linux/drivers/md/bcache/btree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
   4 *
   5 * Uses a block device as cache for other block devices; optimized for SSDs.
   6 * All allocation is done in buckets, which should match the erase block size
   7 * of the device.
   8 *
   9 * Buckets containing cached data are kept on a heap sorted by priority;
  10 * bucket priority is increased on cache hit, and periodically all the buckets
  11 * on the heap have their priority scaled down. This currently is just used as
  12 * an LRU but in the future should allow for more intelligent heuristics.
  13 *
  14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
  15 * counter. Garbage collection is used to remove stale pointers.
  16 *
  17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
  18 * as keys are inserted we only sort the pages that have not yet been written.
  19 * When garbage collection is run, we resort the entire node.
  20 *
  21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
  22 */
  23
  24#include "bcache.h"
  25#include "btree.h"
  26#include "debug.h"
  27#include "extents.h"
  28
  29#include <linux/slab.h>
  30#include <linux/bitops.h>
  31#include <linux/hash.h>
  32#include <linux/kthread.h>
  33#include <linux/prefetch.h>
  34#include <linux/random.h>
  35#include <linux/rcupdate.h>
  36#include <linux/sched/clock.h>
  37#include <linux/rculist.h>
  38
  39#include <trace/events/bcache.h>
  40
  41/*
  42 * Todo:
  43 * register_bcache: Return errors out to userspace correctly
  44 *
  45 * Writeback: don't undirty key until after a cache flush
  46 *
  47 * Create an iterator for key pointers
  48 *
  49 * On btree write error, mark bucket such that it won't be freed from the cache
  50 *
  51 * Journalling:
  52 *   Check for bad keys in replay
  53 *   Propagate barriers
  54 *   Refcount journal entries in journal_replay
  55 *
  56 * Garbage collection:
  57 *   Finish incremental gc
  58 *   Gc should free old UUIDs, data for invalid UUIDs
  59 *
  60 * Provide a way to list backing device UUIDs we have data cached for, and
  61 * probably how long it's been since we've seen them, and a way to invalidate
  62 * dirty data for devices that will never be attached again
  63 *
  64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
  65 * that based on that and how much dirty data we have we can keep writeback
  66 * from being starved
  67 *
  68 * Add a tracepoint or somesuch to watch for writeback starvation
  69 *
  70 * When btree depth > 1 and splitting an interior node, we have to make sure
  71 * alloc_bucket() cannot fail. This should be true but is not completely
  72 * obvious.
  73 *
  74 * Plugging?
  75 *
  76 * If data write is less than hard sector size of ssd, round up offset in open
  77 * bucket to the next whole sector
  78 *
  79 * Superblock needs to be fleshed out for multiple cache devices
  80 *
  81 * Add a sysfs tunable for the number of writeback IOs in flight
  82 *
  83 * Add a sysfs tunable for the number of open data buckets
  84 *
  85 * IO tracking: Can we track when one process is doing io on behalf of another?
  86 * IO tracking: Don't use just an average, weigh more recent stuff higher
  87 *
  88 * Test module load/unload
  89 */
  90
  91#define MAX_NEED_GC             64
  92#define MAX_SAVE_PRIO           72
  93#define MAX_GC_TIMES            100
  94#define MIN_GC_NODES            100
  95#define GC_SLEEP_MS             100
  96
  97#define PTR_DIRTY_BIT           (((uint64_t) 1 << 36))
  98
  99#define PTR_HASH(c, k)                                                  \
 100        (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
 101
 102#define insert_lock(s, b)       ((b)->level <= (s)->lock)
 103
 104/*
 105 * These macros are for recursing down the btree - they handle the details of
 106 * locking and looking up nodes in the cache for you. They're best treated as
 107 * mere syntax when reading code that uses them.
 108 *
 109 * op->lock determines whether we take a read or a write lock at a given depth.
 110 * If you've got a read lock and find that you need a write lock (i.e. you're
 111 * going to have to split), set op->lock and return -EINTR; btree_root() will
 112 * call you again and you'll have the correct lock.
 113 */
 114
 115/**
 116 * btree - recurse down the btree on a specified key
 117 * @fn:         function to call, which will be passed the child node
 118 * @key:        key to recurse on
 119 * @b:          parent btree node
 120 * @op:         pointer to struct btree_op
 121 */
 122#define btree(fn, key, b, op, ...)                                      \
 123({                                                                      \
 124        int _r, l = (b)->level - 1;                                     \
 125        bool _w = l <= (op)->lock;                                      \
 126        struct btree *_child = bch_btree_node_get((b)->c, op, key, l,   \
 127                                                  _w, b);               \
 128        if (!IS_ERR(_child)) {                                          \
 129                _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);       \
 130                rw_unlock(_w, _child);                                  \
 131        } else                                                          \
 132                _r = PTR_ERR(_child);                                   \
 133        _r;                                                             \
 134})
 135
 136/**
 137 * btree_root - call a function on the root of the btree
 138 * @fn:         function to call, which will be passed the child node
 139 * @c:          cache set
 140 * @op:         pointer to struct btree_op
 141 */
 142#define btree_root(fn, c, op, ...)                                      \
 143({                                                                      \
 144        int _r = -EINTR;                                                \
 145        do {                                                            \
 146                struct btree *_b = (c)->root;                           \
 147                bool _w = insert_lock(op, _b);                          \
 148                rw_lock(_w, _b, _b->level);                             \
 149                if (_b == (c)->root &&                                  \
 150                    _w == insert_lock(op, _b)) {                        \
 151                        _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);   \
 152                }                                                       \
 153                rw_unlock(_w, _b);                                      \
 154                bch_cannibalize_unlock(c);                              \
 155                if (_r == -EINTR)                                       \
 156                        schedule();                                     \
 157        } while (_r == -EINTR);                                         \
 158                                                                        \
 159        finish_wait(&(c)->btree_cache_wait, &(op)->wait);               \
 160        _r;                                                             \
 161})
 162
 163static inline struct bset *write_block(struct btree *b)
 164{
 165        return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
 166}
 167
 168static void bch_btree_init_next(struct btree *b)
 169{
 170        /* If not a leaf node, always sort */
 171        if (b->level && b->keys.nsets)
 172                bch_btree_sort(&b->keys, &b->c->sort);
 173        else
 174                bch_btree_sort_lazy(&b->keys, &b->c->sort);
 175
 176        if (b->written < btree_blocks(b))
 177                bch_bset_init_next(&b->keys, write_block(b),
 178                                   bset_magic(&b->c->sb));
 179
 180}
 181
 182/* Btree key manipulation */
 183
 184void bkey_put(struct cache_set *c, struct bkey *k)
 185{
 186        unsigned int i;
 187
 188        for (i = 0; i < KEY_PTRS(k); i++)
 189                if (ptr_available(c, k, i))
 190                        atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
 191}
 192
 193/* Btree IO */
 194
 195static uint64_t btree_csum_set(struct btree *b, struct bset *i)
 196{
 197        uint64_t crc = b->key.ptr[0];
 198        void *data = (void *) i + 8, *end = bset_bkey_last(i);
 199
 200        crc = bch_crc64_update(crc, data, end - data);
 201        return crc ^ 0xffffffffffffffffULL;
 202}
 203
 204void bch_btree_node_read_done(struct btree *b)
 205{
 206        const char *err = "bad btree header";
 207        struct bset *i = btree_bset_first(b);
 208        struct btree_iter *iter;
 209
 210        iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
 211        iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
 212        iter->used = 0;
 213
 214#ifdef CONFIG_BCACHE_DEBUG
 215        iter->b = &b->keys;
 216#endif
 217
 218        if (!i->seq)
 219                goto err;
 220
 221        for (;
 222             b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
 223             i = write_block(b)) {
 224                err = "unsupported bset version";
 225                if (i->version > BCACHE_BSET_VERSION)
 226                        goto err;
 227
 228                err = "bad btree header";
 229                if (b->written + set_blocks(i, block_bytes(b->c)) >
 230                    btree_blocks(b))
 231                        goto err;
 232
 233                err = "bad magic";
 234                if (i->magic != bset_magic(&b->c->sb))
 235                        goto err;
 236
 237                err = "bad checksum";
 238                switch (i->version) {
 239                case 0:
 240                        if (i->csum != csum_set(i))
 241                                goto err;
 242                        break;
 243                case BCACHE_BSET_VERSION:
 244                        if (i->csum != btree_csum_set(b, i))
 245                                goto err;
 246                        break;
 247                }
 248
 249                err = "empty set";
 250                if (i != b->keys.set[0].data && !i->keys)
 251                        goto err;
 252
 253                bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
 254
 255                b->written += set_blocks(i, block_bytes(b->c));
 256        }
 257
 258        err = "corrupted btree";
 259        for (i = write_block(b);
 260             bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
 261             i = ((void *) i) + block_bytes(b->c))
