linux/arch/x86/include/asm/tlbflush.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _ASM_X86_TLBFLUSH_H
   3#define _ASM_X86_TLBFLUSH_H
   4
   5#include <linux/mm.h>
   6#include <linux/sched.h>
   7
   8#include <asm/processor.h>
   9#include <asm/cpufeature.h>
  10#include <asm/special_insns.h>
  11#include <asm/smp.h>
  12#include <asm/invpcid.h>
  13#include <asm/pti.h>
  14#include <asm/processor-flags.h>
  15
  16/*
  17 * The x86 feature is called PCID (Process Context IDentifier). It is similar
  18 * to what is traditionally called ASID on the RISC processors.
  19 *
  20 * We don't use the traditional ASID implementation, where each process/mm gets
  21 * its own ASID and flush/restart when we run out of ASID space.
  22 *
  23 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
  24 * that came by on this CPU, allowing cheaper switch_mm between processes on
  25 * this CPU.
  26 *
  27 * We end up with different spaces for different things. To avoid confusion we
  28 * use different names for each of them:
  29 *
  30 * ASID  - [0, TLB_NR_DYN_ASIDS-1]
  31 *         the canonical identifier for an mm
  32 *
  33 * kPCID - [1, TLB_NR_DYN_ASIDS]
  34 *         the value we write into the PCID part of CR3; corresponds to the
  35 *         ASID+1, because PCID 0 is special.
  36 *
  37 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
  38 *         for KPTI each mm has two address spaces and thus needs two
  39 *         PCID values, but we can still do with a single ASID denomination
  40 *         for each mm. Corresponds to kPCID + 2048.
  41 *
  42 */
  43
  44/* There are 12 bits of space for ASIDS in CR3 */
  45#define CR3_HW_ASID_BITS                12
  46
  47/*
  48 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
  49 * user/kernel switches
  50 */
  51#ifdef CONFIG_PAGE_TABLE_ISOLATION
  52# define PTI_CONSUMED_PCID_BITS 1
  53#else
  54# define PTI_CONSUMED_PCID_BITS 0
  55#endif
  56
  57#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
  58
  59/*
  60 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
  61 * for them being zero-based.  Another -1 is because PCID 0 is reserved for
  62 * use by non-PCID-aware users.
  63 */
  64#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
  65
  66/*
  67 * 6 because 6 should be plenty and struct tlb_state will fit in two cache
  68 * lines.
  69 */
  70#define TLB_NR_DYN_ASIDS        6
  71
  72/*
  73 * Given @asid, compute kPCID
  74 */
  75static inline u16 kern_pcid(u16 asid)
  76{
  77        VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
  78
  79#ifdef CONFIG_PAGE_TABLE_ISOLATION
  80        /*
  81         * Make sure that the dynamic ASID space does not confict with the
  82         * bit we are using to switch between user and kernel ASIDs.
  83         */
  84        BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
  85
  86        /*
  87         * The ASID being passed in here should have respected the
  88         * MAX_ASID_AVAILABLE and thus never have the switch bit set.
  89         */
  90        VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
  91#endif
  92        /*
  93         * The dynamically-assigned ASIDs that get passed in are small
  94         * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
  95         * so do not bother to clear it.
  96         *
  97         * If PCID is on, ASID-aware code paths put the ASID+1 into the
  98         * PCID bits.  This serves two purposes.  It prevents a nasty
  99         * situation in which PCID-unaware code saves CR3, loads some other
 100         * value (with PCID == 0), and then restores CR3, thus corrupting
 101         * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
 102         * that any bugs involving loading a PCID-enabled CR3 with
 103         * CR4.PCIDE off will trigger deterministically.
