linux/drivers/leds/trigger/ledtrig-activity.c
<<
>>
Prefs
   1/*
   2 * Activity LED trigger
   3 *
   4 * Copyright (C) 2017 Willy Tarreau <w@1wt.eu>
   5 * Partially based on Atsushi Nemoto's ledtrig-heartbeat.c.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12#include <linux/init.h>
  13#include <linux/kernel.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/leds.h>
  16#include <linux/module.h>
  17#include <linux/reboot.h>
  18#include <linux/sched.h>
  19#include <linux/slab.h>
  20#include <linux/timer.h>
  21#include "../leds.h"
  22
  23static int panic_detected;
  24
  25struct activity_data {
  26        struct timer_list timer;
  27        struct led_classdev *led_cdev;
  28        u64 last_used;
  29        u64 last_boot;
  30        int time_left;
  31        int state;
  32        int invert;
  33};
  34
  35static void led_activity_function(struct timer_list *t)
  36{
  37        struct activity_data *activity_data = from_timer(activity_data, t,
  38                                                         timer);
  39        struct led_classdev *led_cdev = activity_data->led_cdev;
  40        unsigned int target;
  41        unsigned int usage;
  42        int delay;
  43        u64 curr_used;
  44        u64 curr_boot;
  45        s32 diff_used;
  46        s32 diff_boot;
  47        int cpus;
  48        int i;
  49
  50        if (test_and_clear_bit(LED_BLINK_BRIGHTNESS_CHANGE, &led_cdev->work_flags))
  51                led_cdev->blink_brightness = led_cdev->new_blink_brightness;
  52
  53        if (unlikely(panic_detected)) {
  54                /* full brightness in case of panic */
  55                led_set_brightness_nosleep(led_cdev, led_cdev->blink_brightness);
  56                return;
  57        }
  58
  59        cpus = 0;
  60        curr_used = 0;
  61
  62        for_each_possible_cpu(i) {
  63                curr_used += kcpustat_cpu(i).cpustat[CPUTIME_USER]
  64                          +  kcpustat_cpu(i).cpustat[CPUTIME_NICE]
  65                          +  kcpustat_cpu(i).cpustat[CPUTIME_SYSTEM]
  66                          +  kcpustat_cpu(i).cpustat[CPUTIME_SOFTIRQ]
  67                          +  kcpustat_cpu(i).cpustat[CPUTIME_IRQ];
  68                cpus++;
  69        }
  70
  71        /* We come here every 100ms in the worst case, so that's 100M ns of
  72         * cumulated time. By dividing by 2^16, we get the time resolution
  73         * down to 16us, ensuring we won't overflow 32-bit computations below
  74         * even up to 3k CPUs, while keeping divides cheap on smaller systems.
  75         */
  76        curr_boot = ktime_get_boot_ns() * cpus;
  77        diff_boot = (curr_boot - activity_data->last_boot) >> 16;
  78        diff_used = (curr_used - activity_data->last_used) >> 16;
  79        activity_data->last_boot = curr_boot;
  80        activity_data->last_used = curr_used;
  81
  82        if (diff_boot <= 0 || diff_used < 0)
  83                usage = 0;
  84        else if (diff_used >= diff_boot)
  85                usage = 100;
  86        else
  87                usage = 100 * diff_used / diff_boot;
  88
  89        /*
  90         * Now we know the total boot_time multiplied by the number of CPUs, and
  91         * the total idle+wait time for all CPUs. We'll compare how they evolved
  92         * since last call. The % of overall CPU usage is :
  93         *
  94         *      1 - delta_idle / delta_boot
  95         *
  96         * What we want is that when the CPU usage is zero, the LED must blink
  97         * slowly with very faint flashes that are detectable but not disturbing
  98         * (typically 10ms every second, or 10ms ON, 990ms OFF). Then we want
  99         * blinking frequency to increase up to the point where the load is
 100         * enough to saturate one core in multi-core systems or 50% in single
 101         * core systems. At this point it should reach 10 Hz with a 10/90 duty
 102         * cycle (10ms ON, 90ms OFF). After this point, the blinking frequency
 103         * remains stable (10 Hz) and only the duty cycle increases to report
 104         * the activity, up to the point where we have 90ms ON, 10ms OFF when
 105         * all cores are saturated. It's important that the LED never stays in
 106         * a steady state so that it's easy to distinguish an idle or saturated
 107         * machine from a hung one.
 108         *
 109         * This gives us :
 110         *   - a target CPU usage of min(50%, 100%/#CPU) for a 10% duty cycle
 111         *     (10ms ON, 90ms OFF)
 112         *   - below target :
 113         *      ON_ms  = 10
 114         *      OFF_ms = 90 + (1 - usage/target) * 900
 115         *   - above target :
 116         *      ON_ms  = 10 + (usage-target)/(100%-target) * 80
 117         *      OFF_ms = 90 - (usage-target)/(100%-target) * 80
 118         *
 119         * In order to keep a good responsiveness, we cap the sleep time to
 120         * 100 ms and keep track of the sleep time left. This allows us to
 121         * quickly change it if needed.
