linux/drivers/input/misc/hp_sdc_rtc.c
<<
>>
Prefs
   1/*
   2 * HP i8042 SDC + MSM-58321 BBRTC driver.
   3 *
   4 * Copyright (c) 2001 Brian S. Julin
   5 * All rights reserved.
   6 *
   7 * Redistribution and use in source and binary forms, with or without
   8 * modification, are permitted provided that the following conditions
   9 * are met:
  10 * 1. Redistributions of source code must retain the above copyright
  11 *    notice, this list of conditions, and the following disclaimer,
  12 *    without modification.
  13 * 2. The name of the author may not be used to endorse or promote products
  14 *    derived from this software without specific prior written permission.
  15 *
  16 * Alternatively, this software may be distributed under the terms of the
  17 * GNU General Public License ("GPL").
  18 *
  19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
  23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  28 *
  29 * References:
  30 * System Device Controller Microprocessor Firmware Theory of Operation
  31 *      for Part Number 1820-4784 Revision B.  Dwg No. A-1820-4784-2
  32 * efirtc.c by Stephane Eranian/Hewlett Packard
  33 *
  34 */
  35
  36#include <linux/hp_sdc.h>
  37#include <linux/errno.h>
  38#include <linux/types.h>
  39#include <linux/init.h>
  40#include <linux/module.h>
  41#include <linux/time.h>
  42#include <linux/miscdevice.h>
  43#include <linux/proc_fs.h>
  44#include <linux/seq_file.h>
  45#include <linux/poll.h>
  46#include <linux/rtc.h>
  47#include <linux/mutex.h>
  48#include <linux/semaphore.h>
  49
  50MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>");
  51MODULE_DESCRIPTION("HP i8042 SDC + MSM-58321 RTC Driver");
  52MODULE_LICENSE("Dual BSD/GPL");
  53
  54#define RTC_VERSION "1.10d"
  55
  56static DEFINE_MUTEX(hp_sdc_rtc_mutex);
  57static unsigned long epoch = 2000;
  58
  59static struct semaphore i8042tregs;
  60
  61static hp_sdc_irqhook hp_sdc_rtc_isr;
  62
  63static struct fasync_struct *hp_sdc_rtc_async_queue;
  64
  65static DECLARE_WAIT_QUEUE_HEAD(hp_sdc_rtc_wait);
  66
  67static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
  68                               size_t count, loff_t *ppos);
  69
  70static long hp_sdc_rtc_unlocked_ioctl(struct file *file,
  71                                      unsigned int cmd, unsigned long arg);
  72
  73static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait);
  74
  75static int hp_sdc_rtc_open(struct inode *inode, struct file *file);
  76static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on);
  77
  78static void hp_sdc_rtc_isr (int irq, void *dev_id, 
  79                            uint8_t status, uint8_t data) 
  80{
  81        return;
  82}
  83
  84static int hp_sdc_rtc_do_read_bbrtc (struct rtc_time *rtctm)
  85{
  86        struct semaphore tsem;
  87        hp_sdc_transaction t;
  88        uint8_t tseq[91];
  89        int i;
  90        
  91        i = 0;
  92        while (i < 91) {
  93                tseq[i++] = HP_SDC_ACT_DATAREG |
  94                        HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN;
  95                tseq[i++] = 0x01;                       /* write i8042[0x70] */
  96                tseq[i]   = i / 7;                      /* BBRTC reg address */
  97                i++;
  98                tseq[i++] = HP_SDC_CMD_DO_RTCR;         /* Trigger command   */
  99                tseq[i++] = 2;          /* expect 1 stat/dat pair back.   */
 100                i++; i++;               /* buffer for stat/dat pair       */
 101        }
 102        tseq[84] |= HP_SDC_ACT_SEMAPHORE;
 103        t.endidx =              91;
 104        t.seq =                 tseq;