 262                if (i->seq == b->keys.set[0].data->seq)
 263                        goto err;
 264
 265        bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
 266
 267        i = b->keys.set[0].data;
 268        err = "short btree key";
 269        if (b->keys.set[0].size &&
 270            bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
 271                goto err;
 272
 273        if (b->written < btree_blocks(b))
 274                bch_bset_init_next(&b->keys, write_block(b),
 275                                   bset_magic(&b->c->sb));
 276out:
 277        mempool_free(iter, &b->c->fill_iter);
 278        return;
 279err:
 280        set_btree_node_io_error(b);
 281        bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
 282                            err, PTR_BUCKET_NR(b->c, &b->key, 0),
 283                            bset_block_offset(b, i), i->keys);
 284        goto out;
 285}
 286
 287static void btree_node_read_endio(struct bio *bio)
 288{
 289        struct closure *cl = bio->bi_private;
 290
 291        closure_put(cl);
 292}
 293
 294static void bch_btree_node_read(struct btree *b)
 295{
 296        uint64_t start_time = local_clock();
 297        struct closure cl;
 298        struct bio *bio;
 299
 300        trace_bcache_btree_read(b);
 301
 302        closure_init_stack(&cl);
 303
 304        bio = bch_bbio_alloc(b->c);
 305        bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
 306        bio->bi_end_io  = btree_node_read_endio;
 307        bio->bi_private = &cl;
 308        bio->bi_opf = REQ_OP_READ | REQ_META;
 309
 310        bch_bio_map(bio, b->keys.set[0].data);
 311
 312        bch_submit_bbio(bio, b->c, &b->key, 0);
 313        closure_sync(&cl);
 314
 315        if (bio->bi_status)
 316                set_btree_node_io_error(b);
 317
 318        bch_bbio_free(bio, b->c);
 319
 320        if (btree_node_io_error(b))
 321                goto err;
 322
 323        bch_btree_node_read_done(b);
 324        bch_time_stats_update(&b->c->btree_read_time, start_time);
 325
 326        return;
 327err:
 328        bch_cache_set_error(b->c, "io error reading bucket %zu",
 329                            PTR_BUCKET_NR(b->c, &b->key, 0));
 330}
 331
 332static void btree_complete_write(struct btree *b, struct btree_write *w)
 333{
 334        if (w->prio_blocked &&
 335            !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
 336                wake_up_allocators(b->c);
 337
 338        if (w->journal) {
 339                atomic_dec_bug(w->journal);
 340                __closure_wake_up(&b->c->journal.wait);
 341        }
 342
 343        w->prio_blocked = 0;
 344        w->journal      = NULL;
 345}
 346
 347static void btree_node_write_unlock(struct closure *cl)
 348{
 349        struct btree *b = container_of(cl, struct btree, io);
 350
 351        up(&b->io_mutex);
 352}
 353
 354static void __btree_node_write_done(struct closure *cl)
 355{
 356        struct btree *b = container_of(cl, struct btree, io);
 357        struct btree_write *w = btree_prev_write(b);
 358
 359        bch_bbio_free(b->bio, b->c);
 360        b->bio = NULL;
 361        btree_complete_write(b, w);
 362
 363        if (btree_node_dirty(b))
 364                schedule_delayed_work(&b->work, 30 * HZ);
 365
 366        closure_return_with_destructor(cl, btree_node_write_unlock);
 367}
 368
 369static void btree_node_write_done(struct closure *cl)
 370{
 371        struct btree *b = container_of(cl, struct btree, io);
 372
 373        bio_free_pages(b->bio);
 374        __btree_node_write_done(cl);
 375}
 376
 377static void btree_node_write_endio(struct bio *bio)
 378{
 379        struct closure *cl = bio->bi_private;
 380        struct btree *b = container_of(cl, struct btree, io);
 381
 382        if (bio->bi_status)
 383                set_btree_node_io_error(b);
 384
 385        bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
 386        closure_put(cl);
 387}
 388
 389static void do_btree_node_write(struct btree *b)
 390{
 391        struct closure *cl = &b->io;
 392        struct bset *i = btree_bset_last(b);
 393        BKEY_PADDED(key) k;
 394
 395        i->version      = BCACHE_BSET_VERSION;
 396        i->csum         = btree_csum_set(b, i);
 397
 398        BUG_ON(b->bio);
 399        b->bio = bch_bbio_alloc(b->c);
 400
 401        b->bio->bi_end_io       = btree_node_write_endio;
 402        b->bio->bi_private      = cl;
 403        b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
 404        b->bio->bi_opf          = REQ_OP_WRITE | REQ_META | REQ_FUA;
 405        bch_bio_map(b->bio, i);
 406
 407        /*
 408         * If we're appending to a leaf node, we don't technically need FUA -
 409         * this write just needs to be persisted before the next journal write,
 410         * which will be marked FLUSH|FUA.
 411         *
 412         * Similarly if we're writing a new btree root - the pointer is going to
 413         * be in the next journal entry.
 414         *
 415         * But if we're writing a new btree node (that isn't a root) or
 416         * appending to a non leaf btree node, we need either FUA or a flush
 417         * when we write the parent with the new pointer. FUA is cheaper than a
 418         * flush, and writes appending to leaf nodes aren't blocking anything so
 419         * just make all btree node writes FUA to keep things sane.
 420         */
 421
 422        bkey_copy(&k.key, &b->key);
 423        SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
 424                       bset_sector_offset(&b->keys, i));
 425
 426        if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
 427                int j;
 428                struct bio_vec *bv;
 429                void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
 430
 431                bio_for_each_segment_all(bv, b->bio, j)
 432                        memcpy(page_address(bv->bv_page),
 433                               base + j * PAGE_SIZE, PAGE_SIZE);
 434
 435                bch_submit_bbio(b->bio, b->c, &k.key, 0);
 436
 437                continue_at(cl, btree_node_write_done, NULL);
 438        } else {
 439                /*
 440                 * No problem for multipage bvec since the bio is
 441                 * just allocated
 442                 */
 443                b->bio->bi_vcnt = 0;
 444                bch_bio_map(b->bio, i);
 445
 446                bch_submit_bbio(b->bio, b->c, &k.key, 0);
 447
 448                closure_sync(cl);
 449                continue_at_nobarrier(cl, __btree_node_write_done, NULL);
 450        }
 451}
 452
 453void __bch_btree_node_write(struct btree *b, struct closure *parent)
 454{
 455        struct bset *i = btree_bset_last(b);
 456
 457        lockdep_assert_held(&b->write_lock);
 458
 459        trace_bcache_btree_write(b);
 460
 461        BUG_ON(current->bio_list);
 462        BUG_ON(b->written >= btree_blocks(b));
 463        BUG_ON(b->written && !i->keys);
 464        BUG_ON(btree_bset_first(b)->seq != i->seq);
 465        bch_check_keys(&b->keys, "writing");
 466
 467        cancel_delayed_work(&b->work);
 468
 469        /* If caller isn't waiting for write, parent refcount is cache set */
 470        down(&b->io_mutex);
 471        closure_init(&b->io, parent ?: &b->c->cl);
 472
 473        clear_bit(BTREE_NODE_dirty,      &b->flags);
 474        change_bit(BTREE_NODE_write_idx, &b->flags);
 475
 476        do_btree_node_write(b);
 477
 478        atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
 479                        &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
 480
 481        b->written += set_blocks(i, block_bytes(b->c));
 482}
 483
 484void bch_btree_node_write(struct btree *b, struct closure *parent)
 485{
 486        unsigned int nsets = b->keys.nsets;
 487
 488        lockdep_assert_held(&b->lock);
 489
 490        __bch_btree_node_write(b, parent);
 491
 492        /*
 493         * do verify if there was more than one set initially (i.e. we did a
 494         * sort) and we sorted down to a single set:
 495         */
 496        if (nsets && !b->keys.nsets)
 497                bch_btree_verify(b);
 498
 499        bch_btree_init_next(b);
 500}
 501
 502static void bch_btree_node_write_sync(struct btree *b)
 503{
 504        struct closure cl;
 505
 506        closure_init_stack(&cl);
 507
 508        mutex_lock(&b->write_lock);
 509        bch_btree_node_write(b, &cl);
 510        mutex_unlock(&b->write_lock);
 511
 512        closure_sync(&cl);
 513}
 514
 515static void btree_node_write_work(struct work_struct *w)
 516{
 517        struct btree *b = container_of(to_delayed_work(w), struct btree, work);
 518
 519        mutex_lock(&b->write_lock);
 520        if (btree_node_dirty(b))
 521                __bch_btree_node_write(b, NULL);
 522        mutex_unlock(&b->write_lock);
 523}
 524
 525static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
 526{
 527        struct bset *i = btree_bset_last(b);
 528        struct btree_write *w = btree_current_write(b);
 529
 530        lockdep_assert_held(&b->write_lock);
 531
 532        BUG_ON(!b->written);
 533        BUG_ON(!i->keys);
 534
 535        if (!btree_node_dirty(b))
 536                schedule_delayed_work(&b->work, 30 * HZ);
 537
 538        set_btree_node_dirty(b);
 539
 540        if (journal_ref) {
 541                if (w->journal &&
 542                    journal_pin_cmp(b->c, w->journal, journal_ref)) {
 543                        atomic_dec_bug(w->journal);
 544                        w->journal = NULL;
 545                }
 546
 547                if (!w->journal) {
 548                        w->journal = journal_ref;
 549                        atomic_inc(w->journal);
 550                }
 551        }
 552
 553        /* Force write if set is too big */
 554        if (set_bytes(i) > PAGE_SIZE - 48 &&
 555            !current->bio_list)
 556                bch_btree_node_write(b, NULL);
 557}
 558
 559/*
 560 * Btree in memory cache - allocation/freeing
 561 * mca -> memory cache
 562 */
 563
 564#define mca_reserve(c)  (((c->root && c->root->level)           \
 565                          ? c->root->level : 1) * 8 + 16)
 566#define mca_can_free(c)                                         \
 567        max_t(int, 0, c->btree_cache_used - mca_reserve(c))
 568
 569static void mca_data_free(struct btree *b)
 570{
 571        BUG_ON(b->io_mutex.count != 1);
 572
 573        bch_btree_keys_free(&b->keys);
 574
 575        b->c->btree_cache_used--;
 576        list_move(&b->list, &b->c->btree_cache_freed);