 104         */
 105        return asid + 1;
 106}
 107
 108/*
 109 * Given @asid, compute uPCID
 110 */
 111static inline u16 user_pcid(u16 asid)
 112{
 113        u16 ret = kern_pcid(asid);
 114#ifdef CONFIG_PAGE_TABLE_ISOLATION
 115        ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
 116#endif
 117        return ret;
 118}
 119
 120struct pgd_t;
 121static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
 122{
 123        if (static_cpu_has(X86_FEATURE_PCID)) {
 124                return __sme_pa(pgd) | kern_pcid(asid);
 125        } else {
 126                VM_WARN_ON_ONCE(asid != 0);
 127                return __sme_pa(pgd);
 128        }
 129}
 130
 131static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
 132{
 133        VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
 134        /*
 135         * Use boot_cpu_has() instead of this_cpu_has() as this function
 136         * might be called during early boot. This should work even after
 137         * boot because all CPU's the have same capabilities:
 138         */
 139        VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
 140        return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
 141}
 142
 143#ifdef CONFIG_PARAVIRT
 144#include <asm/paravirt.h>
 145#else
 146#define __flush_tlb() __native_flush_tlb()
 147#define __flush_tlb_global() __native_flush_tlb_global()
 148#define __flush_tlb_one_user(addr) __native_flush_tlb_one_user(addr)
 149#endif
 150
 151static inline bool tlb_defer_switch_to_init_mm(void)
 152{
 153        /*
 154         * If we have PCID, then switching to init_mm is reasonably
 155         * fast.  If we don't have PCID, then switching to init_mm is
 156         * quite slow, so we try to defer it in the hopes that we can
 157         * avoid it entirely.  The latter approach runs the risk of
 158         * receiving otherwise unnecessary IPIs.
 159         *
 160         * This choice is just a heuristic.  The tlb code can handle this
 161         * function returning true or false regardless of whether we have
 162         * PCID.
 163         */
 164        return !static_cpu_has(X86_FEATURE_PCID);
 165}
 166
 167struct tlb_context {
 168        u64 ctx_id;
 169        u64 tlb_gen;
 170};
 171
 172struct tlb_state {
 173        /*
 174         * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts
 175         * are on.  This means that it may not match current->active_mm,
 176         * which will contain the previous user mm when we're in lazy TLB
 177         * mode even if we've already switched back to swapper_pg_dir.
 178         *
 179         * During switch_mm_irqs_off(), loaded_mm will be set to
 180         * LOADED_MM_SWITCHING during the brief interrupts-off window
 181         * when CR3 and loaded_mm would otherwise be inconsistent.  This
 182         * is for nmi_uaccess_okay()'s benefit.
 183         */
 184        struct mm_struct *loaded_mm;
 185
 186#define LOADED_MM_SWITCHING ((struct mm_struct *)1)
 187
 188        u16 loaded_mm_asid;
 189        u16 next_asid;
 190        /* last user mm's ctx id */
 191        u64 last_ctx_id;
 192
 193        /*
 194         * We can be in one of several states:
 195         *
 196         *  - Actively using an mm.  Our CPU's bit will be set in
 197         *    mm_cpumask(loaded_mm) and is_lazy == false;
 198         *
 199         *  - Not using a real mm.  loaded_mm == &init_mm.  Our CPU's bit
 200         *    will not be set in mm_cpumask(&init_mm) and is_lazy == false.
 201         *
 202         *  - Lazily using a real mm.  loaded_mm != &init_mm, our bit
 203         *    is set in mm_cpumask(loaded_mm), but is_lazy == true.
 204         *    We're heuristically guessing that the CR3 load we
 205         *    skipped more than makes up for the overhead added by
 206         *    lazy mode.
 207         */
 208        bool is_lazy;
 209
 210        /*
 211         * If set we changed the page tables in such a way that we
 212         * needed an invalidation of all contexts (aka. PCIDs / ASIDs).
 213         * This tells us to go invalidate all the non-loaded ctxs[]
 214         * on the next context switch.
 215         *
 216         * The current ctx was kept up-to-date as it ran and does not
 217         * need to be invalidated.
 218         */
 219        bool invalidate_other;
 220
 221        /*
 222         * Mask that contains TLB_NR_DYN_ASIDS+1 bits to indicate
 223         * the corresponding user PCID needs a flush next time we
 224         * switch to it; see SWITCH_TO_USER_CR3.
 225         */
 226        unsigned short user_pcid_flush_mask;
 227
 228        /*
 229         * Access to this CR4 shadow and to H/W CR4 is protected by
 230         * disabling interrupts when modifying either one.
