linux/drivers/acpi/pptt.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * pptt.c - parsing of Processor Properties Topology Table (PPTT)
   4 *
   5 * Copyright (C) 2018, ARM
   6 *
   7 * This file implements parsing of the Processor Properties Topology Table
   8 * which is optionally used to describe the processor and cache topology.
   9 * Due to the relative pointers used throughout the table, this doesn't
  10 * leverage the existing subtable parsing in the kernel.
  11 *
  12 * The PPTT structure is an inverted tree, with each node potentially
  13 * holding one or two inverted tree data structures describing
  14 * the caches available at that level. Each cache structure optionally
  15 * contains properties describing the cache at a given level which can be
  16 * used to override hardware probed values.
  17 */
  18#define pr_fmt(fmt) "ACPI PPTT: " fmt
  19
  20#include <linux/acpi.h>
  21#include <linux/cacheinfo.h>
  22#include <acpi/processor.h>
  23
  24static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
  25                                                        u32 pptt_ref)
  26{
  27        struct acpi_subtable_header *entry;
  28
  29        /* there isn't a subtable at reference 0 */
  30        if (pptt_ref < sizeof(struct acpi_subtable_header))
  31                return NULL;
  32
  33        if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
  34                return NULL;
  35
  36        entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
  37
  38        if (entry->length == 0)
  39                return NULL;
  40
  41        if (pptt_ref + entry->length > table_hdr->length)
  42                return NULL;
  43
  44        return entry;
  45}
  46
  47static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
  48                                                   u32 pptt_ref)
  49{
  50        return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
  51}
  52
  53static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
  54                                                u32 pptt_ref)
  55{
  56        return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
  57}
  58
  59static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
  60                                                           struct acpi_pptt_processor *node,
  61                                                           int resource)
  62{
  63        u32 *ref;
  64
  65        if (resource >= node->number_of_priv_resources)
  66                return NULL;
  67
  68        ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
  69        ref += resource;
  70
  71        return fetch_pptt_subtable(table_hdr, *ref);
  72}
  73
  74static inline bool acpi_pptt_match_type(int table_type, int type)
  75{
  76        return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
  77                table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
  78}
  79
  80/**
  81 * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
  82 * @table_hdr: Pointer to the head of the PPTT table
  83 * @local_level: passed res reflects this cache level
  84 * @res: cache resource in the PPTT we want to walk
  85 * @found: returns a pointer to the requested level if found
  86 * @level: the requested cache level
  87 * @type: the requested cache type
  88 *
  89 * Attempt to find a given cache level, while counting the max number
  90 * of cache levels for the cache node.
  91 *
  92 * Given a pptt resource, verify that it is a cache node, then walk
  93 * down each level of caches, counting how many levels are found
  94 * as well as checking the cache type (icache, dcache, unified). If a
  95 * level & type match, then we set found, and continue the search.
  96 * Once the entire cache branch has been walked return its max
  97 * depth.
  98 *
  99 * Return: The cache structure and the level we terminated with.
 100 */
 101static int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
 102                                int local_level,
 103                                struct acpi_subtable_header *res,
 104                                struct acpi_pptt_cache **found,
 105                                int level, int type)
 106{
 107        struct acpi_pptt_cache *cache;
 108
 109        if (res->type != ACPI_PPTT_TYPE_CACHE)
 110                return 0;
 111
 112        cache = (struct acpi_pptt_cache *) res;
 113        while (cache) {
 114                local_level++;
 115
 116                if (local_level == level &&
 117                    cache->flags & ACPI_PPTT_CACHE_TYPE_VALID &&
 118                    acpi_pptt_match_type(cache->attributes, type)) {
 119                        if (*found != NULL && cache != *found)
 120                                pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
 121
 122                        pr_debug("Found cache @ level %d\n", level);
 123                        *found = cache;
 124                        /*
 125                         * continue looking at this node's resource list
 126                         * to verify that we don't find a duplicate
 127                         * cache node.
 128                         */
 129                }
 130                cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
 131        }
 132        return local_level;
 133}
 134
 135static struct acpi_pptt_cache *acpi_find_cache_level(struct acpi_table_header *table_hdr,
 136                                                     struct acpi_pptt_processor *cpu_node,
 137                                                     int *starting_level, int level,
 138                                                     int type)
 139{
 140        struct acpi_subtable_header *res;
 141        int number_of_levels = *starting_level;
 142        int resource = 0;
 143        struct acpi_pptt_cache *ret = NULL;
 144        int local_level;
 145
 146        /* walk down from processor node */
 147        while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
 148                resource++;
 149
 150                local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
 151                                                   res, &ret, level, type);
 152                /*
 153                 * we are looking for the max depth. Since its potentially
 154                 * possible for a given node to have resources with differing
 155                 * depths verify that the depth we have found is the largest.
