linux/drivers/gpu/drm/i915/intel_pm.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
  25 *
  26 */
  27
  28#include <linux/cpufreq.h>
  29#include <drm/drm_plane_helper.h>
  30#include "i915_drv.h"
  31#include "intel_drv.h"
  32#include "../../../platform/x86/intel_ips.h"
  33#include <linux/module.h>
  34#include <drm/drm_atomic_helper.h>
  35
  36/**
  37 * DOC: RC6
  38 *
  39 * RC6 is a special power stage which allows the GPU to enter an very
  40 * low-voltage mode when idle, using down to 0V while at this stage.  This
  41 * stage is entered automatically when the GPU is idle when RC6 support is
  42 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  43 *
  44 * There are different RC6 modes available in Intel GPU, which differentiate
  45 * among each other with the latency required to enter and leave RC6 and
  46 * voltage consumed by the GPU in different states.
  47 *
  48 * The combination of the following flags define which states GPU is allowed
  49 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  50 * RC6pp is deepest RC6. Their support by hardware varies according to the
  51 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  52 * which brings the most power savings; deeper states save more power, but
  53 * require higher latency to switch to and wake up.
  54 */
  55
  56static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
  57{
  58        if (HAS_LLC(dev_priv)) {
  59                /*
  60                 * WaCompressedResourceDisplayNewHashMode:skl,kbl
  61                 * Display WA #0390: skl,kbl
  62                 *
  63                 * Must match Sampler, Pixel Back End, and Media. See
  64                 * WaCompressedResourceSamplerPbeMediaNewHashMode.
  65                 */
  66                I915_WRITE(CHICKEN_PAR1_1,
  67                           I915_READ(CHICKEN_PAR1_1) |
  68                           SKL_DE_COMPRESSED_HASH_MODE);
  69        }
  70
  71        /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
  72        I915_WRITE(CHICKEN_PAR1_1,
  73                   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
  74
  75        /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
  76        I915_WRITE(GEN8_CHICKEN_DCPR_1,
  77                   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
  78
  79        /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
  80        /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
  81        I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  82                   DISP_FBC_WM_DIS |
  83                   DISP_FBC_MEMORY_WAKE);
  84
  85        /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
  86        I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
  87                   ILK_DPFC_DISABLE_DUMMY0);
  88
  89        if (IS_SKYLAKE(dev_priv)) {
  90                /* WaDisableDopClockGating */
  91                I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
  92                           & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  93        }
  94}
  95
  96static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
  97{
  98        gen9_init_clock_gating(dev_priv);
  99
 100        /* WaDisableSDEUnitClockGating:bxt */
 101        I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
 102                   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
 103
 104        /*
 105         * FIXME:
 106         * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
 107         */
 108        I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
 109                   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
 110
 111        /*
 112         * Wa: Backlight PWM may stop in the asserted state, causing backlight
 113         * to stay fully on.
 114         */
 115        I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
 116                   PWM1_GATING_DIS | PWM2_GATING_DIS);
 117}
 118
 119static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
 120{
 121        gen9_init_clock_gating(dev_priv);
 122
 123        /*
 124         * WaDisablePWMClockGating:glk
 125         * Backlight PWM may stop in the asserted state, causing backlight
 126         * to stay fully on.
 127         */
 128        I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
 129                   PWM1_GATING_DIS | PWM2_GATING_DIS);
 130
 131        /* WaDDIIOTimeout:glk */
 132        if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
 133                u32 val = I915_READ(CHICKEN_MISC_2);
 134                val &= ~(GLK_CL0_PWR_DOWN |
 135                         GLK_CL1_PWR_DOWN |
 136                         GLK_CL2_PWR_DOWN);
 137                I915_WRITE(CHICKEN_MISC_2, val);
 138        }
 139
 140}
 141
 142static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
 143{
 144        u32 tmp;
 145
 146        tmp = I915_READ(CLKCFG);
 147
 148        switch (tmp & CLKCFG_FSB_MASK) {
 149        case CLKCFG_FSB_533:
 150                dev_priv->fsb_freq = 533; /* 133*4 */
 151                break;
 152        case CLKCFG_FSB_800:
 153                dev_priv->fsb_freq = 800; /* 200*4 */
 154                break;
 155        case CLKCFG_FSB_667:
 156                dev_priv->fsb_freq =  667; /* 167*4 */
 157                break;
 158        case CLKCFG_FSB_400:
 159                dev_priv->fsb_freq = 400; /* 100*4 */
 160                break;
 161        }
 162
 163        switch (tmp & CLKCFG_MEM_MASK) {
 164        case CLKCFG_MEM_533:
 165                dev_priv->mem_freq = 533;
 166                break;
 167        case CLKCFG_MEM_667:
 168                dev_priv->mem_freq = 667;
 169                break;
 170        case CLKCFG_MEM_800:
 171                dev_priv->mem_freq = 800;
 172                break;
 173        }
 174
 175        /* detect pineview DDR3 setting */
 176        tmp = I915_READ(CSHRDDR3CTL);
 177        dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
 178}
 179
 180static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
 181{
 182        u16 ddrpll, csipll;
 183
 184        ddrpll = I915_READ16(DDRMPLL1);
 185        csipll = I915_READ16(CSIPLL0);
 186
 187        switch (ddrpll & 0xff) {
 188        case 0xc:
 189                dev_priv->mem_freq = 800;
 190                break;
 191        case 0x10:
 192                dev_priv->mem_freq = 1066;
 193                break;
 194        case 0x14:
 195                dev_priv->mem_freq = 1333;
 196                break;
 197        case 0x18:
 198                dev_priv->mem_freq = 1600;
 199                break;
 200        default:
 201                DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
 202                                 ddrpll & 0xff);
 203                dev_priv->mem_freq = 0;
 204                break;
 205        }
 206
 207        dev_priv->ips.r_t = dev_priv->mem_freq;
 208
 209        switch (csipll & 0x3ff) {
 210        case 0x00c:
 211                dev_priv->fsb_freq = 3200;
 212                break;
 213        case 0x00e:
 214                dev_priv->fsb_freq = 3733;
 215                break;
 216        case 0x010:
 217                dev_priv->fsb_freq = 4266;
 218                break;
 219        case 0x012:
 220                dev_priv->fsb_freq = 4800;
 221                break;
 222        case 0x014:
 223                dev_priv->fsb_freq = 5333;
 224                break;
 225        case 0x016:
 226                dev_priv->fsb_freq = 5866;
 227                break;
 228        case 0x018:
 229                dev_priv->fsb_freq = 6400;
 230                break;
 231        default:
 232                DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
 233                                 csipll & 0x3ff);
 234                dev_priv->fsb_freq = 0;
 235                break;
 236        }
 237
 238        if (dev_priv->fsb_freq == 3200) {
 239                dev_priv->ips.c_m = 0;
 240        } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
 241                dev_priv->ips.c_m = 1;
 242        } else {
 243                dev_priv->ips.c_m = 2;
 244        }
 245}
 246
 247static const struct cxsr_latency cxsr_latency_table[] = {
 248        {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
 249        {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
 250        {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
 251        {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
 252        {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
 253
 254        {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
 255        {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
 256        {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
 257        {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
 258        {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
 259
 260        {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
 261        {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
 262        {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
 263        {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
 264        {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
 265
 266        {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
 267        {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
 268        {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
 269        {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
 270        {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
 271
 272        {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
 273        {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
 274        {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
 275        {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
 276        {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
 277
 278        {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
 279        {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
 280        {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
 281        {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
 282        {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
 283};
 284
 285static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
 286                                                         bool is_ddr3,
 287                                                         int fsb,
 288                                                         int mem)
 289{
 290        const struct cxsr_latency *latency;
 291        int i;
 292
 293        if (fsb == 0 || mem == 0)
 294                return NULL;
 295
 296        for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
 297                latency = &cxsr_latency_table[i];
 298                if (is_desktop == latency->is_desktop &&
 299                    is_ddr3 == latency->is_ddr3 &&
 300                    fsb == latency->fsb_freq && mem == latency->mem_freq)
 301                        return latency;
 302        }
 303
 304        DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 305
 306        return NULL;
 307}
 308
 309static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
 310{
 311        u32 val;
 312
 313        mutex_lock(&dev_priv->pcu_lock);
 314
 315        val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
 316        if (enable)
 317                val &= ~FORCE_DDR_HIGH_FREQ;
 318        else
 319                val |= FORCE_DDR_HIGH_FREQ;
 320        val &= ~FORCE_DDR_LOW_FREQ;
 321        val |= FORCE_DDR_FREQ_REQ_ACK;
 322        vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
 323
 324        if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
 325                      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
 326                DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
 327
 328        mutex_unlock(&dev_priv->pcu_lock);
 329}
 330
 331static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
 332{
 333        u32 val;
 334
 335        mutex_lock(&dev_priv->pcu_lock);
 336
 337        val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
 338        if (enable)
 339                val |= DSP_MAXFIFO_PM5_ENABLE;
 340        else
 341                val &= ~DSP_MAXFIFO_PM5_ENABLE;
 342        vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
 343
 344        mutex_unlock(&dev_priv->pcu_lock);
 345}
 346
 347#define FW_WM(value, plane) \
 348        (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
 349
 350static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
 351{
 352        bool was_enabled;
 353        u32 val;
 354
 355        if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
 356                was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
 357                I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
 358                POSTING_READ(FW_BLC_SELF_VLV);
 359        } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
 360                was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
 361                I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
 362                POSTING_READ(FW_BLC_SELF);
 363        } else if (IS_PINEVIEW(dev_priv)) {
 364                val = I915_READ(DSPFW3);
 365                was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
 366                if (enable)
 367                        val |= PINEVIEW_SELF_REFRESH_EN;
 368                else
 369                        val &= ~PINEVIEW_SELF_REFRESH_EN;
 370                I915_WRITE(DSPFW3, val);
 371                POSTING_READ(DSPFW3);
 372        } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
 373                was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
 374                val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
 375                               _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
 376                I915_WRITE(FW_BLC_SELF, val);
 377                POSTING_READ(FW_BLC_SELF);
 378        } else if (IS_I915GM(dev_priv)) {
 379                /*
 380                 * FIXME can't find a bit like this for 915G, and
 381                 * and yet it does have the related watermark in
 382                 * FW_BLC_SELF. What's going on?
 383                 */
 384                was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
 385                val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
 386                               _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
 387                I915_WRITE(INSTPM, val);
 388                POSTING_READ(INSTPM);
 389        } else {
 390                return false;
 391        }
 392
 393        trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
 394
 395        DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
 396                      enableddisabled(enable),
 397                      enableddisabled(was_enabled));
 398
 399        return was_enabled;
 400}
 401
 402/**
 403 * intel_set_memory_cxsr - Configure CxSR state
 404 * @dev_priv: i915 device
 405 * @enable: Allow vs. disallow CxSR
 406 *
 407 * Allow or disallow the system to enter a special CxSR
 408 * (C-state self refresh) state. What typically happens in CxSR mode
 409 * is that several display FIFOs may get combined into a single larger
 410 * FIFO for a particular plane (so called max FIFO mode) to allow the
 411 * system to defer memory fetches longer, and the memory will enter
 412 * self refresh.
 413 *
 414 * Note that enabling CxSR does not guarantee that the system enter
 415 * this special mode, nor does it guarantee that the system stays
 416 * in that mode once entered. So this just allows/disallows the system
 417 * to autonomously utilize the CxSR mode. Other factors such as core
 418 * C-states will affect when/if the system actually enters/exits the
 419 * CxSR mode.
 420 *
 421 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 422 * and the system is free to enter/exit memory self refresh at any time
 423 * even when the use of CxSR has been disallowed.
 424 *
 425 * While the system is actually in the CxSR/max FIFO mode, some plane
 426 * control registers will not get latched on vblank. Thus in order to
 427 * guarantee the system will respond to changes in the plane registers
 428 * we must always disallow CxSR prior to making changes to those registers.
 429 * Unfortunately the system will re-evaluate the CxSR conditions at
 430 * frame start which happens after vblank start (which is when the plane
 431 * registers would get latched), so we can't proceed with the plane update
 432 * during the same frame where we disallowed CxSR.
 433 *
 434 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 435 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 436 * the hardware w.r.t. HPLL SR when writing to plane registers.
 437 * Disallowing just CxSR is sufficient.
 438 */
 439bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
 440{
 441        bool ret;
 442
 443        mutex_lock(&dev_priv->wm.wm_mutex);
 444        ret = _intel_set_memory_cxsr(dev_priv, enable);
 445        if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 446                dev_priv->wm.vlv.cxsr = enable;
 447        else if (IS_G4X(dev_priv))
 448                dev_priv->wm.g4x.cxsr = enable;
 449        mutex_unlock(&dev_priv->wm.wm_mutex);
 450
 451        return ret;
 452}
 453
 454/*
 455 * Latency for FIFO fetches is dependent on several factors:
 456 *   - memory configuration (speed, channels)
 457 *   - chipset
 458 *   - current MCH state
 459 * It can be fairly high in some situations, so here we assume a fairly
 460 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 461 * set this value too high, the FIFO will fetch frequently to stay full)
 462 * and power consumption (set it too low to save power and we might see
 463 * FIFO underruns and display "flicker").
 464 *
 465 * A value of 5us seems to be a good balance; safe for very low end
 466 * platforms but not overly aggressive on lower latency configs.
 467 */
 468static const int pessimal_latency_ns = 5000;
 469
 470#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
 471        ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
 472
 473static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
 474{
 475        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
 476        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 477        struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
 478        enum pipe pipe = crtc->pipe;
 479        int sprite0_start, sprite1_start;
 480
 481        switch (pipe) {
 482                uint32_t dsparb, dsparb2, dsparb3;
 483        case PIPE_A:
 484                dsparb = I915_READ(DSPARB);
 485                dsparb2 = I915_READ(DSPARB2);
 486                sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
 487                sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
 488                break;
 489        case PIPE_B:
 490                dsparb = I915_READ(DSPARB);
 491                dsparb2 = I915_READ(DSPARB2);
 492                sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
 493                sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
 494                break;
 495        case PIPE_C:
 496                dsparb2 = I915_READ(DSPARB2);
 497                dsparb3 = I915_READ(DSPARB3);
 498                sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
 499                sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
 500                break;
 501        default:
 502                MISSING_CASE(pipe);
 503                return;
 504        }
 505
 506        fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
 507        fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
 508        fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
 509        fifo_state->plane[PLANE_CURSOR] = 63;
 510}
 511
 512static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
 513                              enum i9xx_plane_id i9xx_plane)
 514{
 515        uint32_t dsparb = I915_READ(DSPARB);
 516        int size;
 517
 518        size = dsparb & 0x7f;
 519        if (i9xx_plane == PLANE_B)
 520                size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
 521
 522        DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
 523                      dsparb, plane_name(i9xx_plane), size);
 524
 525        return size;
 526}
 527
 528static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
 529                              enum i9xx_plane_id i9xx_plane)
 530{
 531        uint32_t dsparb = I915_READ(DSPARB);
 532        int size;
 533
 534        size = dsparb & 0x1ff;
 535        if (i9xx_plane == PLANE_B)
 536                size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
 537        size >>= 1; /* Convert to cachelines */
 538
 539        DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
 540                      dsparb, plane_name(i9xx_plane), size);
 541
 542        return size;
 543}
 544
 545static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
 546                              enum i9xx_plane_id i9xx_plane)
 547{
 548        uint32_t dsparb = I915_READ(DSPARB);
 549        int size;
 550
 551        size = dsparb & 0x7f;
 552        size >>= 2; /* Convert to cachelines */
 553
 554        DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
 555                      dsparb, plane_name(i9xx_plane), size);
 556
 557        return size;
 558}
 559
 560/* Pineview has different values for various configs */
 561static const struct intel_watermark_params pineview_display_wm = {
 562        .fifo_size = PINEVIEW_DISPLAY_FIFO,
 563        .max_wm = PINEVIEW_MAX_WM,
 564        .default_wm = PINEVIEW_DFT_WM,
 565        .guard_size = PINEVIEW_GUARD_WM,
 566        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 567};
 568static const struct intel_watermark_params pineview_display_hplloff_wm = {
 569        .fifo_size = PINEVIEW_DISPLAY_FIFO,
 570        .max_wm = PINEVIEW_MAX_WM,
 571        .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
 572        .guard_size = PINEVIEW_GUARD_WM,
 573        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 574};
 575static const struct intel_watermark_params pineview_cursor_wm = {
 576        .fifo_size = PINEVIEW_CURSOR_FIFO,
 577        .max_wm = PINEVIEW_CURSOR_MAX_WM,
 578        .default_wm = PINEVIEW_CURSOR_DFT_WM,
 579        .guard_size = PINEVIEW_CURSOR_GUARD_WM,
 580        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 581};
 582static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
 583        .fifo_size = PINEVIEW_CURSOR_FIFO,
 584        .max_wm = PINEVIEW_CURSOR_MAX_WM,
 585        .default_wm = PINEVIEW_CURSOR_DFT_WM,
 586        .guard_size = PINEVIEW_CURSOR_GUARD_WM,
 587        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 588};
 589static const struct intel_watermark_params i965_cursor_wm_info = {
 590        .fifo_size = I965_CURSOR_FIFO,
 591        .max_wm = I965_CURSOR_MAX_WM,
 592        .default_wm = I965_CURSOR_DFT_WM,
 593        .guard_size = 2,
 594        .cacheline_size = I915_FIFO_LINE_SIZE,
 595};
 596static const struct intel_watermark_params i945_wm_info = {
 597        .fifo_size = I945_FIFO_SIZE,
 598        .max_wm = I915_MAX_WM,
 599        .default_wm = 1,
 600        .guard_size = 2,
 601        .cacheline_size = I915_FIFO_LINE_SIZE,
 602};
 603static const struct intel_watermark_params i915_wm_info = {
 604        .fifo_size = I915_FIFO_SIZE,
 605        .max_wm = I915_MAX_WM,
 606        .default_wm = 1,
 607        .guard_size = 2,
 608        .cacheline_size = I915_FIFO_LINE_SIZE,
 609};
 610static const struct intel_watermark_params i830_a_wm_info = {
 611        .fifo_size = I855GM_FIFO_SIZE,
 612        .max_wm = I915_MAX_WM,
 613        .default_wm = 1,
 614        .guard_size = 2,
 615        .cacheline_size = I830_FIFO_LINE_SIZE,
 616};
 617static const struct intel_watermark_params i830_bc_wm_info = {
 618        .fifo_size = I855GM_FIFO_SIZE,
 619        .max_wm = I915_MAX_WM/2,
 620        .default_wm = 1,
 621        .guard_size = 2,
 622        .cacheline_size = I830_FIFO_LINE_SIZE,
 623};
 624static const struct intel_watermark_params i845_wm_info = {
 625        .fifo_size = I830_FIFO_SIZE,
 626        .max_wm = I915_MAX_WM,
 627        .default_wm = 1,
 628        .guard_size = 2,
 629        .cacheline_size = I830_FIFO_LINE_SIZE,
 630};
 631
 632/**
 633 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 634 * @pixel_rate: Pipe pixel rate in kHz
 635 * @cpp: Plane bytes per pixel
 636 * @latency: Memory wakeup latency in 0.1us units
 637 *
 638 * Compute the watermark using the method 1 or "small buffer"
 639 * formula. The caller may additonally add extra cachelines
 640 * to account for TLB misses and clock crossings.
 641 *
 642 * This method is concerned with the short term drain rate
 643 * of the FIFO, ie. it does not account for blanking periods
 644 * which would effectively reduce the average drain rate across
 645 * a longer period. The name "small" refers to the fact the
 646 * FIFO is relatively small compared to the amount of data
 647 * fetched.
 648 *
 649 * The FIFO level vs. time graph might look something like:
 650 *
 651 *   |\   |\
 652 *   | \  | \
 653 * __---__---__ (- plane active, _ blanking)
 654 * -> time
 655 *
 656 * or perhaps like this:
 657 *
 658 *   |\|\  |\|\
 659 * __----__----__ (- plane active, _ blanking)
 660 * -> time
 661 *
 662 * Returns:
 663 * The watermark in bytes
 664 */
 665static unsigned int intel_wm_method1(unsigned int pixel_rate,
 666                                     unsigned int cpp,
 667                                     unsigned int latency)
 668{
 669        uint64_t ret;
 670
 671        ret = (uint64_t) pixel_rate * cpp * latency;
 672        ret = DIV_ROUND_UP_ULL(ret, 10000);
 673
 674        return ret;
 675}
 676
 677/**
 678 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 679 * @pixel_rate: Pipe pixel rate in kHz
 680 * @htotal: Pipe horizontal total
 681 * @width: Plane width in pixels
 682 * @cpp: Plane bytes per pixel
 683 * @latency: Memory wakeup latency in 0.1us units
 684 *
 685 * Compute the watermark using the method 2 or "large buffer"
 686 * formula. The caller may additonally add extra cachelines
 687 * to account for TLB misses and clock crossings.
 688 *
 689 * This method is concerned with the long term drain rate
 690 * of the FIFO, ie. it does account for blanking periods
 691 * which effectively reduce the average drain rate across
 692 * a longer period. The name "large" refers to the fact the
 693 * FIFO is relatively large compared to the amount of data
 694 * fetched.
 695 *
 696 * The FIFO level vs. time graph might look something like:
 697 *
 698 *    |\___       |\___
 699 *    |    \___   |    \___
 700 *    |        \  |        \
 701 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 702 * -> time
 703 *
 704 * Returns:
 705 * The watermark in bytes
 706 */
 707static unsigned int intel_wm_method2(unsigned int pixel_rate,
 708                                     unsigned int htotal,
 709                                     unsigned int width,
 710                                     unsigned int cpp,
 711                                     unsigned int latency)
 712{
 713        unsigned int ret;
 714
 715        /*
 716         * FIXME remove once all users are computing
 717         * watermarks in the correct place.
 718         */
 719        if (WARN_ON_ONCE(htotal == 0))
 720                htotal = 1;
 721
 722        ret = (latency * pixel_rate) / (htotal * 10000);
 723        ret = (ret + 1) * width * cpp;
 724
 725        return ret;
 726}
 727
 728/**
 729 * intel_calculate_wm - calculate watermark level
 730 * @pixel_rate: pixel clock
 731 * @wm: chip FIFO params
 732 * @fifo_size: size of the FIFO buffer
 733 * @cpp: bytes per pixel
 734 * @latency_ns: memory latency for the platform
 735 *
 736 * Calculate the watermark level (the level at which the display plane will
 737 * start fetching from memory again).  Each chip has a different display
 738 * FIFO size and allocation, so the caller needs to figure that out and pass
 739 * in the correct intel_watermark_params structure.
 740 *
 741 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 742 * on the pixel size.  When it reaches the watermark level, it'll start
 743 * fetching FIFO line sized based chunks from memory until the FIFO fills
 744 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 745 * will occur, and a display engine hang could result.
 746 */
 747static unsigned int intel_calculate_wm(int pixel_rate,
 748                                       const struct intel_watermark_params *wm,
 749                                       int fifo_size, int cpp,
 750                                       unsigned int latency_ns)
 751{
 752        int entries, wm_size;
 753
 754        /*
 755         * Note: we need to make sure we don't overflow for various clock &
 756         * latency values.
 757         * clocks go from a few thousand to several hundred thousand.
 758         * latency is usually a few thousand
 759         */
 760        entries = intel_wm_method1(pixel_rate, cpp,
 761                                   latency_ns / 100);
 762        entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
 763                wm->guard_size;
 764        DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
 765
 766        wm_size = fifo_size - entries;
 767        DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
 768
 769        /* Don't promote wm_size to unsigned... */
 770        if (wm_size > wm->max_wm)
 771                wm_size = wm->max_wm;
 772        if (wm_size <= 0)
 773                wm_size = wm->default_wm;
 774
 775        /*
 776         * Bspec seems to indicate that the value shouldn't be lower than
 777         * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
 778         * Lets go for 8 which is the burst size since certain platforms
 779         * already use a hardcoded 8 (which is what the spec says should be
 780         * done).
 781         */
 782        if (wm_size <= 8)
 783                wm_size = 8;
 784
 785        return wm_size;
 786}
 787
 788static bool is_disabling(int old, int new, int threshold)
 789{
 790        return old >= threshold && new < threshold;
 791}
 792
 793static bool is_enabling(int old, int new, int threshold)
 794{
 795        return old < threshold && new >= threshold;
 796}
 797
 798static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
 799{
 800        return dev_priv->wm.max_level + 1;
 801}
 802
 803static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
 804                                   const struct intel_plane_state *plane_state)
 805{
 806        struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
 807
 808        /* FIXME check the 'enable' instead */
 809        if (!crtc_state->base.active)
 810                return false;
 811
 812        /*
 813         * Treat cursor with fb as always visible since cursor updates
 814         * can happen faster than the vrefresh rate, and the current
 815         * watermark code doesn't handle that correctly. Cursor updates
 816         * which set/clear the fb or change the cursor size are going
 817         * to get throttled by intel_legacy_cursor_update() to work
 818         * around this problem with the watermark code.
 819         */
 820        if (plane->id == PLANE_CURSOR)
 821                return plane_state->base.fb != NULL;
 822        else
 823                return plane_state->base.visible;
 824}
 825
 826static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
 827{
 828        struct intel_crtc *crtc, *enabled = NULL;
 829
 830        for_each_intel_crtc(&dev_priv->drm, crtc) {
 831                if (intel_crtc_active(crtc)) {
 832                        if (enabled)
 833                                return NULL;
 834                        enabled = crtc;
 835                }
 836        }
 837
 838        return enabled;
 839}
 840
 841static void pineview_update_wm(struct intel_crtc *unused_crtc)
 842{
 843        struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
 844        struct intel_crtc *crtc;
 845        const struct cxsr_latency *latency;
 846        u32 reg;
 847        unsigned int wm;
 848
 849        latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
 850                                         dev_priv->is_ddr3,
 851                                         dev_priv->fsb_freq,
 852                                         dev_priv->mem_freq);
 853        if (!latency) {
 854                DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 855                intel_set_memory_cxsr(dev_priv, false);
 856                return;
 857        }
 858
 859        crtc = single_enabled_crtc(dev_priv);
 860        if (crtc) {
 861                const struct drm_display_mode *adjusted_mode =
 862                        &crtc->config->base.adjusted_mode;
 863                const struct drm_framebuffer *fb =
 864                        crtc->base.primary->state->fb;
 865                int cpp = fb->format->cpp[0];
 866                int clock = adjusted_mode->crtc_clock;
 867
 868                /* Display SR */
 869                wm = intel_calculate_wm(clock, &pineview_display_wm,
 870                                        pineview_display_wm.fifo_size,
 871                                        cpp, latency->display_sr);
 872                reg = I915_READ(DSPFW1);
 873                reg &= ~DSPFW_SR_MASK;
 874                reg |= FW_WM(wm, SR);
 875                I915_WRITE(DSPFW1, reg);
 876                DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
 877
 878                /* cursor SR */
 879                wm = intel_calculate_wm(clock, &pineview_cursor_wm,
 880                                        pineview_display_wm.fifo_size,
 881                                        4, latency->cursor_sr);
 882                reg = I915_READ(DSPFW3);
 883                reg &= ~DSPFW_CURSOR_SR_MASK;
 884                reg |= FW_WM(wm, CURSOR_SR);
 885                I915_WRITE(DSPFW3, reg);
 886
 887                /* Display HPLL off SR */
 888                wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
 889                                        pineview_display_hplloff_wm.fifo_size,
 890                                        cpp, latency->display_hpll_disable);
 891                reg = I915_READ(DSPFW3);
 892                reg &= ~DSPFW_HPLL_SR_MASK;
 893                reg |= FW_WM(wm, HPLL_SR);
 894                I915_WRITE(DSPFW3, reg);
 895
 896                /* cursor HPLL off SR */
 897                wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
 898                                        pineview_display_hplloff_wm.fifo_size,
 899                                        4, latency->cursor_hpll_disable);
 900                reg = I915_READ(DSPFW3);
 901                reg &= ~DSPFW_HPLL_CURSOR_MASK;
 902                reg |= FW_WM(wm, HPLL_CURSOR);
 903                I915_WRITE(DSPFW3, reg);
 904                DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
 905
 906                intel_set_memory_cxsr(dev_priv, true);
 907        } else {
 908                intel_set_memory_cxsr(dev_priv, false);
 909        }
 910}
 911
 912/*
 913 * Documentation says:
 914 * "If the line size is small, the TLB fetches can get in the way of the
 915 *  data fetches, causing some lag in the pixel data return which is not
 916 *  accounted for in the above formulas. The following adjustment only
 917 *  needs to be applied if eight whole lines fit in the buffer at once.
 918 *  The WM is adjusted upwards by the difference between the FIFO size
 919 *  and the size of 8 whole lines. This adjustment is always performed
 920 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 921 */
 922static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
 923{
 924        int tlb_miss = fifo_size * 64 - width * cpp * 8;
 925
 926        return max(0, tlb_miss);
 927}
 928
 929static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
 930                                const struct g4x_wm_values *wm)
 931{
 932        enum pipe pipe;
 933
 934        for_each_pipe(dev_priv, pipe)
 935                trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
 936
 937        I915_WRITE(DSPFW1,
 938                   FW_WM(wm->sr.plane, SR) |
 939                   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
 940                   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
 941                   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
 942        I915_WRITE(DSPFW2,
 943                   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
 944                   FW_WM(wm->sr.fbc, FBC_SR) |
 945                   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
 946                   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
 947                   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
 948                   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
 949        I915_WRITE(DSPFW3,
 950                   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
 951                   FW_WM(wm->sr.cursor, CURSOR_SR) |
 952                   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
 953                   FW_WM(wm->hpll.plane, HPLL_SR));
 954
 955        POSTING_READ(DSPFW1);
 956}
 957
 958#define FW_WM_VLV(value, plane) \
 959        (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
 960
 961static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
 962                                const struct vlv_wm_values *wm)
 963{
 964        enum pipe pipe;
 965
 966        for_each_pipe(dev_priv, pipe) {
 967                trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
 968
 969                I915_WRITE(VLV_DDL(pipe),
 970                           (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
 971                           (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
 972                           (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
 973                           (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
 974        }
 975
 976        /*
 977         * Zero the (unused) WM1 watermarks, and also clear all the
 978         * high order bits so that there are no out of bounds values
 979         * present in the registers during the reprogramming.
 980         */
 981        I915_WRITE(DSPHOWM, 0);
 982        I915_WRITE(DSPHOWM1, 0);
 983        I915_WRITE(DSPFW4, 0);
 984        I915_WRITE(DSPFW5, 0);
 985        I915_WRITE(DSPFW6, 0);
 986
 987        I915_WRITE(DSPFW1,
 988                   FW_WM(wm->sr.plane, SR) |
 989                   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
 990                   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
 991                   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
 992        I915_WRITE(DSPFW2,
 993                   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
 994                   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
 995                   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
 996        I915_WRITE(DSPFW3,
 997                   FW_WM(wm->sr.cursor, CURSOR_SR));
 998
 999        if (IS_CHERRYVIEW(dev_priv)) {
1000                I915_WRITE(DSPFW7_CHV,
1001                           FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1002                           FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1003                I915_WRITE(DSPFW8_CHV,
1004                           FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1005                           FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1006                I915_WRITE(DSPFW9_CHV,
1007                           FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1008                           FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1009                I915_WRITE(DSPHOWM,
1010                           FW_WM(wm->sr.plane >> 9, SR_HI) |
1011                           FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1012                           FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1013                           FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1014                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1015                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1016                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1017                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1018                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1019                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1020        } else {
1021                I915_WRITE(DSPFW7,
1022                           FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1023                           FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1024                I915_WRITE(DSPHOWM,
1025                           FW_WM(wm->sr.plane >> 9, SR_HI) |
1026                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1027                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1028                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1029                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1030                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1031                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1032        }
1033
1034        POSTING_READ(DSPFW1);
1035}
1036
1037#undef FW_WM_VLV
1038
1039static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1040{
1041        /* all latencies in usec */
1042        dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1043        dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1044        dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1045
1046        dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1047}
1048
1049static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1050{
1051        /*
1052         * DSPCNTR[13] supposedly controls whether the
1053         * primary plane can use the FIFO space otherwise
1054         * reserved for the sprite plane. It's not 100% clear
1055         * what the actual FIFO size is, but it looks like we
1056         * can happily set both primary and sprite watermarks
1057         * up to 127 cachelines. So that would seem to mean
1058         * that either DSPCNTR[13] doesn't do anything, or that
1059         * the total FIFO is >= 256 cachelines in size. Either
1060         * way, we don't seem to have to worry about this
1061         * repartitioning as the maximum watermark value the
1062         * register can hold for each plane is lower than the
1063         * minimum FIFO size.
1064         */
1065        switch (plane_id) {
1066        case PLANE_CURSOR:
1067                return 63;
1068        case PLANE_PRIMARY:
1069                return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1070        case PLANE_SPRITE0:
1071                return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1072        default:
1073                MISSING_CASE(plane_id);
1074                return 0;
1075        }
1076}
1077
1078static int g4x_fbc_fifo_size(int level)
1079{
1080        switch (level) {
1081        case G4X_WM_LEVEL_SR:
1082                return 7;
1083        case G4X_WM_LEVEL_HPLL:
1084                return 15;
1085        default:
1086                MISSING_CASE(level);
1087                return 0;
1088        }
1089}
1090
1091static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1092                               const struct intel_plane_state *plane_state,
1093                               int level)
1094{
1095        struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1096        struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1097        const struct drm_display_mode *adjusted_mode =
1098                &crtc_state->base.adjusted_mode;
1099        unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1100        unsigned int clock, htotal, cpp, width, wm;
1101
1102        if (latency == 0)
1103                return USHRT_MAX;
1104
1105        if (!intel_wm_plane_visible(crtc_state, plane_state))
1106                return 0;
1107
1108        /*
1109         * Not 100% sure which way ELK should go here as the
1110         * spec only says CL/CTG should assume 32bpp and BW
1111         * doesn't need to. But as these things followed the
1112         * mobile vs. desktop lines on gen3 as well, let's
1113         * assume ELK doesn't need this.
1114         *
1115         * The spec also fails to list such a restriction for
1116         * the HPLL watermark, which seems a little strange.
1117         * Let's use 32bpp for the HPLL watermark as well.
1118         */
1119        if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1120            level != G4X_WM_LEVEL_NORMAL)
1121                cpp = 4;
1122        else
1123                cpp = plane_state->base.fb->format->cpp[0];
1124
1125        clock = adjusted_mode->crtc_clock;
1126        htotal = adjusted_mode->crtc_htotal;
1127
1128        if (plane->id == PLANE_CURSOR)
1129                width = plane_state->base.crtc_w;
1130        else
1131                width = drm_rect_width(&plane_state->base.dst);
1132
1133        if (plane->id == PLANE_CURSOR) {
1134                wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1135        } else if (plane->id == PLANE_PRIMARY &&
1136                   level == G4X_WM_LEVEL_NORMAL) {
1137                wm = intel_wm_method1(clock, cpp, latency);
1138        } else {
1139                unsigned int small, large;
1140
1141                small = intel_wm_method1(clock, cpp, latency);
1142                large = intel_wm_method2(clock, htotal, width, cpp, latency);
1143
1144                wm = min(small, large);
1145        }
1146
1147        wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1148                              width, cpp);
1149
1150        wm = DIV_ROUND_UP(wm, 64) + 2;
1151
1152        return min_t(unsigned int, wm, USHRT_MAX);
1153}
1154
1155static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1156                                 int level, enum plane_id plane_id, u16 value)
1157{
1158        struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1159        bool dirty = false;
1160
1161        for (; level < intel_wm_num_levels(dev_priv); level++) {
1162                struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1163
1164                dirty |= raw->plane[plane_id] != value;
1165                raw->plane[plane_id] = value;
1166        }
1167
1168        return dirty;
1169}
1170
1171static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1172                               int level, u16 value)
1173{
1174        struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1175        bool dirty = false;
1176
1177        /* NORMAL level doesn't have an FBC watermark */
1178        level = max(level, G4X_WM_LEVEL_SR);
1179
1180        for (; level < intel_wm_num_levels(dev_priv); level++) {
1181                struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1182
1183                dirty |= raw->fbc != value;
1184                raw->fbc = value;
1185        }
1186
1187        return dirty;
1188}
1189
1190static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1191                                   const struct intel_plane_state *pstate,
1192                                   uint32_t pri_val);
1193
1194static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1195                                     const struct intel_plane_state *plane_state)
1196{
1197        struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1198        int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1199        enum plane_id plane_id = plane->id;
1200        bool dirty = false;
1201        int level;
1202
1203        if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1204                dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1205                if (plane_id == PLANE_PRIMARY)
1206                        dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1207                goto out;
1208        }
1209
1210        for (level = 0; level < num_levels; level++) {
1211                struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1212                int wm, max_wm;
1213
1214                wm = g4x_compute_wm(crtc_state, plane_state, level);
1215                max_wm = g4x_plane_fifo_size(plane_id, level);
1216
1217                if (wm > max_wm)
1218                        break;
1219
1220                dirty |= raw->plane[plane_id] != wm;
1221                raw->plane[plane_id] = wm;
1222
1223                if (plane_id != PLANE_PRIMARY ||
1224                    level == G4X_WM_LEVEL_NORMAL)
1225                        continue;
1226
1227                wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1228                                        raw->plane[plane_id]);
1229                max_wm = g4x_fbc_fifo_size(level);
1230
1231                /*
1232                 * FBC wm is not mandatory as we
1233                 * can always just disable its use.