 105        t.act.semaphore =       &tsem;
 106        sema_init(&tsem, 0);
 107        
 108        if (hp_sdc_enqueue_transaction(&t)) return -1;
 109        
 110        /* Put ourselves to sleep for results. */
 111        if (WARN_ON(down_interruptible(&tsem)))
 112                return -1;
 113        
 114        /* Check for nonpresence of BBRTC */
 115        if (!((tseq[83] | tseq[90] | tseq[69] | tseq[76] |
 116               tseq[55] | tseq[62] | tseq[34] | tseq[41] |
 117               tseq[20] | tseq[27] | tseq[6]  | tseq[13]) & 0x0f))
 118                return -1;
 119
 120        memset(rtctm, 0, sizeof(struct rtc_time));
 121        rtctm->tm_year = (tseq[83] & 0x0f) + (tseq[90] & 0x0f) * 10;
 122        rtctm->tm_mon  = (tseq[69] & 0x0f) + (tseq[76] & 0x0f) * 10;
 123        rtctm->tm_mday = (tseq[55] & 0x0f) + (tseq[62] & 0x0f) * 10;
 124        rtctm->tm_wday = (tseq[48] & 0x0f);
 125        rtctm->tm_hour = (tseq[34] & 0x0f) + (tseq[41] & 0x0f) * 10;
 126        rtctm->tm_min  = (tseq[20] & 0x0f) + (tseq[27] & 0x0f) * 10;
 127        rtctm->tm_sec  = (tseq[6]  & 0x0f) + (tseq[13] & 0x0f) * 10;
 128        
 129        return 0;
 130}
 131
 132static int hp_sdc_rtc_read_bbrtc (struct rtc_time *rtctm)
 133{
 134        struct rtc_time tm, tm_last;
 135        int i = 0;
 136
 137        /* MSM-58321 has no read latch, so must read twice and compare. */
 138
 139        if (hp_sdc_rtc_do_read_bbrtc(&tm_last)) return -1;
 140        if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
 141
 142        while (memcmp(&tm, &tm_last, sizeof(struct rtc_time))) {
 143                if (i++ > 4) return -1;
 144                memcpy(&tm_last, &tm, sizeof(struct rtc_time));
 145                if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
 146        }
 147
 148        memcpy(rtctm, &tm, sizeof(struct rtc_time));
 149
 150        return 0;
 151}
 152
 153
 154static int64_t hp_sdc_rtc_read_i8042timer (uint8_t loadcmd, int numreg)
 155{
 156        hp_sdc_transaction t;
 157        uint8_t tseq[26] = {
 158                HP_SDC_ACT_PRECMD | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
 159                0,
 160                HP_SDC_CMD_READ_T1, 2, 0, 0,
 161                HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, 
 162                HP_SDC_CMD_READ_T2, 2, 0, 0,
 163                HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, 
 164                HP_SDC_CMD_READ_T3, 2, 0, 0,
 165                HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, 
 166                HP_SDC_CMD_READ_T4, 2, 0, 0,
 167                HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, 
 168                HP_SDC_CMD_READ_T5, 2, 0, 0
 169        };
 170
 171        t.endidx = numreg * 5;
 172
 173        tseq[1] = loadcmd;
 174        tseq[t.endidx - 4] |= HP_SDC_ACT_SEMAPHORE; /* numreg assumed > 1 */
 175
 176        t.seq =                 tseq;
 177        t.act.semaphore =       &i8042tregs;
 178
 179        /* Sleep if output regs in use. */
 180        if (WARN_ON(down_interruptible(&i8042tregs)))
 181                return -1;
 182
 183        if (hp_sdc_enqueue_transaction(&t)) {
 184                up(&i8042tregs);
 185                return -1;
 186        }
 187        
 188        /* Sleep until results come back. */
 189        if (WARN_ON(down_interruptible(&i8042tregs)))
 190                return -1;
 191
 192        up(&i8042tregs);
 193
 194        return (tseq[5] | 
 195                ((uint64_t)(tseq[10]) << 8)  | ((uint64_t)(tseq[15]) << 16) |
 196                ((uint64_t)(tseq[20]) << 24) | ((uint64_t)(tseq[25]) << 32));
 197}
 198
 199
 200/* Read the i8042 real-time clock */
