linux/drivers/hid/hid-core.c
<<
>>
Prefs
   1/*
   2 *  HID support for Linux
   3 *
   4 *  Copyright (c) 1999 Andreas Gal
   5 *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
   6 *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
   7 *  Copyright (c) 2006-2012 Jiri Kosina
   8 */
   9
  10/*
  11 * This program is free software; you can redistribute it and/or modify it
  12 * under the terms of the GNU General Public License as published by the Free
  13 * Software Foundation; either version 2 of the License, or (at your option)
  14 * any later version.
  15 */
  16
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/init.h>
  22#include <linux/kernel.h>
  23#include <linux/list.h>
  24#include <linux/mm.h>
  25#include <linux/spinlock.h>
  26#include <asm/unaligned.h>
  27#include <asm/byteorder.h>
  28#include <linux/input.h>
  29#include <linux/wait.h>
  30#include <linux/vmalloc.h>
  31#include <linux/sched.h>
  32#include <linux/semaphore.h>
  33
  34#include <linux/hid.h>
  35#include <linux/hiddev.h>
  36#include <linux/hid-debug.h>
  37#include <linux/hidraw.h>
  38
  39#include "hid-ids.h"
  40
  41/*
  42 * Version Information
  43 */
  44
  45#define DRIVER_DESC "HID core driver"
  46
  47int hid_debug = 0;
  48module_param_named(debug, hid_debug, int, 0600);
  49MODULE_PARM_DESC(debug, "toggle HID debugging messages");
  50EXPORT_SYMBOL_GPL(hid_debug);
  51
  52static int hid_ignore_special_drivers = 0;
  53module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
  54MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
  55
  56/*
  57 * Register a new report for a device.
  58 */
  59
  60struct hid_report *hid_register_report(struct hid_device *device,
  61                                       unsigned int type, unsigned int id,
  62                                       unsigned int application)
  63{
  64        struct hid_report_enum *report_enum = device->report_enum + type;
  65        struct hid_report *report;
  66
  67        if (id >= HID_MAX_IDS)
  68                return NULL;
  69        if (report_enum->report_id_hash[id])
  70                return report_enum->report_id_hash[id];
  71
  72        report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
  73        if (!report)
  74                return NULL;
  75
  76        if (id != 0)
  77                report_enum->numbered = 1;
  78
  79        report->id = id;
  80        report->type = type;
  81        report->size = 0;
  82        report->device = device;
  83        report->application = application;
  84        report_enum->report_id_hash[id] = report;
  85
  86        list_add_tail(&report->list, &report_enum->report_list);
  87
  88        return report;
  89}
  90EXPORT_SYMBOL_GPL(hid_register_report);
  91
  92/*
  93 * Register a new field for this report.
  94 */
  95
  96static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
  97{
  98        struct hid_field *field;
  99
 100        if (report->maxfield == HID_MAX_FIELDS) {
 101                hid_err(report->device, "too many fields in report\n");
 102                return NULL;
 103        }
 104
 105        field = kzalloc((sizeof(struct hid_field) +
 106                         usages * sizeof(struct hid_usage) +
 107                         values * sizeof(unsigned)), GFP_KERNEL);
 108        if (!field)
 109                return NULL;
 110
 111        field->index = report->maxfield++;
 112        report->field[field->index] = field;
 113        field->usage = (struct hid_usage *)(field + 1);
 114        field->value = (s32 *)(field->usage + usages);
 115        field->report = report;
 116
 117        return field;
 118}
 119
 120/*
 121 * Open a collection. The type/usage is pushed on the stack.
 122 */
 123
 124static int open_collection(struct hid_parser *parser, unsigned type)
 125{
 126        struct hid_collection *collection;
 127        unsigned usage;
 128
 129        usage = parser->local.usage[0];
 130
 131        if (parser->collection_stack_ptr == parser->collection_stack_size) {
 132                unsigned int *collection_stack;
 133                unsigned int new_size = parser->collection_stack_size +
 134                                        HID_COLLECTION_STACK_SIZE;
 135
 136                collection_stack = krealloc(parser->collection_stack,
 137                                            new_size * sizeof(unsigned int),
 138                                            GFP_KERNEL);
 139                if (!collection_stack)
 140                        return -ENOMEM;
 141
 142                parser->collection_stack = collection_stack;
 143                parser->collection_stack_size = new_size;
 144        }
 145
 146        if (parser->device->maxcollection == parser->device->collection_size) {
 147                collection = kmalloc(
 148                                array3_size(sizeof(struct hid_collection),
 149                                            parser->device->collection_size,
 150                                            2),
 151                                GFP_KERNEL);
 152                if (collection == NULL) {
 153                        hid_err(parser->device, "failed to reallocate collection array\n");
 154                        return -ENOMEM;
 155                }
 156                memcpy(collection, parser->device->collection,
 157                        sizeof(struct hid_collection) *
 158                        parser->device->collection_size);
 159                memset(collection + parser->device->collection_size, 0,
 160                        sizeof(struct hid_collection) *
 161                        parser->device->collection_size);
 162                kfree(parser->device->collection);
 163                parser->device->collection = collection;
 164                parser->device->collection_size *= 2;
 165        }
 166
 167        parser->collection_stack[parser->collection_stack_ptr++] =
 168                parser->device->maxcollection;
 169
 170        collection = parser->device->collection +
 171                parser->device->maxcollection++;
 172        collection->type = type;
 173        collection->usage = usage;
 174        collection->level = parser->collection_stack_ptr - 1;
 175
 176        if (type == HID_COLLECTION_APPLICATION)
 177                parser->device->maxapplication++;
 178
 179        return 0;
 180}
 181
 182/*
 183 * Close a collection.
 184 */
 185
 186static int close_collection(struct hid_parser *parser)
 187{
 188        if (!parser->collection_stack_ptr) {
 189                hid_err(parser->device, "collection stack underflow\n");
 190                return -EINVAL;
 191        }
 192        parser->collection_stack_ptr--;
 193        return 0;
 194}
 195
 196/*
 197 * Climb up the stack, search for the specified collection type
 198 * and return the usage.
 199 */
 200
 201static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
 202{
 203        struct hid_collection *collection = parser->device->collection;
 204        int n;
 205
 206        for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
 207                unsigned index = parser->collection_stack[n];
 208                if (collection[index].type == type)
 209                        return collection[index].usage;
 210        }
 211        return 0; /* we know nothing about this usage type */
 212}
 213
 214/*
 215 * Add a usage to the temporary parser table.
 216 */
 217
 218static int hid_add_usage(struct hid_parser *parser, unsigned usage)
 219{
 220        if (parser->local.usage_index >= HID_MAX_USAGES) {
 221                hid_err(parser->device, "usage index exceeded\n");
 222                return -1;
 223        }
 224        parser->local.usage[parser->local.usage_index] = usage;
 225        parser->local.collection_index[parser->local.usage_index] =
 226                parser->collection_stack_ptr ?
 227                parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
 228        parser->local.usage_index++;
 229        return 0;
 230}
 231
 232/*
 233 * Register a new field for this report.
 234 */
 235
 236static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
 237{
 238        struct hid_report *report;
 239        struct hid_field *field;
 240        unsigned int usages;
 241        unsigned int offset;
 242        unsigned int i;
 243        unsigned int application;
 244
 245        application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
 246
 247        report = hid_register_report(parser->device, report_type,
 248                                     parser->global.report_id, application);
 249        if (!report) {
 250                hid_err(parser->device, "hid_register_report failed\n");
 251                return -1;
 252        }
 253
 254        /* Handle both signed and unsigned cases properly */
 255        if ((parser->global.logical_minimum < 0 &&
 256                parser->global.logical_maximum <
 257                parser->global.logical_minimum) ||
 258                (parser->global.logical_minimum >= 0 &&
 259                (__u32)parser->global.logical_maximum <
 260                (__u32)parser->global.logical_minimum)) {
 261                dbg_hid("logical range invalid 0x%x 0x%x\n",
 262                        parser->global.logical_minimum,
 263                        parser->global.logical_maximum);
 264                return -1;
 265        }
 266
 267        offset = report->size;
 268        report->size += parser->global.report_size * parser->global.report_count;
 269
 270        if (!parser->local.usage_index) /* Ignore padding fields */
 271                return 0;
 272
 273        usages = max_t(unsigned, parser->local.usage_index,
 274                                 parser->global.report_count);
 275
 276        field = hid_register_field(report, usages, parser->global.report_count);
 277        if (!field)
 278                return 0;
 279
 280        field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
 281        field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
 282        field->application = application;
 283
 284        for (i = 0; i < usages; i++) {
 285                unsigned j = i;
 286                /* Duplicate the last usage we parsed if we have excess values */
 287                if (i >= parser->local.usage_index)
 288                        j = parser->local.usage_index - 1;
 289                field->usage[i].hid = parser->local.usage[j];
 290                field->usage[i].collection_index =
 291                        parser->local.collection_index[j];
 292                field->usage[i].usage_index = i;
 293        }
 294
 295        field->maxusage = usages;
 296        field->flags = flags;
 297        field->report_offset = offset;
 298        field->report_type = report_type;
 299        field->report_size = parser->global.report_size;
 300        field->report_count = parser->global.report_count;
 301        field->logical_minimum = parser->global.logical_minimum;
 302        field->logical_maximum = parser->global.logical_maximum;
 303        field->physical_minimum = parser->global.physical_minimum;
 304        field->physical_maximum = parser->global.physical_maximum;
 305        field->unit_exponent = parser->global.unit_exponent;
 306        field->unit = parser->global.unit;
 307
 308        return 0;
 309}
 310
 311/*
 312 * Read data value from item.