1234                 */
1235                if (wm > max_wm)
1236                        wm = USHRT_MAX;
1237
1238                dirty |= raw->fbc != wm;
1239                raw->fbc = wm;
1240        }
1241
1242        /* mark watermarks as invalid */
1243        dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1244
1245        if (plane_id == PLANE_PRIMARY)
1246                dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1247
1248 out:
1249        if (dirty) {
1250                DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1251                              plane->base.name,
1252                              crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1253                              crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1254                              crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1255
1256                if (plane_id == PLANE_PRIMARY)
1257                        DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1258                                      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1259                                      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1260        }
1261
1262        return dirty;
1263}
1264
1265static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1266                                      enum plane_id plane_id, int level)
1267{
1268        const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1269
1270        return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1271}
1272
1273static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1274                                     int level)
1275{
1276        struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1277
1278        if (level > dev_priv->wm.max_level)
1279                return false;
1280
1281        return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1282                g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1283                g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1284}
1285
1286/* mark all levels starting from 'level' as invalid */
1287static void g4x_invalidate_wms(struct intel_crtc *crtc,
1288                               struct g4x_wm_state *wm_state, int level)
1289{
1290        if (level <= G4X_WM_LEVEL_NORMAL) {
1291                enum plane_id plane_id;
1292
1293                for_each_plane_id_on_crtc(crtc, plane_id)
1294                        wm_state->wm.plane[plane_id] = USHRT_MAX;
1295        }
1296
1297        if (level <= G4X_WM_LEVEL_SR) {
1298                wm_state->cxsr = false;
1299                wm_state->sr.cursor = USHRT_MAX;
1300                wm_state->sr.plane = USHRT_MAX;
1301                wm_state->sr.fbc = USHRT_MAX;
1302        }
1303
1304        if (level <= G4X_WM_LEVEL_HPLL) {
1305                wm_state->hpll_en = false;
1306                wm_state->hpll.cursor = USHRT_MAX;
1307                wm_state->hpll.plane = USHRT_MAX;
1308                wm_state->hpll.fbc = USHRT_MAX;
1309        }
1310}
1311
1312static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1313{
1314        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1315        struct intel_atomic_state *state =
1316                to_intel_atomic_state(crtc_state->base.state);
1317        struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1318        int num_active_planes = hweight32(crtc_state->active_planes &
1319                                          ~BIT(PLANE_CURSOR));
1320        const struct g4x_pipe_wm *raw;
1321        const struct intel_plane_state *old_plane_state;
1322        const struct intel_plane_state *new_plane_state;
1323        struct intel_plane *plane;
1324        enum plane_id plane_id;
1325        int i, level;
1326        unsigned int dirty = 0;
1327
1328        for_each_oldnew_intel_plane_in_state(state, plane,
1329                                             old_plane_state,
1330                                             new_plane_state, i) {
1331                if (new_plane_state->base.crtc != &crtc->base &&
1332                    old_plane_state->base.crtc != &crtc->base)
1333                        continue;
1334
1335                if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1336                        dirty |= BIT(plane->id);
1337        }
1338
1339        if (!dirty)
1340                return 0;
1341
1342        level = G4X_WM_LEVEL_NORMAL;
1343        if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1344                goto out;
1345
1346        raw = &crtc_state->wm.g4x.raw[level];
1347        for_each_plane_id_on_crtc(crtc, plane_id)
1348                wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1349
1350        level = G4X_WM_LEVEL_SR;
1351
1352        if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1353                goto out;
1354
1355        raw = &crtc_state->wm.g4x.raw[level];
1356        wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1357        wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1358        wm_state->sr.fbc = raw->fbc;
1359
1360        wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1361
1362        level = G4X_WM_LEVEL_HPLL;
1363
1364        if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1365                goto out;
1366
1367        raw = &crtc_state->wm.g4x.raw[level];
1368        wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1369        wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1370        wm_state->hpll.fbc = raw->fbc;
1371
1372        wm_state->hpll_en = wm_state->cxsr;
1373
1374        level++;
1375
1376 out:
1377        if (level == G4X_WM_LEVEL_NORMAL)
1378                return -EINVAL;
1379
1380        /* invalidate the higher levels */
1381        g4x_invalidate_wms(crtc, wm_state, level);
1382
1383        /*
1384         * Determine if the FBC watermark(s) can be used. IF
1385         * this isn't the case we prefer to disable the FBC
1386         ( watermark(s) rather than disable the SR/HPLL
1387         * level(s) entirely.
1388         */
1389        wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1390
1391        if (level >= G4X_WM_LEVEL_SR &&
1392            wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1393                wm_state->fbc_en = false;
1394        else if (level >= G4X_WM_LEVEL_HPLL &&
1395                 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1396                wm_state->fbc_en = false;
1397
1398        return 0;
1399}
1400
1401static int g4x_compute_intermediate_wm(struct drm_device *dev,
1402                                       struct intel_crtc *crtc,
1403                                       struct intel_crtc_state *new_crtc_state)
1404{
1405        struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1406        const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1407        struct intel_atomic_state *intel_state =
1408                to_intel_atomic_state(new_crtc_state->base.state);
1409        const struct intel_crtc_state *old_crtc_state =
1410                intel_atomic_get_old_crtc_state(intel_state, crtc);
1411        const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1412        enum plane_id plane_id;
1413
1414        if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
1415                *intermediate = *optimal;
1416
1417                intermediate->cxsr = false;
1418                intermediate->hpll_en = false;
1419                goto out;
1420        }
1421
1422        intermediate->cxsr = optimal->cxsr && active->cxsr &&
1423                !new_crtc_state->disable_cxsr;
1424        intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1425                !new_crtc_state->disable_cxsr;
1426        intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1427
1428        for_each_plane_id_on_crtc(crtc, plane_id) {
1429                intermediate->wm.plane[plane_id] =
1430                        max(optimal->wm.plane[plane_id],
1431                            active->wm.plane[plane_id]);
1432
1433                WARN_ON(intermediate->wm.plane[plane_id] >
1434                        g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1435        }
1436
1437        intermediate->sr.plane = max(optimal->sr.plane,
1438                                     active->sr.plane);
1439        intermediate->sr.cursor = max(optimal->sr.cursor,
1440                                      active->sr.cursor);
1441        intermediate->sr.fbc = max(optimal->sr.fbc,
1442                                   active->sr.fbc);
1443
1444        intermediate->hpll.plane = max(optimal->hpll.plane,
1445                                       active->hpll.plane);
1446        intermediate->hpll.cursor = max(optimal->hpll.cursor,
1447                                        active->hpll.cursor);
1448        intermediate->hpll.fbc = max(optimal->hpll.fbc,
1449                                     active->hpll.fbc);
1450
1451        WARN_ON((intermediate->sr.plane >
1452                 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1453                 intermediate->sr.cursor >
1454                 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1455                intermediate->cxsr);
1456        WARN_ON((intermediate->sr.plane >
1457                 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1458                 intermediate->sr.cursor >
1459                 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1460                intermediate->hpll_en);
1461
1462        WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1463                intermediate->fbc_en && intermediate->cxsr);
1464        WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1465                intermediate->fbc_en && intermediate->hpll_en);
1466
1467out:
1468        /*
1469         * If our intermediate WM are identical to the final WM, then we can
1470         * omit the post-vblank programming; only update if it's different.
1471         */
1472        if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1473                new_crtc_state->wm.need_postvbl_update = true;
1474
1475        return 0;
1476}
1477
1478static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1479                         struct g4x_wm_values *wm)
1480{
1481        struct intel_crtc *crtc;
1482        int num_active_crtcs = 0;
1483
1484        wm->cxsr = true;
1485        wm->hpll_en = true;
1486        wm->fbc_en = true;
1487
1488        for_each_intel_crtc(&dev_priv->drm, crtc) {
1489                const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1490
1491                if (!crtc->active)
1492                        continue;
1493
1494                if (!wm_state->cxsr)
1495                        wm->cxsr = false;
1496                if (!wm_state->hpll_en)
1497                        wm->hpll_en = false;
1498                if (!wm_state->fbc_en)
1499                        wm->fbc_en = false;
1500
1501                num_active_crtcs++;
1502        }
1503
1504        if (num_active_crtcs != 1) {
1505                wm->cxsr = false;
1506                wm->hpll_en = false;
1507                wm->fbc_en = false;
1508        }
1509
1510        for_each_intel_crtc(&dev_priv->drm, crtc) {
1511                const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1512                enum pipe pipe = crtc->pipe;
1513
1514                wm->pipe[pipe] = wm_state->wm;
1515                if (crtc->active && wm->cxsr)
1516                        wm->sr = wm_state->sr;
1517                if (crtc->active && wm->hpll_en)
1518                        wm->hpll = wm_state->hpll;
1519        }
1520}
1521
1522static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1523{
1524        struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1525        struct g4x_wm_values new_wm = {};
1526
1527        g4x_merge_wm(dev_priv, &new_wm);
1528
1529        if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1530                return;
1531
1532        if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1533                _intel_set_memory_cxsr(dev_priv, false);
1534
1535        g4x_write_wm_values(dev_priv, &new_wm);
1536
1537        if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1538                _intel_set_memory_cxsr(dev_priv, true);
1539
1540        *old_wm = new_wm;
1541}
1542
1543static void g4x_initial_watermarks(struct intel_atomic_state *state,
1544                                   struct intel_crtc_state *crtc_state)
1545{
1546        struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1547        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1548
1549        mutex_lock(&dev_priv->wm.wm_mutex);
1550        crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1551        g4x_program_watermarks(dev_priv);
1552        mutex_unlock(&dev_priv->wm.wm_mutex);
1553}
1554
1555static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1556                                    struct intel_crtc_state *crtc_state)
1557{
1558        struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1559        struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1560
1561        if (!crtc_state->wm.need_postvbl_update)
1562                return;
1563
1564        mutex_lock(&dev_priv->wm.wm_mutex);
1565        intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1566        g4x_program_watermarks(dev_priv);
1567        mutex_unlock(&dev_priv->wm.wm_mutex);
1568}
1569
1570/* latency must be in 0.1us units. */
1571static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1572                                   unsigned int htotal,
1573                                   unsigned int width,
1574                                   unsigned int cpp,
1575                                   unsigned int latency)
1576{
1577        unsigned int ret;
1578
1579        ret = intel_wm_method2(pixel_rate, htotal,
1580                               width, cpp, latency);
1581        ret = DIV_ROUND_UP(ret, 64);
1582
1583        return ret;
1584}
1585
1586static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1587{
1588        /* all latencies in usec */
1589        dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1590
1591        dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1592
1593        if (IS_CHERRYVIEW(dev_priv)) {
1594                dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1595                dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1596
1597                dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1598        }
1599}
1600
1601static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1602                                     const struct intel_plane_state *plane_state,
1603                                     int level)
1604{
1605        struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1606        struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1607        const struct drm_display_mode *adjusted_mode =
1608                &crtc_state->base.adjusted_mode;
1609        unsigned int clock, htotal, cpp, width, wm;
1610
1611        if (dev_priv->wm.pri_latency[level] == 0)
1612                return USHRT_MAX;
1613
1614        if (!intel_wm_plane_visible(crtc_state, plane_state))
1615                return 0;
1616
1617        cpp = plane_state->base.fb->format->cpp[0];
1618        clock = adjusted_mode->crtc_clock;
1619        htotal = adjusted_mode->crtc_htotal;
1620        width = crtc_state->pipe_src_w;
1621
1622        if (plane->id == PLANE_CURSOR) {
1623                /*
1624                 * FIXME the formula gives values that are
1625                 * too big for the cursor FIFO, and hence we
1626                 * would never be able to use cursors. For
1627                 * now just hardcode the watermark.
1628                 */
1629                wm = 63;
1630        } else {
1631                wm = vlv_wm_method2(clock, htotal, width, cpp,
1632                                    dev_priv->wm.pri_latency[level] * 10);
1633        }
1634
1635        return min_t(unsigned int, wm, USHRT_MAX);
1636}
1637
1638static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1639{
1640        return (active_planes & (BIT(PLANE_SPRITE0) |
1641                                 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1642}
1643
1644static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1645{
1646        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1647        const struct g4x_pipe_wm *raw =
1648                &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1649        struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1650        unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1651        int num_active_planes = hweight32(active_planes);
1652        const int fifo_size = 511;
1653        int fifo_extra, fifo_left = fifo_size;
1654        int sprite0_fifo_extra = 0;
1655        unsigned int total_rate;
1656        enum plane_id plane_id;
1657
1658        /*
1659         * When enabling sprite0 after sprite1 has already been enabled
1660         * we tend to get an underrun unless sprite0 already has some
1661         * FIFO space allcoated. Hence we always allocate at least one
1662         * cacheline for sprite0 whenever sprite1 is enabled.
1663         *
1664         * All other plane enable sequences appear immune to this problem.
1665         */
1666        if (vlv_need_sprite0_fifo_workaround(active_planes))
1667                sprite0_fifo_extra = 1;
1668
1669        total_rate = raw->plane[PLANE_PRIMARY] +
1670                raw->plane[PLANE_SPRITE0] +
1671                raw->plane[PLANE_SPRITE1] +
1672                sprite0_fifo_extra;
1673
1674        if (total_rate > fifo_size)
1675                return -EINVAL;
1676
1677        if (total_rate == 0)
1678                total_rate = 1;
1679
1680        for_each_plane_id_on_crtc(crtc, plane_id) {
1681                unsigned int rate;
1682
1683                if ((active_planes & BIT(plane_id)) == 0) {
1684                        fifo_state->plane[plane_id] = 0;
1685                        continue;
1686                }
1687
1688                rate = raw->plane[plane_id];
1689                fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1690                fifo_left -= fifo_state->plane[plane_id];
1691        }
1692
1693        fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1694        fifo_left -= sprite0_fifo_extra;
1695
1696        fifo_state->plane[PLANE_CURSOR] = 63;
1697
1698        fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1699
1700        /* spread the remainder evenly */
1701        for_each_plane_id_on_crtc(crtc, plane_id) {
1702                int plane_extra;
1703
1704                if (fifo_left == 0)
1705                        break;
1706
1707                if ((active_planes & BIT(plane_id)) == 0)
1708                        continue;
1709
1710                plane_extra = min(fifo_extra, fifo_left);
1711                fifo_state->plane[plane_id] += plane_extra;
1712                fifo_left -= plane_extra;
1713        }
1714
1715        WARN_ON(active_planes != 0 && fifo_left != 0);
1716
1717        /* give it all to the first plane if none are active */
1718        if (active_planes == 0) {
1719                WARN_ON(fifo_left != fifo_size);
1720                fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1721        }
1722
1723        return 0;
1724}
1725
1726/* mark all levels starting from 'level' as invalid */
1727static void vlv_invalidate_wms(struct intel_crtc *crtc,
1728                               struct vlv_wm_state *wm_state, int level)
1729{
1730        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1731
1732        for (; level < intel_wm_num_levels(dev_priv); level++) {
1733                enum plane_id plane_id;
1734
1735                for_each_plane_id_on_crtc(crtc, plane_id)
1736                        wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1737
1738                wm_state->sr[level].cursor = USHRT_MAX;
1739                wm_state->sr[level].plane = USHRT_MAX;
1740        }
1741}
1742
1743static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1744{
1745        if (wm > fifo_size)
1746                return USHRT_MAX;
1747        else
1748                return fifo_size - wm;
1749}
1750
1751/*
1752 * Starting from 'level' set all higher
1753 * levels to 'value' in the "raw" watermarks.
1754 */
1755static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1756                                 int level, enum plane_id plane_id, u16 value)
1757{
1758        struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1759        int num_levels = intel_wm_num_levels(dev_priv);
1760        bool dirty = false;
1761
1762        for (; level < num_levels; level++) {
1763                struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1764
1765                dirty |= raw->plane[plane_id] != value;
1766                raw->plane[plane_id] = value;
1767        }
1768
1769        return dirty;
1770}
1771
1772static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1773                                     const struct intel_plane_state *plane_state)
1774{
1775        struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1776        enum plane_id plane_id = plane->id;
1777        int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1778        int level;
1779        bool dirty = false;
1780
1781        if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1782                dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1783                goto out;
1784        }
1785
1786        for (level = 0; level < num_levels; level++) {
1787                struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1788                int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1789                int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1790
1791                if (wm > max_wm)
1792                        break;
1793
1794                dirty |= raw->plane[plane_id] != wm;
1795                raw->plane[plane_id] = wm;
1796        }
1797
1798        /* mark all higher levels as invalid */
1799        dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1800
1801out:
1802        if (dirty)
1803                DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1804                              plane->base.name,
1805                              crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1806                              crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1807                              crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1808
1809        return dirty;
1810}
1811
1812static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1813                                      enum plane_id plane_id, int level)
1814{
1815        const struct g4x_pipe_wm *raw =
1816                &crtc_state->wm.vlv.raw[level];
1817        const struct vlv_fifo_state *fifo_state =
1818                &crtc_state->wm.vlv.fifo_state;
1819
1820        return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1821}
1822
1823static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1824{
1825        return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1826                vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1827                vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1828                vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1829}
1830
1831static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1832{
1833        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1834        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1835        struct intel_atomic_state *state =
1836                to_intel_atomic_state(crtc_state->base.state);
1837        struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1838        const struct vlv_fifo_state *fifo_state =
1839                &crtc_state->wm.vlv.fifo_state;
1840        int num_active_planes = hweight32(crtc_state->active_planes &
1841                                          ~BIT(PLANE_CURSOR));
1842        bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1843        const struct intel_plane_state *old_plane_state;
1844        const struct intel_plane_state *new_plane_state;
1845        struct intel_plane *plane;
1846        enum plane_id plane_id;
1847        int level, ret, i;
1848        unsigned int dirty = 0;
1849
1850        for_each_oldnew_intel_plane_in_state(state, plane,
1851                                             old_plane_state,
1852                                             new_plane_state, i) {
1853                if (new_plane_state->base.crtc != &crtc->base &&
1854                    old_plane_state->base.crtc != &crtc->base)
1855                        continue;
1856
1857                if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1858                        dirty |= BIT(plane->id);
1859        }
1860
1861        /*
1862         * DSPARB registers may have been reset due to the
1863         * power well being turned off. Make sure we restore
1864         * them to a consistent state even if no primary/sprite
1865         * planes are initially active.
1866         */
1867        if (needs_modeset)
1868                crtc_state->fifo_changed = true;
1869
1870        if (!dirty)
1871                return 0;
1872
1873        /* cursor changes don't warrant a FIFO recompute */
1874        if (dirty & ~BIT(PLANE_CURSOR)) {
1875                const struct intel_crtc_state *old_crtc_state =
1876                        intel_atomic_get_old_crtc_state(state, crtc);
1877                const struct vlv_fifo_state *old_fifo_state =
1878                        &old_crtc_state->wm.vlv.fifo_state;
1879
1880                ret = vlv_compute_fifo(crtc_state);
1881                if (ret)
1882                        return ret;
1883
1884                if (needs_modeset ||
1885                    memcmp(old_fifo_state, fifo_state,
1886                           sizeof(*fifo_state)) != 0)
1887                        crtc_state->fifo_changed = true;
1888        }
1889
1890        /* initially allow all levels */
1891        wm_state->num_levels = intel_wm_num_levels(dev_priv);
1892        /*
1893         * Note that enabling cxsr with no primary/sprite planes
1894         * enabled can wedge the pipe. Hence we only allow cxsr
1895         * with exactly one enabled primary/sprite plane.
1896         */
1897        wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1898
1899        for (level = 0; level < wm_state->num_levels; level++) {
1900                const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1901                const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1902
1903                if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1904                        break;
1905
1906                for_each_plane_id_on_crtc(crtc, plane_id) {
1907                        wm_state->wm[level].plane[plane_id] =
1908                                vlv_invert_wm_value(raw->plane[plane_id],
1909                                                    fifo_state->plane[plane_id]);
1910                }
1911
1912                wm_state->sr[level].plane =
1913                        vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1914                                                 raw->plane[PLANE_SPRITE0],
1915                                                 raw->plane[PLANE_SPRITE1]),
1916                                            sr_fifo_size);
1917
1918                wm_state->sr[level].cursor =
1919                        vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1920                                            63);
1921        }
1922
1923        if (level == 0)
1924                return -EINVAL;
1925
1926        /* limit to only levels we can actually handle */
1927        wm_state->num_levels = level;
1928
1929        /* invalidate the higher levels */
1930        vlv_invalidate_wms(crtc, wm_state, level);
1931
1932        return 0;
1933}
1934
1935#define VLV_FIFO(plane, value) \
1936        (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1937
1938static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1939                                   struct intel_crtc_state *crtc_state)
1940{
1941        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1942        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1943        const struct vlv_fifo_state *fifo_state =
1944                &crtc_state->wm.vlv.fifo_state;
1945        int sprite0_start, sprite1_start, fifo_size;
1946
1947        if (!crtc_state->fifo_changed)
1948                return;
1949
1950        sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1951        sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1952        fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1953
1954        WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1955        WARN_ON(fifo_size != 511);
1956
1957        trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1958
1959        /*
1960         * uncore.lock serves a double purpose here. It allows us to
1961         * use the less expensive I915_{READ,WRITE}_FW() functions, and
1962         * it protects the DSPARB registers from getting clobbered by
1963         * parallel updates from multiple pipes.
1964         *
1965         * intel_pipe_update_start() has already disabled interrupts
1966         * for us, so a plain spin_lock() is sufficient here.
1967         */
1968        spin_lock(&dev_priv->uncore.lock);
1969
1970        switch (crtc->pipe) {
1971                uint32_t dsparb, dsparb2, dsparb3;
1972        case PIPE_A:
1973                dsparb = I915_READ_FW(DSPARB);
1974                dsparb2 = I915_READ_FW(DSPARB2);
1975
1976                dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1977                            VLV_FIFO(SPRITEB, 0xff));
1978                dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1979                           VLV_FIFO(SPRITEB, sprite1_start));
1980
1981                dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1982                             VLV_FIFO(SPRITEB_HI, 0x1));
1983                dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1984                           VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1985
1986                I915_WRITE_FW(DSPARB, dsparb);
1987                I915_WRITE_FW(DSPARB2, dsparb2);
1988                break;
1989        case PIPE_B:
1990                dsparb = I915_READ_FW(DSPARB);
1991                dsparb2 = I915_READ_FW(DSPARB2);
1992
1993                dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1994                            VLV_FIFO(SPRITED, 0xff));
1995                dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1996                           VLV_FIFO(SPRITED, sprite1_start));
1997
1998                dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1999                             VLV_FIFO(SPRITED_HI, 0xff));
2000                dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2001                           VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2002
2003                I915_WRITE_FW(DSPARB, dsparb);
2004                I915_WRITE_FW(DSPARB2, dsparb2);
2005                break;
2006        case PIPE_C:
2007                dsparb3 = I915_READ_FW(DSPARB3);
2008                dsparb2 = I915_READ_FW(DSPARB2);
2009
2010                dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2011                             VLV_FIFO(SPRITEF, 0xff));
2012                dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2013                            VLV_FIFO(SPRITEF, sprite1_start));
2014
2015                dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2016                             VLV_FIFO(SPRITEF_HI, 0xff));
2017                dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2018                           VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2019
2020                I915_WRITE_FW(DSPARB3, dsparb3);
2021                I915_WRITE_FW(DSPARB2, dsparb2);
2022                break;
2023        default:
2024                break;
2025        }
2026
2027        POSTING_READ_FW(DSPARB);
2028
2029        spin_unlock(&dev_priv->uncore.lock);
2030}
2031
2032#undef VLV_FIFO
2033
2034static int vlv_compute_intermediate_wm(struct drm_device *dev,
2035                                       struct intel_crtc *crtc,
2036                                       struct intel_crtc_state *new_crtc_state)
2037{
2038        struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2039        const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2040        struct intel_atomic_state *intel_state =
2041                to_intel_atomic_state(new_crtc_state->base.state);
2042        const struct intel_crtc_state *old_crtc_state =
2043                intel_atomic_get_old_crtc_state(intel_state, crtc);
2044        const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2045        int level;
2046
2047        if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
2048                *intermediate = *optimal;
2049
2050                intermediate->cxsr = false;
2051                goto out;
2052        }
2053
2054        intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2055        intermediate->cxsr = optimal->cxsr && active->cxsr &&
2056                !new_crtc_state->disable_cxsr;
2057
2058        for (level = 0; level < intermediate->num_levels; level++) {
2059                enum plane_id plane_id;
2060
2061                for_each_plane_id_on_crtc(crtc, plane_id) {
2062                        intermediate->wm[level].plane[plane_id] =
2063                                min(optimal->wm[level].plane[plane_id],
2064                                    active->wm[level].plane[plane_id]);
2065                }
2066
2067                intermediate->sr[level].plane = min(optimal->sr[level].plane,
2068                                                    active->sr[level].plane);
2069                intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2070                                                     active->sr[level].cursor);
2071        }
2072
2073        vlv_invalidate_wms(crtc, intermediate, level);
2074
2075out:
2076        /*
2077         * If our intermediate WM are identical to the final WM, then we can
2078         * omit the post-vblank programming; only update if it's different.
2079         */
2080        if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2081                new_crtc_state->wm.need_postvbl_update = true;
2082
2083        return 0;
2084}
2085
2086static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2087                         struct vlv_wm_values *wm)
2088{
2089        struct intel_crtc *crtc;
2090        int num_active_crtcs = 0;
2091
2092        wm->level = dev_priv->wm.max_level;
2093        wm->cxsr = true;
2094
2095        for_each_intel_crtc(&dev_priv->drm, crtc) {
2096                const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2097
2098                if (!crtc->active)
2099                        continue;
2100
2101                if (!wm_state->cxsr)
2102                        wm->cxsr = false;
2103
2104                num_active_crtcs++;
2105                wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2106        }
2107
2108        if (num_active_crtcs != 1)
2109                wm->cxsr = false;
2110
2111        if (num_active_crtcs > 1)
2112                wm->level = VLV_WM_LEVEL_PM2;
2113
2114        for_each_intel_crtc(&dev_priv->drm, crtc) {
2115                const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2116                enum pipe pipe = crtc->pipe;
2117
2118                wm->pipe[pipe] = wm_state->wm[wm->level];
2119                if (crtc->active && wm->cxsr)
2120                        wm->sr = wm_state->sr[wm->level];
2121
2122                wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2123                wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2124                wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2125                wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2126        }
2127}
2128
2129static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2130{
2131        struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2132        struct vlv_wm_values new_wm = {};
2133
2134        vlv_merge_wm(dev_priv, &new_wm);
2135
2136        if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2137                return;
2138
2139        if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2140                chv_set_memory_dvfs(dev_priv, false);
2141
2142        if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2143                chv_set_memory_pm5(dev_priv, false);
2144
2145        if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2146                _intel_set_memory_cxsr(dev_priv, false);
2147
2148        vlv_write_wm_values(dev_priv, &new_wm);
2149
2150        if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2151                _intel_set_memory_cxsr(dev_priv, true);
2152
2153        if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2154                chv_set_memory_pm5(dev_priv, true);
2155
2156        if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2157                chv_set_memory_dvfs(dev_priv, true);
2158
2159        *old_wm = new_wm;
2160}
2161
2162static void vlv_initial_watermarks(struct intel_atomic_state *state,
2163                                   struct intel_crtc_state *crtc_state)
2164{
2165        struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2166        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2167
2168        mutex_lock(&dev_priv->wm.wm_mutex);
2169        crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2170        vlv_program_watermarks(dev_priv);
2171        mutex_unlock(&dev_priv->wm.wm_mutex);
2172}
2173
2174static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2175                                    struct intel_crtc_state *crtc_state)
2176{
2177        struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2178        struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2179
2180        if (!crtc_state->wm.need_postvbl_update)
2181                return;
2182
2183        mutex_lock(&dev_priv->wm.wm_mutex);
2184        intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2185        vlv_program_watermarks(dev_priv);
2186        mutex_unlock(&dev_priv->wm.wm_mutex);
2187}
2188
2189static void i965_update_wm(struct intel_crtc *unused_crtc)
2190{
2191        struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2192        struct intel_crtc *crtc;
2193        int srwm = 1;
2194        int cursor_sr = 16;
2195        bool cxsr_enabled;
2196
2197        /* Calc sr entries for one plane configs */
2198        crtc = single_enabled_crtc(dev_priv);
2199        if (crtc) {
2200                /* self-refresh has much higher latency */
2201                static const int sr_latency_ns = 12000;
2202                const struct drm_display_mode *adjusted_mode =
2203                        &crtc->config->base.adjusted_mode;
2204                const struct drm_framebuffer *fb =
2205                        crtc->base.primary->state->fb;
2206                int clock = adjusted_mode->crtc_clock;
2207                int htotal = adjusted_mode->crtc_htotal;
2208                int hdisplay = crtc->config->pipe_src_w;
2209                int cpp = fb->format->cpp[0];
2210                int entries;
2211
2212                entries = intel_wm_method2(clock, htotal,
2213                                           hdisplay, cpp, sr_latency_ns / 100);
2214                entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2215                srwm = I965_FIFO_SIZE - entries;
2216                if (srwm < 0)
2217                        srwm = 1;
2218                srwm &= 0x1ff;
2219                DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2220                              entries, srwm);
2221
2222                entries = intel_wm_method2(clock, htotal,
2223                                           crtc->base.cursor->state->crtc_w, 4,
2224                                           sr_latency_ns / 100);
2225                entries = DIV_ROUND_UP(entries,
2226                                       i965_cursor_wm_info.cacheline_size) +
2227                        i965_cursor_wm_info.guard_size;
2228
2229                cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2230                if (cursor_sr > i965_cursor_wm_info.max_wm)
2231                        cursor_sr = i965_cursor_wm_info.max_wm;
2232
2233                DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2234                              "cursor %d\n", srwm, cursor_sr);
2235
2236                cxsr_enabled = true;
2237        } else {
2238                cxsr_enabled = false;
2239                /* Turn off self refresh if both pipes are enabled */
2240                intel_set_memory_cxsr(dev_priv, false);
2241        }
2242
2243        DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2244                      srwm);
2245
2246        /* 965 has limitations... */
2247        I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2248                   FW_WM(8, CURSORB) |
2249                   FW_WM(8, PLANEB) |
2250                   FW_WM(8, PLANEA));
2251        I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2252                   FW_WM(8, PLANEC_OLD));
2253        /* update cursor SR watermark */
2254        I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2255
2256        if (cxsr_enabled)
2257                intel_set_memory_cxsr(dev_priv, true);
2258}
2259
2260#undef FW_WM
2261
2262static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2263{
2264        struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2265        const struct intel_watermark_params *wm_info;
2266        uint32_t fwater_lo;
2267        uint32_t fwater_hi;
2268        int cwm, srwm = 1;
2269        int fifo_size;
2270        int planea_wm, planeb_wm;
2271        struct intel_crtc *crtc, *enabled = NULL;
2272
2273        if (IS_I945GM(dev_priv))
2274                wm_info = &i945_wm_info;
2275        else if (!IS_GEN2(dev_priv))
2276                wm_info = &i915_wm_info;
2277        else
2278                wm_info = &i830_a_wm_info;
2279
2280        fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2281        crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2282        if (intel_crtc_active(crtc)) {
2283                const struct drm_display_mode *adjusted_mode =
2284                        &crtc->config->base.adjusted_mode;
2285                const struct drm_framebuffer *fb =
2286                        crtc->base.primary->state->fb;
2287                int cpp;
2288
2289                if (IS_GEN2(dev_priv))
2290                        cpp = 4;
2291                else
2292                        cpp = fb->format->cpp[0];
2293
2294                planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2295                                               wm_info, fifo_size, cpp,
2296                                               pessimal_latency_ns);
2297                enabled = crtc;
2298        } else {
2299                planea_wm = fifo_size - wm_info->guard_size;
2300                if (planea_wm > (long)wm_info->max_wm)
2301                        planea_wm = wm_info->max_wm;
2302        }
2303
2304        if (IS_GEN2(dev_priv))
2305                wm_info = &i830_bc_wm_info;
2306
2307        fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2308        crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2309        if (intel_crtc_active(crtc)) {
2310                const struct drm_display_mode *adjusted_mode =
2311                        &crtc->config->base.adjusted_mode;
2312                const struct drm_framebuffer *fb =
2313                        crtc->base.primary->state->fb;
2314                int cpp;
2315
2316                if (IS_GEN2(dev_priv))
2317                        cpp = 4;
2318                else
2319                        cpp = fb->format->cpp[0];
2320
2321                planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2322                                               wm_info, fifo_size, cpp,
2323                                               pessimal_latency_ns);
2324                if (enabled == NULL)
2325                        enabled = crtc;
2326                else
2327                        enabled = NULL;
2328        } else {
2329                planeb_wm = fifo_size - wm_info->guard_size;
2330                if (planeb_wm > (long)wm_info->max_wm)
2331                        planeb_wm = wm_info->max_wm;
2332        }
2333
2334        DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2335
2336        if (IS_I915GM(dev_priv) && enabled) {
2337                struct drm_i915_gem_object *obj;
2338
2339                obj = intel_fb_obj(enabled->base.primary->state->fb);
2340
2341                /* self-refresh seems busted with untiled */
2342                if (!i915_gem_object_is_tiled(obj))
2343                        enabled = NULL;
2344        }
2345
2346        /*
2347         * Overlay gets an aggressive default since video jitter is bad.
2348         */
2349        cwm = 2;
2350
2351        /* Play safe and disable self-refresh before adjusting watermarks. */
2352        intel_set_memory_cxsr(dev_priv, false);
2353
2354        /* Calc sr entries for one plane configs */
2355        if (HAS_FW_BLC(dev_priv) && enabled) {
2356                /* self-refresh has much higher latency */
2357                static const int sr_latency_ns = 6000;
2358                const struct drm_display_mode *adjusted_mode =
2359                        &enabled->config->base.adjusted_mode;
2360                const struct drm_framebuffer *fb =
2361                        enabled->base.primary->state->fb;
2362                int clock = adjusted_mode->crtc_clock;
2363                int htotal = adjusted_mode->crtc_htotal;
2364                int hdisplay = enabled->config->pipe_src_w;
2365                int cpp;
2366                int entries;
2367
2368                if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2369                        cpp = 4;
2370                else
2371                        cpp = fb->format->cpp[0];
2372
2373                entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2374                                           sr_latency_ns / 100);
2375                entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2376                DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2377                srwm = wm_info->fifo_size - entries;
2378                if (srwm < 0)
2379                        srwm = 1;
2380
2381                if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2382                        I915_WRITE(FW_BLC_SELF,
2383                                   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2384                else
2385                        I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2386        }
2387
2388        DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2389                      planea_wm, planeb_wm, cwm, srwm);
2390
2391        fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2392        fwater_hi = (cwm & 0x1f);
2393
2394        /* Set request length to 8 cachelines per fetch */
2395        fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2396        fwater_hi = fwater_hi | (1 << 8);
2397
2398        I915_WRITE(FW_BLC, fwater_lo);
2399        I915_WRITE(FW_BLC2, fwater_hi);
2400
2401        if (enabled)
2402                intel_set_memory_cxsr(dev_priv, true);
2403}
2404
2405static void i845_update_wm(struct intel_crtc *unused_crtc)
2406{
2407        struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2408        struct intel_crtc *crtc;
2409        const struct drm_display_mode *adjusted_mode;
2410        uint32_t fwater_lo;
2411        int planea_wm;
2412
2413        crtc = single_enabled_crtc(dev_priv);
2414        if (crtc == NULL)
2415                return;
2416
2417        adjusted_mode = &crtc->config->base.adjusted_mode;
2418        planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2419                                       &i845_wm_info,
2420                                       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2421                                       4, pessimal_latency_ns);
2422        fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2423        fwater_lo |= (3<<8) | planea_wm;
2424
2425        DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2426
2427        I915_WRITE(FW_BLC, fwater_lo);
2428}
2429
2430/* latency must be in 0.1us units. */
2431static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2432                                   unsigned int cpp,
2433                                   unsigned int latency)
2434{
2435        unsigned int ret;
2436
2437        ret = intel_wm_method1(pixel_rate, cpp, latency);
2438        ret = DIV_ROUND_UP(ret, 64) + 2;
2439
2440        return ret;
2441}
2442
2443/* latency must be in 0.1us units. */
2444static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2445                                   unsigned int htotal,
2446                                   unsigned int width,
2447                                   unsigned int cpp,
2448                                   unsigned int latency)
2449{
2450        unsigned int ret;
2451
2452        ret = intel_wm_method2(pixel_rate, htotal,
2453                               width, cpp, latency);
2454        ret = DIV_ROUND_UP(ret, 64) + 2;
2455
2456        return ret;
2457}
2458
2459static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2460                           uint8_t cpp)
2461{
2462        /*
2463         * Neither of these should be possible since this function shouldn't be
2464         * called if the CRTC is off or the plane is invisible.  But let's be
2465         * extra paranoid to avoid a potential divide-by-zero if we screw up
2466         * elsewhere in the driver.
2467         */
2468        if (WARN_ON(!cpp))
2469                return 0;
2470        if (WARN_ON(!horiz_pixels))
2471                return 0;
2472
2473        return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2474}
2475
2476struct ilk_wm_maximums {
2477        uint16_t pri;
2478        uint16_t spr;
2479        uint16_t cur;
2480        uint16_t fbc;
2481};
2482
2483/*
2484 * For both WM_PIPE and WM_LP.
