linux/drivers/misc/mei/hw-me.c
<<
>>
Prefs
   1/*
   2 *
   3 * Intel Management Engine Interface (Intel MEI) Linux driver
   4 * Copyright (c) 2003-2012, Intel Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 */
  16
  17#include <linux/pci.h>
  18
  19#include <linux/kthread.h>
  20#include <linux/interrupt.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/sizes.h>
  23
  24#include "mei_dev.h"
  25#include "hbm.h"
  26
  27#include "hw-me.h"
  28#include "hw-me-regs.h"
  29
  30#include "mei-trace.h"
  31
  32/**
  33 * mei_me_reg_read - Reads 32bit data from the mei device
  34 *
  35 * @hw: the me hardware structure
  36 * @offset: offset from which to read the data
  37 *
  38 * Return: register value (u32)
  39 */
  40static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
  41                               unsigned long offset)
  42{
  43        return ioread32(hw->mem_addr + offset);
  44}
  45
  46
  47/**
  48 * mei_me_reg_write - Writes 32bit data to the mei device
  49 *
  50 * @hw: the me hardware structure
  51 * @offset: offset from which to write the data
  52 * @value: register value to write (u32)
  53 */
  54static inline void mei_me_reg_write(const struct mei_me_hw *hw,
  55                                 unsigned long offset, u32 value)
  56{
  57        iowrite32(value, hw->mem_addr + offset);
  58}
  59
  60/**
  61 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
  62 *  read window register
  63 *
  64 * @dev: the device structure
  65 *
  66 * Return: ME_CB_RW register value (u32)
  67 */
  68static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
  69{
  70        return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
  71}
  72
  73/**
  74 * mei_me_hcbww_write - write 32bit data to the host circular buffer
  75 *
  76 * @dev: the device structure
  77 * @data: 32bit data to be written to the host circular buffer
  78 */
  79static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
  80{
  81        mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
  82}
  83
  84/**
  85 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
  86 *
  87 * @dev: the device structure
  88 *
  89 * Return: ME_CSR_HA register value (u32)
  90 */
  91static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
  92{
  93        u32 reg;
  94
  95        reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
  96        trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
  97
  98        return reg;
  99}
 100
 101/**
 102 * mei_hcsr_read - Reads 32bit data from the host CSR
 103 *
 104 * @dev: the device structure
 105 *
 106 * Return: H_CSR register value (u32)
 107 */
 108static inline u32 mei_hcsr_read(const struct mei_device *dev)
 109{
 110        u32 reg;
 111
 112        reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
 113        trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
 114
 115        return reg;
 116}
 117
 118/**
 119 * mei_hcsr_write - writes H_CSR register to the mei device
 120 *
 121 * @dev: the device structure
 122 * @reg: new register value
 123 */
 124static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
 125{
 126        trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
 127        mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
 128}
 129
 130/**
 131 * mei_hcsr_set - writes H_CSR register to the mei device,
 132 * and ignores the H_IS bit for it is write-one-to-zero.
 133 *
 134 * @dev: the device structure
 135 * @reg: new register value
 136 */
 137static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
 138{
 139        reg &= ~H_CSR_IS_MASK;
 140        mei_hcsr_write(dev, reg);
 141}
 142
 143/**
 144 * mei_hcsr_set_hig - set host interrupt (set H_IG)
 145 *
 146 * @dev: the device structure
 147 */
 148static inline void mei_hcsr_set_hig(struct mei_device *dev)
 149{
 150        u32 hcsr;
 151
 152        hcsr = mei_hcsr_read(dev) | H_IG;
 153        mei_hcsr_set(dev, hcsr);
 154}
 155
 156/**
 157 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
 158 *
 159 * @dev: the device structure
 160 *
 161 * Return: H_D0I3C register value (u32)
 162 */
 163static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
 164{
 165        u32 reg;
 166
 167        reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
