linux/block/bio.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License version 2 as
   6 * published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  11 * GNU General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public Licens
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
  16 *
  17 */
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/bio.h>
  21#include <linux/blkdev.h>
  22#include <linux/uio.h>
  23#include <linux/iocontext.h>
  24#include <linux/slab.h>
  25#include <linux/init.h>
  26#include <linux/kernel.h>
  27#include <linux/export.h>
  28#include <linux/mempool.h>
  29#include <linux/workqueue.h>
  30#include <linux/cgroup.h>
  31#include <linux/blk-cgroup.h>
  32
  33#include <trace/events/block.h>
  34#include "blk.h"
  35#include "blk-rq-qos.h"
  36
  37/*
  38 * Test patch to inline a certain number of bi_io_vec's inside the bio
  39 * itself, to shrink a bio data allocation from two mempool calls to one
  40 */
  41#define BIO_INLINE_VECS         4
  42
  43/*
  44 * if you change this list, also change bvec_alloc or things will
  45 * break badly! cannot be bigger than what you can fit into an
  46 * unsigned short
  47 */
  48#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
  49static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
  50        BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
  51};
  52#undef BV
  53
  54/*
  55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  56 * IO code that does not need private memory pools.
  57 */
  58struct bio_set fs_bio_set;
  59EXPORT_SYMBOL(fs_bio_set);
  60
  61/*
  62 * Our slab pool management
  63 */
  64struct bio_slab {
  65        struct kmem_cache *slab;
  66        unsigned int slab_ref;
  67        unsigned int slab_size;
  68        char name[8];
  69};
  70static DEFINE_MUTEX(bio_slab_lock);
  71static struct bio_slab *bio_slabs;
  72static unsigned int bio_slab_nr, bio_slab_max;
  73
  74static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
  75{
  76        unsigned int sz = sizeof(struct bio) + extra_size;
  77        struct kmem_cache *slab = NULL;
  78        struct bio_slab *bslab, *new_bio_slabs;
  79        unsigned int new_bio_slab_max;
  80        unsigned int i, entry = -1;
  81
  82        mutex_lock(&bio_slab_lock);
  83
  84        i = 0;
  85        while (i < bio_slab_nr) {
  86                bslab = &bio_slabs[i];
  87
  88                if (!bslab->slab && entry == -1)
  89                        entry = i;
  90                else if (bslab->slab_size == sz) {
  91                        slab = bslab->slab;
  92                        bslab->slab_ref++;
  93                        break;
  94                }
  95                i++;
  96        }
  97
  98        if (slab)
  99                goto out_unlock;
 100
 101        if (bio_slab_nr == bio_slab_max && entry == -1) {
 102                new_bio_slab_max = bio_slab_max << 1;
 103                new_bio_slabs = krealloc(bio_slabs,
 104                                         new_bio_slab_max * sizeof(struct bio_slab),
 105                                         GFP_KERNEL);
 106                if (!new_bio_slabs)
 107                        goto out_unlock;
 108                bio_slab_max = new_bio_slab_max;
 109                bio_slabs = new_bio_slabs;
 110        }
 111        if (entry == -1)
 112                entry = bio_slab_nr++;
 113
 114        bslab = &bio_slabs[entry];
 115
 116        snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
 117        slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
 118                                 SLAB_HWCACHE_ALIGN, NULL);
 119        if (!slab)
 120                goto out_unlock;
 121
 122        bslab->slab = slab;
 123        bslab->slab_ref = 1;
 124        bslab->slab_size = sz;
 125out_unlock:
 126        mutex_unlock(&bio_slab_lock);
 127        return slab;
 128}
 129
 130static void bio_put_slab(struct bio_set *bs)
 131{
 132        struct bio_slab *bslab = NULL;
 133        unsigned int i;
 134
 135        mutex_lock(&bio_slab_lock);
 136
 137        for (i = 0; i < bio_slab_nr; i++) {
 138                if (bs->bio_slab == bio_slabs[i].slab) {
 139                        bslab = &bio_slabs[i];
 140                        break;
 141                }
 142        }
 143
 144        if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
 145                goto out;
 146
 147        WARN_ON(!bslab->slab_ref);
 148
 149        if (--bslab->slab_ref)
 150                goto out;
 151
 152        kmem_cache_destroy(bslab->slab);
 153        bslab->slab = NULL;
 154
 155out:
 156        mutex_unlock(&bio_slab_lock);
 157}
 158
 159unsigned int bvec_nr_vecs(unsigned short idx)
 160{
 161        return bvec_slabs[--idx].nr_vecs;
 162}
 163
 164void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
 165{
 166        if (!idx)
 167                return;
 168        idx--;
 169
 170        BIO_BUG_ON(idx >= BVEC_POOL_NR);
 171
 172        if (idx == BVEC_POOL_MAX) {
 173                mempool_free(bv, pool);
 174        } else {
 175                struct biovec_slab *bvs = bvec_slabs + idx;
 176
 177                kmem_cache_free(bvs->slab, bv);
 178        }
 179}
 180
 181struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
 182                           mempool_t *pool)
 183{
 184        struct bio_vec *bvl;
 185
 186        /*
 187         * see comment near bvec_array define!
 188         */
 189        switch (nr) {
 190        case 1:
 191                *idx = 0;
 192                break;
 193        case 2 ... 4:
 194                *idx = 1;
 195                break;
 196        case 5 ... 16:
 197                *idx = 2;
 198                break;
 199        case 17 ... 64:
 200                *idx = 3;
 201                break;
 202        case 65 ... 128:
 203                *idx = 4;
 204                break;
 205        case 129 ... BIO_MAX_PAGES:
 206                *idx = 5;
 207                break;
 208        default:
 209                return NULL;
 210        }
 211
 212        /*
 213         * idx now points to the pool we want to allocate from. only the
 214         * 1-vec entry pool is mempool backed.
 215         */
 216        if (*idx == BVEC_POOL_MAX) {
 217fallback:
 218                bvl = mempool_alloc(pool, gfp_mask);
 219        } else {
 220                struct biovec_slab *bvs = bvec_slabs + *idx;
 221                gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
 222
 223                /*
 224                 * Make this allocation restricted and don't dump info on
 225                 * allocation failures, since we'll fallback to the mempool
 226                 * in case of failure.
 227                 */
 228                __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
 229
 230                /*
 231                 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
 232                 * is set, retry with the 1-entry mempool
 233                 */
 234                bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
 235                if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
 236                        *idx = BVEC_POOL_MAX;
 237                        goto fallback;
 238                }
 239        }
 240
 241        (*idx)++;
 242        return bvl;
 243}
 244
 245void bio_uninit(struct bio *bio)
 246{
 247        bio_disassociate_task(bio);
 248}
 249EXPORT_SYMBOL(bio_uninit);
 250
 251static void bio_free(struct bio *bio)
 252{
 253        struct bio_set *bs = bio->bi_pool;
 254        void *p;
 255
 256        bio_uninit(bio);
 257
 258        if (bs) {
 259                bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
 260
 261                /*
 262                 * If we have front padding, adjust the bio pointer before freeing
 263                 */
 264                p = bio;
 265                p -= bs->front_pad;
 266
 267                mempool_free(p, &bs->bio_pool);
 268        } else {
 269                /* Bio was allocated by bio_kmalloc() */
 270                kfree(bio);
 271        }
 272}
 273
 274/*
 275 * Users of this function have their own bio allocation. Subsequently,
 276 * they must remember to pair any call to bio_init() with bio_uninit()
 277 * when IO has completed, or when the bio is released.
 278 */
 279void bio_init(struct bio *bio, struct bio_vec *table,
 280              unsigned short max_vecs)
 281{
 282        memset(bio, 0, sizeof(*bio));
 283        atomic_set(&bio->__bi_remaining, 1);
 284        atomic_set(&bio->__bi_cnt, 1);
 285
 286        bio->bi_io_vec = table;
 287        bio->bi_max_vecs = max_vecs;
 288}
 289EXPORT_SYMBOL(bio_init);
 290
 291/**
 292 * bio_reset - reinitialize a bio
 293 * @bio:        bio to reset
 294 *
 295 * Description:
 296 *   After calling bio_reset(), @bio will be in the same state as a freshly
 297 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 298 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 299 *   comment in struct bio.