2485 * mem_value must be in 0.1us units.
2486 */
2487static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2488                                   const struct intel_plane_state *pstate,
2489                                   uint32_t mem_value,
2490                                   bool is_lp)
2491{
2492        uint32_t method1, method2;
2493        int cpp;
2494
2495        if (!intel_wm_plane_visible(cstate, pstate))
2496                return 0;
2497
2498        cpp = pstate->base.fb->format->cpp[0];
2499
2500        method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2501
2502        if (!is_lp)
2503                return method1;
2504
2505        method2 = ilk_wm_method2(cstate->pixel_rate,
2506                                 cstate->base.adjusted_mode.crtc_htotal,
2507                                 drm_rect_width(&pstate->base.dst),
2508                                 cpp, mem_value);
2509
2510        return min(method1, method2);
2511}
2512
2513/*
2514 * For both WM_PIPE and WM_LP.
2515 * mem_value must be in 0.1us units.
2516 */
2517static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2518                                   const struct intel_plane_state *pstate,
2519                                   uint32_t mem_value)
2520{
2521        uint32_t method1, method2;
2522        int cpp;
2523
2524        if (!intel_wm_plane_visible(cstate, pstate))
2525                return 0;
2526
2527        cpp = pstate->base.fb->format->cpp[0];
2528
2529        method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2530        method2 = ilk_wm_method2(cstate->pixel_rate,
2531                                 cstate->base.adjusted_mode.crtc_htotal,
2532                                 drm_rect_width(&pstate->base.dst),
2533                                 cpp, mem_value);
2534        return min(method1, method2);
2535}
2536
2537/*
2538 * For both WM_PIPE and WM_LP.
2539 * mem_value must be in 0.1us units.
2540 */
2541static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2542                                   const struct intel_plane_state *pstate,
2543                                   uint32_t mem_value)
2544{
2545        int cpp;
2546
2547        if (!intel_wm_plane_visible(cstate, pstate))
2548                return 0;
2549
2550        cpp = pstate->base.fb->format->cpp[0];
2551
2552        return ilk_wm_method2(cstate->pixel_rate,
2553                              cstate->base.adjusted_mode.crtc_htotal,
2554                              pstate->base.crtc_w, cpp, mem_value);
2555}
2556
2557/* Only for WM_LP. */
2558static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2559                                   const struct intel_plane_state *pstate,
2560                                   uint32_t pri_val)
2561{
2562        int cpp;
2563
2564        if (!intel_wm_plane_visible(cstate, pstate))
2565                return 0;
2566
2567        cpp = pstate->base.fb->format->cpp[0];
2568
2569        return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2570}
2571
2572static unsigned int
2573ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2574{
2575        if (INTEL_GEN(dev_priv) >= 8)
2576                return 3072;
2577        else if (INTEL_GEN(dev_priv) >= 7)
2578                return 768;
2579        else
2580                return 512;
2581}
2582
2583static unsigned int
2584ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2585                     int level, bool is_sprite)
2586{
2587        if (INTEL_GEN(dev_priv) >= 8)
2588                /* BDW primary/sprite plane watermarks */
2589                return level == 0 ? 255 : 2047;
2590        else if (INTEL_GEN(dev_priv) >= 7)
2591                /* IVB/HSW primary/sprite plane watermarks */
2592                return level == 0 ? 127 : 1023;
2593        else if (!is_sprite)
2594                /* ILK/SNB primary plane watermarks */
2595                return level == 0 ? 127 : 511;
2596        else
2597                /* ILK/SNB sprite plane watermarks */
2598                return level == 0 ? 63 : 255;
2599}
2600
2601static unsigned int
2602ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2603{
2604        if (INTEL_GEN(dev_priv) >= 7)
2605                return level == 0 ? 63 : 255;
2606        else
2607                return level == 0 ? 31 : 63;
2608}
2609
2610static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2611{
2612        if (INTEL_GEN(dev_priv) >= 8)
2613                return 31;
2614        else
2615                return 15;
2616}
2617
2618/* Calculate the maximum primary/sprite plane watermark */
2619static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2620                                     int level,
2621                                     const struct intel_wm_config *config,
2622                                     enum intel_ddb_partitioning ddb_partitioning,
2623                                     bool is_sprite)
2624{
2625        struct drm_i915_private *dev_priv = to_i915(dev);
2626        unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2627
2628        /* if sprites aren't enabled, sprites get nothing */
2629        if (is_sprite && !config->sprites_enabled)
2630                return 0;
2631
2632        /* HSW allows LP1+ watermarks even with multiple pipes */
2633        if (level == 0 || config->num_pipes_active > 1) {
2634                fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2635
2636                /*
2637                 * For some reason the non self refresh
2638                 * FIFO size is only half of the self
2639                 * refresh FIFO size on ILK/SNB.
2640                 */
2641                if (INTEL_GEN(dev_priv) <= 6)
2642                        fifo_size /= 2;
2643        }
2644
2645        if (config->sprites_enabled) {
2646                /* level 0 is always calculated with 1:1 split */
2647                if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2648                        if (is_sprite)
2649                                fifo_size *= 5;
2650                        fifo_size /= 6;
2651                } else {
2652                        fifo_size /= 2;
2653                }
2654        }
2655
2656        /* clamp to max that the registers can hold */
2657        return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2658}
2659
2660/* Calculate the maximum cursor plane watermark */
2661static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2662                                      int level,
2663                                      const struct intel_wm_config *config)
2664{
2665        /* HSW LP1+ watermarks w/ multiple pipes */
2666        if (level > 0 && config->num_pipes_active > 1)
2667                return 64;
2668
2669        /* otherwise just report max that registers can hold */
2670        return ilk_cursor_wm_reg_max(to_i915(dev), level);
2671}
2672
2673static void ilk_compute_wm_maximums(const struct drm_device *dev,
2674                                    int level,
2675                                    const struct intel_wm_config *config,
2676                                    enum intel_ddb_partitioning ddb_partitioning,
2677                                    struct ilk_wm_maximums *max)
2678{
2679        max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2680        max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2681        max->cur = ilk_cursor_wm_max(dev, level, config);
2682        max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2683}
2684
2685static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2686                                        int level,
2687                                        struct ilk_wm_maximums *max)
2688{
2689        max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2690        max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2691        max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2692        max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2693}
2694
2695static bool ilk_validate_wm_level(int level,
2696                                  const struct ilk_wm_maximums *max,
2697                                  struct intel_wm_level *result)
2698{
2699        bool ret;
2700
2701        /* already determined to be invalid? */
2702        if (!result->enable)
2703                return false;
2704
2705        result->enable = result->pri_val <= max->pri &&
2706                         result->spr_val <= max->spr &&
2707                         result->cur_val <= max->cur;
2708
2709        ret = result->enable;
2710
2711        /*
2712         * HACK until we can pre-compute everything,
2713         * and thus fail gracefully if LP0 watermarks
2714         * are exceeded...
2715         */
2716        if (level == 0 && !result->enable) {
2717                if (result->pri_val > max->pri)
2718                        DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2719                                      level, result->pri_val, max->pri);
2720                if (result->spr_val > max->spr)
2721                        DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2722                                      level, result->spr_val, max->spr);
2723                if (result->cur_val > max->cur)
2724                        DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2725                                      level, result->cur_val, max->cur);
2726
2727                result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2728                result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2729                result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2730                result->enable = true;
2731        }
2732
2733        return ret;
2734}
2735
2736static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2737                                 const struct intel_crtc *intel_crtc,
2738                                 int level,
2739                                 struct intel_crtc_state *cstate,
2740                                 const struct intel_plane_state *pristate,
2741                                 const struct intel_plane_state *sprstate,
2742                                 const struct intel_plane_state *curstate,
2743                                 struct intel_wm_level *result)
2744{
2745        uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2746        uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2747        uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2748
2749        /* WM1+ latency values stored in 0.5us units */
2750        if (level > 0) {
2751                pri_latency *= 5;
2752                spr_latency *= 5;
2753                cur_latency *= 5;
2754        }
2755
2756        if (pristate) {
2757                result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2758                                                     pri_latency, level);
2759                result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2760        }
2761
2762        if (sprstate)
2763                result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2764
2765        if (curstate)
2766                result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2767
2768        result->enable = true;
2769}
2770
2771static uint32_t
2772hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2773{
2774        const struct intel_atomic_state *intel_state =
2775                to_intel_atomic_state(cstate->base.state);
2776        const struct drm_display_mode *adjusted_mode =
2777                &cstate->base.adjusted_mode;
2778        u32 linetime, ips_linetime;
2779
2780        if (!cstate->base.active)
2781                return 0;
2782        if (WARN_ON(adjusted_mode->crtc_clock == 0))
2783                return 0;
2784        if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2785                return 0;
2786
2787        /* The WM are computed with base on how long it takes to fill a single
2788         * row at the given clock rate, multiplied by 8.
2789         * */
2790        linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2791                                     adjusted_mode->crtc_clock);
2792        ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2793                                         intel_state->cdclk.logical.cdclk);
2794
2795        return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2796               PIPE_WM_LINETIME_TIME(linetime);
2797}
2798
2799static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2800                                  uint16_t wm[8])
2801{
2802        if (INTEL_GEN(dev_priv) >= 9) {
2803                uint32_t val;
2804                int ret, i;
2805                int level, max_level = ilk_wm_max_level(dev_priv);
2806
2807                /* read the first set of memory latencies[0:3] */
2808                val = 0; /* data0 to be programmed to 0 for first set */
2809                mutex_lock(&dev_priv->pcu_lock);
2810                ret = sandybridge_pcode_read(dev_priv,
2811                                             GEN9_PCODE_READ_MEM_LATENCY,
2812                                             &val);
2813                mutex_unlock(&dev_priv->pcu_lock);
2814
2815                if (ret) {
2816                        DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2817                        return;
2818                }
2819
2820                wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2821                wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2822                                GEN9_MEM_LATENCY_LEVEL_MASK;
2823                wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2824                                GEN9_MEM_LATENCY_LEVEL_MASK;
2825                wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2826                                GEN9_MEM_LATENCY_LEVEL_MASK;
2827
2828                /* read the second set of memory latencies[4:7] */
2829                val = 1; /* data0 to be programmed to 1 for second set */
2830                mutex_lock(&dev_priv->pcu_lock);
2831                ret = sandybridge_pcode_read(dev_priv,
2832                                             GEN9_PCODE_READ_MEM_LATENCY,
2833                                             &val);
2834                mutex_unlock(&dev_priv->pcu_lock);
2835                if (ret) {
2836                        DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2837                        return;
2838                }
2839
2840                wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2841                wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2842                                GEN9_MEM_LATENCY_LEVEL_MASK;
2843                wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2844                                GEN9_MEM_LATENCY_LEVEL_MASK;
2845                wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2846                                GEN9_MEM_LATENCY_LEVEL_MASK;
2847
2848                /*
2849                 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2850                 * need to be disabled. We make sure to sanitize the values out
2851                 * of the punit to satisfy this requirement.
2852                 */
2853                for (level = 1; level <= max_level; level++) {
2854                        if (wm[level] == 0) {
2855                                for (i = level + 1; i <= max_level; i++)
2856                                        wm[i] = 0;
2857                                break;
2858                        }
2859                }
2860
2861                /*
2862                 * WaWmMemoryReadLatency:skl+,glk
2863                 *
2864                 * punit doesn't take into account the read latency so we need
2865                 * to add 2us to the various latency levels we retrieve from the
2866                 * punit when level 0 response data us 0us.
2867                 */
2868                if (wm[0] == 0) {
2869                        wm[0] += 2;
2870                        for (level = 1; level <= max_level; level++) {
2871                                if (wm[level] == 0)
2872                                        break;
2873                                wm[level] += 2;
2874                        }
2875                }
2876
2877        } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2878                uint64_t sskpd = I915_READ64(MCH_SSKPD);
2879
2880                wm[0] = (sskpd >> 56) & 0xFF;
2881                if (wm[0] == 0)
2882                        wm[0] = sskpd & 0xF;
2883                wm[1] = (sskpd >> 4) & 0xFF;
2884                wm[2] = (sskpd >> 12) & 0xFF;
2885                wm[3] = (sskpd >> 20) & 0x1FF;
2886                wm[4] = (sskpd >> 32) & 0x1FF;
2887        } else if (INTEL_GEN(dev_priv) >= 6) {
2888                uint32_t sskpd = I915_READ(MCH_SSKPD);
2889
2890                wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2891                wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2892                wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2893                wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2894        } else if (INTEL_GEN(dev_priv) >= 5) {
2895                uint32_t mltr = I915_READ(MLTR_ILK);
2896
2897                /* ILK primary LP0 latency is 700 ns */
2898                wm[0] = 7;
2899                wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2900                wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2901        } else {
2902                MISSING_CASE(INTEL_DEVID(dev_priv));
2903        }
2904}
2905
2906static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2907                                       uint16_t wm[5])
2908{
2909        /* ILK sprite LP0 latency is 1300 ns */
2910        if (IS_GEN5(dev_priv))
2911                wm[0] = 13;
2912}
2913
2914static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2915                                       uint16_t wm[5])
2916{
2917        /* ILK cursor LP0 latency is 1300 ns */
2918        if (IS_GEN5(dev_priv))
2919                wm[0] = 13;
2920}
2921
2922int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2923{
2924        /* how many WM levels are we expecting */
2925        if (INTEL_GEN(dev_priv) >= 9)
2926                return 7;
2927        else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2928                return 4;
2929        else if (INTEL_GEN(dev_priv) >= 6)
2930                return 3;
2931        else
2932                return 2;
2933}
2934
2935static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2936                                   const char *name,
2937                                   const uint16_t wm[8])
2938{
2939        int level, max_level = ilk_wm_max_level(dev_priv);
2940
2941        for (level = 0; level <= max_level; level++) {
2942                unsigned int latency = wm[level];
2943
2944                if (latency == 0) {
2945                        DRM_ERROR("%s WM%d latency not provided\n",
2946                                  name, level);
2947                        continue;
2948                }
2949
2950                /*
2951                 * - latencies are in us on gen9.
2952                 * - before then, WM1+ latency values are in 0.5us units
2953                 */
2954                if (INTEL_GEN(dev_priv) >= 9)
2955                        latency *= 10;
2956                else if (level > 0)
2957                        latency *= 5;
2958
2959                DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2960                              name, level, wm[level],
2961                              latency / 10, latency % 10);
2962        }
2963}
2964
2965static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2966                                    uint16_t wm[5], uint16_t min)
2967{
2968        int level, max_level = ilk_wm_max_level(dev_priv);
2969
2970        if (wm[0] >= min)
2971                return false;
2972
2973        wm[0] = max(wm[0], min);
2974        for (level = 1; level <= max_level; level++)
2975                wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2976
2977        return true;
2978}
2979
2980static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2981{
2982        bool changed;
2983
2984        /*
2985         * The BIOS provided WM memory latency values are often
2986         * inadequate for high resolution displays. Adjust them.
2987         */
2988        changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2989                ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2990                ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2991
2992        if (!changed)
2993                return;
2994
2995        DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2996        intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2997        intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2998        intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2999}
3000
3001static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3002{
3003        intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3004
3005        memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3006               sizeof(dev_priv->wm.pri_latency));
3007        memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3008               sizeof(dev_priv->wm.pri_latency));
3009
3010        intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3011        intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3012
3013        intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3014        intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3015        intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3016
3017        if (IS_GEN6(dev_priv))
3018                snb_wm_latency_quirk(dev_priv);
3019}
3020
3021static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3022{
3023        intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3024        intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3025}
3026
3027static bool ilk_validate_pipe_wm(struct drm_device *dev,
3028                                 struct intel_pipe_wm *pipe_wm)
3029{
3030        /* LP0 watermark maximums depend on this pipe alone */
3031        const struct intel_wm_config config = {
3032                .num_pipes_active = 1,
3033                .sprites_enabled = pipe_wm->sprites_enabled,
3034                .sprites_scaled = pipe_wm->sprites_scaled,
3035        };
3036        struct ilk_wm_maximums max;
3037
3038        /* LP0 watermarks always use 1/2 DDB partitioning */
3039        ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
3040
3041        /* At least LP0 must be valid */
3042        if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3043                DRM_DEBUG_KMS("LP0 watermark invalid\n");
3044                return false;
3045        }
3046
3047        return true;
3048}
3049
3050/* Compute new watermarks for the pipe */
3051static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3052{
3053        struct drm_atomic_state *state = cstate->base.state;
3054        struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3055        struct intel_pipe_wm *pipe_wm;
3056        struct drm_device *dev = state->dev;
3057        const struct drm_i915_private *dev_priv = to_i915(dev);
3058        struct drm_plane *plane;
3059        const struct drm_plane_state *plane_state;
3060        const struct intel_plane_state *pristate = NULL;
3061        const struct intel_plane_state *sprstate = NULL;
3062        const struct intel_plane_state *curstate = NULL;
3063        int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3064        struct ilk_wm_maximums max;
3065
3066        pipe_wm = &cstate->wm.ilk.optimal;
3067
3068        drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
3069                const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3070
3071                if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3072                        pristate = ps;
3073                else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3074                        sprstate = ps;
3075                else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3076                        curstate = ps;
3077        }
3078
3079        pipe_wm->pipe_enabled = cstate->base.active;
3080        if (sprstate) {
3081                pipe_wm->sprites_enabled = sprstate->base.visible;
3082                pipe_wm->sprites_scaled = sprstate->base.visible &&
3083                        (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3084                         drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3085        }
3086
3087        usable_level = max_level;
3088
3089        /* ILK/SNB: LP2+ watermarks only w/o sprites */
3090        if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3091                usable_level = 1;
3092
3093        /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3094        if (pipe_wm->sprites_scaled)
3095                usable_level = 0;
3096
3097        memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3098        ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3099                             pristate, sprstate, curstate, &pipe_wm->wm[0]);
3100
3101        if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3102                pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3103
3104        if (!ilk_validate_pipe_wm(dev, pipe_wm))
3105                return -EINVAL;
3106
3107        ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3108
3109        for (level = 1; level <= usable_level; level++) {
3110                struct intel_wm_level *wm = &pipe_wm->wm[level];
3111
3112                ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3113                                     pristate, sprstate, curstate, wm);
3114
3115                /*
3116                 * Disable any watermark level that exceeds the
3117                 * register maximums since such watermarks are
3118                 * always invalid.
3119                 */
3120                if (!ilk_validate_wm_level(level, &max, wm)) {
3121                        memset(wm, 0, sizeof(*wm));
3122                        break;
3123                }
3124        }
3125
3126        return 0;
3127}
3128
3129/*
3130 * Build a set of 'intermediate' watermark values that satisfy both the old
3131 * state and the new state.  These can be programmed to the hardware
3132 * immediately.
3133 */
3134static int ilk_compute_intermediate_wm(struct drm_device *dev,
3135                                       struct intel_crtc *intel_crtc,
3136                                       struct intel_crtc_state *newstate)
3137{
3138        struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3139        struct intel_atomic_state *intel_state =
3140                to_intel_atomic_state(newstate->base.state);
3141        const struct intel_crtc_state *oldstate =
3142                intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3143        const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3144        int level, max_level = ilk_wm_max_level(to_i915(dev));
3145
3146        /*
3147         * Start with the final, target watermarks, then combine with the
3148         * currently active watermarks to get values that are safe both before
3149         * and after the vblank.
3150         */
3151        *a = newstate->wm.ilk.optimal;
3152        if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base))
3153                return 0;
3154
3155        a->pipe_enabled |= b->pipe_enabled;
3156        a->sprites_enabled |= b->sprites_enabled;
3157        a->sprites_scaled |= b->sprites_scaled;
3158
3159        for (level = 0; level <= max_level; level++) {
3160                struct intel_wm_level *a_wm = &a->wm[level];
3161                const struct intel_wm_level *b_wm = &b->wm[level];
3162
3163                a_wm->enable &= b_wm->enable;
3164                a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3165                a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3166                a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3167                a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3168        }
3169
3170        /*
3171         * We need to make sure that these merged watermark values are
3172         * actually a valid configuration themselves.  If they're not,
3173         * there's no safe way to transition from the old state to
3174         * the new state, so we need to fail the atomic transaction.
3175         */
3176        if (!ilk_validate_pipe_wm(dev, a))
3177                return -EINVAL;
3178
3179        /*
3180         * If our intermediate WM are identical to the final WM, then we can
3181         * omit the post-vblank programming; only update if it's different.
3182         */
3183        if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3184                newstate->wm.need_postvbl_update = true;
3185
3186        return 0;
3187}
3188
3189/*
3190 * Merge the watermarks from all active pipes for a specific level.
3191 */
3192static void ilk_merge_wm_level(struct drm_device *dev,
3193                               int level,
3194                               struct intel_wm_level *ret_wm)
3195{
3196        const struct intel_crtc *intel_crtc;
3197
3198        ret_wm->enable = true;
3199
3200        for_each_intel_crtc(dev, intel_crtc) {
3201                const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3202                const struct intel_wm_level *wm = &active->wm[level];
3203
3204                if (!active->pipe_enabled)
3205                        continue;
3206
3207                /*
3208                 * The watermark values may have been used in the past,
3209                 * so we must maintain them in the registers for some
3210                 * time even if the level is now disabled.
3211                 */
3212                if (!wm->enable)
3213                        ret_wm->enable = false;
3214
3215                ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3216                ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3217                ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3218                ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3219        }
3220}
3221
3222/*
3223 * Merge all low power watermarks for all active pipes.
3224 */
3225static void ilk_wm_merge(struct drm_device *dev,
3226                         const struct intel_wm_config *config,
3227                         const struct ilk_wm_maximums *max,
3228                         struct intel_pipe_wm *merged)
3229{
3230        struct drm_i915_private *dev_priv = to_i915(dev);
3231        int level, max_level = ilk_wm_max_level(dev_priv);
3232        int last_enabled_level = max_level;
3233
3234        /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3235        if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3236            config->num_pipes_active > 1)
3237                last_enabled_level = 0;
3238
3239        /* ILK: FBC WM must be disabled always */
3240        merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3241
3242        /* merge each WM1+ level */
3243        for (level = 1; level <= max_level; level++) {
3244                struct intel_wm_level *wm = &merged->wm[level];
3245
3246                ilk_merge_wm_level(dev, level, wm);
3247
3248                if (level > last_enabled_level)
3249                        wm->enable = false;
3250                else if (!ilk_validate_wm_level(level, max, wm))
3251                        /* make sure all following levels get disabled */
3252                        last_enabled_level = level - 1;
3253
3254                /*
3255                 * The spec says it is preferred to disable
3256                 * FBC WMs instead of disabling a WM level.
3257                 */
3258                if (wm->fbc_val > max->fbc) {
3259                        if (wm->enable)
3260                                merged->fbc_wm_enabled = false;
3261                        wm->fbc_val = 0;
3262                }
3263        }
3264
3265        /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3266        /*
3267         * FIXME this is racy. FBC might get enabled later.
3268         * What we should check here is whether FBC can be
3269         * enabled sometime later.
3270         */
3271        if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3272            intel_fbc_is_active(dev_priv)) {
3273                for (level = 2; level <= max_level; level++) {
3274                        struct intel_wm_level *wm = &merged->wm[level];
3275
3276                        wm->enable = false;
3277                }
3278        }
3279}
3280
3281static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3282{
3283        /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3284        return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3285}
3286
3287/* The value we need to program into the WM_LPx latency field */
3288static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
3289{
3290        struct drm_i915_private *dev_priv = to_i915(dev);
3291
3292        if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3293                return 2 * level;
3294        else
3295                return dev_priv->wm.pri_latency[level];
3296}
3297
3298static void ilk_compute_wm_results(struct drm_device *dev,
3299                                   const struct intel_pipe_wm *merged,
3300                                   enum intel_ddb_partitioning partitioning,
3301                                   struct ilk_wm_values *results)
3302{
3303        struct drm_i915_private *dev_priv = to_i915(dev);
3304        struct intel_crtc *intel_crtc;
3305        int level, wm_lp;
3306
3307        results->enable_fbc_wm = merged->fbc_wm_enabled;
3308        results->partitioning = partitioning;
3309
3310        /* LP1+ register values */
3311        for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3312                const struct intel_wm_level *r;
3313
3314                level = ilk_wm_lp_to_level(wm_lp, merged);
3315
3316                r = &merged->wm[level];
3317
3318                /*
3319                 * Maintain the watermark values even if the level is
3320                 * disabled. Doing otherwise could cause underruns.
3321                 */
3322                results->wm_lp[wm_lp - 1] =
3323                        (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3324                        (r->pri_val << WM1_LP_SR_SHIFT) |
3325                        r->cur_val;
3326
3327                if (r->enable)
3328                        results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3329
3330                if (INTEL_GEN(dev_priv) >= 8)
3331                        results->wm_lp[wm_lp - 1] |=
3332                                r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3333                else
3334                        results->wm_lp[wm_lp - 1] |=
3335                                r->fbc_val << WM1_LP_FBC_SHIFT;
3336
3337                /*
3338                 * Always set WM1S_LP_EN when spr_val != 0, even if the
3339                 * level is disabled. Doing otherwise could cause underruns.
3340                 */
3341                if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3342                        WARN_ON(wm_lp != 1);
3343                        results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3344                } else
3345                        results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3346        }
3347
3348        /* LP0 register values */
3349        for_each_intel_crtc(dev, intel_crtc) {
3350                enum pipe pipe = intel_crtc->pipe;
3351                const struct intel_wm_level *r =
3352                        &intel_crtc->wm.active.ilk.wm[0];
3353
3354                if (WARN_ON(!r->enable))
3355                        continue;
3356
3357                results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3358
3359                results->wm_pipe[pipe] =
3360                        (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3361                        (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3362                        r->cur_val;
3363        }
3364}
3365
3366/* Find the result with the highest level enabled. Check for enable_fbc_wm in
3367 * case both are at the same level. Prefer r1 in case they're the same. */
3368static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3369                                                  struct intel_pipe_wm *r1,
3370                                                  struct intel_pipe_wm *r2)
3371{
3372        int level, max_level = ilk_wm_max_level(to_i915(dev));
3373        int level1 = 0, level2 = 0;
3374
3375        for (level = 1; level <= max_level; level++) {
3376                if (r1->wm[level].enable)
3377                        level1 = level;
3378                if (r2->wm[level].enable)
3379                        level2 = level;
3380        }
3381
3382        if (level1 == level2) {
3383                if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3384                        return r2;
3385                else
3386                        return r1;
3387        } else if (level1 > level2) {
3388                return r1;
3389        } else {
3390                return r2;
3391        }
3392}
3393
3394/* dirty bits used to track which watermarks need changes */
3395#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3396#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3397#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3398#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3399#define WM_DIRTY_FBC (1 << 24)
3400#define WM_DIRTY_DDB (1 << 25)
3401
3402static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3403                                         const struct ilk_wm_values *old,
3404                                         const struct ilk_wm_values *new)
3405{
3406        unsigned int dirty = 0;
3407        enum pipe pipe;
3408        int wm_lp;
3409
3410        for_each_pipe(dev_priv, pipe) {
3411                if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3412                        dirty |= WM_DIRTY_LINETIME(pipe);
3413                        /* Must disable LP1+ watermarks too */
3414                        dirty |= WM_DIRTY_LP_ALL;
3415                }
3416
3417                if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3418                        dirty |= WM_DIRTY_PIPE(pipe);
3419                        /* Must disable LP1+ watermarks too */
3420                        dirty |= WM_DIRTY_LP_ALL;
3421                }
3422        }
3423
3424        if (old->enable_fbc_wm != new->enable_fbc_wm) {
3425                dirty |= WM_DIRTY_FBC;
3426                /* Must disable LP1+ watermarks too */
3427                dirty |= WM_DIRTY_LP_ALL;
3428        }
3429
3430        if (old->partitioning != new->partitioning) {
3431                dirty |= WM_DIRTY_DDB;
3432                /* Must disable LP1+ watermarks too */
3433                dirty |= WM_DIRTY_LP_ALL;
3434        }
3435
3436        /* LP1+ watermarks already deemed dirty, no need to continue */
3437        if (dirty & WM_DIRTY_LP_ALL)
3438                return dirty;
3439
3440        /* Find the lowest numbered LP1+ watermark in need of an update... */
3441        for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3442                if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3443                    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3444                        break;
3445        }
3446
3447        /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3448        for (; wm_lp <= 3; wm_lp++)
3449                dirty |= WM_DIRTY_LP(wm_lp);
3450
3451        return dirty;
3452}
3453
3454static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3455                               unsigned int dirty)
3456{
3457        struct ilk_wm_values *previous = &dev_priv->wm.hw;
3458        bool changed = false;
3459
3460        if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3461                previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3462                I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3463                changed = true;
3464        }
3465        if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3466                previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3467                I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3468                changed = true;
3469        }
3470        if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3471                previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3472                I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3473                changed = true;
3474        }
3475
3476        /*
3477         * Don't touch WM1S_LP_EN here.
3478         * Doing so could cause underruns.
3479         */
3480
3481        return changed;
3482}
3483
3484/*
3485 * The spec says we shouldn't write when we don't need, because every write
3486 * causes WMs to be re-evaluated, expending some power.
3487 */
3488static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3489                                struct ilk_wm_values *results)
3490{
3491        struct ilk_wm_values *previous = &dev_priv->wm.hw;
3492        unsigned int dirty;
3493        uint32_t val;
3494
3495        dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3496        if (!dirty)
3497                return;
3498
3499        _ilk_disable_lp_wm(dev_priv, dirty);
3500
3501        if (dirty & WM_DIRTY_PIPE(PIPE_A))
3502                I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3503        if (dirty & WM_DIRTY_PIPE(PIPE_B))
3504                I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3505        if (dirty & WM_DIRTY_PIPE(PIPE_C))
3506                I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3507
3508        if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3509                I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3510        if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3511                I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3512        if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3513                I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3514
3515        if (dirty & WM_DIRTY_DDB) {
3516                if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3517                        val = I915_READ(WM_MISC);
3518                        if (results->partitioning == INTEL_DDB_PART_1_2)
3519                                val &= ~WM_MISC_DATA_PARTITION_5_6;
3520                        else
3521                                val |= WM_MISC_DATA_PARTITION_5_6;
3522                        I915_WRITE(WM_MISC, val);
3523                } else {
3524                        val = I915_READ(DISP_ARB_CTL2);
3525                        if (results->partitioning == INTEL_DDB_PART_1_2)
3526                                val &= ~DISP_DATA_PARTITION_5_6;
3527                        else
3528                                val |= DISP_DATA_PARTITION_5_6;
3529                        I915_WRITE(DISP_ARB_CTL2, val);
3530                }
3531        }
3532
3533        if (dirty & WM_DIRTY_FBC) {
3534                val = I915_READ(DISP_ARB_CTL);
3535                if (results->enable_fbc_wm)
3536                        val &= ~DISP_FBC_WM_DIS;
3537                else
3538                        val |= DISP_FBC_WM_DIS;
3539                I915_WRITE(DISP_ARB_CTL, val);
3540        }
3541
3542        if (dirty & WM_DIRTY_LP(1) &&
3543            previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3544                I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3545
3546        if (INTEL_GEN(dev_priv) >= 7) {
3547                if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3548                        I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3549                if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3550                        I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3551        }
3552
3553        if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3554                I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3555        if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3556                I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3557        if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3558                I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3559
3560        dev_priv->wm.hw = *results;
3561}
3562
3563bool ilk_disable_lp_wm(struct drm_device *dev)
3564{
3565        struct drm_i915_private *dev_priv = to_i915(dev);
3566
3567        return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3568}
3569
3570static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
3571{
3572        u8 enabled_slices;
3573
3574        /* Slice 1 will always be enabled */
3575        enabled_slices = 1;
3576
3577        /* Gen prior to GEN11 have only one DBuf slice */
3578        if (INTEL_GEN(dev_priv) < 11)
3579                return enabled_slices;
3580
3581        if (I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3582                enabled_slices++;
3583
3584        return enabled_slices;
3585}
3586
3587/*
3588 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3589 * so assume we'll always need it in order to avoid underruns.
3590 */
3591static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
3592{
3593        struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3594
3595        if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3596                return true;
3597
3598        return false;
3599}
3600
3601static bool
3602intel_has_sagv(struct drm_i915_private *dev_priv)
3603{
3604        if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
3605            IS_CANNONLAKE(dev_priv))
3606                return true;
3607
3608        if (IS_SKYLAKE(dev_priv) &&
3609            dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
3610                return true;
3611
3612        return false;
3613}
3614
3615/*
3616 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3617 * depending on power and performance requirements. The display engine access
3618 * to system memory is blocked during the adjustment time. Because of the
3619 * blocking time, having this enabled can cause full system hangs and/or pipe
3620 * underruns if we don't meet all of the following requirements:
3621 *
3622 *  - <= 1 pipe enabled
3623 *  - All planes can enable watermarks for latencies >= SAGV engine block time
3624 *  - We're not using an interlaced display configuration
3625 */
3626int
3627intel_enable_sagv(struct drm_i915_private *dev_priv)
3628{
3629        int ret;
3630
3631        if (!intel_has_sagv(dev_priv))
3632                return 0;
3633
3634        if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3635                return 0;
3636
3637        DRM_DEBUG_KMS("Enabling the SAGV\n");
3638        mutex_lock(&dev_priv->pcu_lock);
3639
3640        ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3641                                      GEN9_SAGV_ENABLE);
3642
3643        /* We don't need to wait for the SAGV when enabling */
3644        mutex_unlock(&dev_priv->pcu_lock);
3645
3646        /*
3647         * Some skl systems, pre-release machines in particular,
3648         * don't actually have an SAGV.
3649         */
3650        if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3651                DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3652                dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3653                return 0;
3654        } else if (ret < 0) {
3655                DRM_ERROR("Failed to enable the SAGV\n");
3656                return ret;
3657        }
3658
3659        dev_priv->sagv_status = I915_SAGV_ENABLED;
3660        return 0;
3661}
3662
3663int
3664intel_disable_sagv(struct drm_i915_private *dev_priv)
3665{
3666        int ret;
3667
3668        if (!intel_has_sagv(dev_priv))
3669                return 0;
3670
3671        if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3672                return 0;
3673
3674        DRM_DEBUG_KMS("Disabling the SAGV\n");
3675        mutex_lock(&dev_priv->pcu_lock);
3676
3677        /* bspec says to keep retrying for at least 1 ms */
3678        ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3679                                GEN9_SAGV_DISABLE,
3680                                GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3681                                1);
3682        mutex_unlock(&dev_priv->pcu_lock);
3683
3684        /*
3685         * Some skl systems, pre-release machines in particular,
3686         * don't actually have an SAGV.
3687         */
3688        if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3689                DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3690                dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3691                return 0;
3692        } else if (ret < 0) {
3693                DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
3694                return ret;
3695        }
3696
3697        dev_priv->sagv_status = I915_SAGV_DISABLED;
3698        return 0;
3699}
3700
3701bool intel_can_enable_sagv(struct drm_atomic_state *state)
3702{
3703        struct drm_device *dev = state->dev;
3704        struct drm_i915_private *dev_priv = to_i915(dev);
3705        struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3706        struct intel_crtc *crtc;
3707        struct intel_plane *plane;
3708        struct intel_crtc_state *cstate;
3709        enum pipe pipe;
3710        int level, latency;
3711        int sagv_block_time_us;
3712
3713        if (!intel_has_sagv(dev_priv))
3714                return false;
3715
3716        if (IS_GEN9(dev_priv))
3717                sagv_block_time_us = 30;
3718        else if (IS_GEN10(dev_priv))
3719                sagv_block_time_us = 20;
3720        else
3721                sagv_block_time_us = 10;
3722
3723        /*
3724         * SKL+ workaround: bspec recommends we disable the SAGV when we have
3725         * more then one pipe enabled
3726         *
3727         * If there are no active CRTCs, no additional checks need be performed
3728         */
3729        if (hweight32(intel_state->active_crtcs) == 0)
3730                return true;
3731        else if (hweight32(intel_state->active_crtcs) > 1)
3732                return false;
3733
3734        /* Since we're now guaranteed to only have one active CRTC... */
3735        pipe = ffs(intel_state->active_crtcs) - 1;
3736        crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3737        cstate = to_intel_crtc_state(crtc->base.state);
3738
3739        if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3740                return false;
3741
3742        for_each_intel_plane_on_crtc(dev, crtc, plane) {
3743                struct skl_plane_wm *wm =
3744                        &cstate->wm.skl.optimal.planes[plane->id];
3745
3746                /* Skip this plane if it's not enabled */
3747                if (!wm->wm[0].plane_en)
3748                        continue;
3749
3750                /* Find the highest enabled wm level for this plane */
3751                for (level = ilk_wm_max_level(dev_priv);
3752                     !wm->wm[level].plane_en; --level)
3753                     { }
3754
3755                latency = dev_priv->wm.skl_latency[level];
3756
3757                if (skl_needs_memory_bw_wa(intel_state) &&
3758                    plane->base.state->fb->modifier ==
3759                    I915_FORMAT_MOD_X_TILED)
3760                        latency += 15;
3761
3762                /*
3763                 * If any of the planes on this pipe don't enable wm levels that
3764                 * incur memory latencies higher than sagv_block_time_us we
3765                 * can't enable the SAGV.