 168        trace_mei_reg_read(dev->dev, "H_D0I3C", H_D0I3C, reg);
 169
 170        return reg;
 171}
 172
 173/**
 174 * mei_me_d0i3c_write - writes H_D0I3C register to device
 175 *
 176 * @dev: the device structure
 177 * @reg: new register value
 178 */
 179static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
 180{
 181        trace_mei_reg_write(dev->dev, "H_D0I3C", H_D0I3C, reg);
 182        mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg);
 183}
 184
 185/**
 186 * mei_me_fw_status - read fw status register from pci config space
 187 *
 188 * @dev: mei device
 189 * @fw_status: fw status register values
 190 *
 191 * Return: 0 on success, error otherwise
 192 */
 193static int mei_me_fw_status(struct mei_device *dev,
 194                            struct mei_fw_status *fw_status)
 195{
 196        struct pci_dev *pdev = to_pci_dev(dev->dev);
 197        struct mei_me_hw *hw = to_me_hw(dev);
 198        const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
 199        int ret;
 200        int i;
 201
 202        if (!fw_status)
 203                return -EINVAL;
 204
 205        fw_status->count = fw_src->count;
 206        for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
 207                ret = pci_read_config_dword(pdev, fw_src->status[i],
 208                                            &fw_status->status[i]);
 209                trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
 210                                       fw_src->status[i],
 211                                       fw_status->status[i]);
 212                if (ret)
 213                        return ret;
 214        }
 215
 216        return 0;
 217}
 218
 219/**
 220 * mei_me_hw_config - configure hw dependent settings
 221 *
 222 * @dev: mei device
 223 */
 224static void mei_me_hw_config(struct mei_device *dev)
 225{
 226        struct pci_dev *pdev = to_pci_dev(dev->dev);
 227        struct mei_me_hw *hw = to_me_hw(dev);
 228        u32 hcsr, reg;
 229
 230        /* Doesn't change in runtime */
 231        hcsr = mei_hcsr_read(dev);
 232        hw->hbuf_depth = (hcsr & H_CBD) >> 24;
 233
 234        reg = 0;
 235        pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
 236        trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
 237        hw->d0i3_supported =
 238                ((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
 239
 240        hw->pg_state = MEI_PG_OFF;
 241        if (hw->d0i3_supported) {
 242                reg = mei_me_d0i3c_read(dev);
 243                if (reg & H_D0I3C_I3)
 244                        hw->pg_state = MEI_PG_ON;
 245        }
 246}
 247
 248/**
 249 * mei_me_pg_state  - translate internal pg state
 250 *   to the mei power gating state
 251 *
 252 * @dev:  mei device
 253 *
 254 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
 255 */
 256static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
 257{
 258        struct mei_me_hw *hw = to_me_hw(dev);
 259
 260        return hw->pg_state;
 261}
 262
 263static inline u32 me_intr_src(u32 hcsr)
 264{
 265        return hcsr & H_CSR_IS_MASK;
 266}
 267
 268/**
 269 * me_intr_disable - disables mei device interrupts
 270 *      using supplied hcsr register value.
 271 *
 272 * @dev: the device structure
 273 * @hcsr: supplied hcsr register value
 274 */
 275static inline void me_intr_disable(struct mei_device *dev, u32 hcsr)
 276{
 277        hcsr &= ~H_CSR_IE_MASK;
 278        mei_hcsr_set(dev, hcsr);
 279}
 280
 281/**
 282 * mei_me_intr_clear - clear and stop interrupts
 283 *
 284 * @dev: the device structure
 285 * @hcsr: supplied hcsr register value
 286 */
 287static inline void me_intr_clear(struct mei_device *dev, u32 hcsr)
 288{
 289        if (me_intr_src(hcsr))
 290                mei_hcsr_write(dev, hcsr);
 291}
 292
 293/**
 294 * mei_me_intr_clear - clear and stop interrupts
 295 *
 296 * @dev: the device structure
 297 */
 298static void mei_me_intr_clear(struct mei_device *dev)
 299{
 300        u32 hcsr = mei_hcsr_read(dev);
 301
 302        me_intr_clear(dev, hcsr);
 303}
 304/**
 305 * mei_me_intr_enable - enables mei device interrupts
 306 *
 307 * @dev: the device structure
 308 */
 309static void mei_me_intr_enable(struct mei_device *dev)