 122         */
 123
 124        activity_data->time_left -= 100;
 125        if (activity_data->time_left <= 0) {
 126                activity_data->time_left = 0;
 127                activity_data->state = !activity_data->state;
 128                led_set_brightness_nosleep(led_cdev,
 129                        (activity_data->state ^ activity_data->invert) ?
 130                        led_cdev->blink_brightness : LED_OFF);
 131        }
 132
 133        target = (cpus > 1) ? (100 / cpus) : 50;
 134
 135        if (usage < target)
 136                delay = activity_data->state ?
 137                        10 :                        /* ON  */
 138                        990 - 900 * usage / target; /* OFF */
 139        else
 140                delay = activity_data->state ?
 141                        10 + 80 * (usage - target) / (100 - target) : /* ON  */
 142                        90 - 80 * (usage - target) / (100 - target);  /* OFF */
 143
 144
 145        if (!activity_data->time_left || delay <= activity_data->time_left)
 146                activity_data->time_left = delay;
 147
 148        delay = min_t(int, activity_data->time_left, 100);
 149        mod_timer(&activity_data->timer, jiffies + msecs_to_jiffies(delay));
 150}
 151
 152static ssize_t led_invert_show(struct device *dev,
 153                               struct device_attribute *attr, char *buf)
 154{
 155        struct activity_data *activity_data = led_trigger_get_drvdata(dev);
 156
 157        return sprintf(buf, "%u\n", activity_data->invert);
 158}
 159
 160static ssize_t led_invert_store(struct device *dev,
 161                                struct device_attribute *attr,
 162                                const char *buf, size_t size)
 163{
 164        struct activity_data *activity_data = led_trigger_get_drvdata(dev);
 165        unsigned long state;
 166        int ret;
 167
 168        ret = kstrtoul(buf, 0, &state);
 169        if (ret)
 170                return ret;
 171
 172        activity_data->invert = !!state;
 173
 174        return size;
 175}
 176
 177static DEVICE_ATTR(invert, 0644, led_invert_show, led_invert_store);
 178
 179static struct attribute *activity_led_attrs[] = {
 180        &dev_attr_invert.attr,
 181        NULL
 182};
 183ATTRIBUTE_GROUPS(activity_led);
 184
 185static int activity_activate(struct led_classdev *led_cdev)
 186{
 187        struct activity_data *activity_data;
 188
 189        activity_data = kzalloc(sizeof(*activity_data), GFP_KERNEL);
 190        if (!activity_data)
 191                return -ENOMEM;
 192
 193        led_set_trigger_data(led_cdev, activity_data);
 194
 195        activity_data->led_cdev = led_cdev;
 196        timer_setup(&activity_data->timer, led_activity_function, 0);
 197        if (!led_cdev->blink_brightness)
 198                led_cdev->blink_brightness = led_cdev->max_brightness;
 199        led_activity_function(&activity_data->timer);
 200        set_bit(LED_BLINK_SW, &led_cdev->work_flags);
 201
 202        return 0;
 203}
 204
 205static void activity_deactivate(struct led_classdev *led_cdev)
 206{
 207        struct activity_data *activity_data = led_get_trigger_data(led_cdev);
 208
 209        del_timer_sync(&activity_data->timer);
 210        kfree(activity_data);
 211        clear_bit(LED_BLINK_SW, &led_cdev->work_flags);
 212}
 213
 214static struct led_trigger activity_led_trigger = {
 215        .name       = "activity",
 216        .activate   = activity_activate,
 217        .deactivate = activity_deactivate,
 218        .groups     = activity_led_groups,
 219};
 220
 221static int activity_reboot_notifier(struct notifier_block *nb,
 222                                    unsigned long code, void *unused)
 223{
 224        led_trigger_unregister(&activity_led_trigger);
 225        return NOTIFY_DONE;
 226}
 227
 228static int activity_panic_notifier(struct notifier_block *nb,
 229                                   unsigned long code, void *unused)
 230{
 231        panic_detected = 1;
 232        return NOTIFY_DONE;
 233}
 234
 235static struct notifier_block activity_reboot_nb = {
 236        .notifier_call = activity_reboot_notifier,
 237};
 238
 239static struct notifier_block activity_panic_nb = {
 240        .notifier_call = activity_panic_notifier,
 241};
 242
 243static int __init activity_init(void)
 244{
 245        int rc = led_trigger_register(&activity_led_trigger);
 246
 247        if (!rc) {
 248                atomic_notifier_chain_register(&panic_notifier_list,
 249                                               &activity_panic_nb);
 250                register_reboot_notifier(&activity_reboot_nb);
 251        }
 252        return rc;
 253}
 254
 255static void __exit activity_exit(void)
 256{
 257        unregister_reboot_notifier(&activity_reboot_nb);
 258        atomic_notifier_chain_unregister(&panic_notifier_list,
 259                                         &activity_panic_nb);
 260        led_trigger_unregister(&activity_led_trigger);
 261}
 262
 263module_init(activity_init);
 264module_exit(activity_exit);
 265
 266MODULE_AUTHOR("Willy Tarreau <w@1wt.eu>");
 267MODULE_DESCRIPTION("Activity LED trigger");
 268MODULE_LICENSE("GPL v2");
 269