 300 */
 301void bio_reset(struct bio *bio)
 302{
 303        unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
 304
 305        bio_uninit(bio);
 306
 307        memset(bio, 0, BIO_RESET_BYTES);
 308        bio->bi_flags = flags;
 309        atomic_set(&bio->__bi_remaining, 1);
 310}
 311EXPORT_SYMBOL(bio_reset);
 312
 313static struct bio *__bio_chain_endio(struct bio *bio)
 314{
 315        struct bio *parent = bio->bi_private;
 316
 317        if (!parent->bi_status)
 318                parent->bi_status = bio->bi_status;
 319        bio_put(bio);
 320        return parent;
 321}
 322
 323static void bio_chain_endio(struct bio *bio)
 324{
 325        bio_endio(__bio_chain_endio(bio));
 326}
 327
 328/**
 329 * bio_chain - chain bio completions
 330 * @bio: the target bio
 331 * @parent: the @bio's parent bio
 332 *
 333 * The caller won't have a bi_end_io called when @bio completes - instead,
 334 * @parent's bi_end_io won't be called until both @parent and @bio have
 335 * completed; the chained bio will also be freed when it completes.
 336 *
 337 * The caller must not set bi_private or bi_end_io in @bio.
 338 */
 339void bio_chain(struct bio *bio, struct bio *parent)
 340{
 341        BUG_ON(bio->bi_private || bio->bi_end_io);
 342
 343        bio->bi_private = parent;
 344        bio->bi_end_io  = bio_chain_endio;
 345        bio_inc_remaining(parent);
 346}
 347EXPORT_SYMBOL(bio_chain);
 348
 349static void bio_alloc_rescue(struct work_struct *work)
 350{
 351        struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
 352        struct bio *bio;
 353
 354        while (1) {
 355                spin_lock(&bs->rescue_lock);
 356                bio = bio_list_pop(&bs->rescue_list);
 357                spin_unlock(&bs->rescue_lock);
 358
 359                if (!bio)
 360                        break;
 361
 362                generic_make_request(bio);
 363        }
 364}
 365
 366static void punt_bios_to_rescuer(struct bio_set *bs)
 367{
 368        struct bio_list punt, nopunt;
 369        struct bio *bio;
 370
 371        if (WARN_ON_ONCE(!bs->rescue_workqueue))
 372                return;
 373        /*
 374         * In order to guarantee forward progress we must punt only bios that
 375         * were allocated from this bio_set; otherwise, if there was a bio on
 376         * there for a stacking driver higher up in the stack, processing it
 377         * could require allocating bios from this bio_set, and doing that from
 378         * our own rescuer would be bad.
 379         *
 380         * Since bio lists are singly linked, pop them all instead of trying to
 381         * remove from the middle of the list:
 382         */
 383
 384        bio_list_init(&punt);
 385        bio_list_init(&nopunt);
 386
 387        while ((bio = bio_list_pop(&current->bio_list[0])))
 388                bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
 389        current->bio_list[0] = nopunt;
 390
 391        bio_list_init(&nopunt);
 392        while ((bio = bio_list_pop(&current->bio_list[1])))
 393                bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
 394        current->bio_list[1] = nopunt;
 395
 396        spin_lock(&bs->rescue_lock);
 397        bio_list_merge(&bs->rescue_list, &punt);
 398        spin_unlock(&bs->rescue_lock);
 399
 400        queue_work(bs->rescue_workqueue, &bs->rescue_work);
 401}
 402
 403/**
 404 * bio_alloc_bioset - allocate a bio for I/O
 405 * @gfp_mask:   the GFP_* mask given to the slab allocator
 406 * @nr_iovecs:  number of iovecs to pre-allocate
 407 * @bs:         the bio_set to allocate from.
 408 *
 409 * Description:
 410 *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
 411 *   backed by the @bs's mempool.
 412 *
 413 *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
 414 *   always be able to allocate a bio. This is due to the mempool guarantees.
 415 *   To make this work, callers must never allocate more than 1 bio at a time
 416 *   from this pool. Callers that need to allocate more than 1 bio must always
 417 *   submit the previously allocated bio for IO before attempting to allocate
 418 *   a new one. Failure to do so can cause deadlocks under memory pressure.
 419 *
 420 *   Note that when running under generic_make_request() (i.e. any block
 421 *   driver), bios are not submitted until after you return - see the code in
 422 *   generic_make_request() that converts recursion into iteration, to prevent
 423 *   stack overflows.
 424 *
 425 *   This would normally mean allocating multiple bios under
 426 *   generic_make_request() would be susceptible to deadlocks, but we have
 427 *   deadlock avoidance code that resubmits any blocked bios from a rescuer
 428 *   thread.
 429 *
 430 *   However, we do not guarantee forward progress for allocations from other
 431 *   mempools. Doing multiple allocations from the same mempool under
 432 *   generic_make_request() should be avoided - instead, use bio_set's front_pad
 433 *   for per bio allocations.
 434 *
 435 *   RETURNS:
 436 *   Pointer to new bio on success, NULL on failure.
 437 */
 438struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
 439                             struct bio_set *bs)
 440{
 441        gfp_t saved_gfp = gfp_mask;
 442        unsigned front_pad;
 443        unsigned inline_vecs;
 444        struct bio_vec *bvl = NULL;
 445        struct bio *bio;
 446        void *p;
 447
 448        if (!bs) {
 449                if (nr_iovecs > UIO_MAXIOV)
 450                        return NULL;
 451
 452                p = kmalloc(sizeof(struct bio) +
 453                            nr_iovecs * sizeof(struct bio_vec),
 454                            gfp_mask);
 455                front_pad = 0;
 456                inline_vecs = nr_iovecs;
 457        } else {
 458                /* should not use nobvec bioset for nr_iovecs > 0 */
 459                if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
 460                                 nr_iovecs > 0))
 461                        return NULL;
 462                /*
 463                 * generic_make_request() converts recursion to iteration; this
 464                 * means if we're running beneath it, any bios we allocate and
 465                 * submit will not be submitted (and thus freed) until after we
 466                 * return.
 467                 *
 468                 * This exposes us to a potential deadlock if we allocate
 469                 * multiple bios from the same bio_set() while running
 470                 * underneath generic_make_request(). If we were to allocate
 471                 * multiple bios (say a stacking block driver that was splitting
 472                 * bios), we would deadlock if we exhausted the mempool's
 473                 * reserve.
 474                 *
 475                 * We solve this, and guarantee forward progress, with a rescuer
 476                 * workqueue per bio_set. If we go to allocate and there are
 477                 * bios on current->bio_list, we first try the allocation
 478                 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
 479                 * bios we would be blocking to the rescuer workqueue before
 480                 * we retry with the original gfp_flags.