 310{
 311        u32 hcsr = mei_hcsr_read(dev);
 312
 313        hcsr |= H_CSR_IE_MASK;
 314        mei_hcsr_set(dev, hcsr);
 315}
 316
 317/**
 318 * mei_me_intr_disable - disables mei device interrupts
 319 *
 320 * @dev: the device structure
 321 */
 322static void mei_me_intr_disable(struct mei_device *dev)
 323{
 324        u32 hcsr = mei_hcsr_read(dev);
 325
 326        me_intr_disable(dev, hcsr);
 327}
 328
 329/**
 330 * mei_me_synchronize_irq - wait for pending IRQ handlers
 331 *
 332 * @dev: the device structure
 333 */
 334static void mei_me_synchronize_irq(struct mei_device *dev)
 335{
 336        struct pci_dev *pdev = to_pci_dev(dev->dev);
 337
 338        synchronize_irq(pdev->irq);
 339}
 340
 341/**
 342 * mei_me_hw_reset_release - release device from the reset
 343 *
 344 * @dev: the device structure
 345 */
 346static void mei_me_hw_reset_release(struct mei_device *dev)
 347{
 348        u32 hcsr = mei_hcsr_read(dev);
 349
 350        hcsr |= H_IG;
 351        hcsr &= ~H_RST;
 352        mei_hcsr_set(dev, hcsr);
 353
 354        /* complete this write before we set host ready on another CPU */
 355        mmiowb();
 356}
 357
 358/**
 359 * mei_me_host_set_ready - enable device
 360 *
 361 * @dev: mei device
 362 */
 363static void mei_me_host_set_ready(struct mei_device *dev)
 364{
 365        u32 hcsr = mei_hcsr_read(dev);
 366
 367        hcsr |= H_CSR_IE_MASK | H_IG | H_RDY;
 368        mei_hcsr_set(dev, hcsr);
 369}
 370
 371/**
 372 * mei_me_host_is_ready - check whether the host has turned ready
 373 *
 374 * @dev: mei device
 375 * Return: bool
 376 */
 377static bool mei_me_host_is_ready(struct mei_device *dev)
 378{
 379        u32 hcsr = mei_hcsr_read(dev);
 380
 381        return (hcsr & H_RDY) == H_RDY;
 382}
 383
 384/**
 385 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
 386 *
 387 * @dev: mei device
 388 * Return: bool
 389 */
 390static bool mei_me_hw_is_ready(struct mei_device *dev)
 391{
 392        u32 mecsr = mei_me_mecsr_read(dev);
 393
 394        return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
 395}
 396
 397/**
 398 * mei_me_hw_is_resetting - check whether the me(hw) is in reset
 399 *
 400 * @dev: mei device
 401 * Return: bool
 402 */
 403static bool mei_me_hw_is_resetting(struct mei_device *dev)
 404{
 405        u32 mecsr = mei_me_mecsr_read(dev);
 406
 407        return (mecsr & ME_RST_HRA) == ME_RST_HRA;
 408}
 409
 410/**
 411 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
 412 *  or timeout is reached
 413 *
 414 * @dev: mei device
 415 * Return: 0 on success, error otherwise
 416 */
 417static int mei_me_hw_ready_wait(struct mei_device *dev)
 418{
 419        mutex_unlock(&dev->device_lock);
 420        wait_event_timeout(dev->wait_hw_ready,
 421                        dev->recvd_hw_ready,
 422                        mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
 423        mutex_lock(&dev->device_lock);
 424        if (!dev->recvd_hw_ready) {
 425                dev_err(dev->dev, "wait hw ready failed\n");
 426                return -ETIME;
 427        }
 428
 429        mei_me_hw_reset_release(dev);
 430        dev->recvd_hw_ready = false;
 431        return 0;
 432}
 433
 434/**
 435 * mei_me_hw_start - hw start routine
 436 *
 437 * @dev: mei device
 438 * Return: 0 on success, error otherwise
 439 */
 440static int mei_me_hw_start(struct mei_device *dev)
 441{
 442        int ret = mei_me_hw_ready_wait(dev);
 443
 444        if (ret)
 445                return ret;
 446        dev_dbg(dev->dev, "hw is ready\n");
 447
 448        mei_me_host_set_ready(dev);
 449        return ret;
 450}
 451
 452
 453/**
 454 * mei_hbuf_filled_slots - gets number of device filled buffer slots
 455 *
 456 * @dev: the device structure
 457 *
 458 * Return: number of filled slots
 459 */
 460static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
 461{
 462        u32 hcsr;
 463        char read_ptr, write_ptr;
 464
 465        hcsr = mei_hcsr_read(dev);
 466
 467        read_ptr = (char) ((hcsr & H_CBRP) >> 8);
 468        write_ptr = (char) ((hcsr & H_CBWP) >> 16);
 469
 470        return (unsigned char) (write_ptr - read_ptr);
 471}
 472
 473/**
 474 * mei_me_hbuf_is_empty - checks if host buffer is empty.