3766                 */
3767                if (latency < sagv_block_time_us)
3768                        return false;
3769        }
3770
3771        return true;
3772}
3773
3774static unsigned int intel_get_ddb_size(struct drm_i915_private *dev_priv,
3775                                       const struct intel_crtc_state *cstate,
3776                                       const unsigned int total_data_rate,
3777                                       const int num_active,
3778                                       struct skl_ddb_allocation *ddb)
3779{
3780        const struct drm_display_mode *adjusted_mode;
3781        u64 total_data_bw;
3782        u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3783
3784        WARN_ON(ddb_size == 0);
3785
3786        if (INTEL_GEN(dev_priv) < 11)
3787                return ddb_size - 4; /* 4 blocks for bypass path allocation */
3788
3789        adjusted_mode = &cstate->base.adjusted_mode;
3790        total_data_bw = (u64)total_data_rate * drm_mode_vrefresh(adjusted_mode);
3791
3792        /*
3793         * 12GB/s is maximum BW supported by single DBuf slice.
3794         */
3795        if (total_data_bw >= GBps(12) || num_active > 1) {
3796                ddb->enabled_slices = 2;
3797        } else {
3798                ddb->enabled_slices = 1;
3799                ddb_size /= 2;
3800        }
3801
3802        return ddb_size;
3803}
3804
3805static void
3806skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3807                                   const struct intel_crtc_state *cstate,
3808                                   const unsigned int total_data_rate,
3809                                   struct skl_ddb_allocation *ddb,
3810                                   struct skl_ddb_entry *alloc, /* out */
3811                                   int *num_active /* out */)
3812{
3813        struct drm_atomic_state *state = cstate->base.state;
3814        struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3815        struct drm_i915_private *dev_priv = to_i915(dev);
3816        struct drm_crtc *for_crtc = cstate->base.crtc;
3817        unsigned int pipe_size, ddb_size;
3818        int nth_active_pipe;
3819
3820        if (WARN_ON(!state) || !cstate->base.active) {
3821                alloc->start = 0;
3822                alloc->end = 0;
3823                *num_active = hweight32(dev_priv->active_crtcs);
3824                return;
3825        }
3826
3827        if (intel_state->active_pipe_changes)
3828                *num_active = hweight32(intel_state->active_crtcs);
3829        else
3830                *num_active = hweight32(dev_priv->active_crtcs);
3831
3832        ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
3833                                      *num_active, ddb);
3834
3835        /*
3836         * If the state doesn't change the active CRTC's, then there's
3837         * no need to recalculate; the existing pipe allocation limits
3838         * should remain unchanged.  Note that we're safe from racing
3839         * commits since any racing commit that changes the active CRTC
3840         * list would need to grab _all_ crtc locks, including the one
3841         * we currently hold.
3842         */
3843        if (!intel_state->active_pipe_changes) {
3844                /*
3845                 * alloc may be cleared by clear_intel_crtc_state,
3846                 * copy from old state to be sure
3847                 */
3848                *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3849                return;
3850        }
3851
3852        nth_active_pipe = hweight32(intel_state->active_crtcs &
3853                                    (drm_crtc_mask(for_crtc) - 1));
3854        pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3855        alloc->start = nth_active_pipe * ddb_size / *num_active;
3856        alloc->end = alloc->start + pipe_size;
3857}
3858
3859static unsigned int skl_cursor_allocation(int num_active)
3860{
3861        if (num_active == 1)
3862                return 32;
3863
3864        return 8;
3865}
3866
3867static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
3868                                       struct skl_ddb_entry *entry, u32 reg)
3869{
3870        u16 mask;
3871
3872        if (INTEL_GEN(dev_priv) >= 11)
3873                mask = ICL_DDB_ENTRY_MASK;
3874        else
3875                mask = SKL_DDB_ENTRY_MASK;
3876        entry->start = reg & mask;
3877        entry->end = (reg >> DDB_ENTRY_END_SHIFT) & mask;
3878
3879        if (entry->end)
3880                entry->end += 1;
3881}
3882
3883static void
3884skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
3885                           const enum pipe pipe,
3886                           const enum plane_id plane_id,
3887                           struct skl_ddb_allocation *ddb /* out */)
3888{
3889        u32 val, val2 = 0;
3890        int fourcc, pixel_format;
3891
3892        /* Cursor doesn't support NV12/planar, so no extra calculation needed */
3893        if (plane_id == PLANE_CURSOR) {
3894                val = I915_READ(CUR_BUF_CFG(pipe));
3895                skl_ddb_entry_init_from_hw(dev_priv,
3896                                           &ddb->plane[pipe][plane_id], val);
3897                return;
3898        }
3899
3900        val = I915_READ(PLANE_CTL(pipe, plane_id));
3901
3902        /* No DDB allocated for disabled planes */
3903        if (!(val & PLANE_CTL_ENABLE))
3904                return;
3905
3906        pixel_format = val & PLANE_CTL_FORMAT_MASK;
3907        fourcc = skl_format_to_fourcc(pixel_format,
3908                                      val & PLANE_CTL_ORDER_RGBX,
3909                                      val & PLANE_CTL_ALPHA_MASK);
3910
3911        val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3912        val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
3913
3914        if (fourcc == DRM_FORMAT_NV12) {
3915                skl_ddb_entry_init_from_hw(dev_priv,
3916                                           &ddb->plane[pipe][plane_id], val2);
3917                skl_ddb_entry_init_from_hw(dev_priv,
3918                                           &ddb->uv_plane[pipe][plane_id], val);
3919        } else {
3920                skl_ddb_entry_init_from_hw(dev_priv,
3921                                           &ddb->plane[pipe][plane_id], val);
3922        }
3923}
3924
3925void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3926                          struct skl_ddb_allocation *ddb /* out */)
3927{
3928        struct intel_crtc *crtc;
3929
3930        memset(ddb, 0, sizeof(*ddb));
3931
3932        ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
3933
3934        for_each_intel_crtc(&dev_priv->drm, crtc) {
3935                enum intel_display_power_domain power_domain;
3936                enum plane_id plane_id;
3937                enum pipe pipe = crtc->pipe;
3938
3939                power_domain = POWER_DOMAIN_PIPE(pipe);
3940                if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3941                        continue;
3942
3943                for_each_plane_id_on_crtc(crtc, plane_id)
3944                        skl_ddb_get_hw_plane_state(dev_priv, pipe,
3945                                                   plane_id, ddb);
3946
3947                intel_display_power_put(dev_priv, power_domain);
3948        }
3949}
3950
3951/*
3952 * Determines the downscale amount of a plane for the purposes of watermark calculations.
3953 * The bspec defines downscale amount as:
3954 *
3955 * """
3956 * Horizontal down scale amount = maximum[1, Horizontal source size /
3957 *                                           Horizontal destination size]
3958 * Vertical down scale amount = maximum[1, Vertical source size /
3959 *                                         Vertical destination size]
3960 * Total down scale amount = Horizontal down scale amount *
3961 *                           Vertical down scale amount
3962 * """
3963 *
3964 * Return value is provided in 16.16 fixed point form to retain fractional part.
3965 * Caller should take care of dividing & rounding off the value.
3966 */
3967static uint_fixed_16_16_t
3968skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
3969                           const struct intel_plane_state *pstate)
3970{
3971        struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3972        uint32_t src_w, src_h, dst_w, dst_h;
3973        uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3974        uint_fixed_16_16_t downscale_h, downscale_w;
3975
3976        if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3977                return u32_to_fixed16(0);
3978
3979        /* n.b., src is 16.16 fixed point, dst is whole integer */
3980        if (plane->id == PLANE_CURSOR) {
3981                /*
3982                 * Cursors only support 0/180 degree rotation,
3983                 * hence no need to account for rotation here.
3984                 */
3985                src_w = pstate->base.src_w >> 16;
3986                src_h = pstate->base.src_h >> 16;
3987                dst_w = pstate->base.crtc_w;
3988                dst_h = pstate->base.crtc_h;
3989        } else {
3990                /*
3991                 * Src coordinates are already rotated by 270 degrees for
3992                 * the 90/270 degree plane rotation cases (to match the
3993                 * GTT mapping), hence no need to account for rotation here.
3994                 */
3995                src_w = drm_rect_width(&pstate->base.src) >> 16;
3996                src_h = drm_rect_height(&pstate->base.src) >> 16;
3997                dst_w = drm_rect_width(&pstate->base.dst);
3998                dst_h = drm_rect_height(&pstate->base.dst);
3999        }
4000
4001        fp_w_ratio = div_fixed16(src_w, dst_w);
4002        fp_h_ratio = div_fixed16(src_h, dst_h);
4003        downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4004        downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4005
4006        return mul_fixed16(downscale_w, downscale_h);
4007}
4008
4009static uint_fixed_16_16_t
4010skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
4011{
4012        uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4013
4014        if (!crtc_state->base.enable)
4015                return pipe_downscale;
4016
4017        if (crtc_state->pch_pfit.enabled) {
4018                uint32_t src_w, src_h, dst_w, dst_h;
4019                uint32_t pfit_size = crtc_state->pch_pfit.size;
4020                uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4021                uint_fixed_16_16_t downscale_h, downscale_w;
4022
4023                src_w = crtc_state->pipe_src_w;
4024                src_h = crtc_state->pipe_src_h;
4025                dst_w = pfit_size >> 16;
4026                dst_h = pfit_size & 0xffff;
4027
4028                if (!dst_w || !dst_h)
4029                        return pipe_downscale;
4030
4031                fp_w_ratio = div_fixed16(src_w, dst_w);
4032                fp_h_ratio = div_fixed16(src_h, dst_h);
4033                downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4034                downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4035
4036                pipe_downscale = mul_fixed16(downscale_w, downscale_h);
4037        }
4038
4039        return pipe_downscale;
4040}
4041
4042int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
4043                                  struct intel_crtc_state *cstate)
4044{
4045        struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4046        struct drm_crtc_state *crtc_state = &cstate->base;
4047        struct drm_atomic_state *state = crtc_state->state;
4048        struct drm_plane *plane;
4049        const struct drm_plane_state *pstate;
4050        struct intel_plane_state *intel_pstate;
4051        int crtc_clock, dotclk;
4052        uint32_t pipe_max_pixel_rate;
4053        uint_fixed_16_16_t pipe_downscale;
4054        uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4055
4056        if (!cstate->base.enable)
4057                return 0;
4058
4059        drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4060                uint_fixed_16_16_t plane_downscale;
4061                uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4062                int bpp;
4063
4064                if (!intel_wm_plane_visible(cstate,
4065                                            to_intel_plane_state(pstate)))
4066                        continue;
4067
4068                if (WARN_ON(!pstate->fb))
4069                        return -EINVAL;
4070
4071                intel_pstate = to_intel_plane_state(pstate);
4072                plane_downscale = skl_plane_downscale_amount(cstate,
4073                                                             intel_pstate);
4074                bpp = pstate->fb->format->cpp[0] * 8;
4075                if (bpp == 64)
4076                        plane_downscale = mul_fixed16(plane_downscale,
4077                                                      fp_9_div_8);
4078
4079                max_downscale = max_fixed16(plane_downscale, max_downscale);
4080        }
4081        pipe_downscale = skl_pipe_downscale_amount(cstate);
4082
4083        pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
4084
4085        crtc_clock = crtc_state->adjusted_mode.crtc_clock;
4086        dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
4087
4088        if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4089                dotclk *= 2;
4090
4091        pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4092
4093        if (pipe_max_pixel_rate < crtc_clock) {
4094                DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4095                return -EINVAL;
4096        }
4097
4098        return 0;
4099}
4100
4101static unsigned int
4102skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
4103                             const struct drm_plane_state *pstate,
4104                             const int plane)
4105{
4106        struct intel_plane *intel_plane = to_intel_plane(pstate->plane);
4107        struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4108        uint32_t data_rate;
4109        uint32_t width = 0, height = 0;
4110        struct drm_framebuffer *fb;
4111        u32 format;
4112        uint_fixed_16_16_t down_scale_amount;
4113
4114        if (!intel_pstate->base.visible)
4115                return 0;
4116
4117        fb = pstate->fb;
4118        format = fb->format->format;
4119
4120        if (intel_plane->id == PLANE_CURSOR)
4121                return 0;
4122        if (plane == 1 && format != DRM_FORMAT_NV12)
4123                return 0;
4124
4125        /*
4126         * Src coordinates are already rotated by 270 degrees for
4127         * the 90/270 degree plane rotation cases (to match the
4128         * GTT mapping), hence no need to account for rotation here.
4129         */
4130        width = drm_rect_width(&intel_pstate->base.src) >> 16;
4131        height = drm_rect_height(&intel_pstate->base.src) >> 16;
4132
4133        /* UV plane does 1/2 pixel sub-sampling */
4134        if (plane == 1 && format == DRM_FORMAT_NV12) {
4135                width /= 2;
4136                height /= 2;
4137        }
4138
4139        data_rate = width * height * fb->format->cpp[plane];
4140
4141        down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4142
4143        return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4144}
4145
4146/*
4147 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
4148 * a 8192x4096@32bpp framebuffer:
4149 *   3 * 4096 * 8192  * 4 < 2^32
4150 */
4151static unsigned int
4152skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4153                                 unsigned int *plane_data_rate,
4154                                 unsigned int *uv_plane_data_rate)
4155{
4156        struct drm_crtc_state *cstate = &intel_cstate->base;
4157        struct drm_atomic_state *state = cstate->state;
4158        struct drm_plane *plane;
4159        const struct drm_plane_state *pstate;
4160        unsigned int total_data_rate = 0;
4161
4162        if (WARN_ON(!state))
4163                return 0;
4164
4165        /* Calculate and cache data rate for each plane */
4166        drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4167                enum plane_id plane_id = to_intel_plane(plane)->id;
4168                unsigned int rate;
4169
4170                /* packed/y */
4171                rate = skl_plane_relative_data_rate(intel_cstate,
4172                                                    pstate, 0);
4173                plane_data_rate[plane_id] = rate;
4174
4175                total_data_rate += rate;
4176
4177                /* uv-plane */
4178                rate = skl_plane_relative_data_rate(intel_cstate,
4179                                                    pstate, 1);
4180                uv_plane_data_rate[plane_id] = rate;
4181
4182                total_data_rate += rate;
4183        }
4184
4185        return total_data_rate;
4186}
4187
4188static uint16_t
4189skl_ddb_min_alloc(const struct drm_plane_state *pstate, const int plane)
4190{
4191        struct drm_framebuffer *fb = pstate->fb;
4192        struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4193        uint32_t src_w, src_h;
4194        uint32_t min_scanlines = 8;
4195        uint8_t plane_bpp;
4196
4197        if (WARN_ON(!fb))
4198                return 0;
4199
4200        /* For packed formats, and uv-plane, return 0 */
4201        if (plane == 1 && fb->format->format != DRM_FORMAT_NV12)
4202                return 0;
4203
4204        /* For Non Y-tile return 8-blocks */
4205        if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4206            fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
4207            fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
4208            fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4209                return 8;
4210
4211        /*
4212         * Src coordinates are already rotated by 270 degrees for
4213         * the 90/270 degree plane rotation cases (to match the
4214         * GTT mapping), hence no need to account for rotation here.
4215         */
4216        src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
4217        src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4218
4219        /* Halve UV plane width and height for NV12 */
4220        if (plane == 1) {
4221                src_w /= 2;
4222                src_h /= 2;
4223        }
4224
4225        plane_bpp = fb->format->cpp[plane];
4226
4227        if (drm_rotation_90_or_270(pstate->rotation)) {
4228                switch (plane_bpp) {
4229                case 1:
4230                        min_scanlines = 32;
4231                        break;
4232                case 2:
4233                        min_scanlines = 16;
4234                        break;
4235                case 4:
4236                        min_scanlines = 8;
4237                        break;
4238                case 8:
4239                        min_scanlines = 4;
4240                        break;
4241                default:
4242                        WARN(1, "Unsupported pixel depth %u for rotation",
4243                             plane_bpp);
4244                        min_scanlines = 32;
4245                }
4246        }
4247
4248        return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
4249}
4250
4251static void
4252skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
4253                 uint16_t *minimum, uint16_t *uv_minimum)
4254{
4255        const struct drm_plane_state *pstate;
4256        struct drm_plane *plane;
4257
4258        drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4259                enum plane_id plane_id = to_intel_plane(plane)->id;
4260
4261                if (plane_id == PLANE_CURSOR)
4262                        continue;
4263
4264                if (!pstate->visible)
4265                        continue;
4266
4267                minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
4268                uv_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4269        }
4270
4271        minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
4272}
4273
4274static int
4275skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4276                      struct skl_ddb_allocation *ddb /* out */)
4277{
4278        struct drm_atomic_state *state = cstate->base.state;
4279        struct drm_crtc *crtc = cstate->base.crtc;
4280        struct drm_device *dev = crtc->dev;
4281        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4282        enum pipe pipe = intel_crtc->pipe;
4283        struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4284        uint16_t alloc_size, start;
4285        uint16_t minimum[I915_MAX_PLANES] = {};
4286        uint16_t uv_minimum[I915_MAX_PLANES] = {};
4287        unsigned int total_data_rate;
4288        enum plane_id plane_id;
4289        int num_active;
4290        unsigned int plane_data_rate[I915_MAX_PLANES] = {};
4291        unsigned int uv_plane_data_rate[I915_MAX_PLANES] = {};
4292        uint16_t total_min_blocks = 0;
4293
4294        /* Clear the partitioning for disabled planes. */
4295        memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4296        memset(ddb->uv_plane[pipe], 0, sizeof(ddb->uv_plane[pipe]));
4297
4298        if (WARN_ON(!state))
4299                return 0;
4300
4301        if (!cstate->base.active) {
4302                alloc->start = alloc->end = 0;
4303                return 0;
4304        }
4305
4306        total_data_rate = skl_get_total_relative_data_rate(cstate,
4307                                                           plane_data_rate,
4308                                                           uv_plane_data_rate);
4309        skl_ddb_get_pipe_allocation_limits(dev, cstate, total_data_rate, ddb,
4310                                           alloc, &num_active);
4311        alloc_size = skl_ddb_entry_size(alloc);
4312        if (alloc_size == 0)
4313                return 0;
4314
4315        skl_ddb_calc_min(cstate, num_active, minimum, uv_minimum);
4316
4317        /*
4318         * 1. Allocate the mininum required blocks for each active plane
4319         * and allocate the cursor, it doesn't require extra allocation
4320         * proportional to the data rate.
4321         */
4322
4323        for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4324                total_min_blocks += minimum[plane_id];
4325                total_min_blocks += uv_minimum[plane_id];
4326        }
4327
4328        if (total_min_blocks > alloc_size) {
4329                DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4330                DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
4331                                                        alloc_size);
4332                return -EINVAL;
4333        }
4334
4335        alloc_size -= total_min_blocks;
4336        ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4337        ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
4338
4339        /*
4340         * 2. Distribute the remaining space in proportion to the amount of
4341         * data each plane needs to fetch from memory.
4342         *
4343         * FIXME: we may not allocate every single block here.
4344         */
4345        if (total_data_rate == 0)
4346                return 0;
4347
4348        start = alloc->start;
4349        for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4350                unsigned int data_rate, uv_data_rate;
4351                uint16_t plane_blocks, uv_plane_blocks;
4352
4353                if (plane_id == PLANE_CURSOR)
4354                        continue;
4355
4356                data_rate = plane_data_rate[plane_id];
4357
4358                /*
4359                 * allocation for (packed formats) or (uv-plane part of planar format):
4360                 * promote the expression to 64 bits to avoid overflowing, the
4361                 * result is < available as data_rate / total_data_rate < 1
4362                 */
4363                plane_blocks = minimum[plane_id];
4364                plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
4365                                        total_data_rate);
4366
4367                /* Leave disabled planes at (0,0) */
4368                if (data_rate) {
4369                        ddb->plane[pipe][plane_id].start = start;
4370                        ddb->plane[pipe][plane_id].end = start + plane_blocks;
4371                }
4372
4373                start += plane_blocks;
4374
4375                /* Allocate DDB for UV plane for planar format/NV12 */
4376                uv_data_rate = uv_plane_data_rate[plane_id];
4377
4378                uv_plane_blocks = uv_minimum[plane_id];
4379                uv_plane_blocks += div_u64((uint64_t)alloc_size * uv_data_rate,
4380                                           total_data_rate);
4381
4382                if (uv_data_rate) {
4383                        ddb->uv_plane[pipe][plane_id].start = start;
4384                        ddb->uv_plane[pipe][plane_id].end =
4385                                start + uv_plane_blocks;
4386                }
4387
4388                start += uv_plane_blocks;
4389        }
4390
4391        return 0;
4392}
4393
4394/*
4395 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4396 * for the read latency) and cpp should always be <= 8, so that
4397 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4398 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4399*/
4400static uint_fixed_16_16_t
4401skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
4402               uint8_t cpp, uint32_t latency, uint32_t dbuf_block_size)
4403{
4404        uint32_t wm_intermediate_val;
4405        uint_fixed_16_16_t ret;
4406
4407        if (latency == 0)
4408                return FP_16_16_MAX;
4409
4410        wm_intermediate_val = latency * pixel_rate * cpp;
4411        ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4412
4413        if (INTEL_GEN(dev_priv) >= 10)
4414                ret = add_fixed16_u32(ret, 1);
4415
4416        return ret;
4417}
4418
4419static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
4420                        uint32_t pipe_htotal,
4421                        uint32_t latency,
4422                        uint_fixed_16_16_t plane_blocks_per_line)
4423{
4424        uint32_t wm_intermediate_val;
4425        uint_fixed_16_16_t ret;
4426
4427        if (latency == 0)
4428                return FP_16_16_MAX;
4429
4430        wm_intermediate_val = latency * pixel_rate;
4431        wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4432                                           pipe_htotal * 1000);
4433        ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4434        return ret;
4435}
4436
4437static uint_fixed_16_16_t
4438intel_get_linetime_us(struct intel_crtc_state *cstate)
4439{
4440        uint32_t pixel_rate;
4441        uint32_t crtc_htotal;
4442        uint_fixed_16_16_t linetime_us;
4443
4444        if (!cstate->base.active)
4445                return u32_to_fixed16(0);
4446
4447        pixel_rate = cstate->pixel_rate;
4448
4449        if (WARN_ON(pixel_rate == 0))
4450                return u32_to_fixed16(0);
4451
4452        crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4453        linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4454
4455        return linetime_us;
4456}
4457
4458static uint32_t
4459skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
4460                              const struct intel_plane_state *pstate)
4461{
4462        uint64_t adjusted_pixel_rate;
4463        uint_fixed_16_16_t downscale_amount;
4464
4465        /* Shouldn't reach here on disabled planes... */
4466        if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4467                return 0;
4468
4469        /*
4470         * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4471         * with additional adjustments for plane-specific scaling.
4472         */
4473        adjusted_pixel_rate = cstate->pixel_rate;
4474        downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4475
4476        return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4477                                            downscale_amount);
4478}
4479
4480static int
4481skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv,
4482                            struct intel_crtc_state *cstate,
4483                            const struct intel_plane_state *intel_pstate,
4484                            struct skl_wm_params *wp, int plane_id)
4485{
4486        struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4487        const struct drm_plane_state *pstate = &intel_pstate->base;
4488        const struct drm_framebuffer *fb = pstate->fb;
4489        uint32_t interm_pbpl;
4490        struct intel_atomic_state *state =
4491                to_intel_atomic_state(cstate->base.state);
4492        bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4493
4494        if (!intel_wm_plane_visible(cstate, intel_pstate))
4495                return 0;
4496
4497        /* only NV12 format has two planes */
4498        if (plane_id == 1 && fb->format->format != DRM_FORMAT_NV12) {
4499                DRM_DEBUG_KMS("Non NV12 format have single plane\n");
4500                return -EINVAL;
4501        }
4502
4503        wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
4504                      fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
4505                      fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4506                      fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4507        wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
4508        wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4509                         fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4510        wp->is_planar = fb->format->format == DRM_FORMAT_NV12;
4511
4512        if (plane->id == PLANE_CURSOR) {
4513                wp->width = intel_pstate->base.crtc_w;
4514        } else {
4515                /*
4516                 * Src coordinates are already rotated by 270 degrees for
4517                 * the 90/270 degree plane rotation cases (to match the
4518                 * GTT mapping), hence no need to account for rotation here.
4519                 */
4520                wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4521        }
4522
4523        if (plane_id == 1 && wp->is_planar)
4524                wp->width /= 2;
4525
4526        wp->cpp = fb->format->cpp[plane_id];
4527        wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
4528                                                             intel_pstate);
4529
4530        if (INTEL_GEN(dev_priv) >= 11 &&
4531            fb->modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 8)
4532                wp->dbuf_block_size = 256;
4533        else
4534                wp->dbuf_block_size = 512;
4535
4536        if (drm_rotation_90_or_270(pstate->rotation)) {
4537
4538                switch (wp->cpp) {
4539                case 1:
4540                        wp->y_min_scanlines = 16;
4541                        break;
4542                case 2:
4543                        wp->y_min_scanlines = 8;
4544                        break;
4545                case 4:
4546                        wp->y_min_scanlines = 4;
4547                        break;
4548                default:
4549                        MISSING_CASE(wp->cpp);
4550                        return -EINVAL;
4551                }
4552        } else {
4553                wp->y_min_scanlines = 4;
4554        }
4555
4556        if (apply_memory_bw_wa)
4557                wp->y_min_scanlines *= 2;
4558
4559        wp->plane_bytes_per_line = wp->width * wp->cpp;
4560        if (wp->y_tiled) {
4561                interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4562                                           wp->y_min_scanlines,
4563                                           wp->dbuf_block_size);
4564
4565                if (INTEL_GEN(dev_priv) >= 10)
4566                        interm_pbpl++;
4567
4568                wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4569                                                        wp->y_min_scanlines);
4570        } else if (wp->x_tiled && IS_GEN9(dev_priv)) {
4571                interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4572                                           wp->dbuf_block_size);
4573                wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4574        } else {
4575                interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4576                                           wp->dbuf_block_size) + 1;
4577                wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4578        }
4579
4580        wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4581                                             wp->plane_blocks_per_line);
4582        wp->linetime_us = fixed16_to_u32_round_up(
4583                                        intel_get_linetime_us(cstate));
4584
4585        return 0;
4586}
4587
4588static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
4589                                struct intel_crtc_state *cstate,
4590                                const struct intel_plane_state *intel_pstate,
4591                                uint16_t ddb_allocation,
4592                                int level,
4593                                const struct skl_wm_params *wp,
4594                                const struct skl_wm_level *result_prev,
4595                                struct skl_wm_level *result /* out */)
4596{
4597        const struct drm_plane_state *pstate = &intel_pstate->base;
4598        uint32_t latency = dev_priv->wm.skl_latency[level];
4599        uint_fixed_16_16_t method1, method2;
4600        uint_fixed_16_16_t selected_result;
4601        uint32_t res_blocks, res_lines;
4602        struct intel_atomic_state *state =
4603                to_intel_atomic_state(cstate->base.state);
4604        bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4605        uint32_t min_disp_buf_needed;
4606
4607        if (latency == 0 ||
4608            !intel_wm_plane_visible(cstate, intel_pstate)) {
4609                result->plane_en = false;
4610                return 0;
4611        }
4612
4613        /* Display WA #1141: kbl,cfl */
4614        if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
4615            IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4616            dev_priv->ipc_enabled)
4617                latency += 4;
4618
4619        if (apply_memory_bw_wa && wp->x_tiled)
4620                latency += 15;
4621
4622        method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4623                                 wp->cpp, latency, wp->dbuf_block_size);
4624        method2 = skl_wm_method2(wp->plane_pixel_rate,
4625                                 cstate->base.adjusted_mode.crtc_htotal,
4626                                 latency,
4627                                 wp->plane_blocks_per_line);
4628
4629        if (wp->y_tiled) {
4630                selected_result = max_fixed16(method2, wp->y_tile_minimum);
4631        } else {
4632                if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4633                     wp->dbuf_block_size < 1) &&
4634                     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1))
4635                        selected_result = method2;
4636                else if (ddb_allocation >=
4637                         fixed16_to_u32_round_up(wp->plane_blocks_per_line))
4638                        selected_result = min_fixed16(method1, method2);
4639                else if (latency >= wp->linetime_us)
4640                        selected_result = min_fixed16(method1, method2);
4641                else
4642                        selected_result = method1;
4643        }
4644
4645        res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4646        res_lines = div_round_up_fixed16(selected_result,
4647                                         wp->plane_blocks_per_line);
4648
4649        /* Display WA #1125: skl,bxt,kbl,glk */
4650        if (level == 0 && wp->rc_surface)
4651                res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
4652
4653        /* Display WA #1126: skl,bxt,kbl,glk */
4654        if (level >= 1 && level <= 7) {
4655                if (wp->y_tiled) {
4656                        res_blocks += fixed16_to_u32_round_up(
4657                                                        wp->y_tile_minimum);
4658                        res_lines += wp->y_min_scanlines;
4659                } else {
4660                        res_blocks++;
4661                }
4662
4663                /*
4664                 * Make sure result blocks for higher latency levels are atleast
4665                 * as high as level below the current level.
4666                 * Assumption in DDB algorithm optimization for special cases.
4667                 * Also covers Display WA #1125 for RC.
4668                 */
4669                if (result_prev->plane_res_b > res_blocks)
4670                        res_blocks = result_prev->plane_res_b;
4671        }
4672
4673        if (INTEL_GEN(dev_priv) >= 11) {
4674                if (wp->y_tiled) {
4675                        uint32_t extra_lines;
4676                        uint_fixed_16_16_t fp_min_disp_buf_needed;
4677
4678                        if (res_lines % wp->y_min_scanlines == 0)
4679                                extra_lines = wp->y_min_scanlines;
4680                        else
4681                                extra_lines = wp->y_min_scanlines * 2 -
4682                                              res_lines % wp->y_min_scanlines;
4683
4684                        fp_min_disp_buf_needed = mul_u32_fixed16(res_lines +
4685                                                extra_lines,
4686                                                wp->plane_blocks_per_line);
4687                        min_disp_buf_needed = fixed16_to_u32_round_up(
4688                                                fp_min_disp_buf_needed);
4689                } else {
4690                        min_disp_buf_needed = DIV_ROUND_UP(res_blocks * 11, 10);
4691                }
4692        } else {
4693                min_disp_buf_needed = res_blocks;
4694        }
4695
4696        if ((level > 0 && res_lines > 31) ||
4697            res_blocks >= ddb_allocation ||
4698            min_disp_buf_needed >= ddb_allocation) {
4699                result->plane_en = false;
4700
4701                /*
4702                 * If there are no valid level 0 watermarks, then we can't
4703                 * support this display configuration.
4704                 */
4705                if (level) {
4706                        return 0;
4707                } else {
4708                        struct drm_plane *plane = pstate->plane;
4709
4710                        DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
4711                        DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
4712                                      plane->base.id, plane->name,
4713                                      res_blocks, ddb_allocation, res_lines);
4714                        return -EINVAL;
4715                }
4716        }
4717
4718        /*
4719         * Display WA #826 (SKL:ALL, BXT:ALL) & #1059 (CNL:A)
4720         * disable wm level 1-7 on NV12 planes
4721         */
4722        if (wp->is_planar && level >= 1 &&
4723            (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
4724             IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))) {
4725                result->plane_en = false;
4726                return 0;
4727        }
4728
4729        /* The number of lines are ignored for the level 0 watermark. */
4730        result->plane_res_b = res_blocks;
4731        result->plane_res_l = res_lines;
4732        result->plane_en = true;
4733
4734        return 0;
4735}
4736
4737static int
4738skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4739                      struct skl_ddb_allocation *ddb,
4740                      struct intel_crtc_state *cstate,
4741                      const struct intel_plane_state *intel_pstate,
4742                      const struct skl_wm_params *wm_params,
4743                      struct skl_plane_wm *wm,
4744                      int plane_id)
4745{
4746        struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4747        struct drm_plane *plane = intel_pstate->base.plane;
4748        struct intel_plane *intel_plane = to_intel_plane(plane);
4749        uint16_t ddb_blocks;
4750        enum pipe pipe = intel_crtc->pipe;
4751        int level, max_level = ilk_wm_max_level(dev_priv);
4752        enum plane_id intel_plane_id = intel_plane->id;
4753        int ret;
4754
4755        if (WARN_ON(!intel_pstate->base.fb))
4756                return -EINVAL;
4757
4758        ddb_blocks = plane_id ?
4759                     skl_ddb_entry_size(&ddb->uv_plane[pipe][intel_plane_id]) :
4760                     skl_ddb_entry_size(&ddb->plane[pipe][intel_plane_id]);
4761
4762        for (level = 0; level <= max_level; level++) {
4763                struct skl_wm_level *result = plane_id ? &wm->uv_wm[level] :
4764                                                          &wm->wm[level];
4765                struct skl_wm_level *result_prev;
4766
4767                if (level)
4768                        result_prev = plane_id ? &wm->uv_wm[level - 1] :
4769                                                  &wm->wm[level - 1];
4770                else
4771                        result_prev = plane_id ? &wm->uv_wm[0] : &wm->wm[0];
4772
4773                ret = skl_compute_plane_wm(dev_priv,
4774                                           cstate,
4775                                           intel_pstate,
4776                                           ddb_blocks,
4777                                           level,
4778                                           wm_params,
4779                                           result_prev,
4780                                           result);
4781                if (ret)
4782                        return ret;
4783        }
4784
4785        if (intel_pstate->base.fb->format->format == DRM_FORMAT_NV12)
4786                wm->is_planar = true;
4787
4788        return 0;
4789}
4790
4791static uint32_t
4792skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4793{
4794        struct drm_atomic_state *state = cstate->base.state;
4795        struct drm_i915_private *dev_priv = to_i915(state->dev);
4796        uint_fixed_16_16_t linetime_us;
4797        uint32_t linetime_wm;
4798
4799        linetime_us = intel_get_linetime_us(cstate);
4800
4801        if (is_fixed16_zero(linetime_us))
4802                return 0;
4803
4804        linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4805
4806        /* Display WA #1135: bxt:ALL GLK:ALL */
4807        if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
4808            dev_priv->ipc_enabled)
4809                linetime_wm /= 2;
4810
4811        return linetime_wm;
4812}
4813
4814static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4815                                      struct skl_wm_params *wp,
4816                                      struct skl_wm_level *wm_l0,
4817                                      uint16_t ddb_allocation,
4818                                      struct skl_wm_level *trans_wm /* out */)
4819{
4820        struct drm_device *dev = cstate->base.crtc->dev;
4821        const struct drm_i915_private *dev_priv = to_i915(dev);
4822        uint16_t trans_min, trans_y_tile_min;
4823        const uint16_t trans_amount = 10; /* This is configurable amount */
4824        uint16_t trans_offset_b, res_blocks;
4825
4826        if (!cstate->base.active)
4827                goto exit;
4828
4829        /* Transition WM are not recommended by HW team for GEN9 */
4830        if (INTEL_GEN(dev_priv) <= 9)
4831                goto exit;
4832
4833        /* Transition WM don't make any sense if ipc is disabled */
4834        if (!dev_priv->ipc_enabled)
4835                goto exit;
4836
4837        trans_min = 0;
4838        if (INTEL_GEN(dev_priv) >= 10)
4839                trans_min = 4;
4840
4841        trans_offset_b = trans_min + trans_amount;
4842
4843        if (wp->y_tiled) {
4844                trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
4845                                                        wp->y_tile_minimum);
4846                res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) +
4847                                trans_offset_b;
4848        } else {
4849                res_blocks = wm_l0->plane_res_b + trans_offset_b;
4850
4851                /* WA BUG:1938466 add one block for non y-tile planes */
4852                if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
4853                        res_blocks += 1;
4854
4855        }
4856
4857        res_blocks += 1;
4858
4859        if (res_blocks < ddb_allocation) {
4860                trans_wm->plane_res_b = res_blocks;
4861                trans_wm->plane_en = true;
4862                return;
4863        }
4864
4865exit:
4866        trans_wm->plane_en = false;
4867}
4868
4869static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
4870                             struct skl_ddb_allocation *ddb,
4871                             struct skl_pipe_wm *pipe_wm)
4872{
4873        struct drm_device *dev = cstate->base.crtc->dev;
4874        struct drm_crtc_state *crtc_state = &cstate->base;
4875        const struct drm_i915_private *dev_priv = to_i915(dev);
4876        struct drm_plane *plane;
4877        const struct drm_plane_state *pstate;
4878        struct skl_plane_wm *wm;
4879        int ret;
4880
4881        /*
4882         * We'll only calculate watermarks for planes that are actually
4883         * enabled, so make sure all other planes are set as disabled.