 201static inline int hp_sdc_rtc_read_rt(struct timespec64 *res) {
 202        int64_t raw;
 203        uint32_t tenms; 
 204        unsigned int days;
 205
 206        raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_RT, 5);
 207        if (raw < 0) return -1;
 208
 209        tenms = (uint32_t)raw & 0xffffff;
 210        days  = (unsigned int)(raw >> 24) & 0xffff;
 211
 212        res->tv_nsec = (long)(tenms % 100) * 10000 * 1000;
 213        res->tv_sec =  (tenms / 100) + (time64_t)days * 86400;
 214
 215        return 0;
 216}
 217
 218
 219/* Read the i8042 fast handshake timer */
 220static inline int hp_sdc_rtc_read_fhs(struct timespec64 *res) {
 221        int64_t raw;
 222        unsigned int tenms;
 223
 224        raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_FHS, 2);
 225        if (raw < 0) return -1;
 226
 227        tenms = (unsigned int)raw & 0xffff;
 228
 229        res->tv_nsec = (long)(tenms % 100) * 10000 * 1000;
 230        res->tv_sec  = (time64_t)(tenms / 100);
 231
 232        return 0;
 233}
 234
 235
 236/* Read the i8042 match timer (a.k.a. alarm) */
 237static inline int hp_sdc_rtc_read_mt(struct timespec64 *res) {
 238        int64_t raw;    
 239        uint32_t tenms; 
 240
 241        raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_MT, 3);
 242        if (raw < 0) return -1;
 243
 244        tenms = (uint32_t)raw & 0xffffff;
 245
 246        res->tv_nsec = (long)(tenms % 100) * 10000 * 1000;
 247        res->tv_sec  = (time64_t)(tenms / 100);
 248
 249        return 0;
 250}
 251
 252
 253/* Read the i8042 delay timer */
 254static inline int hp_sdc_rtc_read_dt(struct timespec64 *res) {
 255        int64_t raw;
 256        uint32_t tenms;
 257
 258        raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_DT, 3);
 259        if (raw < 0) return -1;
 260
 261        tenms = (uint32_t)raw & 0xffffff;
 262
 263        res->tv_nsec = (long)(tenms % 100) * 10000 * 1000;
 264        res->tv_sec  = (time64_t)(tenms / 100);
 265
 266        return 0;
 267}
 268
 269
 270/* Read the i8042 cycle timer (a.k.a. periodic) */
 271static inline int hp_sdc_rtc_read_ct(struct timespec64 *res) {
 272        int64_t raw;
 273        uint32_t tenms;
 274
 275        raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_CT, 3);
 276        if (raw < 0) return -1;
 277
 278        tenms = (uint32_t)raw & 0xffffff;
 279
 280        res->tv_nsec = (long)(tenms % 100) * 10000 * 1000;
 281        res->tv_sec  = (time64_t)(tenms / 100);
 282
 283        return 0;
 284}
 285
 286
 287#if 0 /* not used yet */
 288/* Set the i8042 real-time clock */
 289static int hp_sdc_rtc_set_rt (struct timeval *setto)
 290{
 291        uint32_t tenms;
 292        unsigned int days;
 293        hp_sdc_transaction t;
 294        uint8_t tseq[11] = {
 295                HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
 296                HP_SDC_CMD_SET_RTMS, 3, 0, 0, 0,
 297                HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
 298                HP_SDC_CMD_SET_RTD, 2, 0, 0 
 299        };
 300
 301        t.endidx = 10;
 302
 303        if (0xffff < setto->tv_sec / 86400) return -1;
 304        days = setto->tv_sec / 86400;
 305        if (0xffff < setto->tv_usec / 1000000 / 86400) return -1;
 306        days += ((setto->tv_sec % 86400) + setto->tv_usec / 1000000) / 86400;
 307        if (days > 0xffff) return -1;
 308
 309        if (0xffffff < setto->tv_sec) return -1;
 310        tenms  = setto->tv_sec * 100;
 311        if (0xffffff < setto->tv_usec / 10000) return -1;
 312        tenms += setto->tv_usec / 10000;
 313        if (tenms > 0xffffff) return -1;
 314
 315        tseq[3] = (uint8_t)(tenms & 0xff);