 475 *
 476 * @dev: the device structure
 477 *
 478 * Return: true if empty, false - otherwise.
 479 */
 480static bool mei_me_hbuf_is_empty(struct mei_device *dev)
 481{
 482        return mei_hbuf_filled_slots(dev) == 0;
 483}
 484
 485/**
 486 * mei_me_hbuf_empty_slots - counts write empty slots.
 487 *
 488 * @dev: the device structure
 489 *
 490 * Return: -EOVERFLOW if overflow, otherwise empty slots count
 491 */
 492static int mei_me_hbuf_empty_slots(struct mei_device *dev)
 493{
 494        struct mei_me_hw *hw = to_me_hw(dev);
 495        unsigned char filled_slots, empty_slots;
 496
 497        filled_slots = mei_hbuf_filled_slots(dev);
 498        empty_slots = hw->hbuf_depth - filled_slots;
 499
 500        /* check for overflow */
 501        if (filled_slots > hw->hbuf_depth)
 502                return -EOVERFLOW;
 503
 504        return empty_slots;
 505}
 506
 507/**
 508 * mei_me_hbuf_depth - returns depth of the hw buffer.
 509 *
 510 * @dev: the device structure
 511 *
 512 * Return: size of hw buffer in slots
 513 */
 514static u32 mei_me_hbuf_depth(const struct mei_device *dev)
 515{
 516        struct mei_me_hw *hw = to_me_hw(dev);
 517
 518        return hw->hbuf_depth;
 519}
 520
 521/**
 522 * mei_me_hbuf_write - writes a message to host hw buffer.
 523 *
 524 * @dev: the device structure
 525 * @hdr: header of message
 526 * @hdr_len: header length in bytes: must be multiplication of a slot (4bytes)
 527 * @data: payload
 528 * @data_len: payload length in bytes
 529 *
 530 * Return: 0 if success, < 0 - otherwise.
 531 */
 532static int mei_me_hbuf_write(struct mei_device *dev,
 533                             const void *hdr, size_t hdr_len,
 534                             const void *data, size_t data_len)
 535{
 536        unsigned long rem;
 537        unsigned long i;
 538        const u32 *reg_buf;
 539        u32 dw_cnt;
 540        int empty_slots;
 541
 542        if (WARN_ON(!hdr || !data || hdr_len & 0x3))
 543                return -EINVAL;
 544
 545        dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM((struct mei_msg_hdr *)hdr));
 546
 547        empty_slots = mei_hbuf_empty_slots(dev);
 548        dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
 549
 550        if (empty_slots < 0)
 551                return -EOVERFLOW;
 552
 553        dw_cnt = mei_data2slots(hdr_len + data_len);
 554        if (dw_cnt > (u32)empty_slots)
 555                return -EMSGSIZE;
 556
 557        reg_buf = hdr;
 558        for (i = 0; i < hdr_len / MEI_SLOT_SIZE; i++)
 559                mei_me_hcbww_write(dev, reg_buf[i]);
 560
 561        reg_buf = data;
 562        for (i = 0; i < data_len / MEI_SLOT_SIZE; i++)
 563                mei_me_hcbww_write(dev, reg_buf[i]);
 564
 565        rem = data_len & 0x3;
 566        if (rem > 0) {
 567                u32 reg = 0;
 568
 569                memcpy(&reg, (const u8 *)data + data_len - rem, rem);
 570                mei_me_hcbww_write(dev, reg);
 571        }
 572
 573        mei_hcsr_set_hig(dev);
 574        if (!mei_me_hw_is_ready(dev))
 575                return -EIO;
 576
 577        return 0;
 578}
 579
 580/**
 581 * mei_me_count_full_read_slots - counts read full slots.