 313 */
 314
 315static u32 item_udata(struct hid_item *item)
 316{
 317        switch (item->size) {
 318        case 1: return item->data.u8;
 319        case 2: return item->data.u16;
 320        case 4: return item->data.u32;
 321        }
 322        return 0;
 323}
 324
 325static s32 item_sdata(struct hid_item *item)
 326{
 327        switch (item->size) {
 328        case 1: return item->data.s8;
 329        case 2: return item->data.s16;
 330        case 4: return item->data.s32;
 331        }
 332        return 0;
 333}
 334
 335/*
 336 * Process a global item.
 337 */
 338
 339static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
 340{
 341        __s32 raw_value;
 342        switch (item->tag) {
 343        case HID_GLOBAL_ITEM_TAG_PUSH:
 344
 345                if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
 346                        hid_err(parser->device, "global environment stack overflow\n");
 347                        return -1;
 348                }
 349
 350                memcpy(parser->global_stack + parser->global_stack_ptr++,
 351                        &parser->global, sizeof(struct hid_global));
 352                return 0;
 353
 354        case HID_GLOBAL_ITEM_TAG_POP:
 355
 356                if (!parser->global_stack_ptr) {
 357                        hid_err(parser->device, "global environment stack underflow\n");
 358                        return -1;
 359                }
 360
 361                memcpy(&parser->global, parser->global_stack +
 362                        --parser->global_stack_ptr, sizeof(struct hid_global));
 363                return 0;
 364
 365        case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
 366                parser->global.usage_page = item_udata(item);
 367                return 0;
 368
 369        case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
 370                parser->global.logical_minimum = item_sdata(item);
 371                return 0;
 372
 373        case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
 374                if (parser->global.logical_minimum < 0)
 375                        parser->global.logical_maximum = item_sdata(item);
 376                else
 377                        parser->global.logical_maximum = item_udata(item);
 378                return 0;
 379
 380        case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
 381                parser->global.physical_minimum = item_sdata(item);
 382                return 0;
 383
 384        case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
 385                if (parser->global.physical_minimum < 0)
 386                        parser->global.physical_maximum = item_sdata(item);
 387                else
 388                        parser->global.physical_maximum = item_udata(item);
 389                return 0;
 390
 391        case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
 392                /* Many devices provide unit exponent as a two's complement
 393                 * nibble due to the common misunderstanding of HID
 394                 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
 395                 * both this and the standard encoding. */
 396                raw_value = item_sdata(item);
 397                if (!(raw_value & 0xfffffff0))
 398                        parser->global.unit_exponent = hid_snto32(raw_value, 4);
 399                else
 400                        parser->global.unit_exponent = raw_value;
 401                return 0;
 402
 403        case HID_GLOBAL_ITEM_TAG_UNIT:
 404                parser->global.unit = item_udata(item);
 405                return 0;
 406
 407        case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
 408                parser->global.report_size = item_udata(item);
 409                if (parser->global.report_size > 128) {
 410                        hid_err(parser->device, "invalid report_size %d\n",
 411                                        parser->global.report_size);
 412                        return -1;
 413                }
 414                return 0;
 415
 416        case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
 417                parser->global.report_count = item_udata(item);
 418                if (parser->global.report_count > HID_MAX_USAGES) {
 419                        hid_err(parser->device, "invalid report_count %d\n",
 420                                        parser->global.report_count);
 421                        return -1;
 422                }
 423                return 0;
 424
 425        case HID_GLOBAL_ITEM_TAG_REPORT_ID:
 426                parser->global.report_id = item_udata(item);
 427                if (parser->global.report_id == 0 ||
 428                    parser->global.report_id >= HID_MAX_IDS) {
 429                        hid_err(parser->device, "report_id %u is invalid\n",
 430                                parser->global.report_id);
 431                        return -1;
 432                }
 433                return 0;
 434
 435        default:
 436                hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
 437                return -1;
 438        }
 439}
 440
 441/*
 442 * Process a local item.
 443 */
 444
 445static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
 446{
 447        __u32 data;
 448        unsigned n;
 449        __u32 count;
 450
 451        data = item_udata(item);
 452
 453        switch (item->tag) {
 454        case HID_LOCAL_ITEM_TAG_DELIMITER:
 455
 456                if (data) {
 457                        /*
 458                         * We treat items before the first delimiter
 459                         * as global to all usage sets (branch 0).
 460                         * In the moment we process only these global
 461                         * items and the first delimiter set.
 462                         */
 463                        if (parser->local.delimiter_depth != 0) {
 464                                hid_err(parser->device, "nested delimiters\n");
 465                                return -1;
 466                        }
 467                        parser->local.delimiter_depth++;
 468                        parser->local.delimiter_branch++;
 469                } else {
 470                        if (parser->local.delimiter_depth < 1) {
 471                                hid_err(parser->device, "bogus close delimiter\n");
 472                                return -1;
 473                        }
 474                        parser->local.delimiter_depth--;
 475                }
 476                return 0;
 477
 478        case HID_LOCAL_ITEM_TAG_USAGE:
 479
 480                if (parser->local.delimiter_branch > 1) {
 481                        dbg_hid("alternative usage ignored\n");
 482                        return 0;
 483                }
 484
 485                if (item->size <= 2)
 486                        data = (parser->global.usage_page << 16) + data;
 487
 488                return hid_add_usage(parser, data);
 489
 490        case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
 491
 492                if (parser->local.delimiter_branch > 1) {
 493                        dbg_hid("alternative usage ignored\n");
 494                        return 0;
 495                }
 496
 497                if (item->size <= 2)
 498                        data = (parser->global.usage_page << 16) + data;
 499
 500                parser->local.usage_minimum = data;
 501                return 0;
 502
 503        case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
 504
 505                if (parser->local.delimiter_branch > 1) {
 506                        dbg_hid("alternative usage ignored\n");
 507                        return 0;
 508                }
 509
 510                if (item->size <= 2)
 511                        data = (parser->global.usage_page << 16) + data;
 512
 513                count = data - parser->local.usage_minimum;
 514                if (count + parser->local.usage_index >= HID_MAX_USAGES) {
 515                        /*
 516                         * We do not warn if the name is not set, we are
 517                         * actually pre-scanning the device.
 518                         */
 519                        if (dev_name(&parser->device->dev))
 520                                hid_warn(parser->device,
 521                                         "ignoring exceeding usage max\n");
 522                        data = HID_MAX_USAGES - parser->local.usage_index +
 523                                parser->local.usage_minimum - 1;
 524                        if (data <= 0) {
 525                                hid_err(parser->device,
 526                                        "no more usage index available\n");
 527                                return -1;
 528                        }
 529                }
 530
 531                for (n = parser->local.usage_minimum; n <= data; n++)
 532                        if (hid_add_usage(parser, n)) {
 533                                dbg_hid("hid_add_usage failed\n");
 534                                return -1;
 535                        }
 536                return 0;
 537
 538        default:
 539
 540                dbg_hid("unknown local item tag 0x%x\n", item->tag);
 541                return 0;
 542        }
 543        return 0;
 544}
 545
 546/*
 547 * Process a main item.
 548 */
 549
 550static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
 551{
 552        __u32 data;
 553        int ret;
 554
 555        data = item_udata(item);
 556
 557        switch (item->tag) {
 558        case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 559                ret = open_collection(parser, data & 0xff);
 560                break;
 561        case HID_MAIN_ITEM_TAG_END_COLLECTION:
 562                ret = close_collection(parser);
 563                break;
 564        case HID_MAIN_ITEM_TAG_INPUT:
 565                ret = hid_add_field(parser, HID_INPUT_REPORT, data);
 566                break;
 567        case HID_MAIN_ITEM_TAG_OUTPUT:
 568                ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
 569                break;
 570        case HID_MAIN_ITEM_TAG_FEATURE:
 571                ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
 572                break;
 573        default:
 574                hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
 575                ret = 0;
 576        }
 577
 578        memset(&parser->local, 0, sizeof(parser->local));       /* Reset the local parser environment */
 579
 580        return ret;
 581}
 582
 583/*
 584 * Process a reserved item.
 585 */
 586
 587static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
 588{
 589        dbg_hid("reserved item type, tag 0x%x\n", item->tag);
 590        return 0;
 591}
 592
 593/*
 594 * Free a report and all registered fields. The field->usage and
 595 * field->value table's are allocated behind the field, so we need
 596 * only to free(field) itself.
