ENOMEM;
4150                }
4151                kvm->arch.pimap = pimap;
4152        }
4153
4154        /*
4155         * For now, we only support interrupts for which the EOI operation
4156         * is an OPAL call followed by a write to XIRR, since that's
4157         * what our real-mode EOI code does, or a XIVE interrupt
4158         */
4159        chip = irq_data_get_irq_chip(&desc->irq_data);
4160        if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4161                pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4162                        host_irq, guest_gsi);
4163                mutex_unlock(&kvm->lock);
4164                return -ENOENT;
4165        }
4166
4167        /*
4168         * See if we already have an entry for this guest IRQ number.
4169         * If it's mapped to a hardware IRQ number, that's an error,
4170         * otherwise re-use this entry.
4171         */
4172        for (i = 0; i < pimap->n_mapped; i++) {
4173                if (guest_gsi == pimap->mapped[i].v_hwirq) {
4174                        if (pimap->mapped[i].r_hwirq) {
4175                                mutex_unlock(&kvm->lock);
4176                                return -EINVAL;
4177                        }
4178                        break;
4179                }
4180        }
4181
4182        if (i == KVMPPC_PIRQ_MAPPED) {
4183                mutex_unlock(&kvm->lock);
4184                return -EAGAIN;         /* table is full */
4185        }
4186
4187        irq_map = &pimap->mapped[i];
4188
4189        irq_map->v_hwirq = guest_gsi;
4190        irq_map->desc = desc;
4191
4192        /*
4193         * Order the above two stores before the next to serialize with
4194         * the KVM real mode handler.
4195         */
4196        smp_wmb();
4197        irq_map->r_hwirq = desc->irq_data.hwirq;
4198
4199        if (i == pimap->n_mapped)
4200                pimap->n_mapped++;
4201
4202        if (xive_enabled())
4203                rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4204        else
4205                kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4206        if (rc)
4207                irq_map->r_hwirq = 0;
4208
4209        mutex_unlock(&kvm->lock);
4210
4211        return 0;
4212}
4213
4214static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4215{
4216        struct irq_desc *desc;
4217        struct kvmppc_passthru_irqmap *pimap;
4218        int i, rc = 0;
4219
4220        if (!kvm_irq_bypass)
4221                return 0;
4222
4223        desc = irq_to_desc(host_irq);
4224        if (!desc)
4225                return -EIO;
4226
4227        mutex_lock(&kvm->lock);
4228        if (!kvm->arch.pimap)
4229                goto unlock;
4230
4231        pimap = kvm->arch.pimap;
4232
4233        for (i = 0; i < pimap->n_mapped; i++) {
4234                if (guest_gsi == pimap->mapped[i].v_hwirq)
4235                        break;
4236        }
4237
4238        if (i == pimap->n_mapped) {
4239                mutex_unlock(&kvm->lock);
4240                return -ENODEV;
4241        }
4242
4243        if (xive_enabled())
4244                rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4245        else
4246                kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4247
4248        /* invalidate the entry (what do do on error from the above ?) */
4249        pimap->mapped[i].r_hwirq = 0;
4250
4251        /*
4252         * We don't free this structure even when the count goes to
4253         * zero. The structure is freed when we destroy the VM.
4254         */
4255 unlock:
4256        mutex_unlock(&kvm->lock);
4257        return rc;
4258}
4259
4260static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4261                                             struct irq_bypass_producer *prod)
4262{
4263        int ret = 0;
4264        struct kvm_kernel_irqfd *irqfd =
4265                container_of(cons, struct kvm_kernel_irqfd, consumer);
4266
4267        irqfd->producer = prod;
4268
4269        ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4270        if (ret)
4271                pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4272                        prod->irq, irqfd->gsi, ret);
4273
4274        return ret;
4275}
4276
4277static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4278                                              struct irq_bypass_producer *prod)
4279{
4280        int ret;
4281        struct kvm_kernel_irqfd *irqfd =
4282                container_of(cons, struct kvm_kernel_irqfd, consumer);
4283
4284        irqfd->producer = NULL;
4285
4286        /*
4287         * When producer of consumer is unregistered, we change back to
4288         * default external interrupt handling mode - KVM real mode
4289         * will switch back to host.