 316        tseq[4] = (uint8_t)((tenms >> 8)  & 0xff);
 317        tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
 318
 319        tseq[9] = (uint8_t)(days & 0xff);
 320        tseq[10] = (uint8_t)((days >> 8) & 0xff);
 321
 322        t.seq = tseq;
 323
 324        if (hp_sdc_enqueue_transaction(&t)) return -1;
 325        return 0;
 326}
 327
 328/* Set the i8042 fast handshake timer */
 329static int hp_sdc_rtc_set_fhs (struct timeval *setto)
 330{
 331        uint32_t tenms;
 332        hp_sdc_transaction t;
 333        uint8_t tseq[5] = {
 334                HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
 335                HP_SDC_CMD_SET_FHS, 2, 0, 0
 336        };
 337
 338        t.endidx = 4;
 339
 340        if (0xffff < setto->tv_sec) return -1;
 341        tenms  = setto->tv_sec * 100;
 342        if (0xffff < setto->tv_usec / 10000) return -1;
 343        tenms += setto->tv_usec / 10000;
 344        if (tenms > 0xffff) return -1;
 345
 346        tseq[3] = (uint8_t)(tenms & 0xff);
 347        tseq[4] = (uint8_t)((tenms >> 8)  & 0xff);
 348
 349        t.seq = tseq;
 350
 351        if (hp_sdc_enqueue_transaction(&t)) return -1;
 352        return 0;
 353}
 354
 355
 356/* Set the i8042 match timer (a.k.a. alarm) */
 357#define hp_sdc_rtc_set_mt (setto) \
 358        hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_MT)
 359
 360/* Set the i8042 delay timer */
 361#define hp_sdc_rtc_set_dt (setto) \
 362        hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_DT)
 363
 364/* Set the i8042 cycle timer (a.k.a. periodic) */
 365#define hp_sdc_rtc_set_ct (setto) \
 366        hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_CT)
 367
 368/* Set one of the i8042 3-byte wide timers */
 369static int hp_sdc_rtc_set_i8042timer (struct timeval *setto, uint8_t setcmd)
 370{
 371        uint32_t tenms;
 372        hp_sdc_transaction t;
 373        uint8_t tseq[6] = {
 374                HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
 375                0, 3, 0, 0, 0
 376        };
 377
 378        t.endidx = 6;
 379
 380        if (0xffffff < setto->tv_sec) return -1;
 381        tenms  = setto->tv_sec * 100;
 382        if (0xffffff < setto->tv_usec / 10000) return -1;
 383        tenms += setto->tv_usec / 10000;
 384        if (tenms > 0xffffff) return -1;
 385
 386        tseq[1] = setcmd;
 387        tseq[3] = (uint8_t)(tenms & 0xff);
 388        tseq[4] = (uint8_t)((tenms >> 8)  & 0xff);
 389        tseq[5] = (uint8_t)((tenms >> 16)  & 0xff);
 390
 391        t.seq =                 tseq;
 392
 393        if (hp_sdc_enqueue_transaction(&t)) { 
 394                return -1;
 395        }
 396        return 0;
 397}
 398#endif
 399
 400static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
 401                               size_t count, loff_t *ppos) {
 402        ssize_t retval;
 403
 404        if (count < sizeof(unsigned long))
 405                return -EINVAL;
 406
 407        retval = put_user(68, (unsigned long __user *)buf);
 408        return retval;
 409}
 410
 411static __poll_t hp_sdc_rtc_poll(struct file *file, poll_table *wait)
 412{
 413        unsigned long l;
 414
 415        l = 0;
 416        if (l != 0)
 417                return EPOLLIN | EPOLLRDNORM;
 418        return 0;
 419}
 420
 421static int hp_sdc_rtc_open(struct inode *inode, struct file *file)
 422{
 423        return 0;
 424}
 425
 426static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on)
 427{
 428        return fasync_helper (fd, filp, on, &hp_sdc_rtc_async_queue);
 429}
 430
 431static int hp_sdc_rtc_proc_show(struct seq_file *m, void *v)
 432{
 433#define YN(bit) ("no")
 434#define NY(bit) ("yes")
 435        struct rtc_time tm;