 597 */
 598
 599static void hid_free_report(struct hid_report *report)
 600{
 601        unsigned n;
 602
 603        for (n = 0; n < report->maxfield; n++)
 604                kfree(report->field[n]);
 605        kfree(report);
 606}
 607
 608/*
 609 * Close report. This function returns the device
 610 * state to the point prior to hid_open_report().
 611 */
 612static void hid_close_report(struct hid_device *device)
 613{
 614        unsigned i, j;
 615
 616        for (i = 0; i < HID_REPORT_TYPES; i++) {
 617                struct hid_report_enum *report_enum = device->report_enum + i;
 618
 619                for (j = 0; j < HID_MAX_IDS; j++) {
 620                        struct hid_report *report = report_enum->report_id_hash[j];
 621                        if (report)
 622                                hid_free_report(report);
 623                }
 624                memset(report_enum, 0, sizeof(*report_enum));
 625                INIT_LIST_HEAD(&report_enum->report_list);
 626        }
 627
 628        kfree(device->rdesc);
 629        device->rdesc = NULL;
 630        device->rsize = 0;
 631
 632        kfree(device->collection);
 633        device->collection = NULL;
 634        device->collection_size = 0;
 635        device->maxcollection = 0;
 636        device->maxapplication = 0;
 637
 638        device->status &= ~HID_STAT_PARSED;
 639}
 640
 641/*
 642 * Free a device structure, all reports, and all fields.
 643 */
 644
 645static void hid_device_release(struct device *dev)
 646{
 647        struct hid_device *hid = to_hid_device(dev);
 648
 649        hid_close_report(hid);
 650        kfree(hid->dev_rdesc);
 651        kfree(hid);
 652}
 653
 654/*
 655 * Fetch a report description item from the data stream. We support long
 656 * items, though they are not used yet.
 657 */
 658
 659static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
 660{
 661        u8 b;
 662
 663        if ((end - start) <= 0)
 664                return NULL;
 665
 666        b = *start++;
 667
 668        item->type = (b >> 2) & 3;
 669        item->tag  = (b >> 4) & 15;
 670
 671        if (item->tag == HID_ITEM_TAG_LONG) {
 672
 673                item->format = HID_ITEM_FORMAT_LONG;
 674
 675                if ((end - start) < 2)
 676                        return NULL;
 677
 678                item->size = *start++;
 679                item->tag  = *start++;
 680
 681                if ((end - start) < item->size)
 682                        return NULL;
 683
 684                item->data.longdata = start;
 685                start += item->size;
 686                return start;
 687        }
 688
 689        item->format = HID_ITEM_FORMAT_SHORT;
 690        item->size = b & 3;
 691
 692        switch (item->size) {
 693        case 0:
 694                return start;
 695
 696        case 1:
 697                if ((end - start) < 1)
 698                        return NULL;
 699                item->data.u8 = *start++;
 700                return start;
 701
 702        case 2:
 703                if ((end - start) < 2)
 704                        return NULL;
 705                item->data.u16 = get_unaligned_le16(start);
 706                start = (__u8 *)((__le16 *)start + 1);
 707                return start;
 708
 709        case 3:
 710                item->size++;
 711                if ((end - start) < 4)
 712                        return NULL;
 713                item->data.u32 = get_unaligned_le32(start);
 714                start = (__u8 *)((__le32 *)start + 1);
 715                return start;
 716        }
 717
 718        return NULL;
 719}
 720
 721static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
 722{
 723        struct hid_device *hid = parser->device;
 724
 725        if (usage == HID_DG_CONTACTID)
 726                hid->group = HID_GROUP_MULTITOUCH;
 727}
 728
 729static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
 730{
 731        if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
 732            parser->global.report_size == 8)
 733                parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
 734}
 735
 736static void hid_scan_collection(struct hid_parser *parser, unsigned type)
 737{
 738        struct hid_device *hid = parser->device;
 739        int i;
 740
 741        if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
 742            type == HID_COLLECTION_PHYSICAL)
 743                hid->group = HID_GROUP_SENSOR_HUB;
 744
 745        if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
 746            hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
 747            hid->group == HID_GROUP_MULTITOUCH)
 748                hid->group = HID_GROUP_GENERIC;
 749
 750        if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
 751                for (i = 0; i < parser->local.usage_index; i++)
 752                        if (parser->local.usage[i] == HID_GD_POINTER)
 753                                parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
 754
 755        if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
 756                parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
 757}
 758
 759static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
 760{
 761        __u32 data;
 762        int i;
 763
 764        data = item_udata(item);
 765
 766        switch (item->tag) {
 767        case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 768                hid_scan_collection(parser, data & 0xff);
 769                break;
 770        case HID_MAIN_ITEM_TAG_END_COLLECTION:
 771                break;
 772        case HID_MAIN_ITEM_TAG_INPUT:
 773                /* ignore constant inputs, they will be ignored by hid-input */
 774                if (data & HID_MAIN_ITEM_CONSTANT)
 775                        break;
 776                for (i = 0; i < parser->local.usage_index; i++)
 777                        hid_scan_input_usage(parser, parser->local.usage[i]);
 778                break;
 779        case HID_MAIN_ITEM_TAG_OUTPUT:
 780                break;
 781        case HID_MAIN_ITEM_TAG_FEATURE:
 782                for (i = 0; i < parser->local.usage_index; i++)
 783                        hid_scan_feature_usage(parser, parser->local.usage[i]);
 784                break;
 785        }
 786
 787        /* Reset the local parser environment */
 788        memset(&parser->local, 0, sizeof(parser->local));
 789
 790        return 0;
 791}
 792
 793/*
 794 * Scan a report descriptor before the device is added to the bus.
 795 * Sets device groups and other properties that determine what driver
 796 * to load.
 797 */
 798static int hid_scan_report(struct hid_device *hid)
 799{
 800        struct hid_parser *parser;
 801        struct hid_item item;
 802        __u8 *start = hid->dev_rdesc;
 803        __u8 *end = start + hid->dev_rsize;
 804        static int (*dispatch_type[])(struct hid_parser *parser,
 805                                      struct hid_item *item) = {
 806                hid_scan_main,
 807                hid_parser_global,
 808                hid_parser_local,
 809                hid_parser_reserved
 810        };
 811
 812        parser = vzalloc(sizeof(struct hid_parser));
 813        if (!parser)
 814                return -ENOMEM;
 815
 816        parser->device = hid;
 817        hid->group = HID_GROUP_GENERIC;
 818
 819        /*
 820         * The parsing is simpler than the one in hid_open_report() as we should
 821         * be robust against hid errors. Those errors will be raised by
 822         * hid_open_report() anyway.
 823         */
 824        while ((start = fetch_item(start, end, &item)) != NULL)
 825                dispatch_type[item.type](parser, &item);
 826
 827        /*
 828         * Handle special flags set during scanning.
 829         */
 830        if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
 831            (hid->group == HID_GROUP_MULTITOUCH))
 832                hid->group = HID_GROUP_MULTITOUCH_WIN_8;
 833
 834        /*
 835         * Vendor specific handlings
 836         */
 837        switch (hid->vendor) {
 838        case USB_VENDOR_ID_WACOM:
 839                hid->group = HID_GROUP_WACOM;
 840                break;
 841        case USB_VENDOR_ID_SYNAPTICS:
 842                if (hid->group == HID_GROUP_GENERIC)
 843                        if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
 844                            && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
 845                                /*
 846                                 * hid-rmi should take care of them,
 847                                 * not hid-generic
 848                                 */
 849                                hid->group = HID_GROUP_RMI;
 850                break;
 851        }
 852
 853        kfree(parser->collection_stack);
 854        vfree(parser);
 855        return 0;
 856}
 857
 858/**
 859 * hid_parse_report - parse device report
 860 *
 861 * @device: hid device
 862 * @start: report start
 863 * @size: report size
 864 *
 865 * Allocate the device report as read by the bus driver. This function should
 866 * only be called from parse() in ll drivers.
 867 */
 868int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
 869{
 870        hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
 871        if (!hid->dev_rdesc)
 872                return -ENOMEM;
 873        hid->dev_rsize = size;
 874        return 0;
 875}
 876EXPORT_SYMBOL_GPL(hid_parse_report);
 877
 878static const char * const hid_report_names[] = {
 879        "HID_INPUT_REPORT",
 880        "HID_OUTPUT_REPORT",
 881        "HID_FEATURE_REPORT",
 882};
 883/**
 884 * hid_validate_values - validate existing device report's value indexes
 885 *
 886 * @device: hid device
 887 * @type: which report type to examine
 888 * @id: which report ID to examine (0 for first)
 889 * @field_index: which report field to examine
 890 * @report_counts: expected number of values
 891 *
 892 * Validate the number of values in a given field of a given report, after
 893 * parsing.