 577}
 578
 579static void mca_bucket_free(struct btree *b)
 580{
 581        BUG_ON(btree_node_dirty(b));
 582
 583        b->key.ptr[0] = 0;
 584        hlist_del_init_rcu(&b->hash);
 585        list_move(&b->list, &b->c->btree_cache_freeable);
 586}
 587
 588static unsigned int btree_order(struct bkey *k)
 589{
 590        return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
 591}
 592
 593static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
 594{
 595        if (!bch_btree_keys_alloc(&b->keys,
 596                                  max_t(unsigned int,
 597                                        ilog2(b->c->btree_pages),
 598                                        btree_order(k)),
 599                                  gfp)) {
 600                b->c->btree_cache_used++;
 601                list_move(&b->list, &b->c->btree_cache);
 602        } else {
 603                list_move(&b->list, &b->c->btree_cache_freed);
 604        }
 605}
 606
 607static struct btree *mca_bucket_alloc(struct cache_set *c,
 608                                      struct bkey *k, gfp_t gfp)
 609{
 610        struct btree *b = kzalloc(sizeof(struct btree), gfp);
 611
 612        if (!b)
 613                return NULL;
 614
 615        init_rwsem(&b->lock);
 616        lockdep_set_novalidate_class(&b->lock);
 617        mutex_init(&b->write_lock);
 618        lockdep_set_novalidate_class(&b->write_lock);
 619        INIT_LIST_HEAD(&b->list);
 620        INIT_DELAYED_WORK(&b->work, btree_node_write_work);
 621        b->c = c;
 622        sema_init(&b->io_mutex, 1);
 623
 624        mca_data_alloc(b, k, gfp);
 625        return b;
 626}
 627
 628static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
 629{
 630        struct closure cl;
 631
 632        closure_init_stack(&cl);
 633        lockdep_assert_held(&b->c->bucket_lock);
 634
 635        if (!down_write_trylock(&b->lock))
 636                return -ENOMEM;
 637
 638        BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
 639
 640        if (b->keys.page_order < min_order)
 641                goto out_unlock;
 642
 643        if (!flush) {
 644                if (btree_node_dirty(b))
 645                        goto out_unlock;
 646
 647                if (down_trylock(&b->io_mutex))
 648                        goto out_unlock;
 649                up(&b->io_mutex);
 650        }
 651
 652        mutex_lock(&b->write_lock);
 653        if (btree_node_dirty(b))
 654                __bch_btree_node_write(b, &cl);
 655        mutex_unlock(&b->write_lock);
 656
 657        closure_sync(&cl);
 658
 659        /* wait for any in flight btree write */
 660        down(&b->io_mutex);
 661        up(&b->io_mutex);
 662
 663        return 0;
 664out_unlock:
 665        rw_unlock(true, b);
 666        return -ENOMEM;
 667}
 668
 669static unsigned long bch_mca_scan(struct shrinker *shrink,
 670                                  struct shrink_control *sc)
 671{
 672        struct cache_set *c = container_of(shrink, struct cache_set, shrink);
 673        struct btree *b, *t;
 674        unsigned long i, nr = sc->nr_to_scan;
 675        unsigned long freed = 0;
 676        unsigned int btree_cache_used;
 677
 678        if (c->shrinker_disabled)
 679                return SHRINK_STOP;
 680
 681        if (c->btree_cache_alloc_lock)
 682                return SHRINK_STOP;
 683
 684        /* Return -1 if we can't do anything right now */
 685        if (sc->gfp_mask & __GFP_IO)
 686                mutex_lock(&c->bucket_lock);
 687        else if (!mutex_trylock(&c->bucket_lock))
 688                return -1;
 689
 690        /*
 691         * It's _really_ critical that we don't free too many btree nodes - we
 692         * have to always leave ourselves a reserve. The reserve is how we
 693         * guarantee that allocating memory for a new btree node can always
 694         * succeed, so that inserting keys into the btree can always succeed and
 695         * IO can always make forward progress:
 696         */
 697        nr /= c->btree_pages;
 698        nr = min_t(unsigned long, nr, mca_can_free(c));
 699
 700        i = 0;
 701        btree_cache_used = c->btree_cache_used;
 702        list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
 703                if (nr <= 0)
 704                        goto out;
 705
 706                if (++i > 3 &&
 707                    !mca_reap(b, 0, false)) {
 708                        mca_data_free(b);
 709                        rw_unlock(true, b);
 710                        freed++;
 711                }
 712                nr--;
 713        }
 714
 715        for (;  (nr--) && i < btree_cache_used; i++) {
 716                if (list_empty(&c->btree_cache))
 717                        goto out;
 718
 719                b = list_first_entry(&c->btree_cache, struct btree, list);
 720                list_rotate_left(&c->btree_cache);
 721
 722                if (!b->accessed &&
 723                    !mca_reap(b, 0, false)) {
 724                        mca_bucket_free(b);
 725                        mca_data_free(b);
 726                        rw_unlock(true, b);
 727                        freed++;
 728                } else
 729                        b->accessed = 0;
 730        }
 731out:
 732        mutex_unlock(&c->bucket_lock);
 733        return freed * c->btree_pages;
 734}
 735
 736static unsigned long bch_mca_count(struct shrinker *shrink,
 737                                   struct shrink_control *sc)
 738{
 739        struct cache_set *c = container_of(shrink, struct cache_set, shrink);
 740
 741        if (c->shrinker_disabled)
 742                return 0;
 743
 744        if (c->btree_cache_alloc_lock)
 745                return 0;
 746
 747        return mca_can_free(c) * c->btree_pages;
 748}
 749
 750void bch_btree_cache_free(struct cache_set *c)
 751{
 752        struct btree *b;
 753        struct closure cl;
 754
 755        closure_init_stack(&cl);
 756
 757        if (c->shrink.list.next)
 758                unregister_shrinker(&c->shrink);
 759
 760        mutex_lock(&c->bucket_lock);
 761
 762#ifdef CONFIG_BCACHE_DEBUG
 763        if (c->verify_data)
 764                list_move(&c->verify_data->list, &c->btree_cache);
 765
 766        free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
 767#endif
 768
 769        list_splice(&c->btree_cache_freeable,
 770                    &c->btree_cache);
 771
 772        while (!list_empty(&c->btree_cache)) {
 773                b = list_first_entry(&c->btree_cache, struct btree, list);
 774
 775                if (btree_node_dirty(b))
 776                        btree_complete_write(b, btree_current_write(b));
 777                clear_bit(BTREE_NODE_dirty, &b->flags);
 778
 779                mca_data_free(b);
 780        }
 781
 782        while (!list_empty(&c->btree_cache_freed)) {
 783                b = list_first_entry(&c->btree_cache_freed,
 784                                     struct btree, list);
 785                list_del(&b->list);
 786                cancel_delayed_work_sync(&b->work);
 787                kfree(b);
 788        }
 789
 790        mutex_unlock(&c->bucket_lock);
 791}
 792
 793int bch_btree_cache_alloc(struct cache_set *c)
 794{
 795        unsigned int i;
 796
 797        for (i = 0; i < mca_reserve(c); i++)
 798                if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
 799                        return -ENOMEM;
 800
 801        list_splice_init(&c->btree_cache,
 802                         &c->btree_cache_freeable);
 803
 804#ifdef CONFIG_BCACHE_DEBUG
 805        mutex_init(&c->verify_lock);
 806
 807        c->verify_ondisk = (void *)
 808                __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
 809
 810        c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
 811
 812        if (c->verify_data &&
 813            c->verify_data->keys.set->data)
 814                list_del_init(&c->verify_data->list);
 815        else
 816                c->verify_data = NULL;
 817#endif
 818
 819        c->shrink.count_objects = bch_mca_count;
 820        c->shrink.scan_objects = bch_mca_scan;
 821        c->shrink.seeks = 4;
 822        c->shrink.batch = c->btree_pages * 2;
 823
 824        if (register_shrinker(&c->shrink))
 825                pr_warn("bcache: %s: could not register shrinker",
 826                                __func__);
 827
 828        return 0;
 829}
 830
 831/* Btree in memory cache - hash table */
 832
 833static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
 834{
 835        return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
 836}
 837
 838static struct btree *mca_find(struct cache_set *c, struct bkey *k)
 839{
 840        struct btree *b;
 841
 842        rcu_read_lock();
 843        hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
 844                if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
 845                        goto out;
 846        b = NULL;
 847out:
 848        rcu_read_unlock();
 849        return b;
 850}
 851
 852static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
 853{
 854        struct task_struct *old;
 855
 856        old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
 857        if (old && old != current) {
 858                if (op)
 859                        prepare_to_wait(&c->btree_cache_wait, &op->wait,
 860                                        TASK_UNINTERRUPTIBLE);
 861                return -EINTR;
 862        }
 863
 864        return 0;
 865}
 866
 867static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
 868                                     struct bkey *k)
 869{
 870        struct btree *b;
 871
 872        trace_bcache_btree_cache_cannibalize(c);
 873
 874        if (mca_cannibalize_lock(c, op))
 875                return ERR_PTR(-EINTR);
 876
 877        list_for_each_entry_reverse(b, &c->btree_cache, list)
 878                if (!mca_reap(b, btree_order(k), false))
 879                        return b;
 880
 881        list_for_each_entry_reverse(b, &c->btree_cache, list)
 882                if (!mca_reap(b, btree_order(k), true))
 883                        return b;
 884
 885        WARN(1, "btree cache cannibalize failed\n");
 886        return ERR_PTR(-ENOMEM);
 887}
 888
 889/*
 890 * We can only have one thread cannibalizing other cached btree nodes at a time,
 891 * or we'll deadlock. We use an open coded mutex to ensure that, which a
 892 * cannibalize_bucket() will take. This means every time we unlock the root of
 893 * the btree, we need to release this lock if we have it held.