 436        struct timespec64 tv;
 437
 438        memset(&tm, 0, sizeof(struct rtc_time));
 439
 440        if (hp_sdc_rtc_read_bbrtc(&tm)) {
 441                seq_puts(m, "BBRTC\t\t: READ FAILED!\n");
 442        } else {
 443                seq_printf(m,
 444                             "rtc_time\t: %02d:%02d:%02d\n"
 445                             "rtc_date\t: %04d-%02d-%02d\n"
 446                             "rtc_epoch\t: %04lu\n",
 447                             tm.tm_hour, tm.tm_min, tm.tm_sec,
 448                             tm.tm_year + 1900, tm.tm_mon + 1, 
 449                             tm.tm_mday, epoch);
 450        }
 451
 452        if (hp_sdc_rtc_read_rt(&tv)) {
 453                seq_puts(m, "i8042 rtc\t: READ FAILED!\n");
 454        } else {
 455                seq_printf(m, "i8042 rtc\t: %lld.%02ld seconds\n",
 456                             (s64)tv.tv_sec, (long)tv.tv_nsec/1000000L);
 457        }
 458
 459        if (hp_sdc_rtc_read_fhs(&tv)) {
 460                seq_puts(m, "handshake\t: READ FAILED!\n");
 461        } else {
 462                seq_printf(m, "handshake\t: %lld.%02ld seconds\n",
 463                             (s64)tv.tv_sec, (long)tv.tv_nsec/1000000L);
 464        }
 465
 466        if (hp_sdc_rtc_read_mt(&tv)) {
 467                seq_puts(m, "alarm\t\t: READ FAILED!\n");
 468        } else {
 469                seq_printf(m, "alarm\t\t: %lld.%02ld seconds\n",
 470                             (s64)tv.tv_sec, (long)tv.tv_nsec/1000000L);
 471        }
 472
 473        if (hp_sdc_rtc_read_dt(&tv)) {
 474                seq_puts(m, "delay\t\t: READ FAILED!\n");
 475        } else {
 476                seq_printf(m, "delay\t\t: %lld.%02ld seconds\n",
 477                             (s64)tv.tv_sec, (long)tv.tv_nsec/1000000L);
 478        }
 479
 480        if (hp_sdc_rtc_read_ct(&tv)) {
 481                seq_puts(m, "periodic\t: READ FAILED!\n");
 482        } else {
 483                seq_printf(m, "periodic\t: %lld.%02ld seconds\n",
 484                             (s64)tv.tv_sec, (long)tv.tv_nsec/1000000L);
 485        }
 486
 487        seq_printf(m,
 488                     "DST_enable\t: %s\n"
 489                     "BCD\t\t: %s\n"
 490                     "24hr\t\t: %s\n"
 491                     "square_wave\t: %s\n"
 492                     "alarm_IRQ\t: %s\n"
 493                     "update_IRQ\t: %s\n"
 494                     "periodic_IRQ\t: %s\n"
 495                     "periodic_freq\t: %ld\n"
 496                     "batt_status\t: %s\n",
 497                     YN(RTC_DST_EN),
 498                     NY(RTC_DM_BINARY),
 499                     YN(RTC_24H),
 500                     YN(RTC_SQWE),
 501                     YN(RTC_AIE),
 502                     YN(RTC_UIE),
 503                     YN(RTC_PIE),
 504                     1UL,
 505                     1 ? "okay" : "dead");
 506
 507        return 0;
 508#undef YN
 509#undef NY
 510}
 511
 512static int hp_sdc_rtc_ioctl(struct file *file, 
 513                            unsigned int cmd, unsigned long arg)
 514{
 515#if 1
 516        return -EINVAL;
 517#else
 518        
 519        struct rtc_time wtime; 
 520        struct timeval ttime;
 521        int use_wtime = 0;
 522
 523        /* This needs major work. */
 524
 525        switch (cmd) {
 526
 527        case RTC_AIE_OFF:       /* Mask alarm int. enab. bit    */
 528        case RTC_AIE_ON:        /* Allow alarm interrupts.      */
 529        case RTC_PIE_OFF:       /* Mask periodic int. enab. bit */
 530        case RTC_PIE_ON:        /* Allow periodic ints          */
 531        case RTC_UIE_ON:        /* Allow ints for RTC updates.  */