 582 *
 583 * @dev: the device structure
 584 *
 585 * Return: -EOVERFLOW if overflow, otherwise filled slots count
 586 */
 587static int mei_me_count_full_read_slots(struct mei_device *dev)
 588{
 589        u32 me_csr;
 590        char read_ptr, write_ptr;
 591        unsigned char buffer_depth, filled_slots;
 592
 593        me_csr = mei_me_mecsr_read(dev);
 594        buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
 595        read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
 596        write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
 597        filled_slots = (unsigned char) (write_ptr - read_ptr);
 598
 599        /* check for overflow */
 600        if (filled_slots > buffer_depth)
 601                return -EOVERFLOW;
 602
 603        dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
 604        return (int)filled_slots;
 605}
 606
 607/**
 608 * mei_me_read_slots - reads a message from mei device.
 609 *
 610 * @dev: the device structure
 611 * @buffer: message buffer will be written
 612 * @buffer_length: message size will be read
 613 *
 614 * Return: always 0
 615 */
 616static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
 617                             unsigned long buffer_length)
 618{
 619        u32 *reg_buf = (u32 *)buffer;
 620
 621        for (; buffer_length >= MEI_SLOT_SIZE; buffer_length -= MEI_SLOT_SIZE)
 622                *reg_buf++ = mei_me_mecbrw_read(dev);
 623
 624        if (buffer_length > 0) {
 625                u32 reg = mei_me_mecbrw_read(dev);
 626
 627                memcpy(reg_buf, &reg, buffer_length);
 628        }
 629
 630        mei_hcsr_set_hig(dev);
 631        return 0;
 632}
 633
 634/**
 635 * mei_me_pg_set - write pg enter register
 636 *
 637 * @dev: the device structure
 638 */
 639static void mei_me_pg_set(struct mei_device *dev)
 640{
 641        struct mei_me_hw *hw = to_me_hw(dev);
 642        u32 reg;
 643
 644        reg = mei_me_reg_read(hw, H_HPG_CSR);
 645        trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
 646
 647        reg |= H_HPG_CSR_PGI;
 648
 649        trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
 650        mei_me_reg_write(hw, H_HPG_CSR, reg);
 651}
 652
 653/**
 654 * mei_me_pg_unset - write pg exit register
 655 *
 656 * @dev: the device structure
 657 */
 658static void mei_me_pg_unset(struct mei_device *dev)
 659{
 660        struct mei_me_hw *hw = to_me_hw(dev);
 661        u32 reg;
 662
 663        reg = mei_me_reg_read(hw, H_HPG_CSR);
 664        trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
 665
 666        WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
 667
 668        reg |= H_HPG_CSR_PGIHEXR;
 669
 670        trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
 671        mei_me_reg_write(hw, H_HPG_CSR, reg);
 672}
 673
 674/**
 675 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
 676 *
 677 * @dev: the device structure
 678 *
 679 * Return: 0 on success an error code otherwise
 680 */
 681static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
 682{
 683        struct mei_me_hw *hw = to_me_hw(dev);
 684        unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
 685        int ret;
 686
 687        dev->pg_event = MEI_PG_EVENT_WAIT;
 688
 689        ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
 690        if (ret)
 691                return ret;
 692
 693        mutex_unlock(&dev->device_lock);
 694        wait_event_timeout(dev->wait_pg,
 695                dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
 696        mutex_lock(&dev->device_lock);
 697
 698        if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
 699                mei_me_pg_set(dev);
 700                ret = 0;
 701        } else {
 702                ret = -ETIME;
 703        }
 704
 705        dev->pg_event = MEI_PG_EVENT_IDLE;
 706        hw->pg_state = MEI_PG_ON;
 707
 708        return ret;
 709}
 710
 711/**
 712 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
 713 *
 714 * @dev: the device structure
 715 *
 716 * Return: 0 on success an error code otherwise
 717 */
 718static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
 719{
 720        struct mei_me_hw *hw = to_me_hw(dev);
 721        unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
 722        int ret;
 723
 724        if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
 725                goto reply;
 726
 727        dev->pg_event = MEI_PG_EVENT_WAIT;
 728
 729        mei_me_pg_unset(dev);