 894 */
 895static void bch_cannibalize_unlock(struct cache_set *c)
 896{
 897        if (c->btree_cache_alloc_lock == current) {
 898                c->btree_cache_alloc_lock = NULL;
 899                wake_up(&c->btree_cache_wait);
 900        }
 901}
 902
 903static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
 904                               struct bkey *k, int level)
 905{
 906        struct btree *b;
 907
 908        BUG_ON(current->bio_list);
 909
 910        lockdep_assert_held(&c->bucket_lock);
 911
 912        if (mca_find(c, k))
 913                return NULL;
 914
 915        /* btree_free() doesn't free memory; it sticks the node on the end of
 916         * the list. Check if there's any freed nodes there:
 917         */
 918        list_for_each_entry(b, &c->btree_cache_freeable, list)
 919                if (!mca_reap(b, btree_order(k), false))
 920                        goto out;
 921
 922        /* We never free struct btree itself, just the memory that holds the on
 923         * disk node. Check the freed list before allocating a new one:
 924         */
 925        list_for_each_entry(b, &c->btree_cache_freed, list)
 926                if (!mca_reap(b, 0, false)) {
 927                        mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
 928                        if (!b->keys.set[0].data)
 929                                goto err;
 930                        else
 931                                goto out;
 932                }
 933
 934        b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
 935        if (!b)
 936                goto err;
 937
 938        BUG_ON(!down_write_trylock(&b->lock));
 939        if (!b->keys.set->data)
 940                goto err;
 941out:
 942        BUG_ON(b->io_mutex.count != 1);
 943
 944        bkey_copy(&b->key, k);
 945        list_move(&b->list, &c->btree_cache);
 946        hlist_del_init_rcu(&b->hash);
 947        hlist_add_head_rcu(&b->hash, mca_hash(c, k));
 948
 949        lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
 950        b->parent       = (void *) ~0UL;
 951        b->flags        = 0;
 952        b->written      = 0;
 953        b->level        = level;
 954
 955        if (!b->level)
 956                bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
 957                                    &b->c->expensive_debug_checks);
 958        else
 959                bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
 960                                    &b->c->expensive_debug_checks);
 961
 962        return b;
 963err:
 964        if (b)
 965                rw_unlock(true, b);
 966
 967        b = mca_cannibalize(c, op, k);
 968        if (!IS_ERR(b))
 969                goto out;
 970
 971        return b;
 972}
 973
 974/*
 975 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
 976 * in from disk if necessary.
 977 *
 978 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
 979 *
 980 * The btree node will have either a read or a write lock held, depending on
 981 * level and op->lock.
 982 */
 983struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
 984                                 struct bkey *k, int level, bool write,
 985                                 struct btree *parent)
 986{
 987        int i = 0;
 988        struct btree *b;
 989
 990        BUG_ON(level < 0);
 991retry:
 992        b = mca_find(c, k);
 993
 994        if (!b) {
 995                if (current->bio_list)
 996                        return ERR_PTR(-EAGAIN);
 997
 998                mutex_lock(&c->bucket_lock);
 999                b = mca_alloc(c, op, k, level);
1000                mutex_unlock(&c->bucket_lock);
1001
1002                if (!b)
1003                        goto retry;
1004                if (IS_ERR(b))
1005                        return b;
1006
1007                bch_btree_node_read(b);
1008
1009                if (!write)
1010                        downgrade_write(&b->lock);
1011        } else {
1012                rw_lock(write, b, level);
1013                if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1014                        rw_unlock(write, b);
1015                        goto retry;
1016                }
1017                BUG_ON(b->level != level);
1018        }
1019
1020        if (btree_node_io_error(b)) {
1021                rw_unlock(write, b);
1022                return ERR_PTR(-EIO);
1023        }
1024
1025        BUG_ON(!b->written);
1026
1027        b->parent = parent;
1028        b->accessed = 1;
1029
1030        for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1031                prefetch(b->keys.set[i].tree);
1032                prefetch(b->keys.set[i].data);
1033        }
1034
1035        for (; i <= b->keys.nsets; i++)
1036                prefetch(b->keys.set[i].data);
1037
1038        return b;
1039}
1040
1041static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1042{
1043        struct btree *b;
1044
1045        mutex_lock(&parent->c->bucket_lock);
1046        b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1047        mutex_unlock(&parent->c->bucket_lock);
1048
1049        if (!IS_ERR_OR_NULL(b)) {
1050                b->parent = parent;
1051                bch_btree_node_read(b);
1052                rw_unlock(true, b);
1053        }
1054}
1055
1056/* Btree alloc */
1057
1058static void btree_node_free(struct btree *b)
1059{
1060        trace_bcache_btree_node_free(b);
1061
1062        BUG_ON(b == b->c->root);
1063
1064        mutex_lock(&b->write_lock);
1065
1066        if (btree_node_dirty(b))
1067                btree_complete_write(b, btree_current_write(b));
1068        clear_bit(BTREE_NODE_dirty, &b->flags);
1069
1070        mutex_unlock(&b->write_lock);
1071
1072        cancel_delayed_work(&b->work);
1073
1074        mutex_lock(&b->c->bucket_lock);
1075        bch_bucket_free(b->c, &b->key);
1076        mca_bucket_free(b);
1077        mutex_unlock(&b->c->bucket_lock);
1078}
1079
1080struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1081                                     int level, bool wait,
1082                                     struct btree *parent)
1083{
1084        BKEY_PADDED(key) k;
1085        struct btree *b = ERR_PTR(-EAGAIN);
1086
1087        mutex_lock(&c->bucket_lock);
1088retry:
1089        if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1090                goto err;
1091
1092        bkey_put(c, &k.key);
1093        SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1094
1095        b = mca_alloc(c, op, &k.key, level);
1096        if (IS_ERR(b))
1097                goto err_free;
1098
1099        if (!b) {
1100                cache_bug(c,
1101                        "Tried to allocate bucket that was in btree cache");
1102                goto retry;
1103        }
1104
1105        b->accessed = 1;
1106        b->parent = parent;
1107        bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1108
1109        mutex_unlock(&c->bucket_lock);
1110
1111        trace_bcache_btree_node_alloc(b);
1112        return b;
1113err_free:
1114        bch_bucket_free(c, &k.key);
1115err:
1116        mutex_unlock(&c->bucket_lock);
1117
1118        trace_bcache_btree_node_alloc_fail(c);
1119        return b;
1120}
1121
1122static struct btree *bch_btree_node_alloc(struct cache_set *c,
1123                                          struct btree_op *op, int level,
1124                                          struct btree *parent)
1125{
1126        return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1127}
1128
1129static struct btree *btree_node_alloc_replacement(struct btree *b,
1130                                                  struct btree_op *op)
1131{
1132        struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1133
1134        if (!IS_ERR_OR_NULL(n)) {
1135                mutex_lock(&n->write_lock);
1136                bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1137                bkey_copy_key(&n->key, &b->key);
1138                mutex_unlock(&n->write_lock);
1139        }
1140
1141        return n;
1142}
1143
1144static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1145{
1146        unsigned int i;
1147
1148        mutex_lock(&b->c->bucket_lock);
1149
1150        atomic_inc(&b->c->prio_blocked);
1151
1152        bkey_copy(k, &b->key);
1153        bkey_copy_key(k, &ZERO_KEY);
1154
1155        for (i = 0; i < KEY_PTRS(k); i++)
1156                SET_PTR_GEN(k, i,
1157                            bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1158                                        PTR_BUCKET(b->c, &b->key, i)));
1159
1160        mutex_unlock(&b->c->bucket_lock);
1161}
1162
1163static int btree_check_reserve(struct btree *b, struct btree_op *op)
1164{
1165        struct cache_set *c = b->c;
1166        struct cache *ca;
1167        unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
1168
1169        mutex_lock(&c->bucket_lock);
1170
1171        for_each_cache(ca, c, i)
1172                if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1173                        if (op)
1174                                prepare_to_wait(&c->btree_cache_wait, &op->wait,
1175                                                TASK_UNINTERRUPTIBLE);
1176                        mutex_unlock(&c->bucket_lock);
1177                        return -EINTR;
1178                }
1179
1180        mutex_unlock(&c->bucket_lock);
1181
1182        return mca_cannibalize_lock(b->c, op);
1183}
1184
1185/* Garbage collection */
1186
1187static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1188                                    struct bkey *k)
1189{
1190        uint8_t stale = 0;
1191        unsigned int i;
1192        struct bucket *g;
1193
1194        /*
1195         * ptr_invalid() can't return true for the keys that mark btree nodes as
1196         * freed, but since ptr_bad() returns true we'll never actually use them
1197         * for anything and thus we don't want mark their pointers here
1198         */
1199        if (!bkey_cmp(k, &ZERO_KEY))
1200                return stale;
1201
1202        for (i = 0; i < KEY_PTRS(k); i++) {
1203                if (!ptr_available(c, k, i))
1204                        continue;
1205
1206                g = PTR_BUCKET(c, k, i);
1207
1208                if (gen_after(g->last_gc, PTR_GEN(k, i)))
1209                        g->last_gc = PTR_GEN(k, i);
1210
1211                if (ptr_stale(c, k, i)) {
1212                        stale = max(stale, ptr_stale(c, k, i));
1213                        continue;
1214                }
1215
1216                cache_bug_on(GC_MARK(g) &&
1217                             (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1218                             c, "inconsistent ptrs: mark = %llu, level = %i",
1219                             GC_MARK(g), level);
1220
1221                if (level)
1222                        SET_GC_MARK(g, GC_MARK_METADATA);
1223                else if (KEY_DIRTY(k))
1224                        SET_GC_MARK(g, GC_MARK_DIRTY);
1225                else if (!GC_MARK(g))
1226                        SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1227
1228                /* guard against overflow */
1229                SET_GC_SECTORS_USED(g, min_t(unsigned int,