4884         */
4885        memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
4886
4887        drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4888                const struct intel_plane_state *intel_pstate =
4889                                                to_intel_plane_state(pstate);
4890                enum plane_id plane_id = to_intel_plane(plane)->id;
4891                struct skl_wm_params wm_params;
4892                enum pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe;
4893                uint16_t ddb_blocks;
4894
4895                wm = &pipe_wm->planes[plane_id];
4896                ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]);
4897
4898                ret = skl_compute_plane_wm_params(dev_priv, cstate,
4899                                                  intel_pstate, &wm_params, 0);
4900                if (ret)
4901                        return ret;
4902
4903                ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4904                                            intel_pstate, &wm_params, wm, 0);
4905                if (ret)
4906                        return ret;
4907
4908                skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0],
4909                                          ddb_blocks, &wm->trans_wm);
4910
4911                /* uv plane watermarks must also be validated for NV12/Planar */
4912                if (wm_params.is_planar) {
4913                        memset(&wm_params, 0, sizeof(struct skl_wm_params));
4914                        wm->is_planar = true;
4915
4916                        ret = skl_compute_plane_wm_params(dev_priv, cstate,
4917                                                          intel_pstate,
4918                                                          &wm_params, 1);
4919                        if (ret)
4920                                return ret;
4921
4922                        ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4923                                                    intel_pstate, &wm_params,
4924                                                    wm, 1);
4925                        if (ret)
4926                                return ret;
4927                }
4928        }
4929
4930        pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4931
4932        return 0;
4933}
4934
4935static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
4936                                i915_reg_t reg,
4937                                const struct skl_ddb_entry *entry)
4938{
4939        if (entry->end)
4940                I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
4941        else
4942                I915_WRITE(reg, 0);
4943}
4944
4945static void skl_write_wm_level(struct drm_i915_private *dev_priv,
4946                               i915_reg_t reg,
4947                               const struct skl_wm_level *level)
4948{
4949        uint32_t val = 0;
4950
4951        if (level->plane_en) {
4952                val |= PLANE_WM_EN;
4953                val |= level->plane_res_b;
4954                val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
4955        }
4956
4957        I915_WRITE(reg, val);
4958}
4959
4960static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
4961                               const struct skl_plane_wm *wm,
4962                               const struct skl_ddb_allocation *ddb,
4963                               enum plane_id plane_id)
4964{
4965        struct drm_crtc *crtc = &intel_crtc->base;
4966        struct drm_device *dev = crtc->dev;
4967        struct drm_i915_private *dev_priv = to_i915(dev);
4968        int level, max_level = ilk_wm_max_level(dev_priv);
4969        enum pipe pipe = intel_crtc->pipe;
4970
4971        for (level = 0; level <= max_level; level++) {
4972                skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4973                                   &wm->wm[level]);
4974        }
4975        skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4976                           &wm->trans_wm);
4977
4978        skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4979                            &ddb->plane[pipe][plane_id]);
4980        if (INTEL_GEN(dev_priv) >= 11)
4981                return skl_ddb_entry_write(dev_priv,
4982                                           PLANE_BUF_CFG(pipe, plane_id),
4983                                           &ddb->plane[pipe][plane_id]);
4984        if (wm->is_planar) {
4985                skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4986                                    &ddb->uv_plane[pipe][plane_id]);
4987                skl_ddb_entry_write(dev_priv,
4988                                    PLANE_NV12_BUF_CFG(pipe, plane_id),
4989                                    &ddb->plane[pipe][plane_id]);
4990        } else {
4991                skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4992                                    &ddb->plane[pipe][plane_id]);
4993                I915_WRITE(PLANE_NV12_BUF_CFG(pipe, plane_id), 0x0);
4994        }
4995}
4996
4997static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
4998                                const struct skl_plane_wm *wm,
4999                                const struct skl_ddb_allocation *ddb)
5000{
5001        struct drm_crtc *crtc = &intel_crtc->base;
5002        struct drm_device *dev = crtc->dev;
5003        struct drm_i915_private *dev_priv = to_i915(dev);
5004        int level, max_level = ilk_wm_max_level(dev_priv);
5005        enum pipe pipe = intel_crtc->pipe;
5006
5007        for (level = 0; level <= max_level; level++) {
5008                skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5009                                   &wm->wm[level]);
5010        }
5011        skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5012
5013        skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
5014                            &ddb->plane[pipe][PLANE_CURSOR]);
5015}
5016
5017bool skl_wm_level_equals(const struct skl_wm_level *l1,
5018                         const struct skl_wm_level *l2)
5019{
5020        if (l1->plane_en != l2->plane_en)
5021                return false;
5022
5023        /* If both planes aren't enabled, the rest shouldn't matter */
5024        if (!l1->plane_en)
5025                return true;
5026
5027        return (l1->plane_res_l == l2->plane_res_l &&
5028                l1->plane_res_b == l2->plane_res_b);
5029}
5030
5031static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5032                                           const struct skl_ddb_entry *b)
5033{
5034        return a->start < b->end && b->start < a->end;
5035}
5036
5037bool skl_ddb_allocation_overlaps(struct drm_i915_private *dev_priv,
5038                                 const struct skl_ddb_entry **entries,
5039                                 const struct skl_ddb_entry *ddb,
5040                                 int ignore)
5041{
5042        enum pipe pipe;
5043
5044        for_each_pipe(dev_priv, pipe) {
5045                if (pipe != ignore && entries[pipe] &&
5046                    skl_ddb_entries_overlap(ddb, entries[pipe]))
5047                        return true;
5048        }
5049
5050        return false;
5051}
5052
5053static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
5054                              const struct skl_pipe_wm *old_pipe_wm,
5055                              struct skl_pipe_wm *pipe_wm, /* out */
5056                              struct skl_ddb_allocation *ddb, /* out */
5057                              bool *changed /* out */)
5058{
5059        struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
5060        int ret;
5061
5062        ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
5063        if (ret)
5064                return ret;
5065
5066        if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
5067                *changed = false;
5068        else
5069                *changed = true;
5070
5071        return 0;
5072}
5073
5074static uint32_t
5075pipes_modified(struct drm_atomic_state *state)
5076{
5077        struct drm_crtc *crtc;
5078        struct drm_crtc_state *cstate;
5079        uint32_t i, ret = 0;
5080
5081        for_each_new_crtc_in_state(state, crtc, cstate, i)
5082                ret |= drm_crtc_mask(crtc);
5083
5084        return ret;
5085}
5086
5087static int
5088skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
5089{
5090        struct drm_atomic_state *state = cstate->base.state;
5091        struct drm_device *dev = state->dev;
5092        struct drm_crtc *crtc = cstate->base.crtc;
5093        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5094        struct drm_i915_private *dev_priv = to_i915(dev);
5095        struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5096        struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5097        struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
5098        struct drm_plane_state *plane_state;
5099        struct drm_plane *plane;
5100        enum pipe pipe = intel_crtc->pipe;
5101
5102        drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
5103                enum plane_id plane_id = to_intel_plane(plane)->id;
5104
5105                if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
5106                                        &new_ddb->plane[pipe][plane_id]) &&
5107                    skl_ddb_entry_equal(&cur_ddb->uv_plane[pipe][plane_id],
5108                                        &new_ddb->uv_plane[pipe][plane_id]))
5109                        continue;
5110
5111                plane_state = drm_atomic_get_plane_state(state, plane);
5112                if (IS_ERR(plane_state))
5113                        return PTR_ERR(plane_state);
5114        }
5115
5116        return 0;
5117}
5118
5119static int
5120skl_compute_ddb(struct drm_atomic_state *state)
5121{
5122        const struct drm_i915_private *dev_priv = to_i915(state->dev);
5123        struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5124        struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
5125        struct intel_crtc *crtc;
5126        struct intel_crtc_state *cstate;
5127        int ret, i;
5128
5129        memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
5130
5131        for_each_new_intel_crtc_in_state(intel_state, crtc, cstate, i) {
5132                ret = skl_allocate_pipe_ddb(cstate, ddb);
5133                if (ret)
5134                        return ret;
5135
5136                ret = skl_ddb_add_affected_planes(cstate);
5137                if (ret)
5138                        return ret;
5139        }
5140
5141        return 0;
5142}
5143
5144static void
5145skl_copy_ddb_for_pipe(struct skl_ddb_values *dst,
5146                      struct skl_ddb_values *src,
5147                      enum pipe pipe)
5148{
5149        memcpy(dst->ddb.uv_plane[pipe], src->ddb.uv_plane[pipe],
5150               sizeof(dst->ddb.uv_plane[pipe]));
5151        memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
5152               sizeof(dst->ddb.plane[pipe]));
5153}
5154
5155static void
5156skl_print_wm_changes(const struct drm_atomic_state *state)
5157{
5158        const struct drm_device *dev = state->dev;
5159        const struct drm_i915_private *dev_priv = to_i915(dev);
5160        const struct intel_atomic_state *intel_state =
5161                to_intel_atomic_state(state);
5162        const struct drm_crtc *crtc;
5163        const struct drm_crtc_state *cstate;
5164        const struct intel_plane *intel_plane;
5165        const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
5166        const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5167        int i;
5168
5169        for_each_new_crtc_in_state(state, crtc, cstate, i) {
5170                const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5171                enum pipe pipe = intel_crtc->pipe;
5172
5173                for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
5174                        enum plane_id plane_id = intel_plane->id;
5175                        const struct skl_ddb_entry *old, *new;
5176
5177                        old = &old_ddb->plane[pipe][plane_id];
5178                        new = &new_ddb->plane[pipe][plane_id];
5179
5180                        if (skl_ddb_entry_equal(old, new))
5181                                continue;
5182
5183                        DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
5184                                         intel_plane->base.base.id,
5185                                         intel_plane->base.name,
5186                                         old->start, old->end,
5187                                         new->start, new->end);
5188                }
5189        }
5190}
5191
5192static int
5193skl_ddb_add_affected_pipes(struct drm_atomic_state *state, bool *changed)
5194{
5195        struct drm_device *dev = state->dev;
5196        const struct drm_i915_private *dev_priv = to_i915(dev);
5197        const struct drm_crtc *crtc;
5198        const struct drm_crtc_state *cstate;
5199        struct intel_crtc *intel_crtc;
5200        struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5201        uint32_t realloc_pipes = pipes_modified(state);
5202        int ret, i;
5203
5204        /*
5205         * When we distrust bios wm we always need to recompute to set the
5206         * expected DDB allocations for each CRTC.
5207         */
5208        if (dev_priv->wm.distrust_bios_wm)
5209                (*changed) = true;
5210
5211        /*
5212         * If this transaction isn't actually touching any CRTC's, don't
5213         * bother with watermark calculation.  Note that if we pass this
5214         * test, we're guaranteed to hold at least one CRTC state mutex,
5215         * which means we can safely use values like dev_priv->active_crtcs
5216         * since any racing commits that want to update them would need to
5217         * hold _all_ CRTC state mutexes.
5218         */
5219        for_each_new_crtc_in_state(state, crtc, cstate, i)
5220                (*changed) = true;
5221
5222        if (!*changed)
5223                return 0;
5224
5225        /*
5226         * If this is our first atomic update following hardware readout,
5227         * we can't trust the DDB that the BIOS programmed for us.  Let's
5228         * pretend that all pipes switched active status so that we'll
5229         * ensure a full DDB recompute.
5230         */
5231        if (dev_priv->wm.distrust_bios_wm) {
5232                ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5233                                       state->acquire_ctx);
5234                if (ret)
5235                        return ret;
5236
5237                intel_state->active_pipe_changes = ~0;
5238
5239                /*
5240                 * We usually only initialize intel_state->active_crtcs if we
5241                 * we're doing a modeset; make sure this field is always
5242                 * initialized during the sanitization process that happens
5243                 * on the first commit too.
5244                 */
5245                if (!intel_state->modeset)
5246                        intel_state->active_crtcs = dev_priv->active_crtcs;
5247        }
5248
5249        /*
5250         * If the modeset changes which CRTC's are active, we need to
5251         * recompute the DDB allocation for *all* active pipes, even
5252         * those that weren't otherwise being modified in any way by this
5253         * atomic commit.  Due to the shrinking of the per-pipe allocations
5254         * when new active CRTC's are added, it's possible for a pipe that
5255         * we were already using and aren't changing at all here to suddenly
5256         * become invalid if its DDB needs exceeds its new allocation.
5257         *
5258         * Note that if we wind up doing a full DDB recompute, we can't let
5259         * any other display updates race with this transaction, so we need
5260         * to grab the lock on *all* CRTC's.
5261         */
5262        if (intel_state->active_pipe_changes) {
5263                realloc_pipes = ~0;
5264                intel_state->wm_results.dirty_pipes = ~0;
5265        }
5266
5267        /*
5268         * We're not recomputing for the pipes not included in the commit, so
5269         * make sure we start with the current state.
5270         */
5271        for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
5272                struct intel_crtc_state *cstate;
5273
5274                cstate = intel_atomic_get_crtc_state(state, intel_crtc);
5275                if (IS_ERR(cstate))
5276                        return PTR_ERR(cstate);
5277        }
5278
5279        return 0;
5280}
5281
5282static int
5283skl_compute_wm(struct drm_atomic_state *state)
5284{
5285        struct drm_crtc *crtc;
5286        struct drm_crtc_state *cstate;
5287        struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5288        struct skl_ddb_values *results = &intel_state->wm_results;
5289        struct skl_pipe_wm *pipe_wm;
5290        bool changed = false;
5291        int ret, i;
5292
5293        /* Clear all dirty flags */
5294        results->dirty_pipes = 0;
5295
5296        ret = skl_ddb_add_affected_pipes(state, &changed);
5297        if (ret || !changed)
5298                return ret;
5299
5300        ret = skl_compute_ddb(state);
5301        if (ret)
5302                return ret;
5303
5304        /*
5305         * Calculate WM's for all pipes that are part of this transaction.
5306         * Note that the DDB allocation above may have added more CRTC's that
5307         * weren't otherwise being modified (and set bits in dirty_pipes) if
5308         * pipe allocations had to change.
5309         *
5310         * FIXME:  Now that we're doing this in the atomic check phase, we
5311         * should allow skl_update_pipe_wm() to return failure in cases where
5312         * no suitable watermark values can be found.
5313         */
5314        for_each_new_crtc_in_state(state, crtc, cstate, i) {
5315                struct intel_crtc_state *intel_cstate =
5316                        to_intel_crtc_state(cstate);
5317                const struct skl_pipe_wm *old_pipe_wm =
5318                        &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5319
5320                pipe_wm = &intel_cstate->wm.skl.optimal;
5321                ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
5322                                         &results->ddb, &changed);
5323                if (ret)
5324                        return ret;
5325
5326                if (changed)
5327                        results->dirty_pipes |= drm_crtc_mask(crtc);
5328
5329                if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
5330                        /* This pipe's WM's did not change */
5331                        continue;
5332
5333                intel_cstate->update_wm_pre = true;
5334        }
5335
5336        skl_print_wm_changes(state);
5337
5338        return 0;
5339}
5340
5341static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5342                                      struct intel_crtc_state *cstate)
5343{
5344        struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
5345        struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5346        struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5347        const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5348        enum pipe pipe = crtc->pipe;
5349        enum plane_id plane_id;
5350
5351        if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5352                return;
5353
5354        I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5355
5356        for_each_plane_id_on_crtc(crtc, plane_id) {
5357                if (plane_id != PLANE_CURSOR)
5358                        skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
5359                                           ddb, plane_id);
5360                else
5361                        skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
5362                                            ddb);
5363        }
5364}
5365
5366static void skl_initial_wm(struct intel_atomic_state *state,
5367                           struct intel_crtc_state *cstate)
5368{
5369        struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5370        struct drm_device *dev = intel_crtc->base.dev;
5371        struct drm_i915_private *dev_priv = to_i915(dev);
5372        struct skl_ddb_values *results = &state->wm_results;
5373        struct skl_ddb_values *hw_vals = &dev_priv->wm.skl_hw;
5374        enum pipe pipe = intel_crtc->pipe;
5375
5376        if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5377                return;
5378
5379        mutex_lock(&dev_priv->wm.wm_mutex);
5380
5381        if (cstate->base.active_changed)
5382                skl_atomic_update_crtc_wm(state, cstate);
5383
5384        skl_copy_ddb_for_pipe(hw_vals, results, pipe);
5385
5386        mutex_unlock(&dev_priv->wm.wm_mutex);
5387}
5388
5389static void ilk_compute_wm_config(struct drm_device *dev,
5390                                  struct intel_wm_config *config)
5391{
5392        struct intel_crtc *crtc;
5393
5394        /* Compute the currently _active_ config */
5395        for_each_intel_crtc(dev, crtc) {
5396                const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5397
5398                if (!wm->pipe_enabled)
5399                        continue;
5400
5401                config->sprites_enabled |= wm->sprites_enabled;
5402                config->sprites_scaled |= wm->sprites_scaled;
5403                config->num_pipes_active++;
5404        }
5405}
5406
5407static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5408{
5409        struct drm_device *dev = &dev_priv->drm;
5410        struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5411        struct ilk_wm_maximums max;
5412        struct intel_wm_config config = {};
5413        struct ilk_wm_values results = {};
5414        enum intel_ddb_partitioning partitioning;
5415
5416        ilk_compute_wm_config(dev, &config);
5417
5418        ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
5419        ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5420
5421        /* 5/6 split only in single pipe config on IVB+ */
5422        if (INTEL_GEN(dev_priv) >= 7 &&
5423            config.num_pipes_active == 1 && config.sprites_enabled) {
5424                ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
5425                ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5426
5427                best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5428        } else {
5429                best_lp_wm = &lp_wm_1_2;
5430        }
5431
5432        partitioning = (best_lp_wm == &lp_wm_1_2) ?
5433                       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5434
5435        ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5436
5437        ilk_write_wm_values(dev_priv, &results);
5438}
5439
5440static void ilk_initial_watermarks(struct intel_atomic_state *state,
5441                                   struct intel_crtc_state *cstate)
5442{
5443        struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5444        struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5445
5446        mutex_lock(&dev_priv->wm.wm_mutex);
5447        intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5448        ilk_program_watermarks(dev_priv);
5449        mutex_unlock(&dev_priv->wm.wm_mutex);
5450}
5451
5452static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5453                                    struct intel_crtc_state *cstate)
5454{
5455        struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5456        struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5457
5458        mutex_lock(&dev_priv->wm.wm_mutex);
5459        if (cstate->wm.need_postvbl_update) {
5460                intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5461                ilk_program_watermarks(dev_priv);
5462        }
5463        mutex_unlock(&dev_priv->wm.wm_mutex);
5464}
5465
5466static inline void skl_wm_level_from_reg_val(uint32_t val,
5467                                             struct skl_wm_level *level)
5468{
5469        level->plane_en = val & PLANE_WM_EN;
5470        level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5471        level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5472                PLANE_WM_LINES_MASK;
5473}
5474
5475void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
5476                              struct skl_pipe_wm *out)
5477{
5478        struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5479        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5480        enum pipe pipe = intel_crtc->pipe;
5481        int level, max_level;
5482        enum plane_id plane_id;
5483        uint32_t val;
5484
5485        max_level = ilk_wm_max_level(dev_priv);
5486
5487        for_each_plane_id_on_crtc(intel_crtc, plane_id) {
5488                struct skl_plane_wm *wm = &out->planes[plane_id];
5489
5490                for (level = 0; level <= max_level; level++) {
5491                        if (plane_id != PLANE_CURSOR)
5492                                val = I915_READ(PLANE_WM(pipe, plane_id, level));
5493                        else
5494                                val = I915_READ(CUR_WM(pipe, level));
5495
5496                        skl_wm_level_from_reg_val(val, &wm->wm[level]);
5497                }
5498
5499                if (plane_id != PLANE_CURSOR)
5500                        val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5501                else
5502                        val = I915_READ(CUR_WM_TRANS(pipe));
5503
5504                skl_wm_level_from_reg_val(val, &wm->trans_wm);
5505        }
5506
5507        if (!intel_crtc->active)
5508                return;
5509
5510        out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5511}
5512
5513void skl_wm_get_hw_state(struct drm_device *dev)
5514{
5515        struct drm_i915_private *dev_priv = to_i915(dev);
5516        struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5517        struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5518        struct drm_crtc *crtc;
5519        struct intel_crtc *intel_crtc;
5520        struct intel_crtc_state *cstate;
5521
5522        skl_ddb_get_hw_state(dev_priv, ddb);
5523        list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5524                intel_crtc = to_intel_crtc(crtc);
5525                cstate = to_intel_crtc_state(crtc->state);
5526
5527                skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
5528
5529                if (intel_crtc->active)
5530                        hw->dirty_pipes |= drm_crtc_mask(crtc);
5531        }
5532
5533        if (dev_priv->active_crtcs) {
5534                /* Fully recompute DDB on first atomic commit */
5535                dev_priv->wm.distrust_bios_wm = true;
5536        } else {
5537                /*
5538                 * Easy/common case; just sanitize DDB now if everything off
5539                 * Keep dbuf slice info intact
5540                 */
5541                memset(ddb->plane, 0, sizeof(ddb->plane));
5542                memset(ddb->uv_plane, 0, sizeof(ddb->uv_plane));
5543        }
5544}
5545
5546static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
5547{
5548        struct drm_device *dev = crtc->dev;
5549        struct drm_i915_private *dev_priv = to_i915(dev);
5550        struct ilk_wm_values *hw = &dev_priv->wm.hw;
5551        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5552        struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5553        struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5554        enum pipe pipe = intel_crtc->pipe;
5555        static const i915_reg_t wm0_pipe_reg[] = {
5556                [PIPE_A] = WM0_PIPEA_ILK,
5557                [PIPE_B] = WM0_PIPEB_ILK,
5558                [PIPE_C] = WM0_PIPEC_IVB,
5559        };
5560
5561        hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5562        if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5563                hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5564
5565        memset(active, 0, sizeof(*active));
5566
5567        active->pipe_enabled = intel_crtc->active;
5568
5569        if (active->pipe_enabled) {
5570                u32 tmp = hw->wm_pipe[pipe];
5571
5572                /*
5573                 * For active pipes LP0 watermark is marked as
5574                 * enabled, and LP1+ watermaks as disabled since
5575                 * we can't really reverse compute them in case
5576                 * multiple pipes are active.
5577                 */
5578                active->wm[0].enable = true;
5579                active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5580                active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5581                active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5582                active->linetime = hw->wm_linetime[pipe];
5583        } else {
5584                int level, max_level = ilk_wm_max_level(dev_priv);
5585
5586                /*
5587                 * For inactive pipes, all watermark levels
5588                 * should be marked as enabled but zeroed,
5589                 * which is what we'd compute them to.
5590                 */
5591                for (level = 0; level <= max_level; level++)
5592                        active->wm[level].enable = true;
5593        }
5594
5595        intel_crtc->wm.active.ilk = *active;
5596}
5597
5598#define _FW_WM(value, plane) \
5599        (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5600#define _FW_WM_VLV(value, plane) \
5601        (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5602
5603static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5604                               struct g4x_wm_values *wm)
5605{
5606        uint32_t tmp;
5607
5608        tmp = I915_READ(DSPFW1);
5609        wm->sr.plane = _FW_WM(tmp, SR);
5610        wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5611        wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5612        wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5613
5614        tmp = I915_READ(DSPFW2);
5615        wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5616        wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5617        wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5618        wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5619        wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5620        wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5621
5622        tmp = I915_READ(DSPFW3);
5623        wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5624        wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5625        wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5626        wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5627}
5628
5629static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5630                               struct vlv_wm_values *wm)
5631{
5632        enum pipe pipe;
5633        uint32_t tmp;
5634
5635        for_each_pipe(dev_priv, pipe) {
5636                tmp = I915_READ(VLV_DDL(pipe));
5637
5638                wm->ddl[pipe].plane[PLANE_PRIMARY] =
5639                        (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5640                wm->ddl[pipe].plane[PLANE_CURSOR] =
5641                        (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5642                wm->ddl[pipe].plane[PLANE_SPRITE0] =
5643                        (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5644                wm->ddl[pipe].plane[PLANE_SPRITE1] =
5645                        (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5646        }
5647
5648        tmp = I915_READ(DSPFW1);
5649        wm->sr.plane = _FW_WM(tmp, SR);
5650        wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5651        wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5652        wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5653
5654        tmp = I915_READ(DSPFW2);
5655        wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5656        wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5657        wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5658
5659        tmp = I915_READ(DSPFW3);
5660        wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5661
5662        if (IS_CHERRYVIEW(dev_priv)) {
5663                tmp = I915_READ(DSPFW7_CHV);
5664                wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5665                wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5666
5667                tmp = I915_READ(DSPFW8_CHV);
5668                wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5669                wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5670
5671                tmp = I915_READ(DSPFW9_CHV);
5672                wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5673                wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5674
5675                tmp = I915_READ(DSPHOWM);
5676                wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5677                wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5678                wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5679                wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5680                wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5681                wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5682                wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5683                wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5684                wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5685                wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5686        } else {
5687                tmp = I915_READ(DSPFW7);
5688                wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5689                wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5690
5691                tmp = I915_READ(DSPHOWM);
5692                wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5693                wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5694                wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5695                wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5696                wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5697                wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5698                wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5699        }
5700}
5701
5702#undef _FW_WM
5703#undef _FW_WM_VLV
5704
5705void g4x_wm_get_hw_state(struct drm_device *dev)
5706{
5707        struct drm_i915_private *dev_priv = to_i915(dev);
5708        struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5709        struct intel_crtc *crtc;
5710
5711        g4x_read_wm_values(dev_priv, wm);
5712
5713        wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5714
5715        for_each_intel_crtc(dev, crtc) {
5716                struct intel_crtc_state *crtc_state =
5717                        to_intel_crtc_state(crtc->base.state);
5718                struct g4x_wm_state *active = &crtc->wm.active.g4x;
5719                struct g4x_pipe_wm *raw;
5720                enum pipe pipe = crtc->pipe;
5721                enum plane_id plane_id;
5722                int level, max_level;
5723
5724                active->cxsr = wm->cxsr;
5725                active->hpll_en = wm->hpll_en;
5726                active->fbc_en = wm->fbc_en;
5727
5728                active->sr = wm->sr;
5729                active->hpll = wm->hpll;
5730
5731                for_each_plane_id_on_crtc(crtc, plane_id) {
5732                        active->wm.plane[plane_id] =
5733                                wm->pipe[pipe].plane[plane_id];
5734                }
5735
5736                if (wm->cxsr && wm->hpll_en)
5737                        max_level = G4X_WM_LEVEL_HPLL;
5738                else if (wm->cxsr)
5739                        max_level = G4X_WM_LEVEL_SR;
5740                else
5741                        max_level = G4X_WM_LEVEL_NORMAL;
5742
5743                level = G4X_WM_LEVEL_NORMAL;
5744                raw = &crtc_state->wm.g4x.raw[level];
5745                for_each_plane_id_on_crtc(crtc, plane_id)
5746                        raw->plane[plane_id] = active->wm.plane[plane_id];
5747
5748                if (++level > max_level)
5749                        goto out;
5750
5751                raw = &crtc_state->wm.g4x.raw[level];
5752                raw->plane[PLANE_PRIMARY] = active->sr.plane;
5753                raw->plane[PLANE_CURSOR] = active->sr.cursor;
5754                raw->plane[PLANE_SPRITE0] = 0;
5755                raw->fbc = active->sr.fbc;
5756
5757                if (++level > max_level)
5758                        goto out;
5759
5760                raw = &crtc_state->wm.g4x.raw[level];
5761                raw->plane[PLANE_PRIMARY] = active->hpll.plane;
5762                raw->plane[PLANE_CURSOR] = active->hpll.cursor;
5763                raw->plane[PLANE_SPRITE0] = 0;
5764                raw->fbc = active->hpll.fbc;
5765
5766        out:
5767                for_each_plane_id_on_crtc(crtc, plane_id)
5768                        g4x_raw_plane_wm_set(crtc_state, level,
5769                                             plane_id, USHRT_MAX);
5770                g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
5771
5772                crtc_state->wm.g4x.optimal = *active;
5773                crtc_state->wm.g4x.intermediate = *active;
5774
5775                DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
5776                              pipe_name(pipe),
5777                              wm->pipe[pipe].plane[PLANE_PRIMARY],
5778                              wm->pipe[pipe].plane[PLANE_CURSOR],
5779                              wm->pipe[pipe].plane[PLANE_SPRITE0]);
5780        }
5781
5782        DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
5783                      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
5784        DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
5785                      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
5786        DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
5787                      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
5788}
5789
5790void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
5791{
5792        struct intel_plane *plane;
5793        struct intel_crtc *crtc;
5794
5795        mutex_lock(&dev_priv->wm.wm_mutex);
5796
5797        for_each_intel_plane(&dev_priv->drm, plane) {
5798                struct intel_crtc *crtc =
5799                        intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5800                struct intel_crtc_state *crtc_state =
5801                        to_intel_crtc_state(crtc->base.state);
5802                struct intel_plane_state *plane_state =
5803                        to_intel_plane_state(plane->base.state);
5804                struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
5805                enum plane_id plane_id = plane->id;
5806                int level;
5807
5808                if (plane_state->base.visible)
5809                        continue;
5810
5811                for (level = 0; level < 3; level++) {
5812                        struct g4x_pipe_wm *raw =
5813                                &crtc_state->wm.g4x.raw[level];
5814
5815                        raw->plane[plane_id] = 0;
5816                        wm_state->wm.plane[plane_id] = 0;
5817                }
5818
5819                if (plane_id == PLANE_PRIMARY) {
5820                        for (level = 0; level < 3; level++) {
5821                                struct g4x_pipe_wm *raw =
5822                                        &crtc_state->wm.g4x.raw[level];
5823                                raw->fbc = 0;
5824                        }
5825
5826                        wm_state->sr.fbc = 0;
5827                        wm_state->hpll.fbc = 0;
5828                        wm_state->fbc_en = false;
5829                }
5830        }
5831
5832        for_each_intel_crtc(&dev_priv->drm, crtc) {
5833                struct intel_crtc_state *crtc_state =
5834                        to_intel_crtc_state(crtc->base.state);
5835
5836                crtc_state->wm.g4x.intermediate =
5837                        crtc_state->wm.g4x.optimal;
5838                crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
5839        }
5840
5841        g4x_program_watermarks(dev_priv);
5842
5843        mutex_unlock(&dev_priv->wm.wm_mutex);
5844}
5845
5846void vlv_wm_get_hw_state(struct drm_device *dev)
5847{
5848        struct drm_i915_private *dev_priv = to_i915(dev);
5849        struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5850        struct intel_crtc *crtc;
5851        u32 val;
5852
5853        vlv_read_wm_values(dev_priv, wm);
5854
5855        wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
5856        wm->level = VLV_WM_LEVEL_PM2;
5857
5858        if (IS_CHERRYVIEW(dev_priv)) {
5859                mutex_lock(&dev_priv->pcu_lock);
5860
5861                val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5862                if (val & DSP_MAXFIFO_PM5_ENABLE)
5863                        wm->level = VLV_WM_LEVEL_PM5;
5864
5865                /*
5866                 * If DDR DVFS is disabled in the BIOS, Punit
5867                 * will never ack the request. So if that happens
5868                 * assume we don't have to enable/disable DDR DVFS
5869                 * dynamically. To test that just set the REQ_ACK
5870                 * bit to poke the Punit, but don't change the
5871                 * HIGH/LOW bits so that we don't actually change
5872                 * the current state.
5873                 */
5874                val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5875                val |= FORCE_DDR_FREQ_REQ_ACK;
5876                vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
5877
5878                if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
5879                              FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
5880                        DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
5881                                      "assuming DDR DVFS is disabled\n");
5882                        dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
5883                } else {
5884                        val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5885                        if ((val & FORCE_DDR_HIGH_FREQ) == 0)
5886                                wm->level = VLV_WM_LEVEL_DDR_DVFS;
5887                }
5888
5889                mutex_unlock(&dev_priv->pcu_lock);
5890        }
5891
5892        for_each_intel_crtc(dev, crtc) {
5893                struct intel_crtc_state *crtc_state =
5894                        to_intel_crtc_state(crtc->base.state);
5895                struct vlv_wm_state *active = &crtc->wm.active.vlv;
5896                const struct vlv_fifo_state *fifo_state =
5897                        &crtc_state->wm.vlv.fifo_state;
5898                enum pipe pipe = crtc->pipe;
5899                enum plane_id plane_id;
5900                int level;
5901
5902                vlv_get_fifo_size(crtc_state);
5903
5904                active->num_levels = wm->level + 1;
5905                active->cxsr = wm->cxsr;
5906
5907                for (level = 0; level < active->num_levels; level++) {
5908                        struct g4x_pipe_wm *raw =
5909                                &crtc_state->wm.vlv.raw[level];
5910
5911                        active->sr[level].plane = wm->sr.plane;
5912                        active->sr[level].cursor = wm->sr.cursor;
5913
5914                        for_each_plane_id_on_crtc(crtc, plane_id) {
5915                                active->wm[level].plane[plane_id] =
5916                                        wm->pipe[pipe].plane[plane_id];
5917
5918                                raw->plane[plane_id] =
5919                                        vlv_invert_wm_value(active->wm[level].plane[plane_id],
5920                                                            fifo_state->plane[plane_id]);
5921                        }
5922                }
5923
5924                for_each_plane_id_on_crtc(crtc, plane_id)
5925                        vlv_raw_plane_wm_set(crtc_state, level,
5926                                             plane_id, USHRT_MAX);
5927                vlv_invalidate_wms(crtc, active, level);
5928
5929                crtc_state->wm.vlv.optimal = *active;
5930                crtc_state->wm.vlv.intermediate = *active;
5931
5932                DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5933                              pipe_name(pipe),
5934                              wm->pipe[pipe].plane[PLANE_PRIMARY],
5935                              wm->pipe[pipe].plane[PLANE_CURSOR],
5936                              wm->pipe[pipe].plane[PLANE_SPRITE0],
5937                              wm->pipe[pipe].plane[PLANE_SPRITE1]);
5938        }
5939
5940        DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
5941                      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
5942}
5943
5944void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
5945{
5946        struct intel_plane *plane;
5947        struct intel_crtc *crtc;
5948
5949        mutex_lock(&dev_priv->wm.wm_mutex);
5950
5951        for_each_intel_plane(&dev_priv->drm, plane) {
5952                struct intel_crtc *crtc =
5953                        intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5954                struct intel_crtc_state *crtc_state =
5955                        to_intel_crtc_state(crtc->base.state);
5956                struct intel_plane_state *plane_state =
5957                        to_intel_plane_state(plane->base.state);
5958                struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
5959                const struct vlv_fifo_state *fifo_state =
5960                        &crtc_state->wm.vlv.fifo_state;
5961                enum plane_id plane_id = plane->id;
5962                int level;
5963
5964                if (plane_state->base.visible)
5965                        continue;
5966
5967                for (level = 0; level < wm_state->num_levels; level++) {
5968                        struct g4x_pipe_wm *raw =
5969                                &crtc_state->wm.vlv.raw[level];
5970
5971                        raw->plane[plane_id] = 0;
5972
5973                        wm_state->wm[level].plane[plane_id] =
5974                                vlv_invert_wm_value(raw->plane[plane_id],
5975                                                    fifo_state->plane[plane_id]);
5976                }
5977        }
5978
5979        for_each_intel_crtc(&dev_priv->drm, crtc) {
5980                struct intel_crtc_state *crtc_state =
5981                        to_intel_crtc_state(crtc->base.state);
5982
5983                crtc_state->wm.vlv.intermediate =
5984                        crtc_state->wm.vlv.optimal;
5985                crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
5986        }
5987
5988        vlv_program_watermarks(dev_priv);
5989
5990        mutex_unlock(&dev_priv->wm.wm_mutex);
5991}
5992
5993/*
5994 * FIXME should probably kill this and improve
5995 * the real watermark readout/sanitation instead
5996 */
5997static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
5998{
5999        I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6000        I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6001        I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6002
6003        /*
6004         * Don't touch WM1S_LP_EN here.
6005         * Doing so could cause underruns.
6006         */
6007}
6008
6009void ilk_wm_get_hw_state(struct drm_device *dev)
6010{
6011        struct drm_i915_private *dev_priv = to_i915(dev);
6012        struct ilk_wm_values *hw = &dev_priv->wm.hw;
6013        struct drm_crtc *crtc;
6014
6015        ilk_init_lp_watermarks(dev_priv);
6016
6017        for_each_crtc(dev, crtc)
6018                ilk_pipe_wm_get_hw_state(crtc);
6019
6020        hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6021        hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6022        hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6023
6024        hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6025        if (INTEL_GEN(dev_priv) >= 7) {
6026                hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6027                hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6028        }
6029
6030        if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6031                hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6032                        INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6033        else if (IS_IVYBRIDGE(dev_priv))
6034                hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6035                        INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6036
6037        hw->enable_fbc_wm =
6038                !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6039}
6040
6041/**
6042 * intel_update_watermarks - update FIFO watermark values based on current modes
6043 * @crtc: the #intel_crtc on which to compute the WM
6044 *
6045 * Calculate watermark values for the various WM regs based on current mode
6046 * and plane configuration.
6047 *
6048 * There are several cases to deal with here:
6049 *   - normal (i.e. non-self-refresh)
6050 *   - self-refresh (SR) mode
6051 *   - lines are large relative to FIFO size (buffer can hold up to 2)
6052 *   - lines are small relative to FIFO size (buffer can hold more than 2
6053 *     lines), so need to account for TLB latency
6054 *
6055 *   The normal calculation is:
6056 *     watermark = dotclock * bytes per pixel * latency
6057 *   where latency is platform & configuration dependent (we assume pessimal
6058 *   values here).
6059 *
6060 *   The SR calculation is:
6061 *     watermark = (trunc(latency/line time)+1) * surface width *
6062 *       bytes per pixel
6063 *   where
6064 *     line time = htotal / dotclock
6065 *     surface width = hdisplay for normal plane and 64 for cursor
6066 *   and latency is assumed to be high, as above.
6067 *
6068 * The final value programmed to the register should always be rounded up,
6069 * and include an extra 2 entries to account for clock crossings.
6070 *
6071 * We don't use the sprite, so we can ignore that.  And on Crestline we have
6072 * to set the non-SR watermarks to 8.