 156                 */
 157                if (number_of_levels < local_level)
 158                        number_of_levels = local_level;
 159        }
 160        if (number_of_levels > *starting_level)
 161                *starting_level = number_of_levels;
 162
 163        return ret;
 164}
 165
 166/**
 167 * acpi_count_levels() - Given a PPTT table, and a cpu node, count the caches
 168 * @table_hdr: Pointer to the head of the PPTT table
 169 * @cpu_node: processor node we wish to count caches for
 170 *
 171 * Given a processor node containing a processing unit, walk into it and count
 172 * how many levels exist solely for it, and then walk up each level until we hit
 173 * the root node (ignore the package level because it may be possible to have
 174 * caches that exist across packages). Count the number of cache levels that
 175 * exist at each level on the way up.
 176 *
 177 * Return: Total number of levels found.
 178 */
 179static int acpi_count_levels(struct acpi_table_header *table_hdr,
 180                             struct acpi_pptt_processor *cpu_node)
 181{
 182        int total_levels = 0;
 183
 184        do {
 185                acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
 186                cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
 187        } while (cpu_node);
 188
 189        return total_levels;
 190}
 191
 192/**
 193 * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
 194 * @table_hdr: Pointer to the head of the PPTT table
 195 * @node: passed node is checked to see if its a leaf
 196 *
 197 * Determine if the *node parameter is a leaf node by iterating the
 198 * PPTT table, looking for nodes which reference it.
 199 *
 200 * Return: 0 if we find a node referencing the passed node (or table error),
 201 * or 1 if we don't.
 202 */
 203static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
 204                               struct acpi_pptt_processor *node)
 205{
 206        struct acpi_subtable_header *entry;
 207        unsigned long table_end;
 208        u32 node_entry;
 209        struct acpi_pptt_processor *cpu_node;
 210        u32 proc_sz;
 211
 212        table_end = (unsigned long)table_hdr + table_hdr->length;
 213        node_entry = ACPI_PTR_DIFF(node, table_hdr);
 214        entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
 215                             sizeof(struct acpi_table_pptt));
 216        proc_sz = sizeof(struct acpi_pptt_processor *);
 217
 218        while ((unsigned long)entry + proc_sz < table_end) {
 219                cpu_node = (struct acpi_pptt_processor *)entry;
 220                if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
 221                    cpu_node->parent == node_entry)
 222                        return 0;
 223                if (entry->length == 0)
 224                        return 0;
 225                entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
 226                                     entry->length);
 227
 228        }
 229        return 1;
 230}
 231
 232/**
 233 * acpi_find_processor_node() - Given a PPTT table find the requested processor
 234 * @table_hdr:  Pointer to the head of the PPTT table
 235 * @acpi_cpu_id: cpu we are searching for
 236 *
 237 * Find the subtable entry describing the provided processor.
 238 * This is done by iterating the PPTT table looking for processor nodes
 239 * which have an acpi_processor_id that matches the acpi_cpu_id parameter
 240 * passed into the function. If we find a node that matches this criteria
 241 * we verify that its a leaf node in the topology rather than depending
 242 * on the valid flag, which doesn't need to be set for leaf nodes.
 243 *
 244 * Return: NULL, or the processors acpi_pptt_processor*
 245 */
 246static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
 247                                                            u32 acpi_cpu_id)
 248{
 249        struct acpi_subtable_header *entry;
 250        unsigned long table_end;
 251        struct acpi_pptt_processor *cpu_node;
 252        u32 proc_sz;
 253
 254        table_end = (unsigned long)table_hdr + table_hdr->length;
 255        entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
 256                             sizeof(struct acpi_table_pptt));
 257        proc_sz = sizeof(struct acpi_pptt_processor *);
 258
 259        /* find the processor structure associated with this cpuid */
 260        while ((unsigned long)entry + proc_sz < table_end) {
 261                cpu_node = (struct acpi_pptt_processor *)entry;
 262
 263                if (entry->length == 0) {
 264                        pr_warn("Invalid zero length subtable\n");
 265                        break;
 266                }
 267                if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
 268                    acpi_cpu_id == cpu_node->acpi_processor_id &&
 269                     acpi_pptt_leaf_node(table_hdr, cpu_node)) {
 270                        return (struct acpi_pptt_processor *)entry;
 271                }
 272
 273                entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
 274                                     entry->length);
 275        }
 276
 277        return NULL;
 278}
 279
 280static int acpi_find_cache_levels(struct acpi_table_header *table_hdr,
 281                                  u32 acpi_cpu_id)
 282{
 283        int number_of_levels = 0;
 284        struct acpi_pptt_processor *cpu;
 285
 286        cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
 287        if (cpu)
 288                number_of_levels = acpi_count_levels(table_hdr, cpu);
 289
 290        return number_of_levels;
 291}
 292
 293static u8 acpi_cache_type(enum cache_type type)
 294{
 295        switch (type) {
 296        case CACHE_TYPE_DATA:
 297                pr_debug("Looking for data cache\n");
 298                return ACPI_PPTT_CACHE_TYPE_DATA;
 299        case CACHE_TYPE_INST:
 300                pr_debug("Looking for instruction cache\n");
 301                return ACPI_PPTT_CACHE_TYPE_INSTR;
 302        default:
 303        case CACHE_TYPE_UNIFIED:
 304                pr_debug("Looking for unified cache\n");
 305                /*
 306                 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
 307                 * contains the bit pattern that will match both
 308                 * ACPI unified bit patterns because we use it later
 309                 * to match both cases.