 894 */
 895struct hid_report *hid_validate_values(struct hid_device *hid,
 896                                       unsigned int type, unsigned int id,
 897                                       unsigned int field_index,
 898                                       unsigned int report_counts)
 899{
 900        struct hid_report *report;
 901
 902        if (type > HID_FEATURE_REPORT) {
 903                hid_err(hid, "invalid HID report type %u\n", type);
 904                return NULL;
 905        }
 906
 907        if (id >= HID_MAX_IDS) {
 908                hid_err(hid, "invalid HID report id %u\n", id);
 909                return NULL;
 910        }
 911
 912        /*
 913         * Explicitly not using hid_get_report() here since it depends on
 914         * ->numbered being checked, which may not always be the case when
 915         * drivers go to access report values.
 916         */
 917        if (id == 0) {
 918                /*
 919                 * Validating on id 0 means we should examine the first
 920                 * report in the list.
 921                 */
 922                report = list_entry(
 923                                hid->report_enum[type].report_list.next,
 924                                struct hid_report, list);
 925        } else {
 926                report = hid->report_enum[type].report_id_hash[id];
 927        }
 928        if (!report) {
 929                hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
 930                return NULL;
 931        }
 932        if (report->maxfield <= field_index) {
 933                hid_err(hid, "not enough fields in %s %u\n",
 934                        hid_report_names[type], id);
 935                return NULL;
 936        }
 937        if (report->field[field_index]->report_count < report_counts) {
 938                hid_err(hid, "not enough values in %s %u field %u\n",
 939                        hid_report_names[type], id, field_index);
 940                return NULL;
 941        }
 942        return report;
 943}
 944EXPORT_SYMBOL_GPL(hid_validate_values);
 945
 946/**
 947 * hid_open_report - open a driver-specific device report
 948 *
 949 * @device: hid device
 950 *
 951 * Parse a report description into a hid_device structure. Reports are
 952 * enumerated, fields are attached to these reports.
 953 * 0 returned on success, otherwise nonzero error value.
 954 *
 955 * This function (or the equivalent hid_parse() macro) should only be
 956 * called from probe() in drivers, before starting the device.
 957 */
 958int hid_open_report(struct hid_device *device)
 959{
 960        struct hid_parser *parser;
 961        struct hid_item item;
 962        unsigned int size;
 963        __u8 *start;
 964        __u8 *buf;
 965        __u8 *end;
 966        int ret;
 967        static int (*dispatch_type[])(struct hid_parser *parser,
 968                                      struct hid_item *item) = {
 969                hid_parser_main,
 970                hid_parser_global,
 971                hid_parser_local,
 972                hid_parser_reserved
 973        };
 974
 975        if (WARN_ON(device->status & HID_STAT_PARSED))
 976                return -EBUSY;
 977
 978        start = device->dev_rdesc;
 979        if (WARN_ON(!start))
 980                return -ENODEV;
 981        size = device->dev_rsize;
 982
 983        buf = kmemdup(start, size, GFP_KERNEL);
 984        if (buf == NULL)
 985                return -ENOMEM;
 986
 987        if (device->driver->report_fixup)
 988                start = device->driver->report_fixup(device, buf, &size);
 989        else
 990                start = buf;
 991
 992        start = kmemdup(start, size, GFP_KERNEL);
 993        kfree(buf);
 994        if (start == NULL)
 995                return -ENOMEM;
 996
 997        device->rdesc = start;
 998        device->rsize = size;
 999
1000        parser = vzalloc(sizeof(struct hid_parser));
1001        if (!parser) {
1002                ret = -ENOMEM;
1003                goto alloc_err;
1004        }
1005
1006        parser->device = device;
1007
1008        end = start + size;
1009
1010        device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1011                                     sizeof(struct hid_collection), GFP_KERNEL);
1012        if (!device->collection) {
1013                ret = -ENOMEM;
1014                goto err;
1015        }
1016        device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1017
1018        ret = -EINVAL;
1019        while ((start = fetch_item(start, end, &item)) != NULL) {
1020
1021                if (item.format != HID_ITEM_FORMAT_SHORT) {
1022                        hid_err(device, "unexpected long global item\n");
1023                        goto err;
1024                }
1025
1026                if (dispatch_type[item.type](parser, &item)) {
1027                        hid_err(device, "item %u %u %u %u parsing failed\n",
1028                                item.format, (unsigned)item.size,
1029                                (unsigned)item.type, (unsigned)item.tag);
1030                        goto err;
1031                }
1032
1033                if (start == end) {
1034                        if (parser->collection_stack_ptr) {
1035                                hid_err(device, "unbalanced collection at end of report description\n");
1036                                goto err;
1037                        }
1038                        if (parser->local.delimiter_depth) {
1039                                hid_err(device, "unbalanced delimiter at end of report description\n");
1040                                goto err;
1041                        }
1042                        kfree(parser->collection_stack);
1043                        vfree(parser);
1044                        device->status |= HID_STAT_PARSED;
1045                        return 0;
1046                }
1047        }
1048
1049        hid_err(device, "item fetching failed at offset %d\n", (int)(end - start));
1050err:
1051        kfree(parser->collection_stack);
1052alloc_err:
1053        vfree(parser);
1054        hid_close_report(device);
1055        return ret;
1056}
1057EXPORT_SYMBOL_GPL(hid_open_report);
1058
1059/*
1060 * Convert a signed n-bit integer to signed 32-bit integer. Common
1061 * cases are done through the compiler, the screwed things has to be
1062 * done by hand.
1063 */
1064
1065static s32 snto32(__u32 value, unsigned n)
1066{
1067        switch (n) {
1068        case 8:  return ((__s8)value);
1069        case 16: return ((__s16)value);
1070        case 32: return ((__s32)value);
1071        }
1072        return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1073}
1074
1075s32 hid_snto32(__u32 value, unsigned n)
1076{
1077        return snto32(value, n);
1078}
1079EXPORT_SYMBOL_GPL(hid_snto32);
1080
1081/*
1082 * Convert a signed 32-bit integer to a signed n-bit integer.
1083 */
1084
1085static u32 s32ton(__s32 value, unsigned n)
1086{
1087        s32 a = value >> (n - 1);
1088        if (a && a != -1)
1089                return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1090        return value & ((1 << n) - 1);
1091}
1092
1093/*
1094 * Extract/implement a data field from/to a little endian report (bit array).
1095 *
1096 * Code sort-of follows HID spec:
1097 *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1098 *
1099 * While the USB HID spec allows unlimited length bit fields in "report
1100 * descriptors", most devices never use more than 16 bits.
1101 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1102 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1103 */
1104
1105static u32 __extract(u8 *report, unsigned offset, int n)
1106{
1107        unsigned int idx = offset / 8;
1108        unsigned int bit_nr = 0;
1109        unsigned int bit_shift = offset % 8;
1110        int bits_to_copy = 8 - bit_shift;
1111        u32 value = 0;
1112        u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1113
1114        while (n > 0) {
1115                value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1116                n -= bits_to_copy;
1117                bit_nr += bits_to_copy;
1118                bits_to_copy = 8;
1119                bit_shift = 0;
1120                idx++;
1121        }
1122
1123        return value & mask;
1124}
1125
1126u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1127                        unsigned offset, unsigned n)
1128{
1129        if (n > 32) {
1130                hid_warn(hid, "hid_field_extract() called with n (%d) > 32! (%s)\n",
1131                         n, current->comm);
1132                n = 32;
1133        }
1134
1135        return __extract(report, offset, n);
1136}
1137EXPORT_SYMBOL_GPL(hid_field_extract);
1138
1139/*
1140 * "implement" : set bits in a little endian bit stream.
1141 * Same concepts as "extract" (see comments above).
1142 * The data mangled in the bit stream remains in little endian
1143 * order the whole time. It make more sense to talk about
1144 * endianness of register values by considering a register
1145 * a "cached" copy of the little endian bit stream.
1146 */
1147
1148static void __implement(u8 *report, unsigned offset, int n, u32 value)
1149{
1150        unsigned int idx = offset / 8;
1151        unsigned int bit_shift = offset % 8;
1152        int bits_to_set = 8 - bit_shift;
1153
1154        while (n - bits_to_set >= 0) {
1155                report[idx] &= ~(0xff << bit_shift);
1156                report[idx] |= value << bit_shift;
1157                value >>= bits_to_set;
1158                n -= bits_to_set;
1159                bits_to_set = 8;
1160                bit_shift = 0;
1161                idx++;
1162        }
1163
1164        /* last nibble */
1165        if (n) {
1166                u8 bit_mask = ((1U << n) - 1);
1167                report[idx] &= ~(bit_mask << bit_shift);
1168                report[idx] |= value << bit_shift;
1169        }
1170}
1171
1172static void implement(const struct hid_device *hid, u8 *report,
1173                      unsigned offset, unsigned n, u32 value)
1174{
1175        if (unlikely(n > 32)) {
1176                hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1177                         __func__, n, current->comm);
1178                n = 32;
1179        } else if (n < 32) {
1180                u32 m = (1U << n) - 1;
1181
1182                if (unlikely(value > m)) {
1183                        hid_warn(hid,
1184                                 "%s() called with too large value %d (n: %d)! (%s)\n",
1185                                 __func__, value, n, current->comm);
1186                        WARN_ON(1);
1187                        value &= m;
1188                }
1189        }
1190
1191        __implement(report, offset, n, value);
1192}
1193
1194/*
1195 * Search an array for a value.