6073 */
6074void intel_update_watermarks(struct intel_crtc *crtc)
6075{
6076        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6077
6078        if (dev_priv->display.update_wm)
6079                dev_priv->display.update_wm(crtc);
6080}
6081
6082void intel_enable_ipc(struct drm_i915_private *dev_priv)
6083{
6084        u32 val;
6085
6086        /* Display WA #0477 WaDisableIPC: skl */
6087        if (IS_SKYLAKE(dev_priv)) {
6088                dev_priv->ipc_enabled = false;
6089                return;
6090        }
6091
6092        val = I915_READ(DISP_ARB_CTL2);
6093
6094        if (dev_priv->ipc_enabled)
6095                val |= DISP_IPC_ENABLE;
6096        else
6097                val &= ~DISP_IPC_ENABLE;
6098
6099        I915_WRITE(DISP_ARB_CTL2, val);
6100}
6101
6102void intel_init_ipc(struct drm_i915_private *dev_priv)
6103{
6104        dev_priv->ipc_enabled = false;
6105        if (!HAS_IPC(dev_priv))
6106                return;
6107
6108        dev_priv->ipc_enabled = true;
6109        intel_enable_ipc(dev_priv);
6110}
6111
6112/*
6113 * Lock protecting IPS related data structures
6114 */
6115DEFINE_SPINLOCK(mchdev_lock);
6116
6117/* Global for IPS driver to get at the current i915 device. Protected by
6118 * mchdev_lock. */
6119static struct drm_i915_private *i915_mch_dev;
6120
6121bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
6122{
6123        u16 rgvswctl;
6124
6125        lockdep_assert_held(&mchdev_lock);
6126
6127        rgvswctl = I915_READ16(MEMSWCTL);
6128        if (rgvswctl & MEMCTL_CMD_STS) {
6129                DRM_DEBUG("gpu busy, RCS change rejected\n");
6130                return false; /* still busy with another command */
6131        }
6132
6133        rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6134                (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6135        I915_WRITE16(MEMSWCTL, rgvswctl);
6136        POSTING_READ16(MEMSWCTL);
6137
6138        rgvswctl |= MEMCTL_CMD_STS;
6139        I915_WRITE16(MEMSWCTL, rgvswctl);
6140
6141        return true;
6142}
6143
6144static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6145{
6146        u32 rgvmodectl;
6147        u8 fmax, fmin, fstart, vstart;
6148
6149        spin_lock_irq(&mchdev_lock);
6150
6151        rgvmodectl = I915_READ(MEMMODECTL);
6152
6153        /* Enable temp reporting */
6154        I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6155        I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
6156
6157        /* 100ms RC evaluation intervals */
6158        I915_WRITE(RCUPEI, 100000);
6159        I915_WRITE(RCDNEI, 100000);
6160
6161        /* Set max/min thresholds to 90ms and 80ms respectively */
6162        I915_WRITE(RCBMAXAVG, 90000);
6163        I915_WRITE(RCBMINAVG, 80000);
6164
6165        I915_WRITE(MEMIHYST, 1);
6166
6167        /* Set up min, max, and cur for interrupt handling */
6168        fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6169        fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6170        fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6171                MEMMODE_FSTART_SHIFT;
6172
6173        vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
6174                PXVFREQ_PX_SHIFT;
6175
6176        dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
6177        dev_priv->ips.fstart = fstart;
6178
6179        dev_priv->ips.max_delay = fstart;
6180        dev_priv->ips.min_delay = fmin;
6181        dev_priv->ips.cur_delay = fstart;
6182
6183        DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6184                         fmax, fmin, fstart);
6185
6186        I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6187
6188        /*
6189         * Interrupts will be enabled in ironlake_irq_postinstall
6190         */
6191
6192        I915_WRITE(VIDSTART, vstart);
6193        POSTING_READ(VIDSTART);
6194
6195        rgvmodectl |= MEMMODE_SWMODE_EN;
6196        I915_WRITE(MEMMODECTL, rgvmodectl);
6197
6198        if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6199                DRM_ERROR("stuck trying to change perf mode\n");
6200        mdelay(1);
6201
6202        ironlake_set_drps(dev_priv, fstart);
6203
6204        dev_priv->ips.last_count1 = I915_READ(DMIEC) +
6205                I915_READ(DDREC) + I915_READ(CSIEC);
6206        dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6207        dev_priv->ips.last_count2 = I915_READ(GFXEC);
6208        dev_priv->ips.last_time2 = ktime_get_raw_ns();
6209
6210        spin_unlock_irq(&mchdev_lock);
6211}
6212
6213static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6214{
6215        u16 rgvswctl;
6216
6217        spin_lock_irq(&mchdev_lock);
6218
6219        rgvswctl = I915_READ16(MEMSWCTL);
6220
6221        /* Ack interrupts, disable EFC interrupt */
6222        I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
6223        I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
6224        I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
6225        I915_WRITE(DEIIR, DE_PCU_EVENT);
6226        I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
6227
6228        /* Go back to the starting frequency */
6229        ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6230        mdelay(1);
6231        rgvswctl |= MEMCTL_CMD_STS;
6232        I915_WRITE(MEMSWCTL, rgvswctl);
6233        mdelay(1);
6234
6235        spin_unlock_irq(&mchdev_lock);
6236}
6237
6238/* There's a funny hw issue where the hw returns all 0 when reading from
6239 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
6240 * ourselves, instead of doing a rmw cycle (which might result in us clearing
6241 * all limits and the gpu stuck at whatever frequency it is at atm).
6242 */
6243static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6244{
6245        struct intel_rps *rps = &dev_priv->gt_pm.rps;
6246        u32 limits;
6247
6248        /* Only set the down limit when we've reached the lowest level to avoid
6249         * getting more interrupts, otherwise leave this clear. This prevents a
6250         * race in the hw when coming out of rc6: There's a tiny window where
6251         * the hw runs at the minimal clock before selecting the desired
6252         * frequency, if the down threshold expires in that window we will not
6253         * receive a down interrupt. */
6254        if (INTEL_GEN(dev_priv) >= 9) {
6255                limits = (rps->max_freq_softlimit) << 23;
6256                if (val <= rps->min_freq_softlimit)
6257                        limits |= (rps->min_freq_softlimit) << 14;
6258        } else {
6259                limits = rps->max_freq_softlimit << 24;
6260                if (val <= rps->min_freq_softlimit)
6261                        limits |= rps->min_freq_softlimit << 16;
6262        }
6263
6264        return limits;
6265}
6266
6267static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6268{
6269        struct intel_rps *rps = &dev_priv->gt_pm.rps;
6270        u32 threshold_up = 0, threshold_down = 0; /* in % */
6271        u32 ei_up = 0, ei_down = 0;
6272
6273        lockdep_assert_held(&rps->power.mutex);
6274
6275        if (new_power == rps->power.mode)
6276                return;
6277
6278        /* Note the units here are not exactly 1us, but 1280ns. */
6279        switch (new_power) {
6280        case LOW_POWER:
6281                /* Upclock if more than 95% busy over 16ms */
6282                ei_up = 16000;
6283                threshold_up = 95;
6284
6285                /* Downclock if less than 85% busy over 32ms */
6286                ei_down = 32000;
6287                threshold_down = 85;
6288                break;
6289
6290        case BETWEEN:
6291                /* Upclock if more than 90% busy over 13ms */
6292                ei_up = 13000;
6293                threshold_up = 90;
6294
6295                /* Downclock if less than 75% busy over 32ms */
6296                ei_down = 32000;
6297                threshold_down = 75;
6298                break;
6299
6300        case HIGH_POWER:
6301                /* Upclock if more than 85% busy over 10ms */
6302                ei_up = 10000;
6303                threshold_up = 85;
6304
6305                /* Downclock if less than 60% busy over 32ms */
6306                ei_down = 32000;
6307                threshold_down = 60;
6308                break;
6309        }
6310
6311        /* When byt can survive without system hang with dynamic
6312         * sw freq adjustments, this restriction can be lifted.
6313         */
6314        if (IS_VALLEYVIEW(dev_priv))
6315                goto skip_hw_write;
6316
6317        I915_WRITE(GEN6_RP_UP_EI,
6318                   GT_INTERVAL_FROM_US(dev_priv, ei_up));
6319        I915_WRITE(GEN6_RP_UP_THRESHOLD,
6320                   GT_INTERVAL_FROM_US(dev_priv,
6321                                       ei_up * threshold_up / 100));
6322
6323        I915_WRITE(GEN6_RP_DOWN_EI,
6324                   GT_INTERVAL_FROM_US(dev_priv, ei_down));
6325        I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6326                   GT_INTERVAL_FROM_US(dev_priv,
6327                                       ei_down * threshold_down / 100));
6328
6329        I915_WRITE(GEN6_RP_CONTROL,
6330                   GEN6_RP_MEDIA_TURBO |
6331                   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6332                   GEN6_RP_MEDIA_IS_GFX |
6333                   GEN6_RP_ENABLE |
6334                   GEN6_RP_UP_BUSY_AVG |
6335                   GEN6_RP_DOWN_IDLE_AVG);
6336
6337skip_hw_write:
6338        rps->power.mode = new_power;
6339        rps->power.up_threshold = threshold_up;
6340        rps->power.down_threshold = threshold_down;
6341}
6342
6343static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
6344{
6345        struct intel_rps *rps = &dev_priv->gt_pm.rps;
6346        int new_power;
6347
6348        new_power = rps->power.mode;
6349        switch (rps->power.mode) {
6350        case LOW_POWER:
6351                if (val > rps->efficient_freq + 1 &&
6352                    val > rps->cur_freq)
6353                        new_power = BETWEEN;
6354                break;
6355
6356        case BETWEEN:
6357                if (val <= rps->efficient_freq &&
6358                    val < rps->cur_freq)
6359                        new_power = LOW_POWER;
6360                else if (val >= rps->rp0_freq &&
6361                         val > rps->cur_freq)
6362                        new_power = HIGH_POWER;
6363                break;
6364
6365        case HIGH_POWER:
6366                if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
6367                    val < rps->cur_freq)
6368                        new_power = BETWEEN;
6369                break;
6370        }
6371        /* Max/min bins are special */
6372        if (val <= rps->min_freq_softlimit)
6373                new_power = LOW_POWER;
6374        if (val >= rps->max_freq_softlimit)
6375                new_power = HIGH_POWER;
6376
6377        mutex_lock(&rps->power.mutex);
6378        if (rps->power.interactive)
6379                new_power = HIGH_POWER;
6380        rps_set_power(dev_priv, new_power);
6381        mutex_unlock(&rps->power.mutex);
6382        rps->last_adj = 0;
6383}
6384
6385void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
6386{
6387        struct intel_rps *rps = &i915->gt_pm.rps;
6388
6389        if (INTEL_GEN(i915) < 6)
6390                return;
6391
6392        mutex_lock(&rps->power.mutex);
6393        if (interactive) {
6394                if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
6395                        rps_set_power(i915, HIGH_POWER);
6396        } else {
6397                GEM_BUG_ON(!rps->power.interactive);
6398                rps->power.interactive--;
6399        }
6400        mutex_unlock(&rps->power.mutex);
6401}
6402
6403static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
6404{
6405        struct intel_rps *rps = &dev_priv->gt_pm.rps;
6406        u32 mask = 0;
6407
6408        /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6409        if (val > rps->min_freq_softlimit)
6410                mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6411        if (val < rps->max_freq_softlimit)
6412                mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6413
6414        mask &= dev_priv->pm_rps_events;
6415
6416        return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6417}
6418
6419/* gen6_set_rps is called to update the frequency request, but should also be
6420 * called when the range (min_delay and max_delay) is modified so that we can
6421 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6422static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6423{
6424        struct intel_rps *rps = &dev_priv->gt_pm.rps;
6425
6426        /* min/max delay may still have been modified so be sure to
6427         * write the limits value.
6428         */
6429        if (val != rps->cur_freq) {
6430                gen6_set_rps_thresholds(dev_priv, val);
6431
6432                if (INTEL_GEN(dev_priv) >= 9)
6433                        I915_WRITE(GEN6_RPNSWREQ,
6434                                   GEN9_FREQUENCY(val));
6435                else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6436                        I915_WRITE(GEN6_RPNSWREQ,
6437                                   HSW_FREQUENCY(val));
6438                else
6439                        I915_WRITE(GEN6_RPNSWREQ,
6440                                   GEN6_FREQUENCY(val) |
6441                                   GEN6_OFFSET(0) |
6442                                   GEN6_AGGRESSIVE_TURBO);
6443        }
6444
6445        /* Make sure we continue to get interrupts
6446         * until we hit the minimum or maximum frequencies.
6447         */
6448        I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6449        I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6450
6451        rps->cur_freq = val;
6452        trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6453
6454        return 0;
6455}
6456
6457static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6458{
6459        int err;
6460
6461        if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6462                      "Odd GPU freq value\n"))
6463                val &= ~1;
6464
6465        I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6466
6467        if (val != dev_priv->gt_pm.rps.cur_freq) {
6468                err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6469                if (err)
6470                        return err;
6471
6472                gen6_set_rps_thresholds(dev_priv, val);
6473        }
6474
6475        dev_priv->gt_pm.rps.cur_freq = val;
6476        trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6477
6478        return 0;
6479}
6480
6481/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6482 *
6483 * * If Gfx is Idle, then
6484 * 1. Forcewake Media well.
6485 * 2. Request idle freq.
6486 * 3. Release Forcewake of Media well.
6487*/
6488static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6489{
6490        struct intel_rps *rps = &dev_priv->gt_pm.rps;
6491        u32 val = rps->idle_freq;
6492        int err;
6493
6494        if (rps->cur_freq <= val)
6495                return;
6496
6497        /* The punit delays the write of the frequency and voltage until it
6498         * determines the GPU is awake. During normal usage we don't want to
6499         * waste power changing the frequency if the GPU is sleeping (rc6).
6500         * However, the GPU and driver is now idle and we do not want to delay
6501         * switching to minimum voltage (reducing power whilst idle) as we do
6502         * not expect to be woken in the near future and so must flush the
6503         * change by waking the device.
6504         *
6505         * We choose to take the media powerwell (either would do to trick the
6506         * punit into committing the voltage change) as that takes a lot less
6507         * power than the render powerwell.
6508         */
6509        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6510        err = valleyview_set_rps(dev_priv, val);
6511        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6512
6513        if (err)
6514                DRM_ERROR("Failed to set RPS for idle\n");
6515}
6516
6517void gen6_rps_busy(struct drm_i915_private *dev_priv)
6518{
6519        struct intel_rps *rps = &dev_priv->gt_pm.rps;
6520
6521        mutex_lock(&dev_priv->pcu_lock);
6522        if (rps->enabled) {
6523                u8 freq;
6524
6525                if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6526                        gen6_rps_reset_ei(dev_priv);
6527                I915_WRITE(GEN6_PMINTRMSK,
6528                           gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6529
6530                gen6_enable_rps_interrupts(dev_priv);
6531
6532                /* Use the user's desired frequency as a guide, but for better
6533                 * performance, jump directly to RPe as our starting frequency.
6534                 */
6535                freq = max(rps->cur_freq,
6536                           rps->efficient_freq);
6537
6538                if (intel_set_rps(dev_priv,
6539                                  clamp(freq,
6540                                        rps->min_freq_softlimit,
6541                                        rps->max_freq_softlimit)))
6542                        DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6543        }
6544        mutex_unlock(&dev_priv->pcu_lock);
6545}
6546
6547void gen6_rps_idle(struct drm_i915_private *dev_priv)
6548{
6549        struct intel_rps *rps = &dev_priv->gt_pm.rps;
6550
6551        /* Flush our bottom-half so that it does not race with us
6552         * setting the idle frequency and so that it is bounded by
6553         * our rpm wakeref. And then disable the interrupts to stop any
6554         * futher RPS reclocking whilst we are asleep.
6555         */
6556        gen6_disable_rps_interrupts(dev_priv);
6557
6558        mutex_lock(&dev_priv->pcu_lock);
6559        if (rps->enabled) {
6560                if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6561                        vlv_set_rps_idle(dev_priv);
6562                else
6563                        gen6_set_rps(dev_priv, rps->idle_freq);
6564                rps->last_adj = 0;
6565                I915_WRITE(GEN6_PMINTRMSK,
6566                           gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6567        }
6568        mutex_unlock(&dev_priv->pcu_lock);
6569}
6570
6571void gen6_rps_boost(struct i915_request *rq,
6572                    struct intel_rps_client *rps_client)
6573{
6574        struct intel_rps *rps = &rq->i915->gt_pm.rps;
6575        unsigned long flags;
6576        bool boost;
6577
6578        /* This is intentionally racy! We peek at the state here, then
6579         * validate inside the RPS worker.
6580         */
6581        if (!rps->enabled)
6582                return;
6583
6584        if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
6585                return;
6586
6587        /* Serializes with i915_request_retire() */
6588        boost = false;
6589        spin_lock_irqsave(&rq->lock, flags);
6590        if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
6591                boost = !atomic_fetch_inc(&rps->num_waiters);
6592                rq->waitboost = true;
6593        }
6594        spin_unlock_irqrestore(&rq->lock, flags);
6595        if (!boost)
6596                return;
6597
6598        if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
6599                schedule_work(&rps->work);
6600
6601        atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6602}
6603
6604int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6605{
6606        struct intel_rps *rps = &dev_priv->gt_pm.rps;
6607        int err;
6608
6609        lockdep_assert_held(&dev_priv->pcu_lock);
6610        GEM_BUG_ON(val > rps->max_freq);
6611        GEM_BUG_ON(val < rps->min_freq);
6612
6613        if (!rps->enabled) {
6614                rps->cur_freq = val;
6615                return 0;
6616        }
6617
6618        if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6619                err = valleyview_set_rps(dev_priv, val);
6620        else
6621                err = gen6_set_rps(dev_priv, val);
6622
6623        return err;
6624}
6625
6626static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6627{
6628        I915_WRITE(GEN6_RC_CONTROL, 0);
6629        I915_WRITE(GEN9_PG_ENABLE, 0);
6630}
6631
6632static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6633{
6634        I915_WRITE(GEN6_RP_CONTROL, 0);
6635}
6636
6637static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6638{
6639        I915_WRITE(GEN6_RC_CONTROL, 0);
6640}
6641
6642static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6643{
6644        I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6645        I915_WRITE(GEN6_RP_CONTROL, 0);
6646}
6647
6648static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6649{
6650        I915_WRITE(GEN6_RC_CONTROL, 0);
6651}
6652
6653static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6654{
6655        I915_WRITE(GEN6_RP_CONTROL, 0);
6656}
6657
6658static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6659{
6660        /* We're doing forcewake before Disabling RC6,
6661         * This what the BIOS expects when going into suspend */
6662        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6663
6664        I915_WRITE(GEN6_RC_CONTROL, 0);
6665
6666        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6667}
6668
6669static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6670{
6671        I915_WRITE(GEN6_RP_CONTROL, 0);
6672}
6673
6674static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6675{
6676        bool enable_rc6 = true;
6677        unsigned long rc6_ctx_base;
6678        u32 rc_ctl;
6679        int rc_sw_target;
6680
6681        rc_ctl = I915_READ(GEN6_RC_CONTROL);
6682        rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6683                       RC_SW_TARGET_STATE_SHIFT;
6684        DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6685                         "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6686                         onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6687                         onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6688                         rc_sw_target);
6689
6690        if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6691                DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6692                enable_rc6 = false;
6693        }
6694
6695        /*
6696         * The exact context size is not known for BXT, so assume a page size
6697         * for this check.
6698         */
6699        rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6700        if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
6701              (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6702                DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6703                enable_rc6 = false;
6704        }
6705
6706        if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6707              ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6708              ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
6709              ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6710                DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6711                enable_rc6 = false;
6712        }
6713
6714        if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
6715            !I915_READ(GEN8_PUSHBUS_ENABLE) ||
6716            !I915_READ(GEN8_PUSHBUS_SHIFT)) {
6717                DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
6718                enable_rc6 = false;
6719        }
6720
6721        if (!I915_READ(GEN6_GFXPAUSE)) {
6722                DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
6723                enable_rc6 = false;
6724        }
6725
6726        if (!I915_READ(GEN8_MISC_CTRL0)) {
6727                DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6728                enable_rc6 = false;
6729        }
6730
6731        return enable_rc6;
6732}
6733
6734static bool sanitize_rc6(struct drm_i915_private *i915)
6735{
6736        struct intel_device_info *info = mkwrite_device_info(i915);
6737
6738        /* Powersaving is controlled by the host when inside a VM */
6739        if (intel_vgpu_active(i915))
6740                info->has_rc6 = 0;
6741
6742        if (info->has_rc6 &&
6743            IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
6744                DRM_INFO("RC6 disabled by BIOS\n");
6745                info->has_rc6 = 0;
6746        }
6747
6748        /*
6749         * We assume that we do not have any deep rc6 levels if we don't have
6750         * have the previous rc6 level supported, i.e. we use HAS_RC6()
6751         * as the initial coarse check for rc6 in general, moving on to
6752         * progressively finer/deeper levels.
6753         */
6754        if (!info->has_rc6 && info->has_rc6p)
6755                info->has_rc6p = 0;
6756
6757        return info->has_rc6;
6758}
6759
6760static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6761{
6762        struct intel_rps *rps = &dev_priv->gt_pm.rps;
6763
6764        /* All of these values are in units of 50MHz */
6765
6766        /* static values from HW: RP0 > RP1 > RPn (min_freq) */
6767        if (IS_GEN9_LP(dev_priv)) {
6768                u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6769                rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
6770                rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
6771                rps->min_freq = (rp_state_cap >>  0) & 0xff;
6772        } else {
6773                u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6774                rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
6775                rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
6776                rps->min_freq = (rp_state_cap >> 16) & 0xff;
6777        }
6778        /* hw_max = RP0 until we check for overclocking */
6779        rps->max_freq = rps->rp0_freq;
6780
6781        rps->efficient_freq = rps->rp1_freq;
6782        if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6783            IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6784                u32 ddcc_status = 0;
6785
6786                if (sandybridge_pcode_read(dev_priv,
6787                                           HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
6788                                           &ddcc_status) == 0)
6789                        rps->efficient_freq =
6790                                clamp_t(u8,
6791                                        ((ddcc_status >> 8) & 0xff),
6792                                        rps->min_freq,
6793                                        rps->max_freq);
6794        }
6795
6796        if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6797                /* Store the frequency values in 16.66 MHZ units, which is
6798                 * the natural hardware unit for SKL
6799                 */
6800                rps->rp0_freq *= GEN9_FREQ_SCALER;
6801                rps->rp1_freq *= GEN9_FREQ_SCALER;
6802                rps->min_freq *= GEN9_FREQ_SCALER;
6803                rps->max_freq *= GEN9_FREQ_SCALER;
6804                rps->efficient_freq *= GEN9_FREQ_SCALER;
6805        }
6806}
6807
6808static void reset_rps(struct drm_i915_private *dev_priv,
6809                      int (*set)(struct drm_i915_private *, u8))
6810{
6811        struct intel_rps *rps = &dev_priv->gt_pm.rps;
6812        u8 freq = rps->cur_freq;
6813
6814        /* force a reset */
6815        rps->power.mode = -1;
6816        rps->cur_freq = -1;
6817
6818        if (set(dev_priv, freq))
6819                DRM_ERROR("Failed to reset RPS to initial values\n");
6820}
6821
6822/* See the Gen9_GT_PM_Programming_Guide doc for the below */
6823static void gen9_enable_rps(struct drm_i915_private *dev_priv)
6824{
6825        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6826
6827        /* Program defaults and thresholds for RPS */
6828        if (IS_GEN9(dev_priv))
6829                I915_WRITE(GEN6_RC_VIDEO_FREQ,
6830                        GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6831
6832        /* 1 second timeout*/
6833        I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
6834                GT_INTERVAL_FROM_US(dev_priv, 1000000));
6835
6836        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
6837
6838        /* Leaning on the below call to gen6_set_rps to program/setup the
6839         * Up/Down EI & threshold registers, as well as the RP_CONTROL,
6840         * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6841        reset_rps(dev_priv, gen6_set_rps);
6842
6843        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6844}
6845
6846static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
6847{
6848        struct intel_engine_cs *engine;
6849        enum intel_engine_id id;
6850        u32 rc6_mode;
6851
6852        /* 1a: Software RC state - RC0 */
6853        I915_WRITE(GEN6_RC_STATE, 0);
6854
6855        /* 1b: Get forcewake during program sequence. Although the driver
6856         * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6857        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6858
6859        /* 2a: Disable RC states. */
6860        I915_WRITE(GEN6_RC_CONTROL, 0);
6861
6862        /* 2b: Program RC6 thresholds.*/
6863        if (INTEL_GEN(dev_priv) >= 10) {
6864                I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
6865                I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
6866        } else if (IS_SKYLAKE(dev_priv)) {
6867                /*
6868                 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
6869                 * when CPG is enabled
6870                 */
6871                I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
6872        } else {
6873                I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
6874        }
6875
6876        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6877        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6878        for_each_engine(engine, dev_priv, id)
6879                I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6880
6881        if (HAS_GUC(dev_priv))
6882                I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
6883
6884        I915_WRITE(GEN6_RC_SLEEP, 0);
6885
6886        /*
6887         * 2c: Program Coarse Power Gating Policies.
6888         *
6889         * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
6890         * use instead is a more conservative estimate for the maximum time
6891         * it takes us to service a CS interrupt and submit a new ELSP - that
6892         * is the time which the GPU is idle waiting for the CPU to select the
6893         * next request to execute. If the idle hysteresis is less than that
6894         * interrupt service latency, the hardware will automatically gate
6895         * the power well and we will then incur the wake up cost on top of
6896         * the service latency. A similar guide from intel_pstate is that we
6897         * do not want the enable hysteresis to less than the wakeup latency.
6898         *
6899         * igt/gem_exec_nop/sequential provides a rough estimate for the
6900         * service latency, and puts it around 10us for Broadwell (and other
6901         * big core) and around 40us for Broxton (and other low power cores).
6902         * [Note that for legacy ringbuffer submission, this is less than 1us!]
6903         * However, the wakeup latency on Broxton is closer to 100us. To be
6904         * conservative, we have to factor in a context switch on top (due
6905         * to ksoftirqd).
6906         */
6907        I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
6908        I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
6909
6910        /* 3a: Enable RC6 */
6911        I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
6912
6913        /* WaRsUseTimeoutMode:cnl (pre-prod) */
6914        if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
6915                rc6_mode = GEN7_RC_CTL_TO_MODE;
6916        else
6917                rc6_mode = GEN6_RC_CTL_EI_MODE(1);
6918
6919        I915_WRITE(GEN6_RC_CONTROL,
6920                   GEN6_RC_CTL_HW_ENABLE |
6921                   GEN6_RC_CTL_RC6_ENABLE |
6922                   rc6_mode);
6923
6924        /*
6925         * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6926         * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
6927         */
6928        if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6929                I915_WRITE(GEN9_PG_ENABLE, 0);
6930        else
6931                I915_WRITE(GEN9_PG_ENABLE,
6932                           GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
6933
6934        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6935}
6936
6937static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
6938{
6939        struct intel_engine_cs *engine;
6940        enum intel_engine_id id;
6941
6942        /* 1a: Software RC state - RC0 */
6943        I915_WRITE(GEN6_RC_STATE, 0);
6944
6945        /* 1b: Get forcewake during program sequence. Although the driver
6946         * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6947        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6948
6949        /* 2a: Disable RC states. */
6950        I915_WRITE(GEN6_RC_CONTROL, 0);
6951
6952        /* 2b: Program RC6 thresholds.*/
6953        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6954        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6955        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6956        for_each_engine(engine, dev_priv, id)
6957                I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6958        I915_WRITE(GEN6_RC_SLEEP, 0);
6959        I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6960
6961        /* 3: Enable RC6 */
6962
6963        I915_WRITE(GEN6_RC_CONTROL,
6964                   GEN6_RC_CTL_HW_ENABLE |
6965                   GEN7_RC_CTL_TO_MODE |
6966                   GEN6_RC_CTL_RC6_ENABLE);
6967
6968        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6969}
6970
6971static void gen8_enable_rps(struct drm_i915_private *dev_priv)
6972{
6973        struct intel_rps *rps = &dev_priv->gt_pm.rps;
6974
6975        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6976
6977        /* 1 Program defaults and thresholds for RPS*/
6978        I915_WRITE(GEN6_RPNSWREQ,
6979                   HSW_FREQUENCY(rps->rp1_freq));
6980        I915_WRITE(GEN6_RC_VIDEO_FREQ,
6981                   HSW_FREQUENCY(rps->rp1_freq));
6982        /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
6983        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
6984
6985        /* Docs recommend 900MHz, and 300 MHz respectively */
6986        I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6987                   rps->max_freq_softlimit << 24 |
6988                   rps->min_freq_softlimit << 16);
6989
6990        I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
6991        I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
6992        I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
6993        I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
6994
6995        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6996
6997        /* 2: Enable RPS */
6998        I915_WRITE(GEN6_RP_CONTROL,
6999                   GEN6_RP_MEDIA_TURBO |
7000                   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7001                   GEN6_RP_MEDIA_IS_GFX |
7002                   GEN6_RP_ENABLE |
7003                   GEN6_RP_UP_BUSY_AVG |
7004                   GEN6_RP_DOWN_IDLE_AVG);
7005
7006        reset_rps(dev_priv, gen6_set_rps);
7007
7008        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7009}
7010
7011static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7012{
7013        struct intel_engine_cs *engine;
7014        enum intel_engine_id id;
7015        u32 rc6vids, rc6_mask;
7016        u32 gtfifodbg;
7017        int ret;
7018
7019        I915_WRITE(GEN6_RC_STATE, 0);
7020
7021        /* Clear the DBG now so we don't confuse earlier errors */
7022        gtfifodbg = I915_READ(GTFIFODBG);
7023        if (gtfifodbg) {
7024                DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
7025                I915_WRITE(GTFIFODBG, gtfifodbg);
7026        }
7027
7028        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7029
7030        /* disable the counters and set deterministic thresholds */
7031        I915_WRITE(GEN6_RC_CONTROL, 0);
7032
7033        I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7034        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7035        I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7036        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7037        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7038
7039        for_each_engine(engine, dev_priv, id)
7040                I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7041
7042        I915_WRITE(GEN6_RC_SLEEP, 0);
7043        I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7044        if (IS_IVYBRIDGE(dev_priv))
7045                I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
7046        else
7047                I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7048        I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7049        I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7050
7051        /* We don't use those on Haswell */
7052        rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
7053        if (HAS_RC6p(dev_priv))
7054                rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
7055        if (HAS_RC6pp(dev_priv))
7056                rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7057        I915_WRITE(GEN6_RC_CONTROL,
7058                   rc6_mask |
7059                   GEN6_RC_CTL_EI_MODE(1) |
7060                   GEN6_RC_CTL_HW_ENABLE);
7061
7062        rc6vids = 0;
7063        ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
7064        if (IS_GEN6(dev_priv) && ret) {
7065                DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7066        } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7067                DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
7068                          GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
7069                rc6vids &= 0xffff00;
7070                rc6vids |= GEN6_ENCODE_RC6_VID(450);
7071                ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
7072                if (ret)
7073                        DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
7074        }
7075
7076        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7077}
7078
7079static void gen6_enable_rps(struct drm_i915_private *dev_priv)
7080{
7081        /* Here begins a magic sequence of register writes to enable
7082         * auto-downclocking.
7083         *
7084         * Perhaps there might be some value in exposing these to
7085         * userspace...
7086         */
7087        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7088
7089        /* Power down if completely idle for over 50ms */
7090        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
7091        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7092
7093        reset_rps(dev_priv, gen6_set_rps);
7094
7095        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7096}
7097
7098static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7099{
7100        struct intel_rps *rps = &dev_priv->gt_pm.rps;
7101        const int min_freq = 15;
7102        const int scaling_factor = 180;
7103        unsigned int gpu_freq;
7104        unsigned int max_ia_freq, min_ring_freq;
7105        unsigned int max_gpu_freq, min_gpu_freq;
7106        struct cpufreq_policy *policy;
7107
7108        WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
7109
7110        if (rps->max_freq <= rps->min_freq)
7111                return;
7112
7113        policy = cpufreq_cpu_get(0);
7114        if (policy) {
7115                max_ia_freq = policy->cpuinfo.max_freq;
7116                cpufreq_cpu_put(policy);
7117        } else {
7118                /*
7119                 * Default to measured freq if none found, PCU will ensure we
7120                 * don't go over
7121                 */
7122                max_ia_freq = tsc_khz;
7123        }
7124
7125        /* Convert from kHz to MHz */
7126        max_ia_freq /= 1000;
7127
7128        min_ring_freq = I915_READ(DCLK) & 0xf;
7129        /* convert DDR frequency from units of 266.6MHz to bandwidth */
7130        min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7131
7132        min_gpu_freq = rps->min_freq;
7133        max_gpu_freq = rps->max_freq;
7134        if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7135                /* Convert GT frequency to 50 HZ units */
7136                min_gpu_freq /= GEN9_FREQ_SCALER;
7137                max_gpu_freq /= GEN9_FREQ_SCALER;
7138        }
7139
7140        /*
7141         * For each potential GPU frequency, load a ring frequency we'd like
7142         * to use for memory access.  We do this by specifying the IA frequency
7143         * the PCU should use as a reference to determine the ring frequency.
7144         */
7145        for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7146                const int diff = max_gpu_freq - gpu_freq;
7147                unsigned int ia_freq = 0, ring_freq = 0;
7148
7149                if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7150                        /*
7151                         * ring_freq = 2 * GT. ring_freq is in 100MHz units
7152                         * No floor required for ring frequency on SKL.
7153                         */
7154                        ring_freq = gpu_freq;
7155                } else if (INTEL_GEN(dev_priv) >= 8) {
7156                        /* max(2 * GT, DDR). NB: GT is 50MHz units */
7157                        ring_freq = max(min_ring_freq, gpu_freq);
7158                } else if (IS_HASWELL(dev_priv)) {
7159                        ring_freq = mult_frac(gpu_freq, 5, 4);
7160                        ring_freq = max(min_ring_freq, ring_freq);
7161                        /* leave ia_freq as the default, chosen by cpufreq */
7162                } else {
7163                        /* On older processors, there is no separate ring
7164                         * clock domain, so in order to boost the bandwidth
7165                         * of the ring, we need to upclock the CPU (ia_freq).
7166                         *
7167                         * For GPU frequencies less than 750MHz,
7168                         * just use the lowest ring freq.
7169                         */
7170                        if (gpu_freq < min_freq)
7171                                ia_freq = 800;
7172                        else
7173                                ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7174                        ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7175                }
7176
7177                sandybridge_pcode_write(dev_priv,
7178                                        GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7179                                        ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
7180                                        ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
7181                                        gpu_freq);
7182        }
7183}
7184
7185static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7186{
7187        u32 val, rp0;
7188
7189        val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7190
7191        switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
7192        case 8:
7193                /* (2 * 4) config */
7194                rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
7195                break;
7196        case 12:
7197                /* (2 * 6) config */
7198                rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
7199                break;
7200        case 16:
7201                /* (2 * 8) config */
7202        default:
7203                /* Setting (2 * 8) Min RP0 for any other combination */
7204                rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
7205                break;
7206        }
7207
7208        rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
7209
7210        return rp0;
7211}
7212
7213static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7214{
7215        u32 val, rpe;
7216
7217        val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
7218        rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
7219
7220        return rpe;
7221}
7222
7223static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
7224{
7225        u32 val, rp1;
7226
7227        val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7228        rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
7229
7230        return rp1;
7231}
7232
7233static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
7234{
7235        u32 val, rpn;
7236
7237        val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
7238        rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
7239                       FB_GFX_FREQ_FUSE_MASK);
7240
7241        return rpn;
7242}
7243
7244static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
7245{
7246        u32 val, rp1;
7247
7248        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7249
7250        rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
7251
7252        return rp1;
7253}
7254
7255static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7256{
7257        u32 val, rp0;
7258
7259        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7260
7261        rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
7262        /* Clamp to max */
7263        rp0 = min_t(u32, rp0, 0xea);
7264
7265        return rp0;
7266}
7267
7268static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7269{
7270        u32 val, rpe;
7271
7272        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7273        rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7274        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7275        rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
7276
7277        return rpe;
7278}
7279
7280static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7281{
7282        u32 val;
7283
7284        val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
7285        /*
7286         * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
7287         * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
7288         * a BYT-M B0 the above register contains 0xbf. Moreover when setting
7289         * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
7290         * to make sure it matches what Punit accepts.
7291         */
7292        return max_t(u32, val, 0xc0);
7293}
7294
7295/* Check that the pctx buffer wasn't move under us. */
7296static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
7297{
7298        unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7299
7300        WARN_ON(pctx_addr != dev_priv->dsm.start +
7301                             dev_priv->vlv_pctx->stolen->start);
7302}
7303
7304
7305/* Check that the pcbr address is not empty. */
7306static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
7307{
7308        unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7309
7310        WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
7311}
7312
7313static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7314{
7315        resource_size_t pctx_paddr, paddr;
7316        resource_size_t pctx_size = 32*1024;
7317        u32 pcbr;
7318
7319        pcbr = I915_READ(VLV_PCBR);
7320        if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7321                DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7322                paddr = dev_priv->dsm.end + 1 - pctx_size;
7323                GEM_BUG_ON(paddr > U32_MAX);
7324
7325                pctx_paddr = (paddr & (~4095));
7326                I915_WRITE(VLV_PCBR, pctx_paddr);
7327        }
7328
7329        DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7330}
7331
7332static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7333{
7334        struct drm_i915_gem_object *pctx;
7335        resource_size_t pctx_paddr;
7336        resource_size_t pctx_size = 24*1024;
7337        u32 pcbr;
7338
7339        pcbr = I915_READ(VLV_PCBR);
7340        if (pcbr) {
7341                /* BIOS set it up already, grab the pre-alloc'd space */
7342                resource_size_t pcbr_offset;
7343
7344                pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7345                pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7346                                                                      pcbr_offset,
7347                                                                      I915_GTT_OFFSET_NONE,
7348                                                                      pctx_size);
7349                goto out;
7350        }
7351
7352        DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7353
7354        /*
7355         * From the Gunit register HAS:
7356         * The Gfx driver is expected to program this register and ensure
7357         * proper allocation within Gfx stolen memory.  For example, this
7358         * register should be programmed such than the PCBR range does not
7359         * overlap with other ranges, such as the frame buffer, protected
7360         * memory, or any other relevant ranges.