1230                                             GC_SECTORS_USED(g) + KEY_SIZE(k),
1231                                             MAX_GC_SECTORS_USED));
1232
1233                BUG_ON(!GC_SECTORS_USED(g));
1234        }
1235
1236        return stale;
1237}
1238
1239#define btree_mark_key(b, k)    __bch_btree_mark_key(b->c, b->level, k)
1240
1241void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1242{
1243        unsigned int i;
1244
1245        for (i = 0; i < KEY_PTRS(k); i++)
1246                if (ptr_available(c, k, i) &&
1247                    !ptr_stale(c, k, i)) {
1248                        struct bucket *b = PTR_BUCKET(c, k, i);
1249
1250                        b->gen = PTR_GEN(k, i);
1251
1252                        if (level && bkey_cmp(k, &ZERO_KEY))
1253                                b->prio = BTREE_PRIO;
1254                        else if (!level && b->prio == BTREE_PRIO)
1255                                b->prio = INITIAL_PRIO;
1256                }
1257
1258        __bch_btree_mark_key(c, level, k);
1259}
1260
1261void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1262{
1263        stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1264}
1265
1266static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1267{
1268        uint8_t stale = 0;
1269        unsigned int keys = 0, good_keys = 0;
1270        struct bkey *k;
1271        struct btree_iter iter;
1272        struct bset_tree *t;
1273
1274        gc->nodes++;
1275
1276        for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1277                stale = max(stale, btree_mark_key(b, k));
1278                keys++;
1279
1280                if (bch_ptr_bad(&b->keys, k))
1281                        continue;
1282
1283                gc->key_bytes += bkey_u64s(k);
1284                gc->nkeys++;
1285                good_keys++;
1286
1287                gc->data += KEY_SIZE(k);
1288        }
1289
1290        for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1291                btree_bug_on(t->size &&
1292                             bset_written(&b->keys, t) &&
1293                             bkey_cmp(&b->key, &t->end) < 0,
1294                             b, "found short btree key in gc");
1295
1296        if (b->c->gc_always_rewrite)
1297                return true;
1298
1299        if (stale > 10)
1300                return true;
1301
1302        if ((keys - good_keys) * 2 > keys)
1303                return true;
1304
1305        return false;
1306}
1307
1308#define GC_MERGE_NODES  4U
1309
1310struct gc_merge_info {
1311        struct btree    *b;
1312        unsigned int    keys;
1313};
1314
1315static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1316                                 struct keylist *insert_keys,
1317                                 atomic_t *journal_ref,
1318                                 struct bkey *replace_key);
1319
1320static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1321                             struct gc_stat *gc, struct gc_merge_info *r)
1322{
1323        unsigned int i, nodes = 0, keys = 0, blocks;
1324        struct btree *new_nodes[GC_MERGE_NODES];
1325        struct keylist keylist;
1326        struct closure cl;
1327        struct bkey *k;
1328
1329        bch_keylist_init(&keylist);
1330
1331        if (btree_check_reserve(b, NULL))
1332                return 0;
1333
1334        memset(new_nodes, 0, sizeof(new_nodes));
1335        closure_init_stack(&cl);
1336
1337        while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1338                keys += r[nodes++].keys;
1339
1340        blocks = btree_default_blocks(b->c) * 2 / 3;
1341
1342        if (nodes < 2 ||
1343            __set_blocks(b->keys.set[0].data, keys,
1344                         block_bytes(b->c)) > blocks * (nodes - 1))
1345                return 0;
1346
1347        for (i = 0; i < nodes; i++) {
1348                new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1349                if (IS_ERR_OR_NULL(new_nodes[i]))
1350                        goto out_nocoalesce;
1351        }
1352
1353        /*
1354         * We have to check the reserve here, after we've allocated our new
1355         * nodes, to make sure the insert below will succeed - we also check
1356         * before as an optimization to potentially avoid a bunch of expensive
1357         * allocs/sorts
1358         */
1359        if (btree_check_reserve(b, NULL))
1360                goto out_nocoalesce;
1361
1362        for (i = 0; i < nodes; i++)
1363                mutex_lock(&new_nodes[i]->write_lock);
1364
1365        for (i = nodes - 1; i > 0; --i) {
1366                struct bset *n1 = btree_bset_first(new_nodes[i]);
1367                struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1368                struct bkey *k, *last = NULL;
1369
1370                keys = 0;
1371
1372                if (i > 1) {
1373                        for (k = n2->start;
1374                             k < bset_bkey_last(n2);
1375                             k = bkey_next(k)) {
1376                                if (__set_blocks(n1, n1->keys + keys +
1377                                                 bkey_u64s(k),
1378                                                 block_bytes(b->c)) > blocks)
1379                                        break;
1380
1381                                last = k;
1382                                keys += bkey_u64s(k);
1383                        }
1384                } else {
1385                        /*
1386                         * Last node we're not getting rid of - we're getting
1387                         * rid of the node at r[0]. Have to try and fit all of
1388                         * the remaining keys into this node; we can't ensure
1389                         * they will always fit due to rounding and variable
1390                         * length keys (shouldn't be possible in practice,
1391                         * though)
1392                         */
1393                        if (__set_blocks(n1, n1->keys + n2->keys,
1394                                         block_bytes(b->c)) >
1395                            btree_blocks(new_nodes[i]))
1396                                goto out_nocoalesce;
1397
1398                        keys = n2->keys;
1399                        /* Take the key of the node we're getting rid of */
1400                        last = &r->b->key;
1401                }
1402
1403                BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1404                       btree_blocks(new_nodes[i]));
1405
1406                if (last)
1407                        bkey_copy_key(&new_nodes[i]->key, last);
1408
1409                memcpy(bset_bkey_last(n1),
1410                       n2->start,
1411                       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1412
1413                n1->keys += keys;
1414                r[i].keys = n1->keys;
1415
1416                memmove(n2->start,
1417                        bset_bkey_idx(n2, keys),
1418                        (void *) bset_bkey_last(n2) -
1419                        (void *) bset_bkey_idx(n2, keys));
1420
1421                n2->keys -= keys;
1422
1423                if (__bch_keylist_realloc(&keylist,
1424                                          bkey_u64s(&new_nodes[i]->key)))
1425                        goto out_nocoalesce;
1426
1427                bch_btree_node_write(new_nodes[i], &cl);
1428                bch_keylist_add(&keylist, &new_nodes[i]->key);
1429        }
1430
1431        for (i = 0; i < nodes; i++)
1432                mutex_unlock(&new_nodes[i]->write_lock);
1433
1434        closure_sync(&cl);
1435
1436        /* We emptied out this node */
1437        BUG_ON(btree_bset_first(new_nodes[0])->keys);
1438        btree_node_free(new_nodes[0]);
1439        rw_unlock(true, new_nodes[0]);
1440        new_nodes[0] = NULL;
1441
1442        for (i = 0; i < nodes; i++) {
1443                if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1444                        goto out_nocoalesce;
1445
1446                make_btree_freeing_key(r[i].b, keylist.top);
1447                bch_keylist_push(&keylist);
1448        }
1449
1450        bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1451        BUG_ON(!bch_keylist_empty(&keylist));
1452
1453        for (i = 0; i < nodes; i++) {
1454                btree_node_free(r[i].b);
1455                rw_unlock(true, r[i].b);
1456
1457                r[i].b = new_nodes[i];
1458        }
1459
1460        memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1461        r[nodes - 1].b = ERR_PTR(-EINTR);
1462
1463        trace_bcache_btree_gc_coalesce(nodes);
1464        gc->nodes--;
1465
1466        bch_keylist_free(&keylist);
1467
1468        /* Invalidated our iterator */
1469        return -EINTR;
1470
1471out_nocoalesce:
1472        closure_sync(&cl);
1473        bch_keylist_free(&keylist);
1474
1475        while ((k = bch_keylist_pop(&keylist)))
1476                if (!bkey_cmp(k, &ZERO_KEY))
1477                        atomic_dec(&b->c->prio_blocked);
1478
1479        for (i = 0; i < nodes; i++)
1480                if (!IS_ERR_OR_NULL(new_nodes[i])) {
1481                        btree_node_free(new_nodes[i]);
1482                        rw_unlock(true, new_nodes[i]);
1483                }
1484        return 0;
1485}
1486
1487static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1488                                 struct btree *replace)
1489{
1490        struct keylist keys;
1491        struct btree *n;
1492
1493        if (btree_check_reserve(b, NULL))
1494                return 0;
1495
1496        n = btree_node_alloc_replacement(replace, NULL);
1497
1498        /* recheck reserve after allocating replacement node */
1499        if (btree_check_reserve(b, NULL)) {
1500                btree_node_free(n);
1501                rw_unlock(true, n);
1502                return 0;
1503        }
1504
1505        bch_btree_node_write_sync(n);
1506
1507        bch_keylist_init(&keys);
1508        bch_keylist_add(&keys, &n->key);
1509
1510        make_btree_freeing_key(replace, keys.top);
1511        bch_keylist_push(&keys);
1512
1513        bch_btree_insert_node(b, op, &keys, NULL, NULL);
1514        BUG_ON(!bch_keylist_empty(&keys));
1515
1516        btree_node_free(replace);
1517        rw_unlock(true, n);
1518
1519        /* Invalidated our iterator */
1520        return -EINTR;
1521}
1522
1523static unsigned int btree_gc_count_keys(struct btree *b)
1524{
1525        struct bkey *k;
1526        struct btree_iter iter;
1527        unsigned int ret = 0;
1528
1529        for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1530                ret += bkey_u64s(k);
1531
1532        return ret;
1533}
1534
1535static size_t btree_gc_min_nodes(struct cache_set *c)
1536{
1537        size_t min_nodes;
1538
1539        /*
1540         * Since incremental GC would stop 100ms when front
1541         * side I/O comes, so when there are many btree nodes,
1542         * if GC only processes constant (100) nodes each time,
1543         * GC would last a long time, and the front side I/Os
1544         * would run out of the buckets (since no new bucket
1545         * can be allocated during GC), and be blocked again.