 310                 */
 311                return ACPI_PPTT_CACHE_TYPE_UNIFIED;
 312        }
 313}
 314
 315static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
 316                                                    u32 acpi_cpu_id,
 317                                                    enum cache_type type,
 318                                                    unsigned int level,
 319                                                    struct acpi_pptt_processor **node)
 320{
 321        int total_levels = 0;
 322        struct acpi_pptt_cache *found = NULL;
 323        struct acpi_pptt_processor *cpu_node;
 324        u8 acpi_type = acpi_cache_type(type);
 325
 326        pr_debug("Looking for CPU %d's level %d cache type %d\n",
 327                 acpi_cpu_id, level, acpi_type);
 328
 329        cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
 330
 331        while (cpu_node && !found) {
 332                found = acpi_find_cache_level(table_hdr, cpu_node,
 333                                              &total_levels, level, acpi_type);
 334                *node = cpu_node;
 335                cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
 336        }
 337
 338        return found;
 339}
 340
 341/* total number of attributes checked by the properties code */
 342#define PPTT_CHECKED_ATTRIBUTES 4
 343
 344/**
 345 * update_cache_properties() - Update cacheinfo for the given processor
 346 * @this_leaf: Kernel cache info structure being updated
 347 * @found_cache: The PPTT node describing this cache instance
 348 * @cpu_node: A unique reference to describe this cache instance
 349 *
 350 * The ACPI spec implies that the fields in the cache structures are used to
 351 * extend and correct the information probed from the hardware. Lets only
 352 * set fields that we determine are VALID.
 353 *
 354 * Return: nothing. Side effect of updating the global cacheinfo
 355 */
 356static void update_cache_properties(struct cacheinfo *this_leaf,
 357                                    struct acpi_pptt_cache *found_cache,
 358                                    struct acpi_pptt_processor *cpu_node)
 359{
 360        int valid_flags = 0;
 361
 362        this_leaf->fw_token = cpu_node;
 363        if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID) {
 364                this_leaf->size = found_cache->size;
 365                valid_flags++;
 366        }
 367        if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID) {
 368                this_leaf->coherency_line_size = found_cache->line_size;
 369                valid_flags++;
 370        }
 371        if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID) {
 372                this_leaf->number_of_sets = found_cache->number_of_sets;
 373                valid_flags++;
 374        }
 375        if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID) {
 376                this_leaf->ways_of_associativity = found_cache->associativity;
 377                valid_flags++;
 378        }
 379        if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
 380                switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
 381                case ACPI_PPTT_CACHE_POLICY_WT:
 382                        this_leaf->attributes = CACHE_WRITE_THROUGH;
 383                        break;
 384                case ACPI_PPTT_CACHE_POLICY_WB:
 385                        this_leaf->attributes = CACHE_WRITE_BACK;
 386                        break;
 387                }
 388        }
 389        if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
 390                switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
 391                case ACPI_PPTT_CACHE_READ_ALLOCATE:
 392                        this_leaf->attributes |= CACHE_READ_ALLOCATE;
 393                        break;
 394                case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
 395                        this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
 396                        break;
 397                case ACPI_PPTT_CACHE_RW_ALLOCATE:
 398                case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
 399                        this_leaf->attributes |=
 400                                CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
 401                        break;
 402                }
 403        }
 404        /*
 405         * If the above flags are valid, and the cache type is NOCACHE
 406         * update the cache type as well.