1196 */
1197
1198static int search(__s32 *array, __s32 value, unsigned n)
1199{
1200        while (n--) {
1201                if (*array++ == value)
1202                        return 0;
1203        }
1204        return -1;
1205}
1206
1207/**
1208 * hid_match_report - check if driver's raw_event should be called
1209 *
1210 * @hid: hid device
1211 * @report_type: type to match against
1212 *
1213 * compare hid->driver->report_table->report_type to report->type
1214 */
1215static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1216{
1217        const struct hid_report_id *id = hid->driver->report_table;
1218
1219        if (!id) /* NULL means all */
1220                return 1;
1221
1222        for (; id->report_type != HID_TERMINATOR; id++)
1223                if (id->report_type == HID_ANY_ID ||
1224                                id->report_type == report->type)
1225                        return 1;
1226        return 0;
1227}
1228
1229/**
1230 * hid_match_usage - check if driver's event should be called
1231 *
1232 * @hid: hid device
1233 * @usage: usage to match against
1234 *
1235 * compare hid->driver->usage_table->usage_{type,code} to
1236 * usage->usage_{type,code}
1237 */
1238static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1239{
1240        const struct hid_usage_id *id = hid->driver->usage_table;
1241
1242        if (!id) /* NULL means all */
1243                return 1;
1244
1245        for (; id->usage_type != HID_ANY_ID - 1; id++)
1246                if ((id->usage_hid == HID_ANY_ID ||
1247                                id->usage_hid == usage->hid) &&
1248                                (id->usage_type == HID_ANY_ID ||
1249                                id->usage_type == usage->type) &&
1250                                (id->usage_code == HID_ANY_ID ||
1251                                 id->usage_code == usage->code))
1252                        return 1;
1253        return 0;
1254}
1255
1256static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1257                struct hid_usage *usage, __s32 value, int interrupt)
1258{
1259        struct hid_driver *hdrv = hid->driver;
1260        int ret;
1261
1262        if (!list_empty(&hid->debug_list))
1263                hid_dump_input(hid, usage, value);
1264
1265        if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1266                ret = hdrv->event(hid, field, usage, value);
1267                if (ret != 0) {
1268                        if (ret < 0)
1269                                hid_err(hid, "%s's event failed with %d\n",
1270                                                hdrv->name, ret);
1271                        return;
1272                }
1273        }
1274
1275        if (hid->claimed & HID_CLAIMED_INPUT)
1276                hidinput_hid_event(hid, field, usage, value);
1277        if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1278                hid->hiddev_hid_event(hid, field, usage, value);
1279}
1280
1281/*
1282 * Analyse a received field, and fetch the data from it. The field
1283 * content is stored for next report processing (we do differential
1284 * reporting to the layer).
1285 */
1286
1287static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1288                            __u8 *data, int interrupt)
1289{
1290        unsigned n;
1291        unsigned count = field->report_count;
1292        unsigned offset = field->report_offset;
1293        unsigned size = field->report_size;
1294        __s32 min = field->logical_minimum;
1295        __s32 max = field->logical_maximum;
1296        __s32 *value;
1297
1298        value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1299        if (!value)
1300                return;
1301
1302        for (n = 0; n < count; n++) {
1303
1304                value[n] = min < 0 ?
1305                        snto32(hid_field_extract(hid, data, offset + n * size,
1306                               size), size) :
1307                        hid_field_extract(hid, data, offset + n * size, size);
1308
1309                /* Ignore report if ErrorRollOver */
1310                if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1311                    value[n] >= min && value[n] <= max &&
1312                    value[n] - min < field->maxusage &&
1313                    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1314                        goto exit;
1315        }
1316
1317        for (n = 0; n < count; n++) {
1318
1319                if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1320                        hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1321                        continue;
1322                }
1323
1324                if (field->value[n] >= min && field->value[n] <= max
1325                        && field->value[n] - min < field->maxusage
1326                        && field->usage[field->value[n] - min].hid
1327                        && search(value, field->value[n], count))
1328                                hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1329
1330                if (value[n] >= min && value[n] <= max
1331                        && value[n] - min < field->maxusage
1332                        && field->usage[value[n] - min].hid
1333                        && search(field->value, value[n], count))
1334                                hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1335        }
1336
1337        memcpy(field->value, value, count * sizeof(__s32));
1338exit:
1339        kfree(value);
1340}
1341
1342/*
1343 * Output the field into the report.
1344 */
1345
1346static void hid_output_field(const struct hid_device *hid,
1347                             struct hid_field *field, __u8 *data)
1348{
1349        unsigned count = field->report_count;
1350        unsigned offset = field->report_offset;
1351        unsigned size = field->report_size;
1352        unsigned n;
1353
1354        for (n = 0; n < count; n++) {
1355                if (field->logical_minimum < 0) /* signed values */
1356                        implement(hid, data, offset + n * size, size,
1357                                  s32ton(field->value[n], size));
1358                else                            /* unsigned values */
1359                        implement(hid, data, offset + n * size, size,
1360                                  field->value[n]);
1361        }
1362}
1363
1364/*
1365 * Create a report. 'data' has to be allocated using
1366 * hid_alloc_report_buf() so that it has proper size.
1367 */
1368
1369void hid_output_report(struct hid_report *report, __u8 *data)
1370{
1371        unsigned n;
1372
1373        if (report->id > 0)
1374                *data++ = report->id;
1375
1376        memset(data, 0, ((report->size - 1) >> 3) + 1);
1377        for (n = 0; n < report->maxfield; n++)
1378                hid_output_field(report->device, report->field[n], data);
1379}
1380EXPORT_SYMBOL_GPL(hid_output_report);
1381
1382/*
1383 * Allocator for buffer that is going to be passed to hid_output_report()
1384 */
1385u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1386{
1387        /*
1388         * 7 extra bytes are necessary to achieve proper functionality
1389         * of implement() working on 8 byte chunks
1390         */
1391
1392        u32 len = hid_report_len(report) + 7;
1393
1394        return kmalloc(len, flags);
1395}
1396EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1397
1398/*
1399 * Set a field value. The report this field belongs to has to be
1400 * created and transferred to the device, to set this value in the
1401 * device.
1402 */
1403
1404int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1405{
1406        unsigned size;
1407
1408        if (!field)
1409                return -1;
1410
1411        size = field->report_size;
1412
1413        hid_dump_input(field->report->device, field->usage + offset, value);
1414
1415        if (offset >= field->report_count) {
1416                hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1417                                offset, field->report_count);
1418                return -1;
1419        }
1420        if (field->logical_minimum < 0) {
1421                if (value != snto32(s32ton(value, size), size)) {
1422                        hid_err(field->report->device, "value %d is out of range\n", value);
1423                        return -1;
1424                }
1425        }
1426        field->value[offset] = value;
1427        return 0;
1428}
1429EXPORT_SYMBOL_GPL(hid_set_field);
1430
1431static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1432                const u8 *data)
1433{
1434        struct hid_report *report;
1435        unsigned int n = 0;     /* Normally report number is 0 */
1436
1437        /* Device uses numbered reports, data[0] is report number */
1438        if (report_enum->numbered)
1439                n = *data;
1440
1441        report = report_enum->report_id_hash[n];
1442        if (report == NULL)
1443                dbg_hid("undefined report_id %u received\n", n);
1444
1445        return report;
1446}
1447
1448/*
1449 * Implement a generic .request() callback, using .raw_request()
1450 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1451 */
1452void __hid_request(struct hid_device *hid, struct hid_report *report,
1453                int reqtype)
1454{
1455        char *buf;
1456        int ret;
1457        u32 len;
1458
1459        buf = hid_alloc_report_buf(report, GFP_KERNEL);
1460        if (!buf)
1461                return;
1462
1463        len = hid_report_len(report);
1464
1465        if (reqtype == HID_REQ_SET_REPORT)
1466                hid_output_report(report, buf);
1467
1468        ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1469                                          report->type, reqtype);
1470        if (ret < 0) {
1471                dbg_hid("unable to complete request: %d\n", ret);
1472                goto out;
1473        }
1474
1475        if (reqtype == HID_REQ_GET_REPORT)
1476                hid_input_report(hid, report->type, buf, ret, 0);
1477
1478out:
1479        kfree(buf);
1480}
1481EXPORT_SYMBOL_GPL(__hid_request);
1482
1483int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1484                int interrupt)
1485{
1486        struct hid_report_enum *report_enum = hid->report_enum + type;
1487        struct hid_report *report;
1488        struct hid_driver *hdrv;
1489        unsigned int a;
1490        u32 rsize, csize = size;
1491        u8 *cdata = data;
1492        int ret = 0;
1493
1494        report = hid_get_report(report_enum, data);
1495        if (!report)
1496                goto out;
1497
1498        if (report_enum->numbered) {
1499                cdata++;
1500                csize--;
1501        }
1502
1503        rsize = ((report->size - 1) >> 3) + 1;
1504
1505        if (rsize > HID_MAX_BUFFER_SIZE)
1506                rsize = HID_MAX_BUFFER_SIZE;
1507
1508        if (csize < rsize) {
1509                dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1510                                csize, rsize);
1511                memset(cdata + csize, 0, rsize - csize);
1512        }
1513
1514        if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1515                hid->hiddev_report_event(hid, report);
1516        if (hid->claimed & HID_CLAIMED_HIDRAW) {
1517                ret = hidraw_report_event(hid, data, size);
1518                if (ret)
1519                        goto out;
1520        }
1521
1522        if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1523                for (a = 0; a < report->maxfield; a++)
1524                        hid_input_field(hid, report->field[a], cdata, interrupt);
1525                hdrv = hid->driver;
1526                if (hdrv && hdrv->report)
1527                        hdrv->report(hid, report);
1528        }
1529
1530        if (hid->claimed & HID_CLAIMED_INPUT)
1531                hidinput_report_event(hid, report);
1532out:
1533        return ret;
1534}
1535EXPORT_SYMBOL_GPL(hid_report_raw_event);
1536
1537/**
1538 * hid_input_report - report data from lower layer (usb, bt...)