 481                 */
 482
 483                if (current->bio_list &&
 484                    (!bio_list_empty(&current->bio_list[0]) ||
 485                     !bio_list_empty(&current->bio_list[1])) &&
 486                    bs->rescue_workqueue)
 487                        gfp_mask &= ~__GFP_DIRECT_RECLAIM;
 488
 489                p = mempool_alloc(&bs->bio_pool, gfp_mask);
 490                if (!p && gfp_mask != saved_gfp) {
 491                        punt_bios_to_rescuer(bs);
 492                        gfp_mask = saved_gfp;
 493                        p = mempool_alloc(&bs->bio_pool, gfp_mask);
 494                }
 495
 496                front_pad = bs->front_pad;
 497                inline_vecs = BIO_INLINE_VECS;
 498        }
 499
 500        if (unlikely(!p))
 501                return NULL;
 502
 503        bio = p + front_pad;
 504        bio_init(bio, NULL, 0);
 505
 506        if (nr_iovecs > inline_vecs) {
 507                unsigned long idx = 0;
 508
 509                bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
 510                if (!bvl && gfp_mask != saved_gfp) {
 511                        punt_bios_to_rescuer(bs);
 512                        gfp_mask = saved_gfp;
 513                        bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
 514                }
 515
 516                if (unlikely(!bvl))
 517                        goto err_free;
 518
 519                bio->bi_flags |= idx << BVEC_POOL_OFFSET;
 520        } else if (nr_iovecs) {
 521                bvl = bio->bi_inline_vecs;
 522        }
 523
 524        bio->bi_pool = bs;
 525        bio->bi_max_vecs = nr_iovecs;
 526        bio->bi_io_vec = bvl;
 527        return bio;
 528
 529err_free:
 530        mempool_free(p, &bs->bio_pool);
 531        return NULL;
 532}
 533EXPORT_SYMBOL(bio_alloc_bioset);
 534
 535void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
 536{
 537        unsigned long flags;
 538        struct bio_vec bv;
 539        struct bvec_iter iter;
 540
 541        __bio_for_each_segment(bv, bio, iter, start) {
 542                char *data = bvec_kmap_irq(&bv, &flags);
 543                memset(data, 0, bv.bv_len);
 544                flush_dcache_page(bv.bv_page);
 545                bvec_kunmap_irq(data, &flags);
 546        }
 547}
 548EXPORT_SYMBOL(zero_fill_bio_iter);
 549
 550/**
 551 * bio_put - release a reference to a bio
 552 * @bio:   bio to release reference to
 553 *
 554 * Description:
 555 *   Put a reference to a &struct bio, either one you have gotten with
 556 *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
 557 **/
 558void bio_put(struct bio *bio)
 559{
 560        if (!bio_flagged(bio, BIO_REFFED))
 561                bio_free(bio);
 562        else {
 563                BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
 564
 565                /*
 566                 * last put frees it
 567                 */
 568                if (atomic_dec_and_test(&bio->__bi_cnt))
 569                        bio_free(bio);
 570        }
 571}
 572EXPORT_SYMBOL(bio_put);
 573
 574inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
 575{
 576        if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
 577                blk_recount_segments(q, bio);
 578
 579        return bio->bi_phys_segments;
 580}
 581EXPORT_SYMBOL(bio_phys_segments);
 582
 583/**
 584 *      __bio_clone_fast - clone a bio that shares the original bio's biovec
 585 *      @bio: destination bio
 586 *      @bio_src: bio to clone
 587 *
 588 *      Clone a &bio. Caller will own the returned bio, but not
 589 *      the actual data it points to. Reference count of returned
 590 *      bio will be one.
 591 *
 592 *      Caller must ensure that @bio_src is not freed before @bio.
 593 */
 594void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
 595{
 596        BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
 597
 598        /*
 599         * most users will be overriding ->bi_disk with a new target,
 600         * so we don't set nor calculate new physical/hw segment counts here
 601         */
 602        bio->bi_disk = bio_src->bi_disk;
 603        bio->bi_partno = bio_src->bi_partno;
 604        bio_set_flag(bio, BIO_CLONED);
 605        if (bio_flagged(bio_src, BIO_THROTTLED))
 606                bio_set_flag(bio, BIO_THROTTLED);
 607        bio->bi_opf = bio_src->bi_opf;
 608        bio->bi_write_hint = bio_src->bi_write_hint;
 609        bio->bi_iter = bio_src->bi_iter;
 610        bio->bi_io_vec = bio_src->bi_io_vec;
 611
 612        bio_clone_blkcg_association(bio, bio_src);
 613}
 614EXPORT_SYMBOL(__bio_clone_fast);
 615
 616/**
 617 *      bio_clone_fast - clone a bio that shares the original bio's biovec
 618 *      @bio: bio to clone
 619 *      @gfp_mask: allocation priority
 620 *      @bs: bio_set to allocate from
 621 *
 622 *      Like __bio_clone_fast, only also allocates the returned bio
 623 */
 624struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
 625{
 626        struct bio *b;
 627
 628        b = bio_alloc_bioset(gfp_mask, 0, bs);
 629        if (!b)
 630                return NULL;
 631
 632        __bio_clone_fast(b, bio);
 633
 634        if (bio_integrity(bio)) {
 635                int ret;
 636
 637                ret = bio_integrity_clone(b, bio, gfp_mask);
 638
 639                if (ret < 0) {
 640                        bio_put(b);
 641                        return NULL;
 642                }
 643        }
 644
 645        return b;
 646}
 647EXPORT_SYMBOL(bio_clone_fast);
 648
 649/**
 650 *      bio_add_pc_page -       attempt to add page to bio
 651 *      @q: the target queue
 652 *      @bio: destination bio
 653 *      @page: page to add
 654 *      @len: vec entry length
 655 *      @offset: vec entry offset
 656 *
 657 *      Attempt to add a page to the bio_vec maplist. This can fail for a
 658 *      number of reasons, such as the bio being full or target block device
 659 *      limitations. The target block device must allow bio's up to PAGE_SIZE,
 660 *      so it is always possible to add a single page to an empty bio.
 661 *
 662 *      This should only be used by REQ_PC bios.
 663 */
 664int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
 665                    *page, unsigned int len, unsigned int offset)
 666{
 667        int retried_segments = 0;
 668        struct bio_vec *bvec;
 669
 670        /*
 671         * cloned bio must not modify vec list
 672         */
 673        if (unlikely(bio_flagged(bio, BIO_CLONED)))
 674                return 0;
 675
 676        if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
 677                return 0;
 678
 679        /*
 680         * For filesystems with a blocksize smaller than the pagesize
 681         * we will often be called with the same page as last time and
 682         * a consecutive offset.  Optimize this special case.
 683         */
 684        if (bio->bi_vcnt > 0) {
 685                struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
 686
 687                if (page == prev->bv_page &&
 688                    offset == prev->bv_offset + prev->bv_len) {
 689                        prev->bv_len += len;
 690                        bio->bi_iter.bi_size += len;
 691                        goto done;
 692                }
 693
 694                /*
 695                 * If the queue doesn't support SG gaps and adding this
 696                 * offset would create a gap, disallow it.
 697                 */
 698                if (bvec_gap_to_prev(q, prev, offset))
 699                        return 0;
 700        }
 701
 702        if (bio_full(bio))
 703                return 0;
 704
 705        /*
 706         * setup the new entry, we might clear it again later if we
 707         * cannot add the page
 708         */
 709        bvec = &bio->bi_io_vec[bio->bi_vcnt];
 710        bvec->bv_page = page;
 711        bvec->bv_len = len;
 712        bvec->bv_offset = offset;
 713        bio->bi_vcnt++;
 714        bio->bi_phys_segments++;
 715        bio->bi_iter.bi_size += len;
 716
 717        /*
 718         * Perform a recount if the number of segments is greater
 719         * than queue_max_segments(q).
 720         */
 721
 722        while (bio->bi_phys_segments > queue_max_segments(q)) {
 723
 724                if (retried_segments)
 725                        goto failed;
 726
 727                retried_segments = 1;
 728                blk_recount_segments(q, bio);
 729        }
 730
 731        /* If we may be able to merge these biovecs, force a recount */
 732        if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
 733                bio_clear_flag(bio, BIO_SEG_VALID);
 734
 735 done:
 736        return len;
 737
 738 failed:
 739        bvec->bv_page = NULL;
 740        bvec->bv_len = 0;
 741        bvec->bv_offset = 0;
 742        bio->bi_vcnt--;
 743        bio->bi_iter.bi_size -= len;
 744        blk_recount_segments(q, bio);
 745        return 0;
 746}
 747EXPORT_SYMBOL(bio_add_pc_page);
 748
 749/**
 750 * __bio_try_merge_page - try appending data to an existing bvec.
 751 * @bio: destination bio
 752 * @page: page to add
 753 * @len: length of the data to add
 754 * @off: offset of the data in @page
 755 *
 756 * Try to add the data at @page + @off to the last bvec of @bio.  This is a
 757 * a useful optimisation for file systems with a block size smaller than the
 758 * page size.
 759 *
 760 * Return %true on success or %false on failure.
 761 */
 762bool __bio_try_merge_page(struct bio *bio, struct page *page,
 763                unsigned int len, unsigned int off)
 764{
 765        if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
 766                return false;
 767
 768        if (bio->bi_vcnt > 0) {
 769                struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
 770
 771                if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) {
 772                        bv->bv_len += len;
 773                        bio->bi_iter.bi_size += len;
 774                        return true;
 775                }
 776        }
 777        return false;
 778}
 779EXPORT_SYMBOL_GPL(__bio_try_merge_page);
 780
 781/**
 782 * __bio_add_page - add page to a bio in a new segment
 783 * @bio: destination bio
 784 * @page: page to add
 785 * @len: length of the data to add
 786 * @off: offset of the data in @page
 787 *
 788 * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
 789 * that @bio has space for another bvec.