 231         */
 232        unsigned long cr4;
 233
 234        /*
 235         * This is a list of all contexts that might exist in the TLB.
 236         * There is one per ASID that we use, and the ASID (what the
 237         * CPU calls PCID) is the index into ctxts.
 238         *
 239         * For each context, ctx_id indicates which mm the TLB's user
 240         * entries came from.  As an invariant, the TLB will never
 241         * contain entries that are out-of-date as when that mm reached
 242         * the tlb_gen in the list.
 243         *
 244         * To be clear, this means that it's legal for the TLB code to
 245         * flush the TLB without updating tlb_gen.  This can happen
 246         * (for now, at least) due to paravirt remote flushes.
 247         *
 248         * NB: context 0 is a bit special, since it's also used by
 249         * various bits of init code.  This is fine -- code that
 250         * isn't aware of PCID will end up harmlessly flushing
 251         * context 0.
 252         */
 253        struct tlb_context ctxs[TLB_NR_DYN_ASIDS];
 254};
 255DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate);
 256
 257/*
 258 * Blindly accessing user memory from NMI context can be dangerous
 259 * if we're in the middle of switching the current user task or
 260 * switching the loaded mm.  It can also be dangerous if we
 261 * interrupted some kernel code that was temporarily using a
 262 * different mm.
 263 */
 264static inline bool nmi_uaccess_okay(void)
 265{
 266        struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 267        struct mm_struct *current_mm = current->mm;
 268
 269        VM_WARN_ON_ONCE(!loaded_mm);
 270
 271        /*
 272         * The condition we want to check is
 273         * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
 274         * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
 275         * is supposed to be reasonably fast.
 276         *
 277         * Instead, we check the almost equivalent but somewhat conservative
 278         * condition below, and we rely on the fact that switch_mm_irqs_off()
 279         * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
 280         */
 281        if (loaded_mm != current_mm)
 282                return false;
 283
 284        VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
 285
 286        return true;
 287}
 288
 289/* Initialize cr4 shadow for this CPU. */
 290static inline void cr4_init_shadow(void)
 291{
 292        this_cpu_write(cpu_tlbstate.cr4, __read_cr4());
 293}
 294
 295static inline void __cr4_set(unsigned long cr4)
 296{
 297        lockdep_assert_irqs_disabled();
 298        this_cpu_write(cpu_tlbstate.cr4, cr4);
 299        __write_cr4(cr4);
 300}
 301
 302/* Set in this cpu's CR4. */
 303static inline void cr4_set_bits(unsigned long mask)
 304{
 305        unsigned long cr4, flags;
 306
 307        local_irq_save(flags);
 308        cr4 = this_cpu_read(cpu_tlbstate.cr4);
 309        if ((cr4 | mask) != cr4)
 310                __cr4_set(cr4 | mask);
 311        local_irq_restore(flags);
 312}
 313
 314/* Clear in this cpu's CR4. */
 315static inline void cr4_clear_bits(unsigned long mask)
 316{
 317        unsigned long cr4, flags;
 318
 319        local_irq_save(flags);
 320        cr4 = this_cpu_read(cpu_tlbstate.cr4);
 321        if ((cr4 & ~mask) != cr4)
 322                __cr4_set(cr4 & ~mask);
 323        local_irq_restore(flags);
 324}
 325
 326static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
 327{
 328        unsigned long cr4;
 329
 330        cr4 = this_cpu_read(cpu_tlbstate.cr4);
 331        __cr4_set(cr4 ^ mask);
 332}
 333
 334/* Read the CR4 shadow. */
 335static inline unsigned long cr4_read_shadow(void)
 336{
 337        return this_cpu_read(cpu_tlbstate.cr4);
 338}
 339
 340/*
 341 * Mark all other ASIDs as invalid, preserves the current.
 342 */
 343static inline void invalidate_other_asid(void)
 344{
 345        this_cpu_write(cpu_tlbstate.invalidate_other, true);
 346}
 347
 348/*
 349 * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
 350 * enable and PPro Global page enable), so that any CPU's that boot
 351 * up after us can get the correct flags.  This should only be used
 352 * during boot on the boot cpu.