 532        case RTC_UIE_OFF:       /* Allow ints for RTC updates.  */
 533        {
 534                /* We cannot mask individual user timers and we
 535                   cannot tell them apart when they occur, so it 
 536                   would be disingenuous to succeed these IOCTLs */
 537                return -EINVAL;
 538        }
 539        case RTC_ALM_READ:      /* Read the present alarm time */
 540        {
 541                if (hp_sdc_rtc_read_mt(&ttime)) return -EFAULT;
 542                if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
 543
 544                wtime.tm_hour = ttime.tv_sec / 3600;  ttime.tv_sec %= 3600;
 545                wtime.tm_min  = ttime.tv_sec / 60;    ttime.tv_sec %= 60;
 546                wtime.tm_sec  = ttime.tv_sec;
 547                
 548                break;
 549        }
 550        case RTC_IRQP_READ:     /* Read the periodic IRQ rate.  */
 551        {
 552                return put_user(hp_sdc_rtc_freq, (unsigned long *)arg);
 553        }
 554        case RTC_IRQP_SET:      /* Set periodic IRQ rate.       */
 555        {
 556                /* 
 557                 * The max we can do is 100Hz.
 558                 */
 559
 560                if ((arg < 1) || (arg > 100)) return -EINVAL;
 561                ttime.tv_sec = 0;
 562                ttime.tv_usec = 1000000 / arg;
 563                if (hp_sdc_rtc_set_ct(&ttime)) return -EFAULT;
 564                hp_sdc_rtc_freq = arg;
 565                return 0;
 566        }
 567        case RTC_ALM_SET:       /* Store a time into the alarm */
 568        {
 569                /*
 570                 * This expects a struct hp_sdc_rtc_time. Writing 0xff means
 571                 * "don't care" or "match all" for PC timers.  The HP SDC
 572                 * does not support that perk, but it could be emulated fairly
 573                 * easily.  Only the tm_hour, tm_min and tm_sec are used.
 574                 * We could do it with 10ms accuracy with the HP SDC, if the 
 575                 * rtc interface left us a way to do that.
 576                 */
 577                struct hp_sdc_rtc_time alm_tm;
 578
 579                if (copy_from_user(&alm_tm, (struct hp_sdc_rtc_time*)arg,
 580                                   sizeof(struct hp_sdc_rtc_time)))
 581                       return -EFAULT;
 582
 583                if (alm_tm.tm_hour > 23) return -EINVAL;
 584                if (alm_tm.tm_min  > 59) return -EINVAL;
 585                if (alm_tm.tm_sec  > 59) return -EINVAL;  
 586
 587                ttime.sec = alm_tm.tm_hour * 3600 + 
 588                  alm_tm.tm_min * 60 + alm_tm.tm_sec;
 589                ttime.usec = 0;
 590                if (hp_sdc_rtc_set_mt(&ttime)) return -EFAULT;
 591                return 0;
 592        }
 593        case RTC_RD_TIME:       /* Read the time/date from RTC  */
 594        {
 595                if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
 596                break;
 597        }
 598        case RTC_SET_TIME:      /* Set the RTC */
 599        {
 600                struct rtc_time hp_sdc_rtc_tm;
 601                unsigned char mon, day, hrs, min, sec, leap_yr;
 602                unsigned int yrs;
 603
 604                if (!capable(CAP_SYS_TIME))
 605                        return -EACCES;
 606                if (copy_from_user(&hp_sdc_rtc_tm, (struct rtc_time *)arg,
 607                                   sizeof(struct rtc_time)))
 608                        return -EFAULT;
 609
 610                yrs = hp_sdc_rtc_tm.tm_year + 1900;
 611                mon = hp_sdc_rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
 612                day = hp_sdc_rtc_tm.tm_mday;