 790 */
 791void __bio_add_page(struct bio *bio, struct page *page,
 792                unsigned int len, unsigned int off)
 793{
 794        struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
 795
 796        WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
 797        WARN_ON_ONCE(bio_full(bio));
 798
 799        bv->bv_page = page;
 800        bv->bv_offset = off;
 801        bv->bv_len = len;
 802
 803        bio->bi_iter.bi_size += len;
 804        bio->bi_vcnt++;
 805}
 806EXPORT_SYMBOL_GPL(__bio_add_page);
 807
 808/**
 809 *      bio_add_page    -       attempt to add page to bio
 810 *      @bio: destination bio
 811 *      @page: page to add
 812 *      @len: vec entry length
 813 *      @offset: vec entry offset
 814 *
 815 *      Attempt to add a page to the bio_vec maplist. This will only fail
 816 *      if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
 817 */
 818int bio_add_page(struct bio *bio, struct page *page,
 819                 unsigned int len, unsigned int offset)
 820{
 821        if (!__bio_try_merge_page(bio, page, len, offset)) {
 822                if (bio_full(bio))
 823                        return 0;
 824                __bio_add_page(bio, page, len, offset);
 825        }
 826        return len;
 827}
 828EXPORT_SYMBOL(bio_add_page);
 829
 830/**
 831 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
 832 * @bio: bio to add pages to
 833 * @iter: iov iterator describing the region to be mapped
 834 *
 835 * Pins pages from *iter and appends them to @bio's bvec array. The
 836 * pages will have to be released using put_page() when done.
 837 * For multi-segment *iter, this function only adds pages from the
 838 * the next non-empty segment of the iov iterator.
 839 */
 840static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
 841{
 842        unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt, idx;
 843        struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
 844        struct page **pages = (struct page **)bv;
 845        size_t offset;
 846        ssize_t size;
 847
 848        size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
 849        if (unlikely(size <= 0))
 850                return size ? size : -EFAULT;
 851        idx = nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
 852
 853        /*
 854         * Deep magic below:  We need to walk the pinned pages backwards
 855         * because we are abusing the space allocated for the bio_vecs
 856         * for the page array.  Because the bio_vecs are larger than the
 857         * page pointers by definition this will always work.  But it also
 858         * means we can't use bio_add_page, so any changes to it's semantics
 859         * need to be reflected here as well.
 860         */
 861        bio->bi_iter.bi_size += size;
 862        bio->bi_vcnt += nr_pages;
 863
 864        while (idx--) {
 865                bv[idx].bv_page = pages[idx];
 866                bv[idx].bv_len = PAGE_SIZE;
 867                bv[idx].bv_offset = 0;
 868        }
 869
 870        bv[0].bv_offset += offset;
 871        bv[0].bv_len -= offset;
 872        bv[nr_pages - 1].bv_len -= nr_pages * PAGE_SIZE - offset - size;
 873
 874        iov_iter_advance(iter, size);
 875        return 0;
 876}
 877
 878/**
 879 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
 880 * @bio: bio to add pages to
 881 * @iter: iov iterator describing the region to be mapped
 882 *
 883 * Pins pages from *iter and appends them to @bio's bvec array. The
 884 * pages will have to be released using put_page() when done.
 885 * The function tries, but does not guarantee, to pin as many pages as
 886 * fit into the bio, or are requested in *iter, whatever is smaller.
 887 * If MM encounters an error pinning the requested pages, it stops.
 888 * Error is returned only if 0 pages could be pinned.
 889 */
 890int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
 891{
 892        unsigned short orig_vcnt = bio->bi_vcnt;
 893
 894        do {
 895                int ret = __bio_iov_iter_get_pages(bio, iter);
 896
 897                if (unlikely(ret))
 898                        return bio->bi_vcnt > orig_vcnt ? 0 : ret;
 899
 900        } while (iov_iter_count(iter) && !bio_full(bio));
 901
 902        return 0;
 903}
 904EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
 905
 906static void submit_bio_wait_endio(struct bio *bio)
 907{
 908        complete(bio->bi_private);
 909}
 910
 911/**
 912 * submit_bio_wait - submit a bio, and wait until it completes
 913 * @bio: The &struct bio which describes the I/O
 914 *
 915 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
 916 * bio_endio() on failure.
 917 *
 918 * WARNING: Unlike to how submit_bio() is usually used, this function does not
 919 * result in bio reference to be consumed. The caller must drop the reference
 920 * on his own.
 921 */
 922int submit_bio_wait(struct bio *bio)
 923{
 924        DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
 925
 926        bio->bi_private = &done;
 927        bio->bi_end_io = submit_bio_wait_endio;
 928        bio->bi_opf |= REQ_SYNC;
 929        submit_bio(bio);
 930        wait_for_completion_io(&done);
 931
 932        return blk_status_to_errno(bio->bi_status);
 933}
 934EXPORT_SYMBOL(submit_bio_wait);
 935
 936/**
 937 * bio_advance - increment/complete a bio by some number of bytes
 938 * @bio:        bio to advance
 939 * @bytes:      number of bytes to complete
 940 *
 941 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
 942 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
 943 * be updated on the last bvec as well.
 944 *
 945 * @bio will then represent the remaining, uncompleted portion of the io.
 946 */
 947void bio_advance(struct bio *bio, unsigned bytes)
 948{
 949        if (bio_integrity(bio))
 950                bio_integrity_advance(bio, bytes);
 951
 952        bio_advance_iter(bio, &bio->bi_iter, bytes);
 953}
 954EXPORT_SYMBOL(bio_advance);
 955
 956void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
 957                        struct bio *src, struct bvec_iter *src_iter)
 958{
 959        struct bio_vec src_bv, dst_bv;
 960        void *src_p, *dst_p;
 961        unsigned bytes;
 962
 963        while (src_iter->bi_size && dst_iter->bi_size) {
 964                src_bv = bio_iter_iovec(src, *src_iter);
 965                dst_bv = bio_iter_iovec(dst, *dst_iter);
 966
 967                bytes = min(src_bv.bv_len, dst_bv.bv_len);
 968
 969                src_p = kmap_atomic(src_bv.bv_page);
 970                dst_p = kmap_atomic(dst_bv.bv_page);
 971
 972                memcpy(dst_p + dst_bv.bv_offset,
 973                       src_p + src_bv.bv_offset,
 974                       bytes);
 975
 976                kunmap_atomic(dst_p);
 977                kunmap_atomic(src_p);
 978
 979                flush_dcache_page(dst_bv.bv_page);
 980
 981                bio_advance_iter(src, src_iter, bytes);
 982                bio_advance_iter(dst, dst_iter, bytes);
 983        }
 984}
 985EXPORT_SYMBOL(bio_copy_data_iter);
 986
 987/**
 988 * bio_copy_data - copy contents of data buffers from one bio to another
 989 * @src: source bio
 990 * @dst: destination bio
 991 *
 992 * Stops when it reaches the end of either @src or @dst - that is, copies
 993 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
 994 */
 995void bio_copy_data(struct bio *dst, struct bio *src)
 996{
 997        struct bvec_iter src_iter = src->bi_iter;
 998        struct bvec_iter dst_iter = dst->bi_iter;
 999
1000        bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1001}
1002EXPORT_SYMBOL(bio_copy_data);
1003
1004/**
1005 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1006 * another
1007 * @src: source bio list
1008 * @dst: destination bio list
1009 *
1010 * Stops when it reaches the end of either the @src list or @dst list - that is,
1011 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1012 * bios).