4290         */
4291        ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4292        if (ret)
4293                pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4294                        prod->irq, irqfd->gsi, ret);
4295}
4296#endif
4297
4298static long kvm_arch_vm_ioctl_hv(struct file *filp,
4299                                 unsigned int ioctl, unsigned long arg)
4300{
4301        struct kvm *kvm __maybe_unused = filp->private_data;
4302        void __user *argp = (void __user *)arg;
4303        long r;
4304
4305        switch (ioctl) {
4306
4307        case KVM_PPC_ALLOCATE_HTAB: {
4308                u32 htab_order;
4309
4310                r = -EFAULT;
4311                if (get_user(htab_order, (u32 __user *)argp))
4312                        break;
4313                r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4314                if (r)
4315                        break;
4316                r = 0;
4317                break;
4318        }
4319
4320        case KVM_PPC_GET_HTAB_FD: {
4321                struct kvm_get_htab_fd ghf;
4322
4323                r = -EFAULT;
4324                if (copy_from_user(&ghf, argp, sizeof(ghf)))
4325                        break;
4326                r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4327                break;
4328        }
4329
4330        case KVM_PPC_RESIZE_HPT_PREPARE: {
4331                struct kvm_ppc_resize_hpt rhpt;
4332
4333                r = -EFAULT;
4334                if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4335                        break;
4336
4337                r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4338                break;
4339        }
4340
4341        case KVM_PPC_RESIZE_HPT_COMMIT: {
4342                struct kvm_ppc_resize_hpt rhpt;
4343
4344                r = -EFAULT;
4345                if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4346                        break;
4347
4348                r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4349                break;
4350        }
4351
4352        default:
4353                r = -ENOTTY;
4354        }
4355
4356        return r;
4357}
4358
4359/*
4360 * List of hcall numbers to enable by default.
4361 * For compatibility with old userspace, we enable by default
4362 * all hcalls that were implemented before the hcall-enabling
4363 * facility was added.  Note this list should not include H_RTAS.
4364 */
4365static unsigned int default_hcall_list[] = {
4366        H_REMOVE,
4367        H_ENTER,
4368        H_READ,
4369        H_PROTECT,
4370        H_BULK_REMOVE,
4371        H_GET_TCE,
4372        H_PUT_TCE,
4373        H_SET_DABR,
4374        H_SET_XDABR,
4375        H_CEDE,
4376        H_PROD,
4377        H_CONFER,
4378        H_REGISTER_VPA,
4379#ifdef CONFIG_KVM_XICS
4380        H_EOI,
4381        H_CPPR,
4382        H_IPI,
4383        H_IPOLL,
4384        H_XIRR,
4385        H_XIRR_X,
4386#endif
4387        0
4388};
4389
4390static void init_default_hcalls(void)
4391{
4392        int i;
4393        unsigned int hcall;
4394
4395        for (i = 0; default_hcall_list[i]; ++i) {
4396                hcall = default_hcall_list[i];
4397                WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4398                __set_bit(hcall / 4, default_enabled_hcalls);
4399        }
4400}
4401
4402static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4403{
4404        unsigned long lpcr;
4405        int radix;
4406        int err;
4407
4408        /* If not on a POWER9, reject it */
4409        if (!cpu_has_feature(CPU_FTR_ARCH_300))
4410                return -ENODEV;
4411
4412        /* If any unknown flags set, reject it */
4413        if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4414                return -EINVAL;
4415
4416        /* GR (guest radix) bit in process_table field must match */
4417        radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4418        if (!!(cfg->process_table & PATB_GR) != radix)
4419                return -EINVAL;
4420
4421        /* Process table size field must be reasonable, i.e. <= 24 */
4422        if ((cfg->process_table & PRTS_MASK) > 24)
4423                return -EINVAL;
4424
4425        /* We can change a guest to/from radix now, if the host is radix */
4426        if (radix && !radix_enabled())
4427                return -EINVAL;
4428
4429        mutex_lock(&kvm->lock);
4430        if (radix != kvm_is_radix(kvm)) {
4431                if (kvm->arch.mmu_ready) {
4432                        kvm->arch.mmu_ready = 0;
4433                        /* order mmu_ready vs. vcpus_running */
4434                        smp_mb();
4435                        if (atomic_read(&kvm->arch.vcpus_running)) {
4436                                kvm->arch.mmu_ready = 1;
4437                                err = -EBUSY;
4438                                goto out_unlock;
4439                        }
4440                }
4441                if (radix)
4442                        err = kvmppc_switch_mmu_to_radix(kvm);
4443                else
4444                        err = kvmppc_switch_mmu_to_hpt(kvm);
4445                if (err)
4446                        goto out_unlock;
4447        }
4448
4449        kvm->arch.process_table = cfg->process_table;
4450        kvmppc_setup_partition_table(kvm);
4451
4452        lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4453        kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4454        err = 0;
4455
4456 out_unlock:
4457        mutex_unlock(&kvm->lock);
4458        return err;
4459}
4460
4461static struct kvmppc_ops kvm_ops_hv = {
4462        .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4463        .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4464        .get_one_reg = kvmppc_get_one_reg_hv,