1546         * So GC should not process constant nodes, but varied
1547         * nodes according to the number of btree nodes, which
1548         * realized by dividing GC into constant(100) times,
1549         * so when there are many btree nodes, GC can process
1550         * more nodes each time, otherwise, GC will process less
1551         * nodes each time (but no less than MIN_GC_NODES)
1552         */
1553        min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1554        if (min_nodes < MIN_GC_NODES)
1555                min_nodes = MIN_GC_NODES;
1556
1557        return min_nodes;
1558}
1559
1560
1561static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1562                            struct closure *writes, struct gc_stat *gc)
1563{
1564        int ret = 0;
1565        bool should_rewrite;
1566        struct bkey *k;
1567        struct btree_iter iter;
1568        struct gc_merge_info r[GC_MERGE_NODES];
1569        struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1570
1571        bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1572
1573        for (i = r; i < r + ARRAY_SIZE(r); i++)
1574                i->b = ERR_PTR(-EINTR);
1575
1576        while (1) {
1577                k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1578                if (k) {
1579                        r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1580                                                  true, b);
1581                        if (IS_ERR(r->b)) {
1582                                ret = PTR_ERR(r->b);
1583                                break;
1584                        }
1585
1586                        r->keys = btree_gc_count_keys(r->b);
1587
1588                        ret = btree_gc_coalesce(b, op, gc, r);
1589                        if (ret)
1590                                break;
1591                }
1592
1593                if (!last->b)
1594                        break;
1595
1596                if (!IS_ERR(last->b)) {
1597                        should_rewrite = btree_gc_mark_node(last->b, gc);
1598                        if (should_rewrite) {
1599                                ret = btree_gc_rewrite_node(b, op, last->b);
1600                                if (ret)
1601                                        break;
1602                        }
1603
1604                        if (last->b->level) {
1605                                ret = btree_gc_recurse(last->b, op, writes, gc);
1606                                if (ret)
1607                                        break;
1608                        }
1609
1610                        bkey_copy_key(&b->c->gc_done, &last->b->key);
1611
1612                        /*
1613                         * Must flush leaf nodes before gc ends, since replace
1614                         * operations aren't journalled
1615                         */
1616                        mutex_lock(&last->b->write_lock);
1617                        if (btree_node_dirty(last->b))
1618                                bch_btree_node_write(last->b, writes);
1619                        mutex_unlock(&last->b->write_lock);
1620                        rw_unlock(true, last->b);
1621                }
1622
1623                memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1624                r->b = NULL;
1625
1626                if (atomic_read(&b->c->search_inflight) &&
1627                    gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1628                        gc->nodes_pre =  gc->nodes;
1629                        ret = -EAGAIN;
1630                        break;
1631                }
1632
1633                if (need_resched()) {
1634                        ret = -EAGAIN;
1635                        break;
1636                }
1637        }
1638
1639        for (i = r; i < r + ARRAY_SIZE(r); i++)
1640                if (!IS_ERR_OR_NULL(i->b)) {
1641                        mutex_lock(&i->b->write_lock);
1642                        if (btree_node_dirty(i->b))
1643                                bch_btree_node_write(i->b, writes);
1644                        mutex_unlock(&i->b->write_lock);
1645                        rw_unlock(true, i->b);
1646                }
1647
1648        return ret;
1649}
1650
1651static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1652                             struct closure *writes, struct gc_stat *gc)
1653{
1654        struct btree *n = NULL;
1655        int ret = 0;
1656        bool should_rewrite;
1657
1658        should_rewrite = btree_gc_mark_node(b, gc);
1659        if (should_rewrite) {
1660                n = btree_node_alloc_replacement(b, NULL);
1661
1662                if (!IS_ERR_OR_NULL(n)) {
1663                        bch_btree_node_write_sync(n);
1664
1665                        bch_btree_set_root(n);
1666                        btree_node_free(b);
1667                        rw_unlock(true, n);
1668
1669                        return -EINTR;
1670                }
1671        }
1672
1673        __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1674
1675        if (b->level) {
1676                ret = btree_gc_recurse(b, op, writes, gc);
1677                if (ret)
1678                        return ret;
1679        }
1680
1681        bkey_copy_key(&b->c->gc_done, &b->key);
1682
1683        return ret;
1684}
1685
1686static void btree_gc_start(struct cache_set *c)
1687{
1688        struct cache *ca;
1689        struct bucket *b;
1690        unsigned int i;
1691
1692        if (!c->gc_mark_valid)
1693                return;
1694
1695        mutex_lock(&c->bucket_lock);
1696
1697        c->gc_mark_valid = 0;
1698        c->gc_done = ZERO_KEY;
1699
1700        for_each_cache(ca, c, i)
1701                for_each_bucket(b, ca) {
1702                        b->last_gc = b->gen;
1703                        if (!atomic_read(&b->pin)) {
1704                                SET_GC_MARK(b, 0);
1705                                SET_GC_SECTORS_USED(b, 0);
1706                        }
1707                }
1708
1709        mutex_unlock(&c->bucket_lock);
1710}
1711
1712static void bch_btree_gc_finish(struct cache_set *c)
1713{
1714        struct bucket *b;
1715        struct cache *ca;
1716        unsigned int i;
1717
1718        mutex_lock(&c->bucket_lock);
1719
1720        set_gc_sectors(c);
1721        c->gc_mark_valid = 1;
1722        c->need_gc      = 0;
1723
1724        for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1725                SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1726                            GC_MARK_METADATA);
1727
1728        /* don't reclaim buckets to which writeback keys point */
1729        rcu_read_lock();
1730        for (i = 0; i < c->devices_max_used; i++) {
1731                struct bcache_device *d = c->devices[i];
1732                struct cached_dev *dc;
1733                struct keybuf_key *w, *n;
1734                unsigned int j;
1735
1736                if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1737                        continue;
1738                dc = container_of(d, struct cached_dev, disk);
1739
1740                spin_lock(&dc->writeback_keys.lock);
1741                rbtree_postorder_for_each_entry_safe(w, n,
1742                                        &dc->writeback_keys.keys, node)
1743                        for (j = 0; j < KEY_PTRS(&w->key); j++)
1744                                SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1745                                            GC_MARK_DIRTY);
1746                spin_unlock(&dc->writeback_keys.lock);
1747        }
1748        rcu_read_unlock();
1749
1750        c->avail_nbuckets = 0;
1751        for_each_cache(ca, c, i) {
1752                uint64_t *i;
1753
1754                ca->invalidate_needs_gc = 0;
1755
1756                for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1757                        SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1758
1759                for (i = ca->prio_buckets;
1760                     i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1761                        SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1762
1763                for_each_bucket(b, ca) {
1764                        c->need_gc      = max(c->need_gc, bucket_gc_gen(b));
1765
1766                        if (atomic_read(&b->pin))
1767                                continue;
1768
1769                        BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1770
1771                        if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1772                                c->avail_nbuckets++;
1773                }
1774        }
1775
1776        mutex_unlock(&c->bucket_lock);
1777}
1778
1779static void bch_btree_gc(struct cache_set *c)
1780{
1781        int ret;
1782        struct gc_stat stats;
1783        struct closure writes;
1784        struct btree_op op;
1785        uint64_t start_time = local_clock();
1786
1787        trace_bcache_gc_start(c);
1788
1789        memset(&stats, 0, sizeof(struct gc_stat));
1790        closure_init_stack(&writes);
1791        bch_btree_op_init(&op, SHRT_MAX);
1792
1793        btree_gc_start(c);
1794
1795        /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1796        do {
1797                ret = btree_root(gc_root, c, &op, &writes, &stats);
1798                closure_sync(&writes);
1799                cond_resched();
1800
1801                if (ret == -EAGAIN)
1802                        schedule_timeout_interruptible(msecs_to_jiffies
1803                                                       (GC_SLEEP_MS));
1804                else if (ret)
1805                        pr_warn("gc failed!");
1806        } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1807
1808        bch_btree_gc_finish(c);
1809        wake_up_allocators(c);
1810
1811        bch_time_stats_update(&c->btree_gc_time, start_time);
1812
1813        stats.key_bytes *= sizeof(uint64_t);
1814        stats.data      <<= 9;
1815        bch_update_bucket_in_use(c, &stats);
1816        memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1817
1818        trace_bcache_gc_end(c);
1819
1820        bch_moving_gc(c);
1821}
1822
1823static bool gc_should_run(struct cache_set *c)
1824{
1825        struct cache *ca;
1826        unsigned int i;
1827
1828        for_each_cache(ca, c, i)
1829                if (ca->invalidate_needs_gc)
1830                        return true;
1831
1832        if (atomic_read(&c->sectors_to_gc) < 0)
1833                return true;
1834
1835        return false;
1836}
1837
1838static int bch_gc_thread(void *arg)
1839{
1840        struct cache_set *c = arg;
1841
1842        while (1) {
1843                wait_event_interruptible(c->gc_wait,
1844                           kthread_should_stop() ||
1845                           test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1846                           gc_should_run(c));
1847
1848                if (kthread_should_stop() ||
1849                    test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1850                        break;
1851
1852                set_gc_sectors(c);
1853                bch_btree_gc(c);
1854        }
1855
1856        wait_for_kthread_stop();
1857        return 0;
1858}
1859
1860int bch_gc_thread_start(struct cache_set *c)
1861{
1862        c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1863        return PTR_ERR_OR_ZERO(c->gc_thread);
1864}
1865
1866/* Initial partial gc */
1867
1868static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1869{
1870        int ret = 0;
1871        struct bkey *k, *p = NULL;
1872        struct btree_iter iter;
1873
1874        for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1875                bch_initial_mark_key(b->c, b->level, k);
1876
1877        bch_initial_mark_key(b->c, b->level + 1, &b->key);
1878
1879        if (b->level) {
1880                bch_btree_iter_init(&b->keys, &iter, NULL);
1881
1882                do {
1883                        k = bch_btree_iter_next_filter(&iter, &b->keys,
1884                                                       bch_ptr_bad);
1885                        if (k) {
1886                                btree_node_prefetch(b, k);
1887                                /*
1888                                 * initiallize c->gc_stats.nodes
1889                                 * for incremental GC
1890                                 */
1891                                b->c->gc_stats.nodes++;
1892                        }
1893
1894                        if (p)
1895                                ret = btree(check_recurse, p, b, op);
1896
1897                        p = k;
1898                } while (p && !ret);
1899        }
1900
1901        return ret;
1902}
1903
1904int bch_btree_check(struct cache_set *c)
1905{
1906        struct btree_op op;
1907
1908        bch_btree_op_init(&op, SHRT_MAX);
1909
1910        return btree_root(check_recurse, c, &op);
1911}
1912
1913void bch_initial_gc_finish(struct cache_set *c)
1914{
1915        struct cache *ca;
1916        struct bucket *b;
1917        unsigned int i;
1918
1919        bch_btree_gc_finish(c);
1920
1921        mutex_lock(&c->bucket_lock);
1922
1923        /*
1924         * We need to put some unused buckets directly on the prio freelist in
1925         * order to get the allocator thread started - it needs freed buckets in
1926         * order to rewrite the prios and gens, and it needs to rewrite prios
1927         * and gens in order to free buckets.