1013 */
1014void bio_list_copy_data(struct bio *dst, struct bio *src)
1015{
1016        struct bvec_iter src_iter = src->bi_iter;
1017        struct bvec_iter dst_iter = dst->bi_iter;
1018
1019        while (1) {
1020                if (!src_iter.bi_size) {
1021                        src = src->bi_next;
1022                        if (!src)
1023                                break;
1024
1025                        src_iter = src->bi_iter;
1026                }
1027
1028                if (!dst_iter.bi_size) {
1029                        dst = dst->bi_next;
1030                        if (!dst)
1031                                break;
1032
1033                        dst_iter = dst->bi_iter;
1034                }
1035
1036                bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1037        }
1038}
1039EXPORT_SYMBOL(bio_list_copy_data);
1040
1041struct bio_map_data {
1042        int is_our_pages;
1043        struct iov_iter iter;
1044        struct iovec iov[];
1045};
1046
1047static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1048                                               gfp_t gfp_mask)
1049{
1050        struct bio_map_data *bmd;
1051        if (data->nr_segs > UIO_MAXIOV)
1052                return NULL;
1053
1054        bmd = kmalloc(sizeof(struct bio_map_data) +
1055                       sizeof(struct iovec) * data->nr_segs, gfp_mask);
1056        if (!bmd)
1057                return NULL;
1058        memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1059        bmd->iter = *data;
1060        bmd->iter.iov = bmd->iov;
1061        return bmd;
1062}
1063
1064/**
1065 * bio_copy_from_iter - copy all pages from iov_iter to bio
1066 * @bio: The &struct bio which describes the I/O as destination
1067 * @iter: iov_iter as source
1068 *
1069 * Copy all pages from iov_iter to bio.
1070 * Returns 0 on success, or error on failure.
1071 */
1072static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1073{
1074        int i;
1075        struct bio_vec *bvec;
1076
1077        bio_for_each_segment_all(bvec, bio, i) {
1078                ssize_t ret;
1079
1080                ret = copy_page_from_iter(bvec->bv_page,
1081                                          bvec->bv_offset,
1082                                          bvec->bv_len,
1083                                          iter);
1084
1085                if (!iov_iter_count(iter))
1086                        break;
1087
1088                if (ret < bvec->bv_len)
1089                        return -EFAULT;
1090        }
1091
1092        return 0;
1093}
1094
1095/**
1096 * bio_copy_to_iter - copy all pages from bio to iov_iter
1097 * @bio: The &struct bio which describes the I/O as source
1098 * @iter: iov_iter as destination
1099 *
1100 * Copy all pages from bio to iov_iter.
1101 * Returns 0 on success, or error on failure.
1102 */
1103static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1104{
1105        int i;
1106        struct bio_vec *bvec;
1107
1108        bio_for_each_segment_all(bvec, bio, i) {
1109                ssize_t ret;
1110
1111                ret = copy_page_to_iter(bvec->bv_page,
1112                                        bvec->bv_offset,
1113                                        bvec->bv_len,
1114                                        &iter);
1115
1116                if (!iov_iter_count(&iter))
1117                        break;
1118
1119                if (ret < bvec->bv_len)
1120                        return -EFAULT;
1121        }
1122
1123        return 0;
1124}
1125
1126void bio_free_pages(struct bio *bio)
1127{
1128        struct bio_vec *bvec;
1129        int i;
1130
1131        bio_for_each_segment_all(bvec, bio, i)
1132                __free_page(bvec->bv_page);
1133}
1134EXPORT_SYMBOL(bio_free_pages);
1135
1136/**
1137 *      bio_uncopy_user -       finish previously mapped bio
1138 *      @bio: bio being terminated
1139 *
1140 *      Free pages allocated from bio_copy_user_iov() and write back data
1141 *      to user space in case of a read.
1142 */
1143int bio_uncopy_user(struct bio *bio)
1144{
1145        struct bio_map_data *bmd = bio->bi_private;
1146        int ret = 0;
1147
1148        if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1149                /*
1150                 * if we're in a workqueue, the request is orphaned, so
1151                 * don't copy into a random user address space, just free
1152                 * and return -EINTR so user space doesn't expect any data.
1153                 */
1154                if (!current->mm)
1155                        ret = -EINTR;
1156                else if (bio_data_dir(bio) == READ)
1157                        ret = bio_copy_to_iter(bio, bmd->iter);
1158                if (bmd->is_our_pages)
1159                        bio_free_pages(bio);
1160        }
1161        kfree(bmd);
1162        bio_put(bio);
1163        return ret;
1164}
1165
1166/**
1167 *      bio_copy_user_iov       -       copy user data to bio
1168 *      @q:             destination block queue
1169 *      @map_data:      pointer to the rq_map_data holding pages (if necessary)
1170 *      @iter:          iovec iterator
1171 *      @gfp_mask:      memory allocation flags
1172 *
1173 *      Prepares and returns a bio for indirect user io, bouncing data
1174 *      to/from kernel pages as necessary. Must be paired with
1175 *      call bio_uncopy_user() on io completion.
1176 */
1177struct bio *bio_copy_user_iov(struct request_queue *q,
1178                              struct rq_map_data *map_data,
1179                              struct iov_iter *iter,
1180                              gfp_t gfp_mask)
1181{
1182        struct bio_map_data *bmd;
1183        struct page *page;
1184        struct bio *bio;
1185        int i = 0, ret;
1186        int nr_pages;
1187        unsigned int len = iter->count;
1188        unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1189
1190        bmd = bio_alloc_map_data(iter, gfp_mask);
1191        if (!bmd)
1192                return ERR_PTR(-ENOMEM);
1193
1194        /*
1195         * We need to do a deep copy of the iov_iter including the iovecs.
1196         * The caller provided iov might point to an on-stack or otherwise
1197         * shortlived one.
1198         */
1199        bmd->is_our_pages = map_data ? 0 : 1;
1200
1201        nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1202        if (nr_pages > BIO_MAX_PAGES)
1203                nr_pages = BIO_MAX_PAGES;
1204
1205        ret = -ENOMEM;
1206        bio = bio_kmalloc(gfp_mask, nr_pages);
1207        if (!bio)
1208                goto out_bmd;
1209
1210        ret = 0;
1211
1212        if (map_data) {
1213                nr_pages = 1 << map_data->page_order;
1214                i = map_data->offset / PAGE_SIZE;
1215        }
1216        while (len) {
1217                unsigned int bytes = PAGE_SIZE;
1218
1219                bytes -= offset;
1220
1221                if (bytes > len)
1222                        bytes = len;
1223
1224                if (map_data) {
1225                        if (i == map_data->nr_entries * nr_pages) {
1226                                ret = -ENOMEM;
1227                                break;
1228                        }
1229
1230                        page = map_data->pages[i / nr_pages];
1231                        page += (i % nr_pages);
1232
1233                        i++;
1234                } else {
1235                        page = alloc_page(q->bounce_gfp | gfp_mask);
1236                        if (!page) {
1237                                ret = -ENOMEM;
1238                                break;
1239                        }
1240                }
1241
1242                if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1243                        break;
1244
1245                len -= bytes;
1246                offset = 0;
1247        }
1248
1249        if (ret)
1250                goto cleanup;
1251
1252        if (map_data)
1253                map_data->offset += bio->bi_iter.bi_size;
1254
1255        /*
1256         * success
1257         */
1258        if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1259            (map_data && map_data->from_user)) {
1260                ret = bio_copy_from_iter(bio, iter);
1261                if (ret)
1262                        goto cleanup;
1263        } else {
1264                iov_iter_advance(iter, bio->bi_iter.bi_size);
1265        }
1266
1267        bio->bi_private = bmd;
1268        if (map_data && map_data->null_mapped)
1269                bio_set_flag(bio, BIO_NULL_MAPPED);
1270        return bio;
1271cleanup:
1272        if (!map_data)
1273                bio_free_pages(bio);
1274        bio_put(bio);
1275out_bmd:
1276        kfree(bmd);
1277        return ERR_PTR(ret);
1278}
1279
1280/**
1281 *      bio_map_user_iov - map user iovec into bio
1282 *      @q:             the struct request_queue for the bio
1283 *      @iter:          iovec iterator
1284 *      @gfp_mask:      memory allocation flags
1285 *
1286 *      Map the user space address into a bio suitable for io to a block
1287 *      device. Returns an error pointer in case of error.