1539 *
1540 * @hid: hid device
1541 * @type: HID report type (HID_*_REPORT)
1542 * @data: report contents
1543 * @size: size of data parameter
1544 * @interrupt: distinguish between interrupt and control transfers
1545 *
1546 * This is data entry for lower layers.
1547 */
1548int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1549{
1550        struct hid_report_enum *report_enum;
1551        struct hid_driver *hdrv;
1552        struct hid_report *report;
1553        int ret = 0;
1554
1555        if (!hid)
1556                return -ENODEV;
1557
1558        if (down_trylock(&hid->driver_input_lock))
1559                return -EBUSY;
1560
1561        if (!hid->driver) {
1562                ret = -ENODEV;
1563                goto unlock;
1564        }
1565        report_enum = hid->report_enum + type;
1566        hdrv = hid->driver;
1567
1568        if (!size) {
1569                dbg_hid("empty report\n");
1570                ret = -1;
1571                goto unlock;
1572        }
1573
1574        /* Avoid unnecessary overhead if debugfs is disabled */
1575        if (!list_empty(&hid->debug_list))
1576                hid_dump_report(hid, type, data, size);
1577
1578        report = hid_get_report(report_enum, data);
1579
1580        if (!report) {
1581                ret = -1;
1582                goto unlock;
1583        }
1584
1585        if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1586                ret = hdrv->raw_event(hid, report, data, size);
1587                if (ret < 0)
1588                        goto unlock;
1589        }
1590
1591        ret = hid_report_raw_event(hid, type, data, size, interrupt);
1592
1593unlock:
1594        up(&hid->driver_input_lock);
1595        return ret;
1596}
1597EXPORT_SYMBOL_GPL(hid_input_report);
1598
1599bool hid_match_one_id(const struct hid_device *hdev,
1600                      const struct hid_device_id *id)
1601{
1602        return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1603                (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1604                (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1605                (id->product == HID_ANY_ID || id->product == hdev->product);
1606}
1607
1608const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1609                const struct hid_device_id *id)
1610{
1611        for (; id->bus; id++)
1612                if (hid_match_one_id(hdev, id))
1613                        return id;
1614
1615        return NULL;
1616}
1617
1618static const struct hid_device_id hid_hiddev_list[] = {
1619        { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1620        { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1621        { }
1622};
1623
1624static bool hid_hiddev(struct hid_device *hdev)
1625{
1626        return !!hid_match_id(hdev, hid_hiddev_list);
1627}
1628
1629
1630static ssize_t
1631read_report_descriptor(struct file *filp, struct kobject *kobj,
1632                struct bin_attribute *attr,
1633                char *buf, loff_t off, size_t count)
1634{
1635        struct device *dev = kobj_to_dev(kobj);
1636        struct hid_device *hdev = to_hid_device(dev);
1637
1638        if (off >= hdev->rsize)
1639                return 0;
1640
1641        if (off + count > hdev->rsize)
1642                count = hdev->rsize - off;
1643
1644        memcpy(buf, hdev->rdesc + off, count);
1645
1646        return count;
1647}
1648
1649static ssize_t
1650show_country(struct device *dev, struct device_attribute *attr,
1651                char *buf)
1652{
1653        struct hid_device *hdev = to_hid_device(dev);
1654
1655        return sprintf(buf, "%02x\n", hdev->country & 0xff);
1656}
1657
1658static struct bin_attribute dev_bin_attr_report_desc = {
1659        .attr = { .name = "report_descriptor", .mode = 0444 },
1660        .read = read_report_descriptor,
1661        .size = HID_MAX_DESCRIPTOR_SIZE,
1662};
1663
1664static const struct device_attribute dev_attr_country = {
1665        .attr = { .name = "country", .mode = 0444 },
1666        .show = show_country,
1667};
1668
1669int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1670{
1671        static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1672                "Joystick", "Gamepad", "Keyboard", "Keypad",
1673                "Multi-Axis Controller"
1674        };
1675        const char *type, *bus;
1676        char buf[64] = "";
1677        unsigned int i;
1678        int len;
1679        int ret;
1680
1681        if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1682                connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1683        if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1684                connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1685        if (hdev->bus != BUS_USB)
1686                connect_mask &= ~HID_CONNECT_HIDDEV;
1687        if (hid_hiddev(hdev))
1688                connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1689
1690        if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1691                                connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1692                hdev->claimed |= HID_CLAIMED_INPUT;
1693
1694        if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1695                        !hdev->hiddev_connect(hdev,
1696                                connect_mask & HID_CONNECT_HIDDEV_FORCE))
1697                hdev->claimed |= HID_CLAIMED_HIDDEV;
1698        if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1699                hdev->claimed |= HID_CLAIMED_HIDRAW;
1700
1701        if (connect_mask & HID_CONNECT_DRIVER)
1702                hdev->claimed |= HID_CLAIMED_DRIVER;
1703
1704        /* Drivers with the ->raw_event callback set are not required to connect
1705         * to any other listener. */
1706        if (!hdev->claimed && !hdev->driver->raw_event) {
1707                hid_err(hdev, "device has no listeners, quitting\n");
1708                return -ENODEV;
1709        }
1710
1711        if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1712                        (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1713                hdev->ff_init(hdev);
1714
1715        len = 0;
1716        if (hdev->claimed & HID_CLAIMED_INPUT)
1717                len += sprintf(buf + len, "input");
1718        if (hdev->claimed & HID_CLAIMED_HIDDEV)
1719                len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1720                                ((struct hiddev *)hdev->hiddev)->minor);
1721        if (hdev->claimed & HID_CLAIMED_HIDRAW)
1722                len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1723                                ((struct hidraw *)hdev->hidraw)->minor);
1724
1725        type = "Device";
1726        for (i = 0; i < hdev->maxcollection; i++) {
1727                struct hid_collection *col = &hdev->collection[i];
1728                if (col->type == HID_COLLECTION_APPLICATION &&
1729                   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1730                   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1731                        type = types[col->usage & 0xffff];
1732                        break;
1733                }
1734        }
1735
1736        switch (hdev->bus) {
1737        case BUS_USB:
1738                bus = "USB";
1739                break;
1740        case BUS_BLUETOOTH:
1741                bus = "BLUETOOTH";
1742                break;
1743        case BUS_I2C:
1744                bus = "I2C";
1745                break;
1746        default:
1747                bus = "<UNKNOWN>";
1748        }
1749
1750        ret = device_create_file(&hdev->dev, &dev_attr_country);
1751        if (ret)
1752                hid_warn(hdev,
1753                         "can't create sysfs country code attribute err: %d\n", ret);
1754
1755        hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1756                 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1757                 type, hdev->name, hdev->phys);
1758
1759        return 0;
1760}
1761EXPORT_SYMBOL_GPL(hid_connect);
1762
1763void hid_disconnect(struct hid_device *hdev)
1764{
1765        device_remove_file(&hdev->dev, &dev_attr_country);
1766        if (hdev->claimed & HID_CLAIMED_INPUT)
1767                hidinput_disconnect(hdev);
1768        if (hdev->claimed & HID_CLAIMED_HIDDEV)
1769                hdev->hiddev_disconnect(hdev);
1770        if (hdev->claimed & HID_CLAIMED_HIDRAW)
1771                hidraw_disconnect(hdev);
1772        hdev->claimed = 0;
1773}
1774EXPORT_SYMBOL_GPL(hid_disconnect);
1775
1776/**
1777 * hid_hw_start - start underlying HW
1778 * @hdev: hid device
1779 * @connect_mask: which outputs to connect, see HID_CONNECT_*
1780 *
1781 * Call this in probe function *after* hid_parse. This will setup HW
1782 * buffers and start the device (if not defeirred to device open).
1783 * hid_hw_stop must be called if this was successful.