 407         */
 408        if (this_leaf->type == CACHE_TYPE_NOCACHE &&
 409            valid_flags == PPTT_CHECKED_ATTRIBUTES)
 410                this_leaf->type = CACHE_TYPE_UNIFIED;
 411}
 412
 413static void cache_setup_acpi_cpu(struct acpi_table_header *table,
 414                                 unsigned int cpu)
 415{
 416        struct acpi_pptt_cache *found_cache;
 417        struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
 418        u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
 419        struct cacheinfo *this_leaf;
 420        unsigned int index = 0;
 421        struct acpi_pptt_processor *cpu_node = NULL;
 422
 423        while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
 424                this_leaf = this_cpu_ci->info_list + index;
 425                found_cache = acpi_find_cache_node(table, acpi_cpu_id,
 426                                                   this_leaf->type,
 427                                                   this_leaf->level,
 428                                                   &cpu_node);
 429                pr_debug("found = %p %p\n", found_cache, cpu_node);
 430                if (found_cache)
 431                        update_cache_properties(this_leaf,
 432                                                found_cache,
 433                                                cpu_node);
 434
 435                index++;
 436        }
 437}
 438
 439/* Passing level values greater than this will result in search termination */
 440#define PPTT_ABORT_PACKAGE 0xFF
 441
 442static struct acpi_pptt_processor *acpi_find_processor_package_id(struct acpi_table_header *table_hdr,
 443                                                                  struct acpi_pptt_processor *cpu,
 444                                                                  int level, int flag)
 445{
 446        struct acpi_pptt_processor *prev_node;
 447
 448        while (cpu && level) {
 449                if (cpu->flags & flag)
 450                        break;
 451                pr_debug("level %d\n", level);
 452                prev_node = fetch_pptt_node(table_hdr, cpu->parent);
 453                if (prev_node == NULL)
 454                        break;
 455                cpu = prev_node;
 456                level--;
 457        }
 458        return cpu;
 459}
 460
 461/**
 462 * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
 463 * @table: Pointer to the head of the PPTT table
 464 * @cpu: Kernel logical cpu number
 465 * @level: A level that terminates the search
 466 * @flag: A flag which terminates the search
 467 *
 468 * Get a unique value given a cpu, and a topology level, that can be
 469 * matched to determine which cpus share common topological features
 470 * at that level.
 471 *
 472 * Return: Unique value, or -ENOENT if unable to locate cpu
 473 */
 474static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
 475                                     unsigned int cpu, int level, int flag)
 476{
 477        struct acpi_pptt_processor *cpu_node;
 478        u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
 479
 480        cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
 481        if (cpu_node) {
 482                cpu_node = acpi_find_processor_package_id(table, cpu_node,
 483                                                          level, flag);
 484                /*
 485                 * As per specification if the processor structure represents
 486                 * an actual processor, then ACPI processor ID must be valid.
 487                 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
 488                 * should be set if the UID is valid
 489                 */
 490                if (level == 0 ||
 491                    cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
 492                        return cpu_node->acpi_processor_id;
 493                return ACPI_PTR_DIFF(cpu_node, table);
 494        }
 495        pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
 496                    cpu, acpi_cpu_id);
 497        return -ENOENT;
 498}
 499
 500static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
 501{
 502        struct acpi_table_header *table;
 503        acpi_status status;
 504        int retval;
 505
 506        status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
 507        if (ACPI_FAILURE(status)) {
 508                pr_warn_once("No PPTT table found, cpu topology may be inaccurate\n");
 509                return -ENOENT;
 510        }
 511        retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
 512        pr_debug("Topology Setup ACPI cpu %d, level %d ret = %d\n",
 513                 cpu, level, retval);
 514        acpi_put_table(table);
 515
 516        return retval;
 517}
 518
 519/**
 520 * acpi_find_last_cache_level() - Determines the number of cache levels for a PE
 521 * @cpu: Kernel logical cpu number
 522 *
 523 * Given a logical cpu number, returns the number of levels of cache represented
 524 * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
 525 * indicating we didn't find any cache levels.
 526 *
 527 * Return: Cache levels visible to this core.