1288 */
1289struct bio *bio_map_user_iov(struct request_queue *q,
1290                             struct iov_iter *iter,
1291                             gfp_t gfp_mask)
1292{
1293        int j;
1294        struct bio *bio;
1295        int ret;
1296        struct bio_vec *bvec;
1297
1298        if (!iov_iter_count(iter))
1299                return ERR_PTR(-EINVAL);
1300
1301        bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1302        if (!bio)
1303                return ERR_PTR(-ENOMEM);
1304
1305        while (iov_iter_count(iter)) {
1306                struct page **pages;
1307                ssize_t bytes;
1308                size_t offs, added = 0;
1309                int npages;
1310
1311                bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1312                if (unlikely(bytes <= 0)) {
1313                        ret = bytes ? bytes : -EFAULT;
1314                        goto out_unmap;
1315                }
1316
1317                npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1318
1319                if (unlikely(offs & queue_dma_alignment(q))) {
1320                        ret = -EINVAL;
1321                        j = 0;
1322                } else {
1323                        for (j = 0; j < npages; j++) {
1324                                struct page *page = pages[j];
1325                                unsigned int n = PAGE_SIZE - offs;
1326                                unsigned short prev_bi_vcnt = bio->bi_vcnt;
1327
1328                                if (n > bytes)
1329                                        n = bytes;
1330
1331                                if (!bio_add_pc_page(q, bio, page, n, offs))
1332                                        break;
1333
1334                                /*
1335                                 * check if vector was merged with previous
1336                                 * drop page reference if needed
1337                                 */
1338                                if (bio->bi_vcnt == prev_bi_vcnt)
1339                                        put_page(page);
1340
1341                                added += n;
1342                                bytes -= n;
1343                                offs = 0;
1344                        }
1345                        iov_iter_advance(iter, added);
1346                }
1347                /*
1348                 * release the pages we didn't map into the bio, if any
1349                 */
1350                while (j < npages)
1351                        put_page(pages[j++]);
1352                kvfree(pages);
1353                /* couldn't stuff something into bio? */
1354                if (bytes)
1355                        break;
1356        }
1357
1358        bio_set_flag(bio, BIO_USER_MAPPED);
1359
1360        /*
1361         * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1362         * it would normally disappear when its bi_end_io is run.
1363         * however, we need it for the unmap, so grab an extra
1364         * reference to it
1365         */
1366        bio_get(bio);
1367        return bio;
1368
1369 out_unmap:
1370        bio_for_each_segment_all(bvec, bio, j) {
1371                put_page(bvec->bv_page);
1372        }
1373        bio_put(bio);
1374        return ERR_PTR(ret);
1375}
1376
1377static void __bio_unmap_user(struct bio *bio)
1378{
1379        struct bio_vec *bvec;
1380        int i;
1381
1382        /*
1383         * make sure we dirty pages we wrote to
1384         */
1385        bio_for_each_segment_all(bvec, bio, i) {
1386                if (bio_data_dir(bio) == READ)
1387                        set_page_dirty_lock(bvec->bv_page);
1388
1389                put_page(bvec->bv_page);
1390        }
1391
1392        bio_put(bio);
1393}
1394
1395/**
1396 *      bio_unmap_user  -       unmap a bio
1397 *      @bio:           the bio being unmapped
1398 *
1399 *      Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1400 *      process context.
1401 *
1402 *      bio_unmap_user() may sleep.
1403 */
1404void bio_unmap_user(struct bio *bio)
1405{
1406        __bio_unmap_user(bio);
1407        bio_put(bio);
1408}
1409
1410static void bio_map_kern_endio(struct bio *bio)
1411{
1412        bio_put(bio);
1413}
1414
1415/**
1416 *      bio_map_kern    -       map kernel address into bio
1417 *      @q: the struct request_queue for the bio
1418 *      @data: pointer to buffer to map
1419 *      @len: length in bytes
1420 *      @gfp_mask: allocation flags for bio allocation
1421 *
1422 *      Map the kernel address into a bio suitable for io to a block
1423 *      device. Returns an error pointer in case of error.
1424 */
1425struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1426                         gfp_t gfp_mask)
1427{
1428        unsigned long kaddr = (unsigned long)data;
1429        unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1430        unsigned long start = kaddr >> PAGE_SHIFT;
1431        const int nr_pages = end - start;
1432        int offset, i;
1433        struct bio *bio;
1434
1435        bio = bio_kmalloc(gfp_mask, nr_pages);
1436        if (!bio)
1437                return ERR_PTR(-ENOMEM);
1438
1439        offset = offset_in_page(kaddr);
1440        for (i = 0; i < nr_pages; i++) {
1441                unsigned int bytes = PAGE_SIZE - offset;
1442
1443                if (len <= 0)
1444                        break;
1445
1446                if (bytes > len)
1447                        bytes = len;
1448
1449                if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1450                                    offset) < bytes) {
1451                        /* we don't support partial mappings */
1452                        bio_put(bio);
1453                        return ERR_PTR(-EINVAL);
1454                }
1455
1456                data += bytes;
1457                len -= bytes;
1458                offset = 0;
1459        }
1460
1461        bio->bi_end_io = bio_map_kern_endio;
1462        return bio;
1463}
1464EXPORT_SYMBOL(bio_map_kern);
1465
1466static void bio_copy_kern_endio(struct bio *bio)
1467{
1468        bio_free_pages(bio);
1469        bio_put(bio);
1470}
1471
1472static void bio_copy_kern_endio_read(struct bio *bio)
1473{
1474        char *p = bio->bi_private;
1475        struct bio_vec *bvec;
1476        int i;
1477
1478        bio_for_each_segment_all(bvec, bio, i) {
1479                memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1480                p += bvec->bv_len;
1481        }
1482
1483        bio_copy_kern_endio(bio);
1484}
1485
1486/**
1487 *      bio_copy_kern   -       copy kernel address into bio
1488 *      @q: the struct request_queue for the bio
1489 *      @data: pointer to buffer to copy
1490 *      @len: length in bytes
1491 *      @gfp_mask: allocation flags for bio and page allocation
1492 *      @reading: data direction is READ
1493 *
1494 *      copy the kernel address into a bio suitable for io to a block
1495 *      device. Returns an error pointer in case of error.
1496 */
1497struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1498                          gfp_t gfp_mask, int reading)
1499{
1500        unsigned long kaddr = (unsigned long)data;
1501        unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1502        unsigned long start = kaddr >> PAGE_SHIFT;
1503        struct bio *bio;
1504        void *p = data;
1505        int nr_pages = 0;
1506
1507        /*
1508         * Overflow, abort
1509         */
1510        if (end < start)
1511                return ERR_PTR(-EINVAL);
1512
1513        nr_pages = end - start;
1514        bio = bio_kmalloc(gfp_mask, nr_pages);
1515        if (!bio)
1516                return ERR_PTR(-ENOMEM);
1517
1518        while (len) {
1519                struct page *page;
1520                unsigned int bytes = PAGE_SIZE;
1521
1522                if (bytes > len)
1523                        bytes = len;
1524
1525                page = alloc_page(q->bounce_gfp | gfp_mask);
1526                if (!page)
1527                        goto cleanup;
1528
1529                if (!reading)
1530                        memcpy(page_address(page), p, bytes);
1531
1532                if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1533                        break;
1534
1535                len -= bytes;
1536                p += bytes;
1537        }
1538
1539        if (reading) {
1540                bio->bi_end_io = bio_copy_kern_endio_read;
1541                bio->bi_private = data;
1542        } else {
1543                bio->bi_end_io = bio_copy_kern_endio;
1544        }
1545
1546        return bio;
1547
1548cleanup:
1549        bio_free_pages(bio);
1550        bio_put(bio);
1551        return ERR_PTR(-ENOMEM);
1552}
1553
1554/*
1555 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1556 * for performing direct-IO in BIOs.
1557 *
1558 * The problem is that we cannot run set_page_dirty() from interrupt context
1559 * because the required locks are not interrupt-safe.  So what we can do is to
1560 * mark the pages dirty _before_ performing IO.  And in interrupt context,
1561 * check that the pages are still dirty.   If so, fine.  If not, redirty them
1562 * in process context.
1563 *
1564 * We special-case compound pages here: normally this means reads into hugetlb
1565 * pages.  The logic in here doesn't really work right for compound pages
1566 * because the VM does not uniformly chase down the head page in all cases.
1567 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1568 * handle them at all.  So we skip compound pages here at an early stage.
1569 *
1570 * Note that this code is very hard to test under normal circumstances because
1571 * direct-io pins the pages with get_user_pages().  This makes
1572 * is_page_cache_freeable return false, and the VM will not clean the pages.