1784 */
1785int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
1786{
1787        int error;
1788
1789        error = hdev->ll_driver->start(hdev);
1790        if (error)
1791                return error;
1792
1793        if (connect_mask) {
1794                error = hid_connect(hdev, connect_mask);
1795                if (error) {
1796                        hdev->ll_driver->stop(hdev);
1797                        return error;
1798                }
1799        }
1800
1801        return 0;
1802}
1803EXPORT_SYMBOL_GPL(hid_hw_start);
1804
1805/**
1806 * hid_hw_stop - stop underlying HW
1807 * @hdev: hid device
1808 *
1809 * This is usually called from remove function or from probe when something
1810 * failed and hid_hw_start was called already.
1811 */
1812void hid_hw_stop(struct hid_device *hdev)
1813{
1814        hid_disconnect(hdev);
1815        hdev->ll_driver->stop(hdev);
1816}
1817EXPORT_SYMBOL_GPL(hid_hw_stop);
1818
1819/**
1820 * hid_hw_open - signal underlying HW to start delivering events
1821 * @hdev: hid device
1822 *
1823 * Tell underlying HW to start delivering events from the device.
1824 * This function should be called sometime after successful call
1825 * to hid_hw_start().
1826 */
1827int hid_hw_open(struct hid_device *hdev)
1828{
1829        int ret;
1830
1831        ret = mutex_lock_killable(&hdev->ll_open_lock);
1832        if (ret)
1833                return ret;
1834
1835        if (!hdev->ll_open_count++) {
1836                ret = hdev->ll_driver->open(hdev);
1837                if (ret)
1838                        hdev->ll_open_count--;
1839        }
1840
1841        mutex_unlock(&hdev->ll_open_lock);
1842        return ret;
1843}
1844EXPORT_SYMBOL_GPL(hid_hw_open);
1845
1846/**
1847 * hid_hw_close - signal underlaying HW to stop delivering events
1848 *
1849 * @hdev: hid device
1850 *
1851 * This function indicates that we are not interested in the events
1852 * from this device anymore. Delivery of events may or may not stop,
1853 * depending on the number of users still outstanding.
1854 */
1855void hid_hw_close(struct hid_device *hdev)
1856{
1857        mutex_lock(&hdev->ll_open_lock);
1858        if (!--hdev->ll_open_count)
1859                hdev->ll_driver->close(hdev);
1860        mutex_unlock(&hdev->ll_open_lock);
1861}
1862EXPORT_SYMBOL_GPL(hid_hw_close);
1863
1864struct hid_dynid {
1865        struct list_head list;
1866        struct hid_device_id id;
1867};
1868
1869/**
1870 * store_new_id - add a new HID device ID to this driver and re-probe devices
1871 * @driver: target device driver
1872 * @buf: buffer for scanning device ID data
1873 * @count: input size
1874 *
1875 * Adds a new dynamic hid device ID to this driver,
1876 * and causes the driver to probe for all devices again.
1877 */
1878static ssize_t new_id_store(struct device_driver *drv, const char *buf,
1879                size_t count)
1880{
1881        struct hid_driver *hdrv = to_hid_driver(drv);
1882        struct hid_dynid *dynid;
1883        __u32 bus, vendor, product;
1884        unsigned long driver_data = 0;
1885        int ret;
1886
1887        ret = sscanf(buf, "%x %x %x %lx",
1888                        &bus, &vendor, &product, &driver_data);
1889        if (ret < 3)
1890                return -EINVAL;
1891
1892        dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
1893        if (!dynid)
1894                return -ENOMEM;
1895
1896        dynid->id.bus = bus;
1897        dynid->id.group = HID_GROUP_ANY;
1898        dynid->id.vendor = vendor;
1899        dynid->id.product = product;
1900        dynid->id.driver_data = driver_data;
1901
1902        spin_lock(&hdrv->dyn_lock);
1903        list_add_tail(&dynid->list, &hdrv->dyn_list);
1904        spin_unlock(&hdrv->dyn_lock);
1905
1906        ret = driver_attach(&hdrv->driver);
1907
1908        return ret ? : count;
1909}
1910static DRIVER_ATTR_WO(new_id);
1911
1912static struct attribute *hid_drv_attrs[] = {
1913        &driver_attr_new_id.attr,
1914        NULL,
1915};
1916ATTRIBUTE_GROUPS(hid_drv);
1917
1918static void hid_free_dynids(struct hid_driver *hdrv)
1919{
1920        struct hid_dynid *dynid, *n;
1921
1922        spin_lock(&hdrv->dyn_lock);
1923        list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
1924                list_del(&dynid->list);
1925                kfree(dynid);
1926        }
1927        spin_unlock(&hdrv->dyn_lock);
1928}
1929
1930const struct hid_device_id *hid_match_device(struct hid_device *hdev,
1931                                             struct hid_driver *hdrv)
1932{
1933        struct hid_dynid *dynid;
1934
1935        spin_lock(&hdrv->dyn_lock);
1936        list_for_each_entry(dynid, &hdrv->dyn_list, list) {
1937                if (hid_match_one_id(hdev, &dynid->id)) {
1938                        spin_unlock(&hdrv->dyn_lock);
1939                        return &dynid->id;
1940                }
1941        }
1942        spin_unlock(&hdrv->dyn_lock);
1943
1944        return hid_match_id(hdev, hdrv->id_table);
1945}
1946EXPORT_SYMBOL_GPL(hid_match_device);
1947
1948static int hid_bus_match(struct device *dev, struct device_driver *drv)
1949{
1950        struct hid_driver *hdrv = to_hid_driver(drv);
1951        struct hid_device *hdev = to_hid_device(dev);
1952
1953        return hid_match_device(hdev, hdrv) != NULL;
1954}
1955
1956/**
1957 * hid_compare_device_paths - check if both devices share the same path
1958 * @hdev_a: hid device
1959 * @hdev_b: hid device
1960 * @separator: char to use as separator
1961 *
1962 * Check if two devices share the same path up to the last occurrence of
1963 * the separator char. Both paths must exist (i.e., zero-length paths
1964 * don't match).
1965 */
1966bool hid_compare_device_paths(struct hid_device *hdev_a,
1967                              struct hid_device *hdev_b, char separator)
1968{
1969        int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
1970        int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
1971
1972        if (n1 != n2 || n1 <= 0 || n2 <= 0)
1973                return false;
1974
1975        return !strncmp(hdev_a->phys, hdev_b->phys, n1);
1976}
1977EXPORT_SYMBOL_GPL(hid_compare_device_paths);
1978
1979static int hid_device_probe(struct device *dev)
1980{
1981        struct hid_driver *hdrv = to_hid_driver(dev->driver);
1982        struct hid_device *hdev = to_hid_device(dev);
1983        const struct hid_device_id *id;
1984        int ret = 0;
1985
1986        if (down_interruptible(&hdev->driver_input_lock)) {
1987                ret = -EINTR;
1988                goto end;
1989        }
1990        hdev->io_started = false;
1991
1992        clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
1993
1994        if (!hdev->driver) {
1995                id = hid_match_device(hdev, hdrv);
1996                if (id == NULL) {
1997                        ret = -ENODEV;
1998                        goto unlock;
1999                }
2000
2001                if (hdrv->match) {
2002                        if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2003                                ret = -ENODEV;
2004                                goto unlock;
2005                        }
2006                } else {
2007                        /*
2008                         * hid-generic implements .match(), so if
2009                         * hid_ignore_special_drivers is set, we can safely
2010                         * return.