 353 */
 354extern unsigned long mmu_cr4_features;
 355extern u32 *trampoline_cr4_features;
 356
 357static inline void cr4_set_bits_and_update_boot(unsigned long mask)
 358{
 359        mmu_cr4_features |= mask;
 360        if (trampoline_cr4_features)
 361                *trampoline_cr4_features = mmu_cr4_features;
 362        cr4_set_bits(mask);
 363}
 364
 365extern void initialize_tlbstate_and_flush(void);
 366
 367/*
 368 * Given an ASID, flush the corresponding user ASID.  We can delay this
 369 * until the next time we switch to it.
 370 *
 371 * See SWITCH_TO_USER_CR3.
 372 */
 373static inline void invalidate_user_asid(u16 asid)
 374{
 375        /* There is no user ASID if address space separation is off */
 376        if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
 377                return;
 378
 379        /*
 380         * We only have a single ASID if PCID is off and the CR3
 381         * write will have flushed it.
 382         */
 383        if (!cpu_feature_enabled(X86_FEATURE_PCID))
 384                return;
 385
 386        if (!static_cpu_has(X86_FEATURE_PTI))
 387                return;
 388
 389        __set_bit(kern_pcid(asid),
 390                  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
 391}
 392
 393/*
 394 * flush the entire current user mapping
 395 */
 396static inline void __native_flush_tlb(void)
 397{
 398        /*
 399         * Preemption or interrupts must be disabled to protect the access
 400         * to the per CPU variable and to prevent being preempted between
 401         * read_cr3() and write_cr3().
 402         */
 403        WARN_ON_ONCE(preemptible());
 404
 405        invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
 406
 407        /* If current->mm == NULL then the read_cr3() "borrows" an mm */
 408        native_write_cr3(__native_read_cr3());
 409}
 410
 411/*
 412 * flush everything
 413 */
 414static inline void __native_flush_tlb_global(void)
 415{
 416        unsigned long cr4, flags;
 417
 418        if (static_cpu_has(X86_FEATURE_INVPCID)) {
 419                /*
 420                 * Using INVPCID is considerably faster than a pair of writes
 421                 * to CR4 sandwiched inside an IRQ flag save/restore.
 422                 *
 423                 * Note, this works with CR4.PCIDE=0 or 1.
 424                 */
 425                invpcid_flush_all();
 426                return;
 427        }
 428
 429        /*
 430         * Read-modify-write to CR4 - protect it from preemption and
 431         * from interrupts. (Use the raw variant because this code can
 432         * be called from deep inside debugging code.)
 433         */
 434        raw_local_irq_save(flags);
 435
 436        cr4 = this_cpu_read(cpu_tlbstate.cr4);
 437        /* toggle PGE */
 438        native_write_cr4(cr4 ^ X86_CR4_PGE);
 439        /* write old PGE again and flush TLBs */
 440        native_write_cr4(cr4);
 441
 442        raw_local_irq_restore(flags);
 443}
 444
 445/*
 446 * flush one page in the user mapping
 447 */
 448static inline void __native_flush_tlb_one_user(unsigned long addr)
 449{
 450        u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
 451
 452        asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
 453
 454        if (!static_cpu_has(X86_FEATURE_PTI))
 455                return;
 456
 457        /*
 458         * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
 459         * Just use invalidate_user_asid() in case we are called early.
 460         */
 461        if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
 462                invalidate_user_asid(loaded_mm_asid);
 463        else
 464                invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
 465}
 466
 467/*
 468 * flush everything
 469 */
 470static inline void __flush_tlb_all(void)
 471{
 472        if (boot_cpu_has(X86_FEATURE_PGE)) {
 473                __flush_tlb_global();
 474        } else {
 475                /*
 476                 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
 477                 */
 478                __flush_tlb();
 479        }
 480}
 481
 482/*
 483 * flush one page in the kernel mapping
 484 */
 485static inline void __flush_tlb_one_kernel(unsigned long addr)
 486{
 487        count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
 488
 489        /*
 490         * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
 491         * paravirt equivalent.  Even with PCID, this is sufficient: we only
 492         * use PCID if we also use global PTEs for the kernel mapping, and
 493         * INVLPG flushes global translations across all address spaces.