1573 * But other code (eg, flusher threads) could clean the pages if they are mapped
1574 * pagecache.
1575 *
1576 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1577 * deferred bio dirtying paths.
1578 */
1579
1580/*
1581 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1582 */
1583void bio_set_pages_dirty(struct bio *bio)
1584{
1585        struct bio_vec *bvec;
1586        int i;
1587
1588        bio_for_each_segment_all(bvec, bio, i) {
1589                if (!PageCompound(bvec->bv_page))
1590                        set_page_dirty_lock(bvec->bv_page);
1591        }
1592}
1593EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1594
1595static void bio_release_pages(struct bio *bio)
1596{
1597        struct bio_vec *bvec;
1598        int i;
1599
1600        bio_for_each_segment_all(bvec, bio, i)
1601                put_page(bvec->bv_page);
1602}
1603
1604/*
1605 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1606 * If they are, then fine.  If, however, some pages are clean then they must
1607 * have been written out during the direct-IO read.  So we take another ref on
1608 * the BIO and re-dirty the pages in process context.
1609 *
1610 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1611 * here on.  It will run one put_page() against each page and will run one
1612 * bio_put() against the BIO.
1613 */
1614
1615static void bio_dirty_fn(struct work_struct *work);
1616
1617static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1618static DEFINE_SPINLOCK(bio_dirty_lock);
1619static struct bio *bio_dirty_list;
1620
1621/*
1622 * This runs in process context
1623 */
1624static void bio_dirty_fn(struct work_struct *work)
1625{
1626        struct bio *bio, *next;
1627
1628        spin_lock_irq(&bio_dirty_lock);
1629        next = bio_dirty_list;
1630        bio_dirty_list = NULL;
1631        spin_unlock_irq(&bio_dirty_lock);
1632
1633        while ((bio = next) != NULL) {
1634                next = bio->bi_private;
1635
1636                bio_set_pages_dirty(bio);
1637                bio_release_pages(bio);
1638                bio_put(bio);
1639        }
1640}
1641
1642void bio_check_pages_dirty(struct bio *bio)
1643{
1644        struct bio_vec *bvec;
1645        unsigned long flags;
1646        int i;
1647
1648        bio_for_each_segment_all(bvec, bio, i) {
1649                if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1650                        goto defer;
1651        }
1652
1653        bio_release_pages(bio);
1654        bio_put(bio);
1655        return;
1656defer:
1657        spin_lock_irqsave(&bio_dirty_lock, flags);
1658        bio->bi_private = bio_dirty_list;
1659        bio_dirty_list = bio;
1660        spin_unlock_irqrestore(&bio_dirty_lock, flags);
1661        schedule_work(&bio_dirty_work);
1662}
1663EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1664
1665void generic_start_io_acct(struct request_queue *q, int op,
1666                           unsigned long sectors, struct hd_struct *part)
1667{
1668        const int sgrp = op_stat_group(op);
1669        int cpu = part_stat_lock();
1670
1671        part_round_stats(q, cpu, part);
1672        part_stat_inc(cpu, part, ios[sgrp]);
1673        part_stat_add(cpu, part, sectors[sgrp], sectors);
1674        part_inc_in_flight(q, part, op_is_write(op));
1675
1676        part_stat_unlock();
1677}
1678EXPORT_SYMBOL(generic_start_io_acct);
1679
1680void generic_end_io_acct(struct request_queue *q, int req_op,
1681                         struct hd_struct *part, unsigned long start_time)
1682{
1683        unsigned long duration = jiffies - start_time;
1684        const int sgrp = op_stat_group(req_op);
1685        int cpu = part_stat_lock();
1686
1687        part_stat_add(cpu, part, nsecs[sgrp], jiffies_to_nsecs(duration));
1688        part_round_stats(q, cpu, part);
1689        part_dec_in_flight(q, part, op_is_write(req_op));
1690
1691        part_stat_unlock();
1692}
1693EXPORT_SYMBOL(generic_end_io_acct);
1694
1695#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1696void bio_flush_dcache_pages(struct bio *bi)
1697{
1698        struct bio_vec bvec;
1699        struct bvec_iter iter;
1700
1701        bio_for_each_segment(bvec, bi, iter)
1702                flush_dcache_page(bvec.bv_page);
1703}
1704EXPORT_SYMBOL(bio_flush_dcache_pages);
1705#endif
1706
1707static inline bool bio_remaining_done(struct bio *bio)
1708{
1709        /*
1710         * If we're not chaining, then ->__bi_remaining is always 1 and
1711         * we always end io on the first invocation.
1712         */
1713        if (!bio_flagged(bio, BIO_CHAIN))
1714                return true;
1715
1716        BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1717
1718        if (atomic_dec_and_test(&bio->__bi_remaining)) {
1719                bio_clear_flag(bio, BIO_CHAIN);
1720                return true;
1721        }
1722
1723        return false;
1724}
1725
1726/**
1727 * bio_endio - end I/O on a bio
1728 * @bio:        bio
1729 *
1730 * Description:
1731 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1732 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1733 *   bio unless they own it and thus know that it has an end_io function.
1734 *
1735 *   bio_endio() can be called several times on a bio that has been chained
1736 *   using bio_chain().  The ->bi_end_io() function will only be called the
1737 *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1738 *   generated if BIO_TRACE_COMPLETION is set.
1739 **/
1740void bio_endio(struct bio *bio)
1741{
1742again:
1743        if (!bio_remaining_done(bio))
1744                return;
1745        if (!bio_integrity_endio(bio))
1746                return;
1747
1748        if (bio->bi_disk)
1749                rq_qos_done_bio(bio->bi_disk->queue, bio);
1750
1751        /*
1752         * Need to have a real endio function for chained bios, otherwise
1753         * various corner cases will break (like stacking block devices that
1754         * save/restore bi_end_io) - however, we want to avoid unbounded
1755         * recursion and blowing the stack. Tail call optimization would
1756         * handle this, but compiling with frame pointers also disables
1757         * gcc's sibling call optimization.
1758         */
1759        if (bio->bi_end_io == bio_chain_endio) {
1760                bio = __bio_chain_endio(bio);
1761                goto again;
1762        }
1763
1764        if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1765                trace_block_bio_complete(bio->bi_disk->queue, bio,
1766                                         blk_status_to_errno(bio->bi_status));
1767                bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1768        }
1769
1770        blk_throtl_bio_endio(bio);
1771        /* release cgroup info */
1772        bio_uninit(bio);
1773        if (bio->bi_end_io)
1774                bio->bi_end_io(bio);
1775}
1776EXPORT_SYMBOL(bio_endio);
1777
1778/**
1779 * bio_split - split a bio
1780 * @bio:        bio to split
1781 * @sectors:    number of sectors to split from the front of @bio
1782 * @gfp:        gfp mask
1783 * @bs:         bio set to allocate from
1784 *
1785 * Allocates and returns a new bio which represents @sectors from the start of
1786 * @bio, and updates @bio to represent the remaining sectors.
1787 *
1788 * Unless this is a discard request the newly allocated bio will point
1789 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1790 * @bio is not freed before the split.
1791 */
1792struct bio *bio_split(struct bio *bio, int sectors,
1793                      gfp_t gfp, struct bio_set *bs)
1794{
1795        struct bio *split;
1796
1797        BUG_ON(sectors <= 0);
1798        BUG_ON(sectors >= bio_sectors(bio));
1799
1800        split = bio_clone_fast(bio, gfp, bs);
1801        if (!split)
1802                return NULL;
1803
1804        split->bi_iter.bi_size = sectors << 9;
1805
1806        if (bio_integrity(split))
1807                bio_integrity_trim(split);
1808
1809        bio_advance(bio, split->bi_iter.bi_size);
1810        bio->bi_iter.bi_done = 0;
1811
1812        if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1813                bio_set_flag(split, BIO_TRACE_COMPLETION);
1814
1815        return split;
1816}
1817EXPORT_SYMBOL(bio_split);
1818
1819/**
1820 * bio_trim - trim a bio
1821 * @bio:        bio to trim
1822 * @offset:     number of sectors to trim from the front of @bio
1823 * @size:       size we want to trim @bio to, in sectors
1824 */
1825void bio_trim(struct bio *bio, int offset, int size)
1826{
1827        /* 'bio' is a cloned bio which we need to trim to match
1828         * the given offset and size.