1928         *
1929         * This is only safe for buckets that have no live data in them, which
1930         * there should always be some of.
1931         */
1932        for_each_cache(ca, c, i) {
1933                for_each_bucket(b, ca) {
1934                        if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1935                            fifo_full(&ca->free[RESERVE_BTREE]))
1936                                break;
1937
1938                        if (bch_can_invalidate_bucket(ca, b) &&
1939                            !GC_MARK(b)) {
1940                                __bch_invalidate_one_bucket(ca, b);
1941                                if (!fifo_push(&ca->free[RESERVE_PRIO],
1942                                   b - ca->buckets))
1943                                        fifo_push(&ca->free[RESERVE_BTREE],
1944                                                  b - ca->buckets);
1945                        }
1946                }
1947        }
1948
1949        mutex_unlock(&c->bucket_lock);
1950}
1951
1952/* Btree insertion */
1953
1954static bool btree_insert_key(struct btree *b, struct bkey *k,
1955                             struct bkey *replace_key)
1956{
1957        unsigned int status;
1958
1959        BUG_ON(bkey_cmp(k, &b->key) > 0);
1960
1961        status = bch_btree_insert_key(&b->keys, k, replace_key);
1962        if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1963                bch_check_keys(&b->keys, "%u for %s", status,
1964                               replace_key ? "replace" : "insert");
1965
1966                trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1967                                              status);
1968                return true;
1969        } else
1970                return false;
1971}
1972
1973static size_t insert_u64s_remaining(struct btree *b)
1974{
1975        long ret = bch_btree_keys_u64s_remaining(&b->keys);
1976
1977        /*
1978         * Might land in the middle of an existing extent and have to split it
1979         */
1980        if (b->keys.ops->is_extents)
1981                ret -= KEY_MAX_U64S;
1982
1983        return max(ret, 0L);
1984}
1985
1986static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1987                                  struct keylist *insert_keys,
1988                                  struct bkey *replace_key)
1989{
1990        bool ret = false;
1991        int oldsize = bch_count_data(&b->keys);
1992
1993        while (!bch_keylist_empty(insert_keys)) {
1994                struct bkey *k = insert_keys->keys;
1995
1996                if (bkey_u64s(k) > insert_u64s_remaining(b))
1997                        break;
1998
1999                if (bkey_cmp(k, &b->key) <= 0) {
2000                        if (!b->level)
2001                                bkey_put(b->c, k);
2002
2003                        ret |= btree_insert_key(b, k, replace_key);
2004                        bch_keylist_pop_front(insert_keys);
2005                } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2006                        BKEY_PADDED(key) temp;
2007                        bkey_copy(&temp.key, insert_keys->keys);
2008
2009                        bch_cut_back(&b->key, &temp.key);
2010                        bch_cut_front(&b->key, insert_keys->keys);
2011
2012                        ret |= btree_insert_key(b, &temp.key, replace_key);
2013                        break;
2014                } else {
2015                        break;
2016                }
2017        }
2018
2019        if (!ret)
2020                op->insert_collision = true;
2021
2022        BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2023
2024        BUG_ON(bch_count_data(&b->keys) < oldsize);
2025        return ret;
2026}
2027
2028static int btree_split(struct btree *b, struct btree_op *op,
2029                       struct keylist *insert_keys,
2030                       struct bkey *replace_key)
2031{
2032        bool split;
2033        struct btree *n1, *n2 = NULL, *n3 = NULL;
2034        uint64_t start_time = local_clock();
2035        struct closure cl;
2036        struct keylist parent_keys;
2037
2038        closure_init_stack(&cl);
2039        bch_keylist_init(&parent_keys);
2040
2041        if (btree_check_reserve(b, op)) {
2042                if (!b->level)
2043                        return -EINTR;
2044                else
2045                        WARN(1, "insufficient reserve for split\n");
2046        }
2047
2048        n1 = btree_node_alloc_replacement(b, op);
2049        if (IS_ERR(n1))
2050                goto err;
2051
2052        split = set_blocks(btree_bset_first(n1),
2053                           block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2054
2055        if (split) {
2056                unsigned int keys = 0;
2057
2058                trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2059
2060                n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2061                if (IS_ERR(n2))
2062                        goto err_free1;
2063
2064                if (!b->parent) {
2065                        n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2066                        if (IS_ERR(n3))
2067                                goto err_free2;
2068                }
2069
2070                mutex_lock(&n1->write_lock);
2071                mutex_lock(&n2->write_lock);
2072
2073                bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2074
2075                /*
2076                 * Has to be a linear search because we don't have an auxiliary
2077                 * search tree yet
2078                 */
2079
2080                while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2081                        keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2082                                                        keys));
2083
2084                bkey_copy_key(&n1->key,
2085                              bset_bkey_idx(btree_bset_first(n1), keys));
2086                keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2087
2088                btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2089                btree_bset_first(n1)->keys = keys;
2090
2091                memcpy(btree_bset_first(n2)->start,
2092                       bset_bkey_last(btree_bset_first(n1)),
2093                       btree_bset_first(n2)->keys * sizeof(uint64_t));
2094
2095                bkey_copy_key(&n2->key, &b->key);
2096
2097                bch_keylist_add(&parent_keys, &n2->key);
2098                bch_btree_node_write(n2, &cl);
2099                mutex_unlock(&n2->write_lock);
2100                rw_unlock(true, n2);
2101        } else {
2102                trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2103
2104                mutex_lock(&n1->write_lock);
2105                bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2106        }
2107
2108        bch_keylist_add(&parent_keys, &n1->key);
2109        bch_btree_node_write(n1, &cl);
2110        mutex_unlock(&n1->write_lock);
2111
2112        if (n3) {
2113                /* Depth increases, make a new root */
2114                mutex_lock(&n3->write_lock);
2115                bkey_copy_key(&n3->key, &MAX_KEY);
2116                bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2117                bch_btree_node_write(n3, &cl);
2118                mutex_unlock(&n3->write_lock);
2119
2120                closure_sync(&cl);
2121                bch_btree_set_root(n3);
2122                rw_unlock(true, n3);
2123        } else if (!b->parent) {
2124                /* Root filled up but didn't need to be split */
2125                closure_sync(&cl);
2126                bch_btree_set_root(n1);
2127        } else {
2128                /* Split a non root node */
2129                closure_sync(&cl);
2130                make_btree_freeing_key(b, parent_keys.top);
2131                bch_keylist_push(&parent_keys);
2132
2133                bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2134                BUG_ON(!bch_keylist_empty(&parent_keys));
2135        }
2136
2137        btree_node_free(b);
2138        rw_unlock(true, n1);
2139
2140        bch_time_stats_update(&b->c->btree_split_time, start_time);
2141
2142        return 0;
2143err_free2:
2144        bkey_put(b->c, &n2->key);
2145        btree_node_free(n2);
2146        rw_unlock(true, n2);
2147err_free1:
2148        bkey_put(b->c, &n1->key);
2149        btree_node_free(n1);
2150        rw_unlock(true, n1);
2151err:
2152        WARN(1, "bcache: btree split failed (level %u)", b->level);
2153
2154        if (n3 == ERR_PTR(-EAGAIN) ||
2155            n2 == ERR_PTR(-EAGAIN) ||
2156            n1 == ERR_PTR(-EAGAIN))
2157                return -EAGAIN;
2158
2159        return -ENOMEM;
2160}
2161
2162static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2163                                 struct keylist *insert_keys,
2164                                 atomic_t *journal_ref,
2165                                 struct bkey *replace_key)
2166{
2167        struct closure cl;
2168
2169        BUG_ON(b->level && replace_key);
2170
2171        closure_init_stack(&cl);
2172
2173        mutex_lock(&b->write_lock);
2174
2175        if (write_block(b) != btree_bset_last(b) &&
2176            b->keys.last_set_unwritten)
2177                bch_btree_init_next(b); /* just wrote a set */
2178
2179        if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2180                mutex_unlock(&b->write_lock);
2181                goto split;
2182        }
2183
2184        BUG_ON(write_block(b) != btree_bset_last(b));
2185
2186        if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2187                if (!b->level)
2188                        bch_btree_leaf_dirty(b, journal_ref);
2189                else
2190                        bch_btree_node_write(b, &cl);
2191        }
2192
2193        mutex_unlock(&b->write_lock);
2194
2195        /* wait for btree node write if necessary, after unlock */
2196        closure_sync(&cl);
2197
2198        return 0;
2199split:
2200        if (current->bio_list) {
2201                op->lock = b->c->root->level + 1;
2202                return -EAGAIN;
2203        } else if (op->lock <= b->c->root->level) {
2204                op->lock = b->c->root->level + 1;
2205                return -EINTR;
2206        } else {
2207                /* Invalidated all iterators */
2208                int ret = btree_split(b, op, insert_keys, replace_key);
2209
2210                if (bch_keylist_empty(insert_keys))
2211                        return 0;
2212                else if (!ret)
2213                        return -EINTR;
2214                return ret;
2215        }
2216}
2217
2218int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2219                               struct bkey *check_key)
2220{
2221        int ret = -EINTR;
2222        uint64_t btree_ptr = b->key.ptr[0];
2223        unsigned long seq = b->seq;
2224        struct keylist insert;
2225        bool upgrade = op->lock == -1;
2226
2227        bch_keylist_init(&insert);
2228
2229        if (upgrade) {
2230                rw_unlock(false, b);
2231                rw_lock(true, b, b->level);
2232
2233                if (b->key.ptr[0] != btree_ptr ||
2234                    b->seq != seq + 1) {
2235                        op->lock = b->level;
2236                        goto out;
2237                }
2238        }
2239
2240        SET_KEY_PTRS(check_key, 1);
2241        get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2242