 730
 731        mutex_unlock(&dev->device_lock);
 732        wait_event_timeout(dev->wait_pg,
 733                dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
 734        mutex_lock(&dev->device_lock);
 735
 736reply:
 737        if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
 738                ret = -ETIME;
 739                goto out;
 740        }
 741
 742        dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
 743        ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
 744        if (ret)
 745                return ret;
 746
 747        mutex_unlock(&dev->device_lock);
 748        wait_event_timeout(dev->wait_pg,
 749                dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
 750        mutex_lock(&dev->device_lock);
 751
 752        if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
 753                ret = 0;
 754        else
 755                ret = -ETIME;
 756
 757out:
 758        dev->pg_event = MEI_PG_EVENT_IDLE;
 759        hw->pg_state = MEI_PG_OFF;
 760
 761        return ret;
 762}
 763
 764/**
 765 * mei_me_pg_in_transition - is device now in pg transition
 766 *
 767 * @dev: the device structure
 768 *
 769 * Return: true if in pg transition, false otherwise
 770 */
 771static bool mei_me_pg_in_transition(struct mei_device *dev)
 772{
 773        return dev->pg_event >= MEI_PG_EVENT_WAIT &&
 774               dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
 775}
 776
 777/**
 778 * mei_me_pg_is_enabled - detect if PG is supported by HW
 779 *
 780 * @dev: the device structure
 781 *
 782 * Return: true is pg supported, false otherwise
 783 */
 784static bool mei_me_pg_is_enabled(struct mei_device *dev)
 785{
 786        struct mei_me_hw *hw = to_me_hw(dev);
 787        u32 reg = mei_me_mecsr_read(dev);
 788
 789        if (hw->d0i3_supported)
 790                return true;
 791
 792        if ((reg & ME_PGIC_HRA) == 0)
 793                goto notsupported;
 794
 795        if (!dev->hbm_f_pg_supported)
 796                goto notsupported;
 797
 798        return true;
 799
 800notsupported:
 801        dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
 802                hw->d0i3_supported,
 803                !!(reg & ME_PGIC_HRA),
 804                dev->version.major_version,
 805                dev->version.minor_version,
 806                HBM_MAJOR_VERSION_PGI,
 807                HBM_MINOR_VERSION_PGI);
 808
 809        return false;
 810}
 811
 812/**
 813 * mei_me_d0i3_set - write d0i3 register bit on mei device.
 814 *
 815 * @dev: the device structure
 816 * @intr: ask for interrupt
 817 *
 818 * Return: D0I3C register value
 819 */
 820static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
 821{
 822        u32 reg = mei_me_d0i3c_read(dev);
 823
 824        reg |= H_D0I3C_I3;
 825        if (intr)
 826                reg |= H_D0I3C_IR;
 827        else
 828                reg &= ~H_D0I3C_IR;
 829        mei_me_d0i3c_write(dev, reg);
 830        /* read it to ensure HW consistency */
 831        reg = mei_me_d0i3c_read(dev);
 832        return reg;
 833}
 834
 835/**
 836 * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
 837 *
 838 * @dev: the device structure
 839 *
 840 * Return: D0I3C register value
 841 */
 842static u32 mei_me_d0i3_unset(struct mei_device *dev)
 843{
 844        u32 reg = mei_me_d0i3c_read(dev);
 845
 846        reg &= ~H_D0I3C_I3;
 847        reg |= H_D0I3C_IR;
 848        mei_me_d0i3c_write(dev, reg);
 849        /* read it to ensure HW consistency */
 850        reg = mei_me_d0i3c_read(dev);
 851        return reg;
 852}
 853
 854/**
 855 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
 856 *
 857 * @dev: the device structure
 858 *
 859 * Return: 0 on success an error code otherwise
 860 */
 861static int mei_me_d0i3_enter_sync(struct mei_device *dev)
 862{
 863        struct mei_me_hw *hw = to_me_hw(dev);
 864        unsigned long d0i3_timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
 865        unsigned long pgi_timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
 866        int ret;
 867        u32 reg;
 868
 869        reg = mei_me_d0i3c_read(dev);
 870        if (reg & H_D0I3C_I3) {
 871                /* we are in d0i3, nothing to do */
 872                dev_dbg(dev->dev, "d0i3 set not needed\n");
 873                ret = 0;
 874                goto on;
 875        }
 876
 877        /* PGI entry procedure */
 878        dev->pg_event = MEI_PG_EVENT_WAIT;
 879