 528 */
 529int acpi_find_last_cache_level(unsigned int cpu)
 530{
 531        u32 acpi_cpu_id;
 532        struct acpi_table_header *table;
 533        int number_of_levels = 0;
 534        acpi_status status;
 535
 536        pr_debug("Cache Setup find last level cpu=%d\n", cpu);
 537
 538        acpi_cpu_id = get_acpi_id_for_cpu(cpu);
 539        status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
 540        if (ACPI_FAILURE(status)) {
 541                pr_warn_once("No PPTT table found, cache topology may be inaccurate\n");
 542        } else {
 543                number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id);
 544                acpi_put_table(table);
 545        }
 546        pr_debug("Cache Setup find last level level=%d\n", number_of_levels);
 547
 548        return number_of_levels;
 549}
 550
 551/**
 552 * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
 553 * @cpu: Kernel logical cpu number
 554 *
 555 * Updates the global cache info provided by cpu_get_cacheinfo()
 556 * when there are valid properties in the acpi_pptt_cache nodes. A
 557 * successful parse may not result in any updates if none of the
 558 * cache levels have any valid flags set.  Futher, a unique value is
 559 * associated with each known CPU cache entry. This unique value
 560 * can be used to determine whether caches are shared between cpus.
 561 *
 562 * Return: -ENOENT on failure to find table, or 0 on success
 563 */
 564int cache_setup_acpi(unsigned int cpu)
 565{
 566        struct acpi_table_header *table;
 567        acpi_status status;
 568
 569        pr_debug("Cache Setup ACPI cpu %d\n", cpu);
 570
 571        status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
 572        if (ACPI_FAILURE(status)) {
 573                pr_warn_once("No PPTT table found, cache topology may be inaccurate\n");
 574                return -ENOENT;
 575        }
 576
 577        cache_setup_acpi_cpu(table, cpu);
 578        acpi_put_table(table);
 579
 580        return status;
 581}
 582
 583/**
 584 * find_acpi_cpu_topology() - Determine a unique topology value for a given cpu
 585 * @cpu: Kernel logical cpu number
 586 * @level: The topological level for which we would like a unique ID
 587 *
 588 * Determine a topology unique ID for each thread/core/cluster/mc_grouping
 589 * /socket/etc. This ID can then be used to group peers, which will have
 590 * matching ids.
 591 *
 592 * The search terminates when either the requested level is found or
 593 * we reach a root node. Levels beyond the termination point will return the
 594 * same unique ID. The unique id for level 0 is the acpi processor id. All
 595 * other levels beyond this use a generated value to uniquely identify
 596 * a topological feature.
 597 *
 598 * Return: -ENOENT if the PPTT doesn't exist, or the cpu cannot be found.
 599 * Otherwise returns a value which represents a unique topological feature.
 600 */
 601int find_acpi_cpu_topology(unsigned int cpu, int level)
 602{
 603        return find_acpi_cpu_topology_tag(cpu, level, 0);
 604}
 605
 606/**
 607 * find_acpi_cpu_cache_topology() - Determine a unique cache topology value
 608 * @cpu: Kernel logical cpu number
 609 * @level: The cache level for which we would like a unique ID
 610 *
 611 * Determine a unique ID for each unified cache in the system
 612 *
 613 * Return: -ENOENT if the PPTT doesn't exist, or the cpu cannot be found.
 614 * Otherwise returns a value which represents a unique topological feature.
 615 */
 616int find_acpi_cpu_cache_topology(unsigned int cpu, int level)
 617{
 618        struct acpi_table_header *table;
 619        struct acpi_pptt_cache *found_cache;
 620        acpi_status status;
 621        u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
 622        struct acpi_pptt_processor *cpu_node = NULL;
 623        int ret = -1;
 624
 625        status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
 626        if (ACPI_FAILURE(status)) {
 627                pr_warn_once("No PPTT table found, topology may be inaccurate\n");
 628                return -ENOENT;
 629        }
 630
 631        found_cache = acpi_find_cache_node(table, acpi_cpu_id,
 632                                           CACHE_TYPE_UNIFIED,
 633                                           level,
 634                                           &cpu_node);
 635        if (found_cache)
 636                ret = ACPI_PTR_DIFF(cpu_node, table);
 637
 638        acpi_put_table(table);
 639
 640        return ret;
 641}
 642
 643
 644/**
 645 * find_acpi_cpu_topology_package() - Determine a unique cpu package value
 646 * @cpu: Kernel logical cpu number
 647 *
 648 * Determine a topology unique package ID for the given cpu.
 649 * This ID can then be used to group peers, which will have matching ids.
 650 *
 651 * The search terminates when either a level is found with the PHYSICAL_PACKAGE
 652 * flag set or we reach a root node.
 653 *
 654 * Return: -ENOENT if the PPTT doesn't exist, or the cpu cannot be found.
 655 * Otherwise returns a value which represents the package for this cpu.
 656 */
 657int find_acpi_cpu_topology_package(unsigned int cpu)
 658{
 659        return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
 660                                          ACPI_PPTT_PHYSICAL_PACKAGE);
 661}
 662