7361         */
7362        pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7363        if (!pctx) {
7364                DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7365                goto out;
7366        }
7367
7368        GEM_BUG_ON(range_overflows_t(u64,
7369                                     dev_priv->dsm.start,
7370                                     pctx->stolen->start,
7371                                     U32_MAX));
7372        pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7373        I915_WRITE(VLV_PCBR, pctx_paddr);
7374
7375out:
7376        DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7377        dev_priv->vlv_pctx = pctx;
7378}
7379
7380static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7381{
7382        struct drm_i915_gem_object *pctx;
7383
7384        pctx = fetch_and_zero(&dev_priv->vlv_pctx);
7385        if (pctx)
7386                i915_gem_object_put(pctx);
7387}
7388
7389static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
7390{
7391        dev_priv->gt_pm.rps.gpll_ref_freq =
7392                vlv_get_cck_clock(dev_priv, "GPLL ref",
7393                                  CCK_GPLL_CLOCK_CONTROL,
7394                                  dev_priv->czclk_freq);
7395
7396        DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7397                         dev_priv->gt_pm.rps.gpll_ref_freq);
7398}
7399
7400static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7401{
7402        struct intel_rps *rps = &dev_priv->gt_pm.rps;
7403        u32 val;
7404
7405        valleyview_setup_pctx(dev_priv);
7406
7407        vlv_init_gpll_ref_freq(dev_priv);
7408
7409        val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7410        switch ((val >> 6) & 3) {
7411        case 0:
7412        case 1:
7413                dev_priv->mem_freq = 800;
7414                break;
7415        case 2:
7416                dev_priv->mem_freq = 1066;
7417                break;
7418        case 3:
7419                dev_priv->mem_freq = 1333;
7420                break;
7421        }
7422        DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7423
7424        rps->max_freq = valleyview_rps_max_freq(dev_priv);
7425        rps->rp0_freq = rps->max_freq;
7426        DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7427                         intel_gpu_freq(dev_priv, rps->max_freq),
7428                         rps->max_freq);
7429
7430        rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7431        DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7432                         intel_gpu_freq(dev_priv, rps->efficient_freq),
7433                         rps->efficient_freq);
7434
7435        rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7436        DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7437                         intel_gpu_freq(dev_priv, rps->rp1_freq),
7438                         rps->rp1_freq);
7439
7440        rps->min_freq = valleyview_rps_min_freq(dev_priv);
7441        DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7442                         intel_gpu_freq(dev_priv, rps->min_freq),
7443                         rps->min_freq);
7444}
7445
7446static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7447{
7448        struct intel_rps *rps = &dev_priv->gt_pm.rps;
7449        u32 val;
7450
7451        cherryview_setup_pctx(dev_priv);
7452
7453        vlv_init_gpll_ref_freq(dev_priv);
7454
7455        mutex_lock(&dev_priv->sb_lock);
7456        val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7457        mutex_unlock(&dev_priv->sb_lock);
7458
7459        switch ((val >> 2) & 0x7) {
7460        case 3:
7461                dev_priv->mem_freq = 2000;
7462                break;
7463        default:
7464                dev_priv->mem_freq = 1600;
7465                break;
7466        }
7467        DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7468
7469        rps->max_freq = cherryview_rps_max_freq(dev_priv);
7470        rps->rp0_freq = rps->max_freq;
7471        DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7472                         intel_gpu_freq(dev_priv, rps->max_freq),
7473                         rps->max_freq);
7474
7475        rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7476        DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7477                         intel_gpu_freq(dev_priv, rps->efficient_freq),
7478                         rps->efficient_freq);
7479
7480        rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7481        DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7482                         intel_gpu_freq(dev_priv, rps->rp1_freq),
7483                         rps->rp1_freq);
7484
7485        rps->min_freq = cherryview_rps_min_freq(dev_priv);
7486        DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7487                         intel_gpu_freq(dev_priv, rps->min_freq),
7488                         rps->min_freq);
7489
7490        WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
7491                   rps->min_freq) & 1,
7492                  "Odd GPU freq values\n");
7493}
7494
7495static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7496{
7497        valleyview_cleanup_pctx(dev_priv);
7498}
7499
7500static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7501{
7502        struct intel_engine_cs *engine;
7503        enum intel_engine_id id;
7504        u32 gtfifodbg, rc6_mode, pcbr;
7505
7506        gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7507                                             GT_FIFO_FREE_ENTRIES_CHV);
7508        if (gtfifodbg) {
7509                DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7510                                 gtfifodbg);
7511                I915_WRITE(GTFIFODBG, gtfifodbg);
7512        }
7513
7514        cherryview_check_pctx(dev_priv);
7515
7516        /* 1a & 1b: Get forcewake during program sequence. Although the driver
7517         * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7518        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7519
7520        /*  Disable RC states. */
7521        I915_WRITE(GEN6_RC_CONTROL, 0);
7522
7523        /* 2a: Program RC6 thresholds.*/
7524        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7525        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7526        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7527
7528        for_each_engine(engine, dev_priv, id)
7529                I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7530        I915_WRITE(GEN6_RC_SLEEP, 0);
7531
7532        /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7533        I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7534
7535        /* Allows RC6 residency counter to work */
7536        I915_WRITE(VLV_COUNTER_CONTROL,
7537                   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7538                                      VLV_MEDIA_RC6_COUNT_EN |
7539                                      VLV_RENDER_RC6_COUNT_EN));
7540
7541        /* For now we assume BIOS is allocating and populating the PCBR  */
7542        pcbr = I915_READ(VLV_PCBR);
7543
7544        /* 3: Enable RC6 */
7545        rc6_mode = 0;
7546        if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7547                rc6_mode = GEN7_RC_CTL_TO_MODE;
7548        I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7549
7550        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7551}
7552
7553static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7554{
7555        u32 val;
7556
7557        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7558
7559        /* 1: Program defaults and thresholds for RPS*/
7560        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7561        I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7562        I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7563        I915_WRITE(GEN6_RP_UP_EI, 66000);
7564        I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7565
7566        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7567
7568        /* 2: Enable RPS */
7569        I915_WRITE(GEN6_RP_CONTROL,
7570                   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7571                   GEN6_RP_MEDIA_IS_GFX |
7572                   GEN6_RP_ENABLE |
7573                   GEN6_RP_UP_BUSY_AVG |
7574                   GEN6_RP_DOWN_IDLE_AVG);
7575
7576        /* Setting Fixed Bias */
7577        val = VLV_OVERRIDE_EN |
7578                  VLV_SOC_TDP_EN |
7579                  CHV_BIAS_CPU_50_SOC_50;
7580        vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7581
7582        val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7583
7584        /* RPS code assumes GPLL is used */
7585        WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7586
7587        DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7588        DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7589
7590        reset_rps(dev_priv, valleyview_set_rps);
7591
7592        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7593}
7594
7595static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7596{
7597        struct intel_engine_cs *engine;
7598        enum intel_engine_id id;
7599        u32 gtfifodbg;
7600
7601        valleyview_check_pctx(dev_priv);
7602
7603        gtfifodbg = I915_READ(GTFIFODBG);
7604        if (gtfifodbg) {
7605                DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7606                                 gtfifodbg);
7607                I915_WRITE(GTFIFODBG, gtfifodbg);
7608        }
7609
7610        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7611
7612        /*  Disable RC states. */
7613        I915_WRITE(GEN6_RC_CONTROL, 0);
7614
7615        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
7616        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7617        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7618
7619        for_each_engine(engine, dev_priv, id)
7620                I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7621
7622        I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7623
7624        /* Allows RC6 residency counter to work */
7625        I915_WRITE(VLV_COUNTER_CONTROL,
7626                   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7627                                      VLV_MEDIA_RC0_COUNT_EN |
7628                                      VLV_RENDER_RC0_COUNT_EN |
7629                                      VLV_MEDIA_RC6_COUNT_EN |
7630                                      VLV_RENDER_RC6_COUNT_EN));
7631
7632        I915_WRITE(GEN6_RC_CONTROL,
7633                   GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
7634
7635        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7636}
7637
7638static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7639{
7640        u32 val;
7641
7642        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7643
7644        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7645        I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7646        I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7647        I915_WRITE(GEN6_RP_UP_EI, 66000);
7648        I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7649
7650        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7651
7652        I915_WRITE(GEN6_RP_CONTROL,
7653                   GEN6_RP_MEDIA_TURBO |
7654                   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7655                   GEN6_RP_MEDIA_IS_GFX |
7656                   GEN6_RP_ENABLE |
7657                   GEN6_RP_UP_BUSY_AVG |
7658                   GEN6_RP_DOWN_IDLE_CONT);
7659
7660        /* Setting Fixed Bias */
7661        val = VLV_OVERRIDE_EN |
7662                  VLV_SOC_TDP_EN |
7663                  VLV_BIAS_CPU_125_SOC_875;
7664        vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7665
7666        val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7667
7668        /* RPS code assumes GPLL is used */
7669        WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7670
7671        DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7672        DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7673
7674        reset_rps(dev_priv, valleyview_set_rps);
7675
7676        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7677}
7678
7679static unsigned long intel_pxfreq(u32 vidfreq)
7680{
7681        unsigned long freq;
7682        int div = (vidfreq & 0x3f0000) >> 16;
7683        int post = (vidfreq & 0x3000) >> 12;
7684        int pre = (vidfreq & 0x7);
7685
7686        if (!pre)
7687                return 0;
7688
7689        freq = ((div * 133333) / ((1<<post) * pre));
7690
7691        return freq;
7692}
7693
7694static const struct cparams {
7695        u16 i;
7696        u16 t;
7697        u16 m;
7698        u16 c;
7699} cparams[] = {
7700        { 1, 1333, 301, 28664 },
7701        { 1, 1066, 294, 24460 },
7702        { 1, 800, 294, 25192 },
7703        { 0, 1333, 276, 27605 },
7704        { 0, 1066, 276, 27605 },
7705        { 0, 800, 231, 23784 },
7706};
7707
7708static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7709{
7710        u64 total_count, diff, ret;
7711        u32 count1, count2, count3, m = 0, c = 0;
7712        unsigned long now = jiffies_to_msecs(jiffies), diff1;
7713        int i;
7714
7715        lockdep_assert_held(&mchdev_lock);
7716
7717        diff1 = now - dev_priv->ips.last_time1;
7718
7719        /* Prevent division-by-zero if we are asking too fast.
7720         * Also, we don't get interesting results if we are polling
7721         * faster than once in 10ms, so just return the saved value
7722         * in such cases.
7723         */
7724        if (diff1 <= 10)
7725                return dev_priv->ips.chipset_power;
7726
7727        count1 = I915_READ(DMIEC);
7728        count2 = I915_READ(DDREC);
7729        count3 = I915_READ(CSIEC);
7730
7731        total_count = count1 + count2 + count3;
7732
7733        /* FIXME: handle per-counter overflow */
7734        if (total_count < dev_priv->ips.last_count1) {
7735                diff = ~0UL - dev_priv->ips.last_count1;
7736                diff += total_count;
7737        } else {
7738                diff = total_count - dev_priv->ips.last_count1;
7739        }
7740
7741        for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7742                if (cparams[i].i == dev_priv->ips.c_m &&
7743                    cparams[i].t == dev_priv->ips.r_t) {
7744                        m = cparams[i].m;
7745                        c = cparams[i].c;
7746                        break;
7747                }
7748        }
7749
7750        diff = div_u64(diff, diff1);
7751        ret = ((m * diff) + c);
7752        ret = div_u64(ret, 10);
7753
7754        dev_priv->ips.last_count1 = total_count;
7755        dev_priv->ips.last_time1 = now;
7756
7757        dev_priv->ips.chipset_power = ret;
7758
7759        return ret;
7760}
7761
7762unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
7763{
7764        unsigned long val;
7765
7766        if (!IS_GEN5(dev_priv))
7767                return 0;
7768
7769        spin_lock_irq(&mchdev_lock);
7770
7771        val = __i915_chipset_val(dev_priv);
7772
7773        spin_unlock_irq(&mchdev_lock);
7774
7775        return val;
7776}
7777
7778unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
7779{
7780        unsigned long m, x, b;
7781        u32 tsfs;
7782
7783        tsfs = I915_READ(TSFS);
7784
7785        m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
7786        x = I915_READ8(TR1);
7787
7788        b = tsfs & TSFS_INTR_MASK;
7789
7790        return ((m * x) / 127) - b;
7791}
7792
7793static int _pxvid_to_vd(u8 pxvid)
7794{
7795        if (pxvid == 0)
7796                return 0;
7797
7798        if (pxvid >= 8 && pxvid < 31)
7799                pxvid = 31;
7800
7801        return (pxvid + 2) * 125;
7802}
7803
7804static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7805{
7806        const int vd = _pxvid_to_vd(pxvid);
7807        const int vm = vd - 1125;
7808
7809        if (INTEL_INFO(dev_priv)->is_mobile)
7810                return vm > 0 ? vm : 0;
7811
7812        return vd;
7813}
7814
7815static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7816{
7817        u64 now, diff, diffms;
7818        u32 count;
7819
7820        lockdep_assert_held(&mchdev_lock);
7821
7822        now = ktime_get_raw_ns();
7823        diffms = now - dev_priv->ips.last_time2;
7824        do_div(diffms, NSEC_PER_MSEC);
7825
7826        /* Don't divide by 0 */
7827        if (!diffms)
7828                return;
7829
7830        count = I915_READ(GFXEC);
7831
7832        if (count < dev_priv->ips.last_count2) {
7833                diff = ~0UL - dev_priv->ips.last_count2;
7834                diff += count;
7835        } else {
7836                diff = count - dev_priv->ips.last_count2;
7837        }
7838
7839        dev_priv->ips.last_count2 = count;
7840        dev_priv->ips.last_time2 = now;
7841
7842        /* More magic constants... */
7843        diff = diff * 1181;
7844        diff = div_u64(diff, diffms * 10);
7845        dev_priv->ips.gfx_power = diff;
7846}
7847
7848void i915_update_gfx_val(struct drm_i915_private *dev_priv)
7849{
7850        if (!IS_GEN5(dev_priv))
7851                return;
7852
7853        spin_lock_irq(&mchdev_lock);
7854
7855        __i915_update_gfx_val(dev_priv);
7856
7857        spin_unlock_irq(&mchdev_lock);
7858}
7859
7860static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7861{
7862        unsigned long t, corr, state1, corr2, state2;
7863        u32 pxvid, ext_v;
7864
7865        lockdep_assert_held(&mchdev_lock);
7866
7867        pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7868        pxvid = (pxvid >> 24) & 0x7f;
7869        ext_v = pvid_to_extvid(dev_priv, pxvid);
7870
7871        state1 = ext_v;
7872
7873        t = i915_mch_val(dev_priv);
7874
7875        /* Revel in the empirically derived constants */
7876
7877        /* Correction factor in 1/100000 units */
7878        if (t > 80)
7879                corr = ((t * 2349) + 135940);
7880        else if (t >= 50)
7881                corr = ((t * 964) + 29317);
7882        else /* < 50 */
7883                corr = ((t * 301) + 1004);
7884
7885        corr = corr * ((150142 * state1) / 10000 - 78642);
7886        corr /= 100000;
7887        corr2 = (corr * dev_priv->ips.corr);
7888
7889        state2 = (corr2 * state1) / 10000;
7890        state2 /= 100; /* convert to mW */
7891
7892        __i915_update_gfx_val(dev_priv);
7893
7894        return dev_priv->ips.gfx_power + state2;
7895}
7896
7897unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
7898{
7899        unsigned long val;
7900
7901        if (!IS_GEN5(dev_priv))
7902                return 0;
7903
7904        spin_lock_irq(&mchdev_lock);
7905
7906        val = __i915_gfx_val(dev_priv);
7907
7908        spin_unlock_irq(&mchdev_lock);
7909
7910        return val;
7911}
7912
7913/**
7914 * i915_read_mch_val - return value for IPS use
7915 *
7916 * Calculate and return a value for the IPS driver to use when deciding whether
7917 * we have thermal and power headroom to increase CPU or GPU power budget.
7918 */
7919unsigned long i915_read_mch_val(void)
7920{
7921        struct drm_i915_private *dev_priv;
7922        unsigned long chipset_val, graphics_val, ret = 0;
7923
7924        spin_lock_irq(&mchdev_lock);
7925        if (!i915_mch_dev)
7926                goto out_unlock;
7927        dev_priv = i915_mch_dev;
7928
7929        chipset_val = __i915_chipset_val(dev_priv);
7930        graphics_val = __i915_gfx_val(dev_priv);
7931
7932        ret = chipset_val + graphics_val;
7933
7934out_unlock:
7935        spin_unlock_irq(&mchdev_lock);
7936
7937        return ret;
7938}
7939EXPORT_SYMBOL_GPL(i915_read_mch_val);
7940
7941/**
7942 * i915_gpu_raise - raise GPU frequency limit
7943 *
7944 * Raise the limit; IPS indicates we have thermal headroom.
7945 */
7946bool i915_gpu_raise(void)
7947{
7948        struct drm_i915_private *dev_priv;
7949        bool ret = true;
7950
7951        spin_lock_irq(&mchdev_lock);
7952        if (!i915_mch_dev) {
7953                ret = false;
7954                goto out_unlock;
7955        }
7956        dev_priv = i915_mch_dev;
7957
7958        if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
7959                dev_priv->ips.max_delay--;
7960
7961out_unlock:
7962        spin_unlock_irq(&mchdev_lock);
7963
7964        return ret;
7965}
7966EXPORT_SYMBOL_GPL(i915_gpu_raise);
7967
7968/**
7969 * i915_gpu_lower - lower GPU frequency limit
7970 *
7971 * IPS indicates we're close to a thermal limit, so throttle back the GPU
7972 * frequency maximum.
7973 */
7974bool i915_gpu_lower(void)
7975{
7976        struct drm_i915_private *dev_priv;
7977        bool ret = true;
7978
7979        spin_lock_irq(&mchdev_lock);
7980        if (!i915_mch_dev) {
7981                ret = false;
7982                goto out_unlock;
7983        }
7984        dev_priv = i915_mch_dev;
7985
7986        if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
7987                dev_priv->ips.max_delay++;
7988
7989out_unlock:
7990        spin_unlock_irq(&mchdev_lock);
7991
7992        return ret;
7993}
7994EXPORT_SYMBOL_GPL(i915_gpu_lower);
7995
7996/**
7997 * i915_gpu_busy - indicate GPU business to IPS
7998 *
7999 * Tell the IPS driver whether or not the GPU is busy.
8000 */
8001bool i915_gpu_busy(void)
8002{
8003        bool ret = false;
8004
8005        spin_lock_irq(&mchdev_lock);
8006        if (i915_mch_dev)
8007                ret = i915_mch_dev->gt.awake;
8008        spin_unlock_irq(&mchdev_lock);
8009
8010        return ret;
8011}
8012EXPORT_SYMBOL_GPL(i915_gpu_busy);
8013
8014/**
8015 * i915_gpu_turbo_disable - disable graphics turbo
8016 *
8017 * Disable graphics turbo by resetting the max frequency and setting the
8018 * current frequency to the default.
8019 */
8020bool i915_gpu_turbo_disable(void)
8021{
8022        struct drm_i915_private *dev_priv;
8023        bool ret = true;
8024
8025        spin_lock_irq(&mchdev_lock);
8026        if (!i915_mch_dev) {
8027                ret = false;
8028                goto out_unlock;
8029        }
8030        dev_priv = i915_mch_dev;
8031
8032        dev_priv->ips.max_delay = dev_priv->ips.fstart;
8033
8034        if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
8035                ret = false;
8036
8037out_unlock:
8038        spin_unlock_irq(&mchdev_lock);
8039
8040        return ret;
8041}
8042EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
8043
8044/**
8045 * Tells the intel_ips driver that the i915 driver is now loaded, if
8046 * IPS got loaded first.
8047 *
8048 * This awkward dance is so that neither module has to depend on the
8049 * other in order for IPS to do the appropriate communication of
8050 * GPU turbo limits to i915.
8051 */
8052static void
8053ips_ping_for_i915_load(void)
8054{
8055        void (*link)(void);
8056
8057        link = symbol_get(ips_link_to_i915_driver);
8058        if (link) {
8059                link();
8060                symbol_put(ips_link_to_i915_driver);
8061        }
8062}
8063
8064void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
8065{
8066        /* We only register the i915 ips part with intel-ips once everything is
8067         * set up, to avoid intel-ips sneaking in and reading bogus values. */
8068        spin_lock_irq(&mchdev_lock);
8069        i915_mch_dev = dev_priv;
8070        spin_unlock_irq(&mchdev_lock);
8071
8072        ips_ping_for_i915_load();
8073}
8074
8075void intel_gpu_ips_teardown(void)
8076{
8077        spin_lock_irq(&mchdev_lock);
8078        i915_mch_dev = NULL;
8079        spin_unlock_irq(&mchdev_lock);
8080}
8081
8082static void intel_init_emon(struct drm_i915_private *dev_priv)
8083{
8084        u32 lcfuse;
8085        u8 pxw[16];
8086        int i;
8087
8088        /* Disable to program */
8089        I915_WRITE(ECR, 0);
8090        POSTING_READ(ECR);
8091
8092        /* Program energy weights for various events */
8093        I915_WRITE(SDEW, 0x15040d00);
8094        I915_WRITE(CSIEW0, 0x007f0000);
8095        I915_WRITE(CSIEW1, 0x1e220004);
8096        I915_WRITE(CSIEW2, 0x04000004);
8097
8098        for (i = 0; i < 5; i++)
8099                I915_WRITE(PEW(i), 0);
8100        for (i = 0; i < 3; i++)
8101                I915_WRITE(DEW(i), 0);
8102
8103        /* Program P-state weights to account for frequency power adjustment */
8104        for (i = 0; i < 16; i++) {
8105                u32 pxvidfreq = I915_READ(PXVFREQ(i));
8106                unsigned long freq = intel_pxfreq(pxvidfreq);
8107                unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8108                        PXVFREQ_PX_SHIFT;
8109                unsigned long val;
8110
8111                val = vid * vid;
8112                val *= (freq / 1000);
8113                val *= 255;
8114                val /= (127*127*900);
8115                if (val > 0xff)
8116                        DRM_ERROR("bad pxval: %ld\n", val);
8117                pxw[i] = val;
8118        }
8119        /* Render standby states get 0 weight */
8120        pxw[14] = 0;
8121        pxw[15] = 0;
8122
8123        for (i = 0; i < 4; i++) {
8124                u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8125                        (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8126                I915_WRITE(PXW(i), val);
8127        }
8128
8129        /* Adjust magic regs to magic values (more experimental results) */
8130        I915_WRITE(OGW0, 0);
8131        I915_WRITE(OGW1, 0);
8132        I915_WRITE(EG0, 0x00007f00);
8133        I915_WRITE(EG1, 0x0000000e);
8134        I915_WRITE(EG2, 0x000e0000);
8135        I915_WRITE(EG3, 0x68000300);
8136        I915_WRITE(EG4, 0x42000000);
8137        I915_WRITE(EG5, 0x00140031);
8138        I915_WRITE(EG6, 0);
8139        I915_WRITE(EG7, 0);
8140
8141        for (i = 0; i < 8; i++)
8142                I915_WRITE(PXWL(i), 0);
8143
8144        /* Enable PMON + select events */
8145        I915_WRITE(ECR, 0x80000019);
8146
8147        lcfuse = I915_READ(LCFUSE02);
8148
8149        dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8150}
8151
8152void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8153{
8154        struct intel_rps *rps = &dev_priv->gt_pm.rps;
8155
8156        /*
8157         * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
8158         * requirement.
8159         */
8160        if (!sanitize_rc6(dev_priv)) {
8161                DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8162                intel_runtime_pm_get(dev_priv);
8163        }
8164
8165        mutex_lock(&dev_priv->pcu_lock);
8166
8167        /* Initialize RPS limits (for userspace) */
8168        if (IS_CHERRYVIEW(dev_priv))
8169                cherryview_init_gt_powersave(dev_priv);
8170        else if (IS_VALLEYVIEW(dev_priv))
8171                valleyview_init_gt_powersave(dev_priv);
8172        else if (INTEL_GEN(dev_priv) >= 6)
8173                gen6_init_rps_frequencies(dev_priv);
8174
8175        /* Derive initial user preferences/limits from the hardware limits */
8176        rps->idle_freq = rps->min_freq;
8177        rps->cur_freq = rps->idle_freq;
8178
8179        rps->max_freq_softlimit = rps->max_freq;
8180        rps->min_freq_softlimit = rps->min_freq;
8181
8182        if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
8183                rps->min_freq_softlimit =
8184                        max_t(int,
8185                              rps->efficient_freq,
8186                              intel_freq_opcode(dev_priv, 450));
8187
8188        /* After setting max-softlimit, find the overclock max freq */
8189        if (IS_GEN6(dev_priv) ||
8190            IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
8191                u32 params = 0;
8192
8193                sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
8194                if (params & BIT(31)) { /* OC supported */
8195                        DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8196                                         (rps->max_freq & 0xff) * 50,
8197                                         (params & 0xff) * 50);
8198                        rps->max_freq = params & 0xff;
8199                }
8200        }
8201
8202        /* Finally allow us to boost to max by default */
8203        rps->boost_freq = rps->max_freq;
8204
8205        mutex_unlock(&dev_priv->pcu_lock);
8206}
8207
8208void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8209{
8210        if (IS_VALLEYVIEW(dev_priv))
8211                valleyview_cleanup_gt_powersave(dev_priv);
8212
8213        if (!HAS_RC6(dev_priv))
8214                intel_runtime_pm_put(dev_priv);
8215}
8216
8217/**
8218 * intel_suspend_gt_powersave - suspend PM work and helper threads
8219 * @dev_priv: i915 device
8220 *
8221 * We don't want to disable RC6 or other features here, we just want
8222 * to make sure any work we've queued has finished and won't bother
8223 * us while we're suspended.
8224 */
8225void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
8226{
8227        if (INTEL_GEN(dev_priv) < 6)
8228                return;
8229
8230        /* gen6_rps_idle() will be called later to disable interrupts */
8231}
8232
8233void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
8234{
8235        dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
8236        dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8237        intel_disable_gt_powersave(dev_priv);
8238
8239        if (INTEL_GEN(dev_priv) >= 11)
8240                gen11_reset_rps_interrupts(dev_priv);
8241        else
8242                gen6_reset_rps_interrupts(dev_priv);
8243}
8244
8245static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
8246{
8247        lockdep_assert_held(&i915->pcu_lock);
8248
8249        if (!i915->gt_pm.llc_pstate.enabled)
8250                return;
8251
8252        /* Currently there is no HW configuration to be done to disable. */
8253
8254        i915->gt_pm.llc_pstate.enabled = false;
8255}
8256
8257static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8258{
8259        lockdep_assert_held(&dev_priv->pcu_lock);
8260
8261        if (!dev_priv->gt_pm.rc6.enabled)
8262                return;
8263
8264        if (INTEL_GEN(dev_priv) >= 9)
8265                gen9_disable_rc6(dev_priv);
8266        else if (IS_CHERRYVIEW(dev_priv))
8267                cherryview_disable_rc6(dev_priv);
8268        else if (IS_VALLEYVIEW(dev_priv))
8269                valleyview_disable_rc6(dev_priv);
8270        else if (INTEL_GEN(dev_priv) >= 6)
8271                gen6_disable_rc6(dev_priv);
8272
8273        dev_priv->gt_pm.rc6.enabled = false;
8274}
8275
8276static void intel_disable_rps(struct drm_i915_private *dev_priv)
8277{
8278        lockdep_assert_held(&dev_priv->pcu_lock);
8279
8280        if (!dev_priv->gt_pm.rps.enabled)
8281                return;
8282
8283        if (INTEL_GEN(dev_priv) >= 9)
8284                gen9_disable_rps(dev_priv);
8285        else if (IS_CHERRYVIEW(dev_priv))
8286                cherryview_disable_rps(dev_priv);
8287        else if (IS_VALLEYVIEW(dev_priv))
8288                valleyview_disable_rps(dev_priv);
8289        else if (INTEL_GEN(dev_priv) >= 6)
8290                gen6_disable_rps(dev_priv);
8291        else if (IS_IRONLAKE_M(dev_priv))
8292                ironlake_disable_drps(dev_priv);
8293
8294        dev_priv->gt_pm.rps.enabled = false;
8295}
8296
8297void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
8298{
8299        mutex_lock(&dev_priv->pcu_lock);
8300
8301        intel_disable_rc6(dev_priv);
8302        intel_disable_rps(dev_priv);
8303        if (HAS_LLC(dev_priv))
8304                intel_disable_llc_pstate(dev_priv);
8305
8306        mutex_unlock(&dev_priv->pcu_lock);
8307}
8308
8309static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
8310{
8311        lockdep_assert_held(&i915->pcu_lock);
8312
8313        if (i915->gt_pm.llc_pstate.enabled)
8314                return;
8315
8316        gen6_update_ring_freq(i915);
8317
8318        i915->gt_pm.llc_pstate.enabled = true;
8319}
8320
8321static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8322{
8323        lockdep_assert_held(&dev_priv->pcu_lock);
8324
8325        if (dev_priv->gt_pm.rc6.enabled)
8326                return;
8327
8328        if (IS_CHERRYVIEW(dev_priv))
8329                cherryview_enable_rc6(dev_priv);
8330        else if (IS_VALLEYVIEW(dev_priv))
8331                valleyview_enable_rc6(dev_priv);
8332        else if (INTEL_GEN(dev_priv) >= 9)
8333                gen9_enable_rc6(dev_priv);
8334        else if (IS_BROADWELL(dev_priv))
8335                gen8_enable_rc6(dev_priv);
8336        else if (INTEL_GEN(dev_priv) >= 6)
8337                gen6_enable_rc6(dev_priv);
8338
8339        dev_priv->gt_pm.rc6.enabled = true;
8340}
8341
8342static void intel_enable_rps(struct drm_i915_private *dev_priv)
8343{
8344        struct intel_rps *rps = &dev_priv->gt_pm.rps;
8345
8346        lockdep_assert_held(&dev_priv->pcu_lock);
8347
8348        if (rps->enabled)
8349                return;
8350
8351        if (IS_CHERRYVIEW(dev_priv)) {
8352                cherryview_enable_rps(dev_priv);
8353        } else if (IS_VALLEYVIEW(dev_priv)) {
8354                valleyview_enable_rps(dev_priv);
8355        } else if (INTEL_GEN(dev_priv) >= 9) {
8356                gen9_enable_rps(dev_priv);
8357        } else if (IS_BROADWELL(dev_priv)) {
8358                gen8_enable_rps(dev_priv);
8359        } else if (INTEL_GEN(dev_priv) >= 6) {
8360                gen6_enable_rps(dev_priv);
8361        } else if (IS_IRONLAKE_M(dev_priv)) {
8362                ironlake_enable_drps(dev_priv);
8363                intel_init_emon(dev_priv);
8364        }
8365
8366        WARN_ON(rps->max_freq < rps->min_freq);
8367        WARN_ON(rps->idle_freq > rps->max_freq);
8368
8369        WARN_ON(rps->efficient_freq < rps->min_freq);
8370        WARN_ON(rps->efficient_freq > rps->max_freq);
8371
8372        rps->enabled = true;
8373}
8374
8375void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
8376{
8377        /* Powersaving is controlled by the host when inside a VM */
8378        if (intel_vgpu_active(dev_priv))
8379                return;
8380
8381        mutex_lock(&dev_priv->pcu_lock);
8382
8383        if (HAS_RC6(dev_priv))
8384                intel_enable_rc6(dev_priv);
8385        intel_enable_rps(dev_priv);
8386        if (HAS_LLC(dev_priv))
8387                intel_enable_llc_pstate(dev_priv);
8388
8389        mutex_unlock(&dev_priv->pcu_lock);
8390}
8391
8392static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8393{
8394        /*
8395         * On Ibex Peak and Cougar Point, we need to disable clock
8396         * gating for the panel power sequencer or it will fail to
8397         * start up when no ports are active.
8398         */
8399        I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8400}
8401
8402static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8403{
8404        enum pipe pipe;
8405
8406        for_each_pipe(dev_priv, pipe) {
8407                I915_WRITE(DSPCNTR(pipe),
8408                           I915_READ(DSPCNTR(pipe)) |
8409                           DISPPLANE_TRICKLE_FEED_DISABLE);
8410
8411                I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
8412                POSTING_READ(DSPSURF(pipe));
8413        }
8414}
8415
8416static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8417{
8418        uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8419
8420        /*
8421         * Required for FBC
8422         * WaFbcDisableDpfcClockGating:ilk
8423         */
8424        dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
8425                   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
8426                   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8427
8428        I915_WRITE(PCH_3DCGDIS0,
8429                   MARIUNIT_CLOCK_GATE_DISABLE |
8430                   SVSMUNIT_CLOCK_GATE_DISABLE);
8431        I915_WRITE(PCH_3DCGDIS1,
8432                   VFMUNIT_CLOCK_GATE_DISABLE);
8433
8434        /*
8435         * According to the spec the following bits should be set in
8436         * order to enable memory self-refresh
8437         * The bit 22/21 of 0x42004
8438         * The bit 5 of 0x42020
8439         * The bit 15 of 0x45000
8440         */
8441        I915_WRITE(ILK_DISPLAY_CHICKEN2,
8442                   (I915_READ(ILK_DISPLAY_CHICKEN2) |
8443                    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8444        dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8445        I915_WRITE(DISP_ARB_CTL,
8446                   (I915_READ(DISP_ARB_CTL) |
8447                    DISP_FBC_WM_DIS));
8448
8449        /*
8450         * Based on the document from hardware guys the following bits
8451         * should be set unconditionally in order to enable FBC.
8452         * The bit 22 of 0x42000
8453         * The bit 22 of 0x42004
8454         * The bit 7,8,9 of 0x42020.
8455         */
8456        if (IS_IRONLAKE_M(dev_priv)) {
8457                /* WaFbcAsynchFlipDisableFbcQueue:ilk */
8458                I915_WRITE(ILK_DISPLAY_CHICKEN1,
8459                           I915_READ(ILK_DISPLAY_CHICKEN1) |
8460                           ILK_FBCQ_DIS);
8461                I915_WRITE(ILK_DISPLAY_CHICKEN2,
8462                           I915_READ(ILK_DISPLAY_CHICKEN2) |
8463                           ILK_DPARB_GATE);
8464        }
8465
8466        I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8467
8468        I915_WRITE(ILK_DISPLAY_CHICKEN2,
8469                   I915_READ(ILK_DISPLAY_CHICKEN2) |
8470                   ILK_ELPIN_409_SELECT);
8471        I915_WRITE(_3D_CHICKEN2,
8472                   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8473                   _3D_CHICKEN2_WM_READ_PIPELINED);
8474
8475        /* WaDisableRenderCachePipelinedFlush:ilk */
8476        I915_WRITE(CACHE_MODE_0,
8477                   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8478
8479        /* WaDisable_RenderCache_OperationalFlush:ilk */
8480        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8481
8482        g4x_disable_trickle_feed(dev_priv);
8483
8484        ibx_init_clock_gating(dev_priv);
8485}
8486
8487static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8488{
8489        int pipe;
8490        uint32_t val;
8491
8492        /*
8493         * On Ibex Peak and Cougar Point, we need to disable clock
8494         * gating for the panel power sequencer or it will fail to
8495         * start up when no ports are active.
8496         */
8497        I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8498                   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8499                   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8500        I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8501                   DPLS_EDP_PPS_FIX_DIS);
8502        /* The below fixes the weird display corruption, a few pixels shifted
8503         * downward, on (only) LVDS of some HP laptops with IVY.
8504         */
8505        for_each_pipe(dev_priv, pipe) {
8506                val = I915_READ(TRANS_CHICKEN2(pipe));
8507                val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8508                val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8509                if (dev_priv->vbt.fdi_rx_polarity_inverted)
8510                        val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8511                val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
8512                val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
8513                val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8514                I915_WRITE(TRANS_CHICKEN2(pipe), val);
8515        }
8516        /* WADP0ClockGatingDisable */
8517        for_each_pipe(dev_priv, pipe) {
8518                I915_WRITE(TRANS_CHICKEN1(pipe),
8519                           TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8520        }
8521}
8522
8523static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8524{
8525        uint32_t tmp;
8526
8527        tmp = I915_READ(MCH_SSKPD);
8528        if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
8529                DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
8530                              tmp);
8531}
8532
8533static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8534{
8535        uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8536
8537        I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8538
8539        I915_WRITE(ILK_DISPLAY_CHICKEN2,
8540                   I915_READ(ILK_DISPLAY_CHICKEN2) |
8541                   ILK_ELPIN_409_SELECT);
8542
8543        /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8544        I915_WRITE(_3D_CHICKEN,
8545                   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
8546
8547        /* WaDisable_RenderCache_OperationalFlush:snb */
8548        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8549
8550        /*
8551         * BSpec recoomends 8x4 when MSAA is used,
8552         * however in practice 16x4 seems fastest.