2243        SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2244
2245        bch_keylist_add(&insert, check_key);
2246
2247        ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2248
2249        BUG_ON(!ret && !bch_keylist_empty(&insert));
2250out:
2251        if (upgrade)
2252                downgrade_write(&b->lock);
2253        return ret;
2254}
2255
2256struct btree_insert_op {
2257        struct btree_op op;
2258        struct keylist  *keys;
2259        atomic_t        *journal_ref;
2260        struct bkey     *replace_key;
2261};
2262
2263static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2264{
2265        struct btree_insert_op *op = container_of(b_op,
2266                                        struct btree_insert_op, op);
2267
2268        int ret = bch_btree_insert_node(b, &op->op, op->keys,
2269                                        op->journal_ref, op->replace_key);
2270        if (ret && !bch_keylist_empty(op->keys))
2271                return ret;
2272        else
2273                return MAP_DONE;
2274}
2275
2276int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2277                     atomic_t *journal_ref, struct bkey *replace_key)
2278{
2279        struct btree_insert_op op;
2280        int ret = 0;
2281
2282        BUG_ON(current->bio_list);
2283        BUG_ON(bch_keylist_empty(keys));
2284
2285        bch_btree_op_init(&op.op, 0);
2286        op.keys         = keys;
2287        op.journal_ref  = journal_ref;
2288        op.replace_key  = replace_key;
2289
2290        while (!ret && !bch_keylist_empty(keys)) {
2291                op.op.lock = 0;
2292                ret = bch_btree_map_leaf_nodes(&op.op, c,
2293                                               &START_KEY(keys->keys),
2294                                               btree_insert_fn);
2295        }
2296
2297        if (ret) {
2298                struct bkey *k;
2299
2300                pr_err("error %i", ret);
2301
2302                while ((k = bch_keylist_pop(keys)))
2303                        bkey_put(c, k);
2304        } else if (op.op.insert_collision)
2305                ret = -ESRCH;
2306
2307        return ret;
2308}
2309
2310void bch_btree_set_root(struct btree *b)
2311{
2312        unsigned int i;
2313        struct closure cl;
2314
2315        closure_init_stack(&cl);
2316
2317        trace_bcache_btree_set_root(b);
2318
2319        BUG_ON(!b->written);
2320
2321        for (i = 0; i < KEY_PTRS(&b->key); i++)
2322                BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2323
2324        mutex_lock(&b->c->bucket_lock);
2325        list_del_init(&b->list);
2326        mutex_unlock(&b->c->bucket_lock);
2327
2328        b->c->root = b;
2329
2330        bch_journal_meta(b->c, &cl);
2331        closure_sync(&cl);
2332}
2333
2334/* Map across nodes or keys */
2335
2336static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2337                                       struct bkey *from,
2338                                       btree_map_nodes_fn *fn, int flags)
2339{
2340        int ret = MAP_CONTINUE;
2341
2342        if (b->level) {
2343                struct bkey *k;
2344                struct btree_iter iter;
2345
2346                bch_btree_iter_init(&b->keys, &iter, from);
2347
2348                while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2349                                                       bch_ptr_bad))) {
2350                        ret = btree(map_nodes_recurse, k, b,
2351                                    op, from, fn, flags);
2352                        from = NULL;
2353
2354                        if (ret != MAP_CONTINUE)
2355                                return ret;
2356                }
2357        }
2358
2359        if (!b->level || flags == MAP_ALL_NODES)
2360                ret = fn(op, b);
2361
2362        return ret;
2363}
2364
2365int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2366                          struct bkey *from, btree_map_nodes_fn *fn, int flags)
2367{
2368        return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2369}
2370
2371static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2372                                      struct bkey *from, btree_map_keys_fn *fn,
2373                                      int flags)
2374{
2375        int ret = MAP_CONTINUE;
2376        struct bkey *k;
2377        struct btree_iter iter;
2378
2379        bch_btree_iter_init(&b->keys, &iter, from);
2380
2381        while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2382                ret = !b->level
2383                        ? fn(op, b, k)
2384                        : btree(map_keys_recurse, k, b, op, from, fn, flags);
2385                from = NULL;
2386
2387                if (ret != MAP_CONTINUE)
2388                        return ret;
2389        }
2390
2391        if (!b->level && (flags & MAP_END_KEY))
2392                ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2393                                     KEY_OFFSET(&b->key), 0));
2394
2395        return ret;
2396}
2397
2398int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2399                       struct bkey *from, btree_map_keys_fn *fn, int flags)
2400{
2401        return btree_root(map_keys_recurse, c, op, from, fn, flags);
2402}
2403
2404/* Keybuf code */
2405
2406static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2407{
2408        /* Overlapping keys compare equal */
2409        if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2410                return -1;
2411        if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2412                return 1;
2413        return 0;
2414}
2415
2416static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2417                                            struct keybuf_key *r)
2418{
2419        return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2420}
2421
2422struct refill {
2423        struct btree_op op;
2424        unsigned int    nr_found;
2425        struct keybuf   *buf;
2426        struct bkey     *end;
2427        keybuf_pred_fn  *pred;
2428};
2429
2430static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2431                            struct bkey *k)
2432{
2433        struct refill *refill = container_of(op, struct refill, op);
2434        struct keybuf *buf = refill->buf;
2435        int ret = MAP_CONTINUE;
2436
2437        if (bkey_cmp(k, refill->end) >= 0) {
2438                ret = MAP_DONE;
2439                goto out;
2440        }
2441
2442        if (!KEY_SIZE(k)) /* end key */
2443                goto out;
2444
2445        if (refill->pred(buf, k)) {
2446                struct keybuf_key *w;
2447
2448                spin_lock(&buf->lock);
2449
2450                w = array_alloc(&buf->freelist);
2451                if (!w) {
2452                        spin_unlock(&buf->lock);
2453                        return MAP_DONE;
2454                }
2455
2456                w->private = NULL;
2457                bkey_copy(&w->key, k);
2458
2459                if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2460                        array_free(&buf->freelist, w);
2461                else
2462                        refill->nr_found++;
2463
2464                if (array_freelist_empty(&buf->freelist))
2465                        ret = MAP_DONE;
2466
2467                spin_unlock(&buf->lock);
2468        }
2469out:
2470        buf->last_scanned = *k;
2471        return ret;
2472}
2473
2474void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2475                       struct bkey *end, keybuf_pred_fn *pred)
2476{
2477        struct bkey start = buf->last_scanned;
2478        struct refill refill;
2479
2480        cond_resched();
2481
2482        bch_btree_op_init(&refill.op, -1);
2483        refill.nr_found = 0;
2484        refill.buf      = buf;
2485        refill.end      = end;
2486        refill.pred     = pred;
2487
2488        bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2489                           refill_keybuf_fn, MAP_END_KEY);
2490
2491        trace_bcache_keyscan(refill.nr_found,
2492                             KEY_INODE(&start), KEY_OFFSET(&start),
2493                             KEY_INODE(&buf->last_scanned),
2494                             KEY_OFFSET(&buf->last_scanned));
2495
2496        spin_lock(&buf->lock);
2497
2498        if (!RB_EMPTY_ROOT(&buf->keys)) {
2499                struct keybuf_key *w;
2500
2501                w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2502                buf->start      = START_KEY(&w->key);
2503
2504                w = RB_LAST(&buf->keys, struct keybuf_key, node);
2505                buf->end        = w->key;
2506        } else {
2507                buf->start      = MAX_KEY;
2508                buf->end        = MAX_KEY;
2509        }
2510
2511        spin_unlock(&buf->lock);
2512}
2513
2514static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2515{
2516        rb_erase(&w->node, &buf->keys);
2517        array_free(&buf->freelist, w);
2518}
2519
2520void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2521{
2522        spin_lock(&buf->lock);
2523        __bch_keybuf_del(buf, w);
2524        spin_unlock(&buf->lock);
2525}
2526
2527bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2528                                  struct bkey *end)
2529{
2530        bool ret = false;
2531        struct keybuf_key *p, *w, s;
2532
2533        s.key = *start;
2534
2535        if (bkey_cmp(end, &buf->start) <= 0 ||
2536            bkey_cmp(start, &buf->end) >= 0)
2537                return false;
2538
2539        spin_lock(&buf->lock);
2540        w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2541
2542        while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2543                p = w;
2544                w = RB_NEXT(w, node);
2545
2546                if (p->private)
2547                        ret = true;
2548                else
2549                        __bch_keybuf_del(buf, p);
2550        }
2551
2552        spin_unlock(&buf->lock);
2553        return ret;
2554}
2555
2556struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2557{
2558        struct keybuf_key *w;
2559
2560        spin_lock(&buf->lock);
2561
2562        w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2563
2564        while (w && w->private)
2565                w = RB_NEXT(w, node);
2566
2567        if (w)
2568                w->private = ERR_PTR(-EINTR);
2569
2570        spin_unlock(&buf->lock);
2571        return w;
2572}
2573
2574struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2575                                          struct keybuf *buf,
2576                                          struct bkey *end,
2577                                          keybuf_pred_fn *pred)
2578{
2579        struct keybuf_key *ret;
2580
2581        while (1) {
2582                ret = bch_keybuf_next(buf);
2583                if (ret)
2584                        break;
2585
2586                if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2587                        pr_debug("scan finished");
2588                        break;
2589                }
2590
2591                bch_refill_keybuf(c, buf, end, pred);
2592        }
2593
2594        return ret;
2595}
2596
2597void bch_keybuf_init(struct keybuf *buf)
2598{
2599        buf->last_scanned       = MAX_KEY;
2600        buf->keys               = RB_ROOT;
2601
2602        spin_lock_init(&buf->lock);
2603        array_allocator_init(&buf->freelist);
2604}
2605