2011                         */
2012                        if (hid_ignore_special_drivers) {
2013                                ret = -ENODEV;
2014                                goto unlock;
2015                        }
2016                }
2017
2018                /* reset the quirks that has been previously set */
2019                hdev->quirks = hid_lookup_quirk(hdev);
2020                hdev->driver = hdrv;
2021                if (hdrv->probe) {
2022                        ret = hdrv->probe(hdev, id);
2023                } else { /* default probe */
2024                        ret = hid_open_report(hdev);
2025                        if (!ret)
2026                                ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2027                }
2028                if (ret) {
2029                        hid_close_report(hdev);
2030                        hdev->driver = NULL;
2031                }
2032        }
2033unlock:
2034        if (!hdev->io_started)
2035                up(&hdev->driver_input_lock);
2036end:
2037        return ret;
2038}
2039
2040static int hid_device_remove(struct device *dev)
2041{
2042        struct hid_device *hdev = to_hid_device(dev);
2043        struct hid_driver *hdrv;
2044        int ret = 0;
2045
2046        if (down_interruptible(&hdev->driver_input_lock)) {
2047                ret = -EINTR;
2048                goto end;
2049        }
2050        hdev->io_started = false;
2051
2052        hdrv = hdev->driver;
2053        if (hdrv) {
2054                if (hdrv->remove)
2055                        hdrv->remove(hdev);
2056                else /* default remove */
2057                        hid_hw_stop(hdev);
2058                hid_close_report(hdev);
2059                hdev->driver = NULL;
2060        }
2061
2062        if (!hdev->io_started)
2063                up(&hdev->driver_input_lock);
2064end:
2065        return ret;
2066}
2067
2068static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2069                             char *buf)
2070{
2071        struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2072
2073        return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2074                         hdev->bus, hdev->group, hdev->vendor, hdev->product);
2075}
2076static DEVICE_ATTR_RO(modalias);
2077
2078static struct attribute *hid_dev_attrs[] = {
2079        &dev_attr_modalias.attr,
2080        NULL,
2081};
2082static struct bin_attribute *hid_dev_bin_attrs[] = {
2083        &dev_bin_attr_report_desc,
2084        NULL
2085};
2086static const struct attribute_group hid_dev_group = {
2087        .attrs = hid_dev_attrs,
2088        .bin_attrs = hid_dev_bin_attrs,
2089};
2090__ATTRIBUTE_GROUPS(hid_dev);
2091
2092static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2093{
2094        struct hid_device *hdev = to_hid_device(dev);
2095
2096        if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2097                        hdev->bus, hdev->vendor, hdev->product))
2098                return -ENOMEM;
2099
2100        if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2101                return -ENOMEM;
2102
2103        if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2104                return -ENOMEM;
2105
2106        if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2107                return -ENOMEM;
2108
2109        if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2110                           hdev->bus, hdev->group, hdev->vendor, hdev->product))
2111                return -ENOMEM;
2112
2113        return 0;
2114}
2115
2116struct bus_type hid_bus_type = {
2117        .name           = "hid",
2118        .dev_groups     = hid_dev_groups,
2119        .drv_groups     = hid_drv_groups,
2120        .match          = hid_bus_match,
2121        .probe          = hid_device_probe,
2122        .remove         = hid_device_remove,
2123        .uevent         = hid_uevent,
2124};
2125EXPORT_SYMBOL(hid_bus_type);
2126
2127int hid_add_device(struct hid_device *hdev)
2128{
2129        static atomic_t id = ATOMIC_INIT(0);
2130        int ret;
2131
2132        if (WARN_ON(hdev->status & HID_STAT_ADDED))
2133                return -EBUSY;
2134
2135        hdev->quirks = hid_lookup_quirk(hdev);
2136
2137        /* we need to kill them here, otherwise they will stay allocated to
2138         * wait for coming driver */
2139        if (hid_ignore(hdev))
2140                return -ENODEV;
2141
2142        /*
2143         * Check for the mandatory transport channel.
2144         */
2145         if (!hdev->ll_driver->raw_request) {
2146                hid_err(hdev, "transport driver missing .raw_request()\n");
2147                return -EINVAL;
2148         }
2149
2150        /*
2151         * Read the device report descriptor once and use as template
2152         * for the driver-specific modifications.
2153         */
2154        ret = hdev->ll_driver->parse(hdev);
2155        if (ret)
2156                return ret;
2157        if (!hdev->dev_rdesc)
2158                return -ENODEV;
2159
2160        /*
2161         * Scan generic devices for group information
2162         */
2163        if (hid_ignore_special_drivers) {
2164                hdev->group = HID_GROUP_GENERIC;
2165        } else if (!hdev->group &&
2166                   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2167                ret = hid_scan_report(hdev);
2168                if (ret)
2169                        hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2170        }
2171
2172        /* XXX hack, any other cleaner solution after the driver core
2173         * is converted to allow more than 20 bytes as the device name? */
2174        dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2175                     hdev->vendor, hdev->product, atomic_inc_return(&id));
2176
2177        hid_debug_register(hdev, dev_name(&hdev->dev));
2178        ret = device_add(&hdev->dev);
2179        if (!ret)
2180                hdev->status |= HID_STAT_ADDED;
2181        else
2182                hid_debug_unregister(hdev);
2183
2184        return ret;
2185}
2186EXPORT_SYMBOL_GPL(hid_add_device);
2187
2188/**
2189 * hid_allocate_device - allocate new hid device descriptor
2190 *
2191 * Allocate and initialize hid device, so that hid_destroy_device might be
2192 * used to free it.
2193 *
2194 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2195 * error value.
2196 */
2197struct hid_device *hid_allocate_device(void)
2198{
2199        struct hid_device *hdev;
2200        int ret = -ENOMEM;
2201
2202        hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2203        if (hdev == NULL)
2204                return ERR_PTR(ret);
2205
2206        device_initialize(&hdev->dev);
2207        hdev->dev.release = hid_device_release;
2208        hdev->dev.bus = &hid_bus_type;
2209        device_enable_async_suspend(&hdev->dev);
2210
2211        hid_close_report(hdev);
2212
2213        init_waitqueue_head(&hdev->debug_wait);
2214        INIT_LIST_HEAD(&hdev->debug_list);
2215        spin_lock_init(&hdev->debug_list_lock);
2216        sema_init(&hdev->driver_input_lock, 1);
2217        mutex_init(&hdev->ll_open_lock);
2218
2219        return hdev;
2220}
2221EXPORT_SYMBOL_GPL(hid_allocate_device);
2222
2223static void hid_remove_device(struct hid_device *hdev)
2224{
2225        if (hdev->status & HID_STAT_ADDED) {
2226                device_del(&hdev->dev);
2227                hid_debug_unregister(hdev);
2228                hdev->status &= ~HID_STAT_ADDED;
2229        }
2230        kfree(hdev->dev_rdesc);
2231        hdev->dev_rdesc = NULL;
2232        hdev->dev_rsize = 0;
2233}
2234
2235/**
2236 * hid_destroy_device - free previously allocated device
2237 *
2238 * @hdev: hid device
2239 *
2240 * If you allocate hid_device through hid_allocate_device, you should ever
2241 * free by this function.
2242 */
2243void hid_destroy_device(struct hid_device *hdev)
2244{
2245        hid_remove_device(hdev);
2246        put_device(&hdev->dev);
2247}
2248EXPORT_SYMBOL_GPL(hid_destroy_device);
2249
2250
2251static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2252{
2253        struct hid_driver *hdrv = data;
2254        struct hid_device *hdev = to_hid_device(dev);
2255
2256        if (hdev->driver == hdrv &&
2257            !hdrv->match(hdev, hid_ignore_special_drivers) &&
2258            !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2259                return device_reprobe(dev);
2260
2261        return 0;
2262}
2263
2264static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2265{
2266        struct hid_driver *hdrv = to_hid_driver(drv);
2267
2268        if (hdrv->match) {
2269                bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2270                                 __hid_bus_reprobe_drivers);
2271        }
2272
2273        return 0;
2274}
2275
2276static int __bus_removed_driver(struct device_driver *drv, void *data)
2277{
2278        return bus_rescan_devices(&hid_bus_type);
2279}
2280
2281int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2282                const char *mod_name)
2283{
2284        int ret;
2285
2286        hdrv->driver.name = hdrv->name;
2287        hdrv->driver.bus = &hid_bus_type;
2288        hdrv->driver.owner = owner;
2289        hdrv->driver.mod_name = mod_name;
2290
2291        INIT_LIST_HEAD(&hdrv->dyn_list);
2292        spin_lock_init(&hdrv->dyn_lock);
2293
2294        ret = driver_register(&hdrv->driver);
2295
2296        if (ret == 0)
2297                bus_for_each_drv(&hid_bus_type, NULL, NULL,
2298                                 __hid_bus_driver_added);
2299
2300        return ret;
2301}
2302EXPORT_SYMBOL_GPL(__hid_register_driver);
2303
2304void hid_unregister_driver(struct hid_driver *hdrv)
2305{
2306        driver_unregister(&hdrv->driver);
2307        hid_free_dynids(hdrv);
2308
2309        bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2310}
2311EXPORT_SYMBOL_GPL(hid_unregister_driver);
2312
2313int hid_check_keys_pressed(struct hid_device *hid)
2314{
2315        struct hid_input *hidinput;
2316        int i;
2317
2318        if (!(hid->claimed & HID_CLAIMED_INPUT))
2319                return 0;
2320
2321        list_for_each_entry(hidinput, &hid->inputs, list) {
2322                for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2323                        if (hidinput->input->key[i])
2324                                return 1;
2325        }
2326
2327        return 0;
2328}
2329
2330EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2331
2332static int __init hid_init(void)
2333{
2334        int ret;
2335
2336        if (hid_debug)
2337                pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2338                        "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2339
2340        ret = bus_register(&hid_bus_type);
2341        if (ret) {
2342                pr_err("can't register hid bus\n");
2343                goto err;
2344        }
2345
2346        ret = hidraw_init();
2347        if (ret)
2348                goto err_bus;
2349
2350        hid_debug_init();
2351
2352        return 0;
2353err_bus:
2354        bus_unregister(&hid_bus_type);
2355err:
2356        return ret;
2357}
2358
2359static void __exit hid_exit(void)
2360{
2361        hid_debug_exit();
2362        hidraw_exit();
2363        bus_unregister(&hid_bus_type);
2364        hid_quirks_exit(HID_BUS_ANY);
2365}
2366
2367module_init(hid_init);
2368module_exit(hid_exit);
2369
2370MODULE_AUTHOR("Andreas Gal");
2371MODULE_AUTHOR("Vojtech Pavlik");
2372MODULE_AUTHOR("Jiri Kosina");
2373MODULE_LICENSE("GPL");
2374