4465        .set_one_reg = kvmppc_set_one_reg_hv,
4466        .vcpu_load   = kvmppc_core_vcpu_load_hv,
4467        .vcpu_put    = kvmppc_core_vcpu_put_hv,
4468        .set_msr     = kvmppc_set_msr_hv,
4469        .vcpu_run    = kvmppc_vcpu_run_hv,
4470        .vcpu_create = kvmppc_core_vcpu_create_hv,
4471        .vcpu_free   = kvmppc_core_vcpu_free_hv,
4472        .check_requests = kvmppc_core_check_requests_hv,
4473        .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
4474        .flush_memslot  = kvmppc_core_flush_memslot_hv,
4475        .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4476        .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
4477        .unmap_hva_range = kvm_unmap_hva_range_hv,
4478        .age_hva  = kvm_age_hva_hv,
4479        .test_age_hva = kvm_test_age_hva_hv,
4480        .set_spte_hva = kvm_set_spte_hva_hv,
4481        .mmu_destroy  = kvmppc_mmu_destroy_hv,
4482        .free_memslot = kvmppc_core_free_memslot_hv,
4483        .create_memslot = kvmppc_core_create_memslot_hv,
4484        .init_vm =  kvmppc_core_init_vm_hv,
4485        .destroy_vm = kvmppc_core_destroy_vm_hv,
4486        .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4487        .emulate_op = kvmppc_core_emulate_op_hv,
4488        .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4489        .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4490        .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4491        .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4492        .hcall_implemented = kvmppc_hcall_impl_hv,
4493#ifdef CONFIG_KVM_XICS
4494        .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4495        .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4496#endif
4497        .configure_mmu = kvmhv_configure_mmu,
4498        .get_rmmu_info = kvmhv_get_rmmu_info,
4499        .set_smt_mode = kvmhv_set_smt_mode,
4500};
4501
4502static int kvm_init_subcore_bitmap(void)
4503{
4504        int i, j;
4505        int nr_cores = cpu_nr_cores();
4506        struct sibling_subcore_state *sibling_subcore_state;
4507
4508        for (i = 0; i < nr_cores; i++) {
4509                int first_cpu = i * threads_per_core;
4510                int node = cpu_to_node(first_cpu);
4511
4512                /* Ignore if it is already allocated. */
4513                if (paca_ptrs[first_cpu]->sibling_subcore_state)
4514                        continue;
4515
4516                sibling_subcore_state =
4517                        kmalloc_node(sizeof(struct sibling_subcore_state),
4518                                                        GFP_KERNEL, node);
4519                if (!sibling_subcore_state)
4520                        return -ENOMEM;
4521
4522                memset(sibling_subcore_state, 0,
4523                                sizeof(struct sibling_subcore_state));
4524
4525                for (j = 0; j < threads_per_core; j++) {
4526                        int cpu = first_cpu + j;
4527
4528                        paca_ptrs[cpu]->sibling_subcore_state =
4529                                                sibling_subcore_state;
4530                }
4531        }
4532        return 0;
4533}
4534
4535static int kvmppc_radix_possible(void)
4536{
4537        return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4538}
4539
4540static int kvmppc_book3s_init_hv(void)
4541{
4542        int r;
4543        /*
4544         * FIXME!! Do we need to check on all cpus ?
4545         */
4546        r = kvmppc_core_check_processor_compat_hv();
4547        if (r < 0)
4548                return -ENODEV;
4549
4550        r = kvm_init_subcore_bitmap();
4551        if (r)
4552                return r;
4553
4554        /*
4555         * We need a way of accessing the XICS interrupt controller,
4556         * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
4557         * indirectly, via OPAL.
4558         */
4559#ifdef CONFIG_SMP
4560        if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4561                struct device_node *np;
4562
4563                np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4564                if (!np) {
4565                        pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4566                        return -ENODEV;
4567                }
4568                /* presence of intc confirmed - node can be dropped again */
4569                of_node_put(np);
4570        }
4571#endif
4572
4573        kvm_ops_hv.owner = THIS_MODULE;
4574        kvmppc_hv_ops = &kvm_ops_hv;
4575
4576        init_default_hcalls();
4577
4578        init_vcore_lists();
4579
4580        r = kvmppc_mmu_hv_init();
4581        if (r)
4582                return r;
4583
4584        if (kvmppc_radix_possible())
4585                r = kvmppc_radix_init();
4586
4587        /*
4588         * POWER9 chips before version 2.02 can't have some threads in
4589         * HPT mode and some in radix mode on the same core.
4590         */
4591        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4592                unsigned int pvr = mfspr(SPRN_PVR);
4593                if ((pvr >> 16) == PVR_POWER9 &&
4594                    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
4595                     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
4596                        no_mixing_hpt_and_radix = true;
4597        }
4598
4599        return r;
4600}
4601
4602static void kvmppc_book3s_exit_hv(void)
4603{
4604        kvmppc_free_host_rm_ops();
4605        if (kvmppc_radix_possible())
4606                kvmppc_radix_exit();
4607        kvmppc_hv_ops = NULL;
4608}
4609
4610module_init(kvmppc_book3s_init_hv);
4611module_exit(kvmppc_book3s_exit_hv);
4612MODULE_LICENSE("GPL");
4613MODULE_ALIAS_MISCDEV(KVM_MINOR);
4614MODULE_ALIAS("devname:kvm");
4615