 613                hrs = hp_sdc_rtc_tm.tm_hour;
 614                min = hp_sdc_rtc_tm.tm_min;
 615                sec = hp_sdc_rtc_tm.tm_sec;
 616
 617                if (yrs < 1970)
 618                        return -EINVAL;
 619
 620                leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
 621
 622                if ((mon > 12) || (day == 0))
 623                        return -EINVAL;
 624                if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
 625                        return -EINVAL;
 626                if ((hrs >= 24) || (min >= 60) || (sec >= 60))
 627                        return -EINVAL;
 628
 629                if ((yrs -= eH) > 255)    /* They are unsigned */
 630                        return -EINVAL;
 631
 632
 633                return 0;
 634        }
 635        case RTC_EPOCH_READ:    /* Read the epoch.      */
 636        {
 637                return put_user (epoch, (unsigned long *)arg);
 638        }
 639        case RTC_EPOCH_SET:     /* Set the epoch.       */
 640        {
 641                /* 
 642                 * There were no RTC clocks before 1900.
 643                 */
 644                if (arg < 1900)
 645                  return -EINVAL;
 646                if (!capable(CAP_SYS_TIME))
 647                  return -EACCES;
 648                
 649                epoch = arg;
 650                return 0;
 651        }
 652        default:
 653                return -EINVAL;
 654        }
 655        return copy_to_user((void *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
 656#endif
 657}
 658
 659static long hp_sdc_rtc_unlocked_ioctl(struct file *file,
 660                                      unsigned int cmd, unsigned long arg)
 661{
 662        int ret;
 663
 664        mutex_lock(&hp_sdc_rtc_mutex);
 665        ret = hp_sdc_rtc_ioctl(file, cmd, arg);
 666        mutex_unlock(&hp_sdc_rtc_mutex);
 667
 668        return ret;
 669}
 670
 671
 672static const struct file_operations hp_sdc_rtc_fops = {
 673        .owner =                THIS_MODULE,
 674        .llseek =               no_llseek,
 675        .read =                 hp_sdc_rtc_read,
 676        .poll =                 hp_sdc_rtc_poll,
 677        .unlocked_ioctl =       hp_sdc_rtc_unlocked_ioctl,
 678        .open =                 hp_sdc_rtc_open,
 679        .fasync =               hp_sdc_rtc_fasync,
 680};
 681
 682static struct miscdevice hp_sdc_rtc_dev = {
 683        .minor =        RTC_MINOR,
 684        .name =         "rtc_HIL",
 685        .fops =         &hp_sdc_rtc_fops
 686};
 687
 688static int __init hp_sdc_rtc_init(void)
 689{
 690        int ret;
 691
 692#ifdef __mc68000__
 693        if (!MACH_IS_HP300)
 694                return -ENODEV;
 695#endif
 696
 697        sema_init(&i8042tregs, 1);
 698
 699        if ((ret = hp_sdc_request_timer_irq(&hp_sdc_rtc_isr)))
 700                return ret;
 701        if (misc_register(&hp_sdc_rtc_dev) != 0)
 702                printk(KERN_INFO "Could not register misc. dev for i8042 rtc\n");
 703
 704        proc_create_single("driver/rtc", 0, NULL, hp_sdc_rtc_proc_show);
 705
 706        printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support loaded "
 707                         "(RTC v " RTC_VERSION ")\n");
 708
 709        return 0;
 710}
 711
 712static void __exit hp_sdc_rtc_exit(void)
 713{
 714        remove_proc_entry ("driver/rtc", NULL);
 715        misc_deregister(&hp_sdc_rtc_dev);
 716        hp_sdc_release_timer_irq(hp_sdc_rtc_isr);
 717        printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support unloaded\n");
 718}
 719
 720module_init(hp_sdc_rtc_init);
 721module_exit(hp_sdc_rtc_exit);
 722