1829         */
1830
1831        size <<= 9;
1832        if (offset == 0 && size == bio->bi_iter.bi_size)
1833                return;
1834
1835        bio_clear_flag(bio, BIO_SEG_VALID);
1836
1837        bio_advance(bio, offset << 9);
1838
1839        bio->bi_iter.bi_size = size;
1840
1841        if (bio_integrity(bio))
1842                bio_integrity_trim(bio);
1843
1844}
1845EXPORT_SYMBOL_GPL(bio_trim);
1846
1847/*
1848 * create memory pools for biovec's in a bio_set.
1849 * use the global biovec slabs created for general use.
1850 */
1851int biovec_init_pool(mempool_t *pool, int pool_entries)
1852{
1853        struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1854
1855        return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1856}
1857
1858/*
1859 * bioset_exit - exit a bioset initialized with bioset_init()
1860 *
1861 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1862 * kzalloc()).
1863 */
1864void bioset_exit(struct bio_set *bs)
1865{
1866        if (bs->rescue_workqueue)
1867                destroy_workqueue(bs->rescue_workqueue);
1868        bs->rescue_workqueue = NULL;
1869
1870        mempool_exit(&bs->bio_pool);
1871        mempool_exit(&bs->bvec_pool);
1872
1873        bioset_integrity_free(bs);
1874        if (bs->bio_slab)
1875                bio_put_slab(bs);
1876        bs->bio_slab = NULL;
1877}
1878EXPORT_SYMBOL(bioset_exit);
1879
1880/**
1881 * bioset_init - Initialize a bio_set
1882 * @bs:         pool to initialize
1883 * @pool_size:  Number of bio and bio_vecs to cache in the mempool
1884 * @front_pad:  Number of bytes to allocate in front of the returned bio
1885 * @flags:      Flags to modify behavior, currently %BIOSET_NEED_BVECS
1886 *              and %BIOSET_NEED_RESCUER
1887 *
1888 * Description:
1889 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1890 *    to ask for a number of bytes to be allocated in front of the bio.
1891 *    Front pad allocation is useful for embedding the bio inside
1892 *    another structure, to avoid allocating extra data to go with the bio.
1893 *    Note that the bio must be embedded at the END of that structure always,
1894 *    or things will break badly.
1895 *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1896 *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1897 *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1898 *    dispatch queued requests when the mempool runs out of space.
1899 *
1900 */
1901int bioset_init(struct bio_set *bs,
1902                unsigned int pool_size,
1903                unsigned int front_pad,
1904                int flags)
1905{
1906        unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1907
1908        bs->front_pad = front_pad;
1909
1910        spin_lock_init(&bs->rescue_lock);
1911        bio_list_init(&bs->rescue_list);
1912        INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1913
1914        bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1915        if (!bs->bio_slab)
1916                return -ENOMEM;
1917
1918        if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1919                goto bad;
1920
1921        if ((flags & BIOSET_NEED_BVECS) &&
1922            biovec_init_pool(&bs->bvec_pool, pool_size))
1923                goto bad;
1924
1925        if (!(flags & BIOSET_NEED_RESCUER))
1926                return 0;
1927
1928        bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1929        if (!bs->rescue_workqueue)
1930                goto bad;
1931
1932        return 0;
1933bad:
1934        bioset_exit(bs);
1935        return -ENOMEM;
1936}
1937EXPORT_SYMBOL(bioset_init);
1938
1939/*
1940 * Initialize and setup a new bio_set, based on the settings from
1941 * another bio_set.
1942 */
1943int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1944{
1945        int flags;
1946
1947        flags = 0;
1948        if (src->bvec_pool.min_nr)
1949                flags |= BIOSET_NEED_BVECS;
1950        if (src->rescue_workqueue)
1951                flags |= BIOSET_NEED_RESCUER;
1952
1953        return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1954}
1955EXPORT_SYMBOL(bioset_init_from_src);
1956
1957#ifdef CONFIG_BLK_CGROUP
1958
1959#ifdef CONFIG_MEMCG
1960/**
1961 * bio_associate_blkcg_from_page - associate a bio with the page's blkcg
1962 * @bio: target bio
1963 * @page: the page to lookup the blkcg from
1964 *
1965 * Associate @bio with the blkcg from @page's owning memcg.  This works like
1966 * every other associate function wrt references.
1967 */
1968int bio_associate_blkcg_from_page(struct bio *bio, struct page *page)
1969{
1970        struct cgroup_subsys_state *blkcg_css;
1971
1972        if (unlikely(bio->bi_css))
1973                return -EBUSY;
1974        if (!page->mem_cgroup)
1975                return 0;
1976        blkcg_css = cgroup_get_e_css(page->mem_cgroup->css.cgroup,
1977                                     &io_cgrp_subsys);
1978        bio->bi_css = blkcg_css;
1979        return 0;
1980}
1981#endif /* CONFIG_MEMCG */
1982
1983/**
1984 * bio_associate_blkcg - associate a bio with the specified blkcg
1985 * @bio: target bio
1986 * @blkcg_css: css of the blkcg to associate
1987 *
1988 * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
1989 * treat @bio as if it were issued by a task which belongs to the blkcg.
1990 *
1991 * This function takes an extra reference of @blkcg_css which will be put
1992 * when @bio is released.  The caller must own @bio and is responsible for
1993 * synchronizing calls to this function.
1994 */
1995int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1996{
1997        if (unlikely(bio->bi_css))
1998                return -EBUSY;
1999        css_get(blkcg_css);
2000        bio->bi_css = blkcg_css;
2001        return 0;
2002}
2003EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2004
2005/**
2006 * bio_associate_blkg - associate a bio with the specified blkg
2007 * @bio: target bio
2008 * @blkg: the blkg to associate
2009 *
2010 * Associate @bio with the blkg specified by @blkg.  This is the queue specific
2011 * blkcg information associated with the @bio, a reference will be taken on the
2012 * @blkg and will be freed when the bio is freed.
2013 */
2014int bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2015{
2016        if (unlikely(bio->bi_blkg))
2017                return -EBUSY;
2018        if (!blkg_try_get(blkg))
2019                return -ENODEV;
2020        bio->bi_blkg = blkg;
2021        return 0;
2022}
2023
2024/**
2025 * bio_disassociate_task - undo bio_associate_current()
2026 * @bio: target bio
2027 */
2028void bio_disassociate_task(struct bio *bio)
2029{
2030        if (bio->bi_ioc) {
2031                put_io_context(bio->bi_ioc);
2032                bio->bi_ioc = NULL;
2033        }
2034        if (bio->bi_css) {
2035                css_put(bio->bi_css);
2036                bio->bi_css = NULL;
2037        }
2038        if (bio->bi_blkg) {
2039                blkg_put(bio->bi_blkg);
2040                bio->bi_blkg = NULL;
2041        }
2042}
2043
2044/**
2045 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2046 * @dst: destination bio
2047 * @src: source bio
2048 */
2049void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2050{
2051        if (src->bi_css)
2052                WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2053}
2054EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
2055#endif /* CONFIG_BLK_CGROUP */
2056
2057static void __init biovec_init_slabs(void)
2058{
2059        int i;
2060
2061        for (i = 0; i < BVEC_POOL_NR; i++) {
2062                int size;
2063                struct biovec_slab *bvs = bvec_slabs + i;
2064
2065                if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2066                        bvs->slab = NULL;
2067                        continue;
2068                }
2069
2070                size = bvs->nr_vecs * sizeof(struct bio_vec);
2071                bvs->slab = kmem_cache_create(bvs->name, size, 0,
2072                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2073        }
2074}
2075
2076static int __init init_bio(void)
2077{
2078        bio_slab_max = 2;
2079        bio_slab_nr = 0;
2080        bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2081                            GFP_KERNEL);
2082        if (!bio_slabs)
2083                panic("bio: can't allocate bios\n");
2084
2085        bio_integrity_init();
2086        biovec_init_slabs();
2087
2088        if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2089                panic("bio: can't allocate bios\n");
2090
2091        if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2092                panic("bio: can't create integrity pool\n");
2093
2094        return 0;
2095}
2096subsys_initcall(init_bio);
2097