 494         *
 495         * If PTI is on, then the kernel is mapped with non-global PTEs, and
 496         * __flush_tlb_one_user() will flush the given address for the current
 497         * kernel address space and for its usermode counterpart, but it does
 498         * not flush it for other address spaces.
 499         */
 500        __flush_tlb_one_user(addr);
 501
 502        if (!static_cpu_has(X86_FEATURE_PTI))
 503                return;
 504
 505        /*
 506         * See above.  We need to propagate the flush to all other address
 507         * spaces.  In principle, we only need to propagate it to kernelmode
 508         * address spaces, but the extra bookkeeping we would need is not
 509         * worth it.
 510         */
 511        invalidate_other_asid();
 512}
 513
 514#define TLB_FLUSH_ALL   -1UL
 515
 516/*
 517 * TLB flushing:
 518 *
 519 *  - flush_tlb_all() flushes all processes TLBs
 520 *  - flush_tlb_mm(mm) flushes the specified mm context TLB's
 521 *  - flush_tlb_page(vma, vmaddr) flushes one page
 522 *  - flush_tlb_range(vma, start, end) flushes a range of pages
 523 *  - flush_tlb_kernel_range(start, end) flushes a range of kernel pages
 524 *  - flush_tlb_others(cpumask, info) flushes TLBs on other cpus
 525 *
 526 * ..but the i386 has somewhat limited tlb flushing capabilities,
 527 * and page-granular flushes are available only on i486 and up.
 528 */
 529struct flush_tlb_info {
 530        /*
 531         * We support several kinds of flushes.
 532         *
 533         * - Fully flush a single mm.  .mm will be set, .end will be
 534         *   TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to
 535         *   which the IPI sender is trying to catch us up.
 536         *
 537         * - Partially flush a single mm.  .mm will be set, .start and
 538         *   .end will indicate the range, and .new_tlb_gen will be set
 539         *   such that the changes between generation .new_tlb_gen-1 and
 540         *   .new_tlb_gen are entirely contained in the indicated range.
 541         *
 542         * - Fully flush all mms whose tlb_gens have been updated.  .mm
 543         *   will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen
 544         *   will be zero.
 545         */
 546        struct mm_struct        *mm;
 547        unsigned long           start;
 548        unsigned long           end;
 549        u64                     new_tlb_gen;
 550};
 551
 552#define local_flush_tlb() __flush_tlb()
 553
 554#define flush_tlb_mm(mm)        flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL)
 555
 556#define flush_tlb_range(vma, start, end)        \
 557                flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags)
 558
 559extern void flush_tlb_all(void);
 560extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
 561                                unsigned long end, unsigned long vmflag);
 562extern void flush_tlb_kernel_range(unsigned long start, unsigned long end);
 563
 564static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a)
 565{
 566        flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, VM_NONE);
 567}
 568
 569void native_flush_tlb_others(const struct cpumask *cpumask,
 570                             const struct flush_tlb_info *info);
 571
 572static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
 573{
 574        /*
 575         * Bump the generation count.  This also serves as a full barrier
 576         * that synchronizes with switch_mm(): callers are required to order
 577         * their read of mm_cpumask after their writes to the paging
 578         * structures.
 579         */
 580        return atomic64_inc_return(&mm->context.tlb_gen);
 581}
 582
 583static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch,
 584                                        struct mm_struct *mm)
 585{
 586        inc_mm_tlb_gen(mm);
 587        cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm));
 588}
 589
 590extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch);
 591
 592#ifndef CONFIG_PARAVIRT
 593#define flush_tlb_others(mask, info)    \
 594        native_flush_tlb_others(mask, info)
 595
 596#define paravirt_tlb_remove_table(tlb, page) \
 597        tlb_remove_page(tlb, (void *)(page))
 598#endif
 599
 600#endif /* _ASM_X86_TLBFLUSH_H */
 601