8553         *
8554         * Note that PS/WM thread counts depend on the WIZ hashing
8555         * disable bit, which we don't touch here, but it's good
8556         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8557         */
8558        I915_WRITE(GEN6_GT_MODE,
8559                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8560
8561        I915_WRITE(CACHE_MODE_0,
8562                   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8563
8564        I915_WRITE(GEN6_UCGCTL1,
8565                   I915_READ(GEN6_UCGCTL1) |
8566                   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8567                   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8568
8569        /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8570         * gating disable must be set.  Failure to set it results in
8571         * flickering pixels due to Z write ordering failures after
8572         * some amount of runtime in the Mesa "fire" demo, and Unigine
8573         * Sanctuary and Tropics, and apparently anything else with
8574         * alpha test or pixel discard.
8575         *
8576         * According to the spec, bit 11 (RCCUNIT) must also be set,
8577         * but we didn't debug actual testcases to find it out.
8578         *
8579         * WaDisableRCCUnitClockGating:snb
8580         * WaDisableRCPBUnitClockGating:snb
8581         */
8582        I915_WRITE(GEN6_UCGCTL2,
8583                   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8584                   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8585
8586        /* WaStripsFansDisableFastClipPerformanceFix:snb */
8587        I915_WRITE(_3D_CHICKEN3,
8588                   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8589
8590        /*
8591         * Bspec says:
8592         * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8593         * 3DSTATE_SF number of SF output attributes is more than 16."
8594         */
8595        I915_WRITE(_3D_CHICKEN3,
8596                   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8597
8598        /*
8599         * According to the spec the following bits should be
8600         * set in order to enable memory self-refresh and fbc:
8601         * The bit21 and bit22 of 0x42000
8602         * The bit21 and bit22 of 0x42004
8603         * The bit5 and bit7 of 0x42020
8604         * The bit14 of 0x70180
8605         * The bit14 of 0x71180
8606         *
8607         * WaFbcAsynchFlipDisableFbcQueue:snb
8608         */
8609        I915_WRITE(ILK_DISPLAY_CHICKEN1,
8610                   I915_READ(ILK_DISPLAY_CHICKEN1) |
8611                   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8612        I915_WRITE(ILK_DISPLAY_CHICKEN2,
8613                   I915_READ(ILK_DISPLAY_CHICKEN2) |
8614                   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8615        I915_WRITE(ILK_DSPCLK_GATE_D,
8616                   I915_READ(ILK_DSPCLK_GATE_D) |
8617                   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
8618                   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8619
8620        g4x_disable_trickle_feed(dev_priv);
8621
8622        cpt_init_clock_gating(dev_priv);
8623
8624        gen6_check_mch_setup(dev_priv);
8625}
8626
8627static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8628{
8629        uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
8630
8631        /*
8632         * WaVSThreadDispatchOverride:ivb,vlv
8633         *
8634         * This actually overrides the dispatch
8635         * mode for all thread types.
8636         */
8637        reg &= ~GEN7_FF_SCHED_MASK;
8638        reg |= GEN7_FF_TS_SCHED_HW;
8639        reg |= GEN7_FF_VS_SCHED_HW;
8640        reg |= GEN7_FF_DS_SCHED_HW;
8641
8642        I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8643}
8644
8645static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8646{
8647        /*
8648         * TODO: this bit should only be enabled when really needed, then
8649         * disabled when not needed anymore in order to save power.
8650         */
8651        if (HAS_PCH_LPT_LP(dev_priv))
8652                I915_WRITE(SOUTH_DSPCLK_GATE_D,
8653                           I915_READ(SOUTH_DSPCLK_GATE_D) |
8654                           PCH_LP_PARTITION_LEVEL_DISABLE);
8655
8656        /* WADPOClockGatingDisable:hsw */
8657        I915_WRITE(TRANS_CHICKEN1(PIPE_A),
8658                   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8659                   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8660}
8661
8662static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8663{
8664        if (HAS_PCH_LPT_LP(dev_priv)) {
8665                uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
8666
8667                val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8668                I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8669        }
8670}
8671
8672static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
8673                                   int general_prio_credits,
8674                                   int high_prio_credits)
8675{
8676        u32 misccpctl;
8677        u32 val;
8678
8679        /* WaTempDisableDOPClkGating:bdw */
8680        misccpctl = I915_READ(GEN7_MISCCPCTL);
8681        I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
8682
8683        val = I915_READ(GEN8_L3SQCREG1);
8684        val &= ~L3_PRIO_CREDITS_MASK;
8685        val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
8686        val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
8687        I915_WRITE(GEN8_L3SQCREG1, val);
8688
8689        /*
8690         * Wait at least 100 clocks before re-enabling clock gating.
8691         * See the definition of L3SQCREG1 in BSpec.
8692         */
8693        POSTING_READ(GEN8_L3SQCREG1);
8694        udelay(1);
8695        I915_WRITE(GEN7_MISCCPCTL, misccpctl);
8696}
8697
8698static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
8699{
8700        /* This is not an Wa. Enable to reduce Sampler power */
8701        I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
8702                   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
8703}
8704
8705static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
8706{
8707        if (!HAS_PCH_CNP(dev_priv))
8708                return;
8709
8710        /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
8711        I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
8712                   CNP_PWM_CGE_GATING_DISABLE);
8713}
8714
8715static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8716{
8717        u32 val;
8718        cnp_init_clock_gating(dev_priv);
8719
8720        /* This is not an Wa. Enable for better image quality */
8721        I915_WRITE(_3D_CHICKEN3,
8722                   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
8723
8724        /* WaEnableChickenDCPR:cnl */
8725        I915_WRITE(GEN8_CHICKEN_DCPR_1,
8726                   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
8727
8728        /* WaFbcWakeMemOn:cnl */
8729        I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
8730                   DISP_FBC_MEMORY_WAKE);
8731
8732        val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
8733        /* ReadHitWriteOnlyDisable:cnl */
8734        val |= RCCUNIT_CLKGATE_DIS;
8735        /* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
8736        if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8737                val |= SARBUNIT_CLKGATE_DIS;
8738        I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8739
8740        /* Wa_2201832410:cnl */
8741        val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
8742        val |= GWUNIT_CLKGATE_DIS;
8743        I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
8744
8745        /* WaDisableVFclkgate:cnl */
8746        /* WaVFUnitClockGatingDisable:cnl */
8747        val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
8748        val |= VFUNIT_CLKGATE_DIS;
8749        I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
8750}
8751
8752static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
8753{
8754        cnp_init_clock_gating(dev_priv);
8755        gen9_init_clock_gating(dev_priv);
8756
8757        /* WaFbcNukeOnHostModify:cfl */
8758        I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8759                   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8760}
8761
8762static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8763{
8764        gen9_init_clock_gating(dev_priv);
8765
8766        /* WaDisableSDEUnitClockGating:kbl */
8767        if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8768                I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8769                           GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8770
8771        /* WaDisableGamClockGating:kbl */
8772        if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8773                I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8774                           GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8775
8776        /* WaFbcNukeOnHostModify:kbl */
8777        I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8778                   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8779}
8780
8781static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8782{
8783        gen9_init_clock_gating(dev_priv);
8784
8785        /* WAC6entrylatency:skl */
8786        I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
8787                   FBC_LLC_FULLY_OPEN);
8788
8789        /* WaFbcNukeOnHostModify:skl */
8790        I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8791                   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8792}
8793
8794static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
8795{
8796        /* The GTT cache must be disabled if the system is using 2M pages. */
8797        bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
8798                                                 I915_GTT_PAGE_SIZE_2M);
8799        enum pipe pipe;
8800
8801        /* WaSwitchSolVfFArbitrationPriority:bdw */
8802        I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8803
8804        /* WaPsrDPAMaskVBlankInSRD:bdw */
8805        I915_WRITE(CHICKEN_PAR1_1,
8806                   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
8807
8808        /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8809        for_each_pipe(dev_priv, pipe) {
8810                I915_WRITE(CHICKEN_PIPESL_1(pipe),
8811                           I915_READ(CHICKEN_PIPESL_1(pipe)) |
8812                           BDW_DPRS_MASK_VBLANK_SRD);
8813        }
8814
8815        /* WaVSRefCountFullforceMissDisable:bdw */
8816        /* WaDSRefCountFullforceMissDisable:bdw */
8817        I915_WRITE(GEN7_FF_THREAD_MODE,
8818                   I915_READ(GEN7_FF_THREAD_MODE) &
8819                   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8820
8821        I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8822                   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8823
8824        /* WaDisableSDEUnitClockGating:bdw */
8825        I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8826                   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8827
8828        /* WaProgramL3SqcReg1Default:bdw */
8829        gen8_set_l3sqc_credits(dev_priv, 30, 2);
8830
8831        /* WaGttCachingOffByDefault:bdw */
8832        I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
8833
8834        /* WaKVMNotificationOnConfigChange:bdw */
8835        I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
8836                   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
8837
8838        lpt_init_clock_gating(dev_priv);
8839
8840        /* WaDisableDopClockGating:bdw
8841         *
8842         * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
8843         * clock gating.
8844         */
8845        I915_WRITE(GEN6_UCGCTL1,
8846                   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
8847}
8848
8849static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8850{
8851        /* L3 caching of data atomics doesn't work -- disable it. */
8852        I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
8853        I915_WRITE(HSW_ROW_CHICKEN3,
8854                   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
8855
8856        /* This is required by WaCatErrorRejectionIssue:hsw */
8857        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8858                        I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8859                        GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8860
8861        /* WaVSRefCountFullforceMissDisable:hsw */
8862        I915_WRITE(GEN7_FF_THREAD_MODE,
8863                   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8864
8865        /* WaDisable_RenderCache_OperationalFlush:hsw */
8866        I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8867
8868        /* enable HiZ Raw Stall Optimization */
8869        I915_WRITE(CACHE_MODE_0_GEN7,
8870                   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8871
8872        /* WaDisable4x2SubspanOptimization:hsw */
8873        I915_WRITE(CACHE_MODE_1,
8874                   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8875
8876        /*
8877         * BSpec recommends 8x4 when MSAA is used,
8878         * however in practice 16x4 seems fastest.
8879         *
8880         * Note that PS/WM thread counts depend on the WIZ hashing
8881         * disable bit, which we don't touch here, but it's good
8882         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8883         */
8884        I915_WRITE(GEN7_GT_MODE,
8885                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8886
8887        /* WaSampleCChickenBitEnable:hsw */
8888        I915_WRITE(HALF_SLICE_CHICKEN3,
8889                   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
8890
8891        /* WaSwitchSolVfFArbitrationPriority:hsw */
8892        I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8893
8894        lpt_init_clock_gating(dev_priv);
8895}
8896
8897static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8898{
8899        uint32_t snpcr;
8900
8901        I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8902
8903        /* WaDisableEarlyCull:ivb */
8904        I915_WRITE(_3D_CHICKEN3,
8905                   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8906
8907        /* WaDisableBackToBackFlipFix:ivb */
8908        I915_WRITE(IVB_CHICKEN3,
8909                   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8910                   CHICKEN3_DGMG_DONE_FIX_DISABLE);
8911
8912        /* WaDisablePSDDualDispatchEnable:ivb */
8913        if (IS_IVB_GT1(dev_priv))
8914                I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8915                           _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8916
8917        /* WaDisable_RenderCache_OperationalFlush:ivb */
8918        I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8919
8920        /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8921        I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8922                   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8923
8924        /* WaApplyL3ControlAndL3ChickenMode:ivb */
8925        I915_WRITE(GEN7_L3CNTLREG1,
8926                        GEN7_WA_FOR_GEN7_L3_CONTROL);
8927        I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8928                   GEN7_WA_L3_CHICKEN_MODE);
8929        if (IS_IVB_GT1(dev_priv))
8930                I915_WRITE(GEN7_ROW_CHICKEN2,
8931                           _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8932        else {
8933                /* must write both registers */
8934                I915_WRITE(GEN7_ROW_CHICKEN2,
8935                           _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8936                I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
8937                           _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8938        }
8939
8940        /* WaForceL3Serialization:ivb */
8941        I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8942                   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8943
8944        /*
8945         * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8946         * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8947         */
8948        I915_WRITE(GEN6_UCGCTL2,
8949                   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8950
8951        /* This is required by WaCatErrorRejectionIssue:ivb */
8952        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8953                        I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8954                        GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8955
8956        g4x_disable_trickle_feed(dev_priv);
8957
8958        gen7_setup_fixed_func_scheduler(dev_priv);
8959
8960        if (0) { /* causes HiZ corruption on ivb:gt1 */
8961                /* enable HiZ Raw Stall Optimization */
8962                I915_WRITE(CACHE_MODE_0_GEN7,
8963                           _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8964        }
8965
8966        /* WaDisable4x2SubspanOptimization:ivb */
8967        I915_WRITE(CACHE_MODE_1,
8968                   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8969
8970        /*
8971         * BSpec recommends 8x4 when MSAA is used,
8972         * however in practice 16x4 seems fastest.
8973         *
8974         * Note that PS/WM thread counts depend on the WIZ hashing
8975         * disable bit, which we don't touch here, but it's good
8976         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8977         */
8978        I915_WRITE(GEN7_GT_MODE,
8979                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8980
8981        snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
8982        snpcr &= ~GEN6_MBC_SNPCR_MASK;
8983        snpcr |= GEN6_MBC_SNPCR_MED;
8984        I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8985
8986        if (!HAS_PCH_NOP(dev_priv))
8987                cpt_init_clock_gating(dev_priv);
8988
8989        gen6_check_mch_setup(dev_priv);
8990}
8991
8992static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
8993{
8994        /* WaDisableEarlyCull:vlv */
8995        I915_WRITE(_3D_CHICKEN3,
8996                   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8997
8998        /* WaDisableBackToBackFlipFix:vlv */
8999        I915_WRITE(IVB_CHICKEN3,
9000                   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9001                   CHICKEN3_DGMG_DONE_FIX_DISABLE);
9002
9003        /* WaPsdDispatchEnable:vlv */
9004        /* WaDisablePSDDualDispatchEnable:vlv */
9005        I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9006                   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
9007                                      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9008
9009        /* WaDisable_RenderCache_OperationalFlush:vlv */
9010        I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9011
9012        /* WaForceL3Serialization:vlv */
9013        I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9014                   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9015
9016        /* WaDisableDopClockGating:vlv */
9017        I915_WRITE(GEN7_ROW_CHICKEN2,
9018                   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9019
9020        /* This is required by WaCatErrorRejectionIssue:vlv */
9021        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9022                   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9023                   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9024
9025        gen7_setup_fixed_func_scheduler(dev_priv);
9026
9027        /*
9028         * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9029         * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9030         */
9031        I915_WRITE(GEN6_UCGCTL2,
9032                   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9033
9034        /* WaDisableL3Bank2xClockGate:vlv
9035         * Disabling L3 clock gating- MMIO 940c[25] = 1
9036         * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
9037        I915_WRITE(GEN7_UCGCTL4,
9038                   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9039
9040        /*
9041         * BSpec says this must be set, even though
9042         * WaDisable4x2SubspanOptimization isn't listed for VLV.
9043         */
9044        I915_WRITE(CACHE_MODE_1,
9045                   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9046
9047        /*
9048         * BSpec recommends 8x4 when MSAA is used,
9049         * however in practice 16x4 seems fastest.
9050         *
9051         * Note that PS/WM thread counts depend on the WIZ hashing
9052         * disable bit, which we don't touch here, but it's good
9053         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9054         */
9055        I915_WRITE(GEN7_GT_MODE,
9056                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9057
9058        /*
9059         * WaIncreaseL3CreditsForVLVB0:vlv
9060         * This is the hardware default actually.
9061         */
9062        I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
9063
9064        /*
9065         * WaDisableVLVClockGating_VBIIssue:vlv
9066         * Disable clock gating on th GCFG unit to prevent a delay
9067         * in the reporting of vblank events.
9068         */
9069        I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9070}
9071
9072static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9073{
9074        /* WaVSRefCountFullforceMissDisable:chv */
9075        /* WaDSRefCountFullforceMissDisable:chv */
9076        I915_WRITE(GEN7_FF_THREAD_MODE,
9077                   I915_READ(GEN7_FF_THREAD_MODE) &
9078                   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9079
9080        /* WaDisableSemaphoreAndSyncFlipWait:chv */
9081        I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
9082                   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9083
9084        /* WaDisableCSUnitClockGating:chv */
9085        I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
9086                   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9087
9088        /* WaDisableSDEUnitClockGating:chv */
9089        I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9090                   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9091
9092        /*
9093         * WaProgramL3SqcReg1Default:chv
9094         * See gfxspecs/Related Documents/Performance Guide/
9095         * LSQC Setting Recommendations.
9096         */
9097        gen8_set_l3sqc_credits(dev_priv, 38, 2);
9098
9099        /*
9100         * GTT cache may not work with big pages, so if those
9101         * are ever enabled GTT cache may need to be disabled.
9102         */
9103        I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9104}
9105
9106static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9107{
9108        uint32_t dspclk_gate;
9109
9110        I915_WRITE(RENCLK_GATE_D1, 0);
9111        I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
9112                   GS_UNIT_CLOCK_GATE_DISABLE |
9113                   CL_UNIT_CLOCK_GATE_DISABLE);
9114        I915_WRITE(RAMCLK_GATE_D, 0);
9115        dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
9116                OVRUNIT_CLOCK_GATE_DISABLE |
9117                OVCUNIT_CLOCK_GATE_DISABLE;
9118        if (IS_GM45(dev_priv))
9119                dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
9120        I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9121
9122        /* WaDisableRenderCachePipelinedFlush */
9123        I915_WRITE(CACHE_MODE_0,
9124                   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9125
9126        /* WaDisable_RenderCache_OperationalFlush:g4x */
9127        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9128
9129        g4x_disable_trickle_feed(dev_priv);
9130}
9131
9132static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9133{
9134        I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
9135        I915_WRITE(RENCLK_GATE_D2, 0);
9136        I915_WRITE(DSPCLK_GATE_D, 0);
9137        I915_WRITE(RAMCLK_GATE_D, 0);
9138        I915_WRITE16(DEUC, 0);
9139        I915_WRITE(MI_ARB_STATE,
9140                   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9141
9142        /* WaDisable_RenderCache_OperationalFlush:gen4 */
9143        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9144}
9145
9146static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9147{
9148        I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
9149                   I965_RCC_CLOCK_GATE_DISABLE |
9150                   I965_RCPB_CLOCK_GATE_DISABLE |
9151                   I965_ISC_CLOCK_GATE_DISABLE |
9152                   I965_FBC_CLOCK_GATE_DISABLE);
9153        I915_WRITE(RENCLK_GATE_D2, 0);
9154        I915_WRITE(MI_ARB_STATE,
9155                   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9156
9157        /* WaDisable_RenderCache_OperationalFlush:gen4 */
9158        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9159}
9160
9161static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9162{
9163        u32 dstate = I915_READ(D_STATE);
9164
9165        dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
9166                DSTATE_DOT_CLOCK_GATING;
9167        I915_WRITE(D_STATE, dstate);
9168
9169        if (IS_PINEVIEW(dev_priv))
9170                I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9171
9172        /* IIR "flip pending" means done if this bit is set */
9173        I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9174
9175        /* interrupts should cause a wake up from C3 */
9176        I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9177
9178        /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
9179        I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9180
9181        I915_WRITE(MI_ARB_STATE,
9182                   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9183}
9184
9185static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9186{
9187        I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9188
9189        /* interrupts should cause a wake up from C3 */
9190        I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
9191                   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9192
9193        I915_WRITE(MEM_MODE,
9194                   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9195}
9196
9197static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9198{
9199        I915_WRITE(MEM_MODE,
9200                   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
9201                   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9202}
9203
9204void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9205{
9206        dev_priv->display.init_clock_gating(dev_priv);
9207}
9208
9209void intel_suspend_hw(struct drm_i915_private *dev_priv)
9210{
9211        if (HAS_PCH_LPT(dev_priv))
9212                lpt_suspend_hw(dev_priv);
9213}
9214
9215static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9216{
9217        DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
9218}
9219
9220/**
9221 * intel_init_clock_gating_hooks - setup the clock gating hooks
9222 * @dev_priv: device private
9223 *
9224 * Setup the hooks that configure which clocks of a given platform can be
9225 * gated and also apply various GT and display specific workarounds for these
9226 * platforms. Note that some GT specific workarounds are applied separately
9227 * when GPU contexts or batchbuffers start their execution.
9228 */
9229void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
9230{
9231        if (IS_ICELAKE(dev_priv))
9232                dev_priv->display.init_clock_gating = icl_init_clock_gating;
9233        else if (IS_CANNONLAKE(dev_priv))
9234                dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9235        else if (IS_COFFEELAKE(dev_priv))
9236                dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9237        else if (IS_SKYLAKE(dev_priv))
9238                dev_priv->display.init_clock_gating = skl_init_clock_gating;
9239        else if (IS_KABYLAKE(dev_priv))
9240                dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9241        else if (IS_BROXTON(dev_priv))
9242                dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9243        else if (IS_GEMINILAKE(dev_priv))
9244                dev_priv->display.init_clock_gating = glk_init_clock_gating;
9245        else if (IS_BROADWELL(dev_priv))
9246                dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9247        else if (IS_CHERRYVIEW(dev_priv))
9248                dev_priv->display.init_clock_gating = chv_init_clock_gating;
9249        else if (IS_HASWELL(dev_priv))
9250                dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9251        else if (IS_IVYBRIDGE(dev_priv))
9252                dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9253        else if (IS_VALLEYVIEW(dev_priv))
9254                dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9255        else if (IS_GEN6(dev_priv))
9256                dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9257        else if (IS_GEN5(dev_priv))
9258                dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9259        else if (IS_G4X(dev_priv))
9260                dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9261        else if (IS_I965GM(dev_priv))
9262                dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9263        else if (IS_I965G(dev_priv))
9264                dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9265        else if (IS_GEN3(dev_priv))
9266                dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9267        else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
9268                dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9269        else if (IS_GEN2(dev_priv))
9270                dev_priv->display.init_clock_gating = i830_init_clock_gating;
9271        else {
9272                MISSING_CASE(INTEL_DEVID(dev_priv));
9273                dev_priv->display.init_clock_gating = nop_init_clock_gating;
9274        }
9275}
9276
9277/* Set up chip specific power management-related functions */
9278void intel_init_pm(struct drm_i915_private *dev_priv)
9279{
9280        intel_fbc_init(dev_priv);
9281
9282        /* For cxsr */
9283        if (IS_PINEVIEW(dev_priv))
9284                i915_pineview_get_mem_freq(dev_priv);
9285        else if (IS_GEN5(dev_priv))
9286                i915_ironlake_get_mem_freq(dev_priv);
9287
9288        /* For FIFO watermark updates */
9289        if (INTEL_GEN(dev_priv) >= 9) {
9290                skl_setup_wm_latency(dev_priv);
9291                dev_priv->display.initial_watermarks = skl_initial_wm;
9292                dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9293                dev_priv->display.compute_global_watermarks = skl_compute_wm;
9294        } else if (HAS_PCH_SPLIT(dev_priv)) {
9295                ilk_setup_wm_latency(dev_priv);
9296
9297                if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
9298                     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9299                    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
9300                     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9301                        dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9302                        dev_priv->display.compute_intermediate_wm =
9303                                ilk_compute_intermediate_wm;
9304                        dev_priv->display.initial_watermarks =
9305                                ilk_initial_watermarks;
9306                        dev_priv->display.optimize_watermarks =
9307                                ilk_optimize_watermarks;
9308                } else {
9309                        DRM_DEBUG_KMS("Failed to read display plane latency. "
9310                                      "Disable CxSR\n");
9311                }
9312        } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9313                vlv_setup_wm_latency(dev_priv);
9314                dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9315                dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9316                dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9317                dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9318                dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9319        } else if (IS_G4X(dev_priv)) {
9320                g4x_setup_wm_latency(dev_priv);
9321                dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
9322                dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
9323                dev_priv->display.initial_watermarks = g4x_initial_watermarks;
9324                dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9325        } else if (IS_PINEVIEW(dev_priv)) {
9326                if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9327                                            dev_priv->is_ddr3,
9328                                            dev_priv->fsb_freq,
9329                                            dev_priv->mem_freq)) {
9330                        DRM_INFO("failed to find known CxSR latency "
9331                                 "(found ddr%s fsb freq %d, mem freq %d), "
9332                                 "disabling CxSR\n",
9333                                 (dev_priv->is_ddr3 == 1) ? "3" : "2",
9334                                 dev_priv->fsb_freq, dev_priv->mem_freq);
9335                        /* Disable CxSR and never update its watermark again */
9336                        intel_set_memory_cxsr(dev_priv, false);
9337                        dev_priv->display.update_wm = NULL;
9338                } else
9339                        dev_priv->display.update_wm = pineview_update_wm;
9340        } else if (IS_GEN4(dev_priv)) {
9341                dev_priv->display.update_wm = i965_update_wm;
9342        } else if (IS_GEN3(dev_priv)) {
9343                dev_priv->display.update_wm = i9xx_update_wm;
9344                dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9345        } else if (IS_GEN2(dev_priv)) {
9346                if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9347                        dev_priv->display.update_wm = i845_update_wm;
9348                        dev_priv->display.get_fifo_size = i845_get_fifo_size;
9349                } else {
9350                        dev_priv->display.update_wm = i9xx_update_wm;
9351                        dev_priv->display.get_fifo_size = i830_get_fifo_size;
9352                }
9353        } else {
9354                DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9355        }
9356}
9357
9358static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
9359{
9360        uint32_t flags =
9361                I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9362
9363        switch (flags) {
9364        case GEN6_PCODE_SUCCESS:
9365                return 0;
9366        case GEN6_PCODE_UNIMPLEMENTED_CMD:
9367                return -ENODEV;
9368        case GEN6_PCODE_ILLEGAL_CMD:
9369                return -ENXIO;
9370        case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9371        case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9372                return -EOVERFLOW;
9373        case GEN6_PCODE_TIMEOUT:
9374                return -ETIMEDOUT;
9375        default:
9376                MISSING_CASE(flags);
9377                return 0;
9378        }
9379}
9380
9381static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
9382{
9383        uint32_t flags =
9384                I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9385
9386        switch (flags) {
9387        case GEN6_PCODE_SUCCESS:
9388                return 0;
9389        case GEN6_PCODE_ILLEGAL_CMD:
9390                return -ENXIO;
9391        case GEN7_PCODE_TIMEOUT:
9392                return -ETIMEDOUT;
9393        case GEN7_PCODE_ILLEGAL_DATA:
9394                return -EINVAL;
9395        case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9396                return -EOVERFLOW;
9397        default:
9398                MISSING_CASE(flags);
9399                return 0;
9400        }
9401}
9402
9403int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
9404{
9405        int status;
9406
9407        WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9408
9409        /* GEN6_PCODE_* are outside of the forcewake domain, we can
9410         * use te fw I915_READ variants to reduce the amount of work
9411         * required when reading/writing.
9412         */
9413
9414        if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9415                DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
9416                                 mbox, __builtin_return_address(0));
9417                return -EAGAIN;
9418        }
9419
9420        I915_WRITE_FW(GEN6_PCODE_DATA, *val);
9421        I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9422        I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9423
9424        if (__intel_wait_for_register_fw(dev_priv,
9425                                         GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9426                                         500, 0, NULL)) {
9427                DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
9428                          mbox, __builtin_return_address(0));
9429                return -ETIMEDOUT;
9430        }
9431
9432        *val = I915_READ_FW(GEN6_PCODE_DATA);
9433        I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9434
9435        if (INTEL_GEN(dev_priv) > 6)
9436                status = gen7_check_mailbox_status(dev_priv);
9437        else
9438                status = gen6_check_mailbox_status(dev_priv);
9439
9440        if (status) {
9441                DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
9442                                 mbox, __builtin_return_address(0), status);
9443                return status;
9444        }
9445
9446        return 0;
9447}
9448
9449int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
9450                                    u32 mbox, u32 val,
9451                                    int fast_timeout_us, int slow_timeout_ms)
9452{
9453        int status;
9454
9455        WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9456
9457        /* GEN6_PCODE_* are outside of the forcewake domain, we can
9458         * use te fw I915_READ variants to reduce the amount of work
9459         * required when reading/writing.
9460         */
9461
9462        if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9463                DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
9464                                 val, mbox, __builtin_return_address(0));
9465                return -EAGAIN;
9466        }
9467
9468        I915_WRITE_FW(GEN6_PCODE_DATA, val);
9469        I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9470        I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9471
9472        if (__intel_wait_for_register_fw(dev_priv,
9473                                         GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9474                                         fast_timeout_us, slow_timeout_ms,
9475                                         NULL)) {
9476                DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
9477                          val, mbox, __builtin_return_address(0));
9478                return -ETIMEDOUT;
9479        }
9480
9481        I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9482
9483        if (INTEL_GEN(dev_priv) > 6)
9484                status = gen7_check_mailbox_status(dev_priv);
9485        else
9486                status = gen6_check_mailbox_status(dev_priv);
9487
9488        if (status) {
9489                DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
9490                                 val, mbox, __builtin_return_address(0), status);
9491                return status;
9492        }
9493
9494        return 0;
9495}
9496
9497static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
9498                                  u32 request, u32 reply_mask, u32 reply,
9499                                  u32 *status)
9500{
9501        u32 val = request;
9502
9503        *status = sandybridge_pcode_read(dev_priv, mbox, &val);
9504
9505        return *status || ((val & reply_mask) == reply);
9506}
9507
9508/**
9509 * skl_pcode_request - send PCODE request until acknowledgment
9510 * @dev_priv: device private
9511 * @mbox: PCODE mailbox ID the request is targeted for
9512 * @request: request ID
9513 * @reply_mask: mask used to check for request acknowledgment
9514 * @reply: value used to check for request acknowledgment
9515 * @timeout_base_ms: timeout for polling with preemption enabled
9516 *
9517 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9518 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9519 * The request is acknowledged once the PCODE reply dword equals @reply after
9520 * applying @reply_mask. Polling is first attempted with preemption enabled
9521 * for @timeout_base_ms and if this times out for another 50 ms with
9522 * preemption disabled.
9523 *
9524 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
9525 * other error as reported by PCODE.
9526 */
9527int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
9528                      u32 reply_mask, u32 reply, int timeout_base_ms)
9529{
9530        u32 status;
9531        int ret;
9532
9533        WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9534
9535#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
9536                                   &status)
9537
9538        /*
9539         * Prime the PCODE by doing a request first. Normally it guarantees
9540         * that a subsequent request, at most @timeout_base_ms later, succeeds.
9541         * _wait_for() doesn't guarantee when its passed condition is evaluated
9542         * first, so send the first request explicitly.
9543         */
9544        if (COND) {
9545                ret = 0;
9546                goto out;
9547        }
9548        ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
9549        if (!ret)
9550                goto out;
9551
9552        /*
9553         * The above can time out if the number of requests was low (2 in the
9554         * worst case) _and_ PCODE was busy for some reason even after a
9555         * (queued) request and @timeout_base_ms delay. As a workaround retry
9556         * the poll with preemption disabled to maximize the number of
9557         * requests. Increase the timeout from @timeout_base_ms to 50ms to
9558         * account for interrupts that could reduce the number of these
9559         * requests, and for any quirks of the PCODE firmware that delays
9560         * the request completion.
9561         */
9562        DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
9563        WARN_ON_ONCE(timeout_base_ms > 3);
9564        preempt_disable();
9565        ret = wait_for_atomic(COND, 50);
9566        preempt_enable();
9567
9568out:
9569        return ret ? ret : status;
9570#undef COND
9571}
9572
9573static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9574{
9575        struct intel_rps *rps = &dev_priv->gt_pm.rps;
9576
9577        /*
9578         * N = val - 0xb7
9579         * Slow = Fast = GPLL ref * N
9580         */
9581        return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9582}
9583
9584static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9585{
9586        struct intel_rps *rps = &dev_priv->gt_pm.rps;
9587
9588        return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9589}
9590
9591static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9592{
9593        struct intel_rps *rps = &dev_priv->gt_pm.rps;
9594
9595        /*
9596         * N = val / 2
9597         * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9598         */
9599        return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9600}
9601
9602static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9603{
9604        struct intel_rps *rps = &dev_priv->gt_pm.rps;
9605
9606        /* CHV needs even values */
9607        return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9608}
9609
9610int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9611{
9612        if (INTEL_GEN(dev_priv) >= 9)
9613                return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9614                                         GEN9_FREQ_SCALER);
9615        else if (IS_CHERRYVIEW(dev_priv))
9616                return chv_gpu_freq(dev_priv, val);
9617        else if (IS_VALLEYVIEW(dev_priv))
9618                return byt_gpu_freq(dev_priv, val);
9619        else
9620                return val * GT_FREQUENCY_MULTIPLIER;
9621}
9622
9623int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9624{
9625        if (INTEL_GEN(dev_priv) >= 9)
9626                return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9627                                         GT_FREQUENCY_MULTIPLIER);
9628        else if (IS_CHERRYVIEW(dev_priv))
9629                return chv_freq_opcode(dev_priv, val);
9630        else if (IS_VALLEYVIEW(dev_priv))
9631                return byt_freq_opcode(dev_priv, val);
9632        else
9633                return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9634}
9635
9636void intel_pm_setup(struct drm_i915_private *dev_priv)
9637{
9638        mutex_init(&dev_priv->pcu_lock);
9639        mutex_init(&dev_priv->gt_pm.rps.power.mutex);
9640
9641        atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9642
9643        dev_priv->runtime_pm.suspended = false;
9644        atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9645}
9646
9647static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9648                             const i915_reg_t reg)
9649{
9650        u32 lower, upper, tmp;
9651        int loop = 2;
9652
9653        /*
9654         * The register accessed do not need forcewake. We borrow
9655         * uncore lock to prevent concurrent access to range reg.
9656         */
9657        lockdep_assert_held(&dev_priv->uncore.lock);
9658
9659        /*
9660         * vlv and chv residency counters are 40 bits in width.
9661         * With a control bit, we can choose between upper or lower
9662         * 32bit window into this counter.
9663         *
9664         * Although we always use the counter in high-range mode elsewhere,
9665         * userspace may attempt to read the value before rc6 is initialised,
9666         * before we have set the default VLV_COUNTER_CONTROL value. So always
9667         * set the high bit to be safe.
9668         */
9669        I915_WRITE_FW(VLV_COUNTER_CONTROL,
9670                      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9671        upper = I915_READ_FW(reg);
9672        do {
9673                tmp = upper;
9674
9675                I915_WRITE_FW(VLV_COUNTER_CONTROL,
9676                              _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9677                lower = I915_READ_FW(reg);
9678
9679                I915_WRITE_FW(VLV_COUNTER_CONTROL,
9680                              _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9681                upper = I915_READ_FW(reg);
9682        } while (upper != tmp && --loop);
9683
9684        /*
9685         * Everywhere else we always use VLV_COUNTER_CONTROL with the
9686         * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9687         * now.
9688         */
9689
9690        return lower | (u64)upper << 8;
9691}
9692
9693u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9694                           const i915_reg_t reg)
9695{
9696        u64 time_hw, prev_hw, overflow_hw;
9697        unsigned int fw_domains;
9698        unsigned long flags;
9699        unsigned int i;
9700        u32 mul, div;
9701
9702        if (!HAS_RC6(dev_priv))
9703                return 0;
9704
9705        /*
9706         * Store previous hw counter values for counter wrap-around handling.
9707         *
9708         * There are only four interesting registers and they live next to each
9709         * other so we can use the relative address, compared to the smallest
9710         * one as the index into driver storage.
9711         */
9712        i = (i915_mmio_reg_offset(reg) -
9713             i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
9714        if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
9715                return 0;
9716
9717        fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ);
9718
9719        spin_lock_irqsave(&dev_priv->uncore.lock, flags);
9720        intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
9721
9722        /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9723        if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9724                mul = 1000000;
9725                div = dev_priv->czclk_freq;
9726                overflow_hw = BIT_ULL(40);
9727                time_hw = vlv_residency_raw(dev_priv, reg);
9728        } else {
9729                /* 833.33ns units on Gen9LP, 1.28us elsewhere. */
9730                if (IS_GEN9_LP(dev_priv)) {
9731                        mul = 10000;
9732                        div = 12;
9733                } else {
9734                        mul = 1280;
9735                        div = 1;
9736                }
9737
9738                overflow_hw = BIT_ULL(32);
9739                time_hw = I915_READ_FW(reg);
9740        }
9741
9742        /*
9743         * Counter wrap handling.
9744         *
9745         * But relying on a sufficient frequency of queries otherwise counters
9746         * can still wrap.
9747         */
9748        prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
9749        dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;
9750
9751        /* RC6 delta from last sample. */
9752        if (time_hw >= prev_hw)
9753                time_hw -= prev_hw;
9754        else
9755                time_hw += overflow_hw - prev_hw;
9756
9757        /* Add delta to RC6 extended raw driver copy. */
9758        time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
9759        dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;
9760
9761        intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
9762        spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
9763
9764        return mul_u64_u32_div(time_hw, mul, div);
9765}
9766
9767u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
9768{
9769        u32 cagf;
9770
9771        if (INTEL_GEN(dev_priv) >= 9)
9772                cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
9773        else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
9774                cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
9775        else
9776                cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
9777
9778        return  cagf;
9779}
9780