 880        ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
 881        if (ret)
 882                /* FIXME: should we reset here? */
 883                goto out;
 884
 885        mutex_unlock(&dev->device_lock);
 886        wait_event_timeout(dev->wait_pg,
 887                dev->pg_event == MEI_PG_EVENT_RECEIVED, pgi_timeout);
 888        mutex_lock(&dev->device_lock);
 889
 890        if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
 891                ret = -ETIME;
 892                goto out;
 893        }
 894        /* end PGI entry procedure */
 895
 896        dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
 897
 898        reg = mei_me_d0i3_set(dev, true);
 899        if (!(reg & H_D0I3C_CIP)) {
 900                dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
 901                ret = 0;
 902                goto on;
 903        }
 904
 905        mutex_unlock(&dev->device_lock);
 906        wait_event_timeout(dev->wait_pg,
 907                dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, d0i3_timeout);
 908        mutex_lock(&dev->device_lock);
 909
 910        if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
 911                reg = mei_me_d0i3c_read(dev);
 912                if (!(reg & H_D0I3C_I3)) {
 913                        ret = -ETIME;
 914                        goto out;
 915                }
 916        }
 917
 918        ret = 0;
 919on:
 920        hw->pg_state = MEI_PG_ON;
 921out:
 922        dev->pg_event = MEI_PG_EVENT_IDLE;
 923        dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
 924        return ret;
 925}
 926
 927/**
 928 * mei_me_d0i3_enter - perform d0i3 entry procedure
 929 *   no hbm PG handshake
 930 *   no waiting for confirmation; runs with interrupts
 931 *   disabled
 932 *
 933 * @dev: the device structure
 934 *
 935 * Return: 0 on success an error code otherwise
 936 */
 937static int mei_me_d0i3_enter(struct mei_device *dev)
 938{
 939        struct mei_me_hw *hw = to_me_hw(dev);
 940        u32 reg;
 941
 942        reg = mei_me_d0i3c_read(dev);
 943        if (reg & H_D0I3C_I3) {
 944                /* we are in d0i3, nothing to do */
 945                dev_dbg(dev->dev, "already d0i3 : set not needed\n");
 946                goto on;
 947        }
 948
 949        mei_me_d0i3_set(dev, false);
 950on:
 951        hw->pg_state = MEI_PG_ON;
 952        dev->pg_event = MEI_PG_EVENT_IDLE;
 953        dev_dbg(dev->dev, "d0i3 enter\n");
 954        return 0;
 955}
 956
 957/**
 958 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
 959 *
 960 * @dev: the device structure
 961 *
 962 * Return: 0 on success an error code otherwise
 963 */
 964static int mei_me_d0i3_exit_sync(struct mei_device *dev)
 965{
 966        struct mei_me_hw *hw = to_me_hw(dev);
 967        unsigned long timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
 968        int ret;
 969        u32 reg;
 970
 971        dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
 972
 973        reg = mei_me_d0i3c_read(dev);
 974        if (!(reg & H_D0I3C_I3)) {
 975                /* we are not in d0i3, nothing to do */
 976                dev_dbg(dev->dev, "d0i3 exit not needed\n");
 977                ret = 0;
 978                goto off;
 979        }
 980
 981        reg = mei_me_d0i3_unset(dev);
 982        if (!(reg & H_D0I3C_CIP)) {
 983                dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
 984                ret = 0;
 985                goto off;
 986        }
 987
 988        mutex_unlock(&dev->device_lock);
 989        wait_event_timeout(dev->wait_pg,
 990                dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
 991        mutex_lock(&dev->device_lock);
 992
 993        if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
 994                reg = mei_me_d0i3c_read(dev);
 995                if (reg & H_D0I3C_I3) {
 996                        ret = -ETIME;
 997                        goto out;
 998                }
 999        }
1000
1001        ret = 0;
1002off:
1003        hw->pg_state = MEI_PG_OFF;
1004out:
1005        dev->pg_event = MEI_PG_EVENT_IDLE;
1006
1007        dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
1008        return ret;
1009}
1010
1011/**
1012 * mei_me_pg_legacy_intr - perform legacy pg processing
1013 *                         in interrupt thread handler
1014 *
1015 * @dev: the device structure
1016 */
1017static void mei_me_pg_legacy_intr(struct mei_device *dev)
1018{
1019        struct mei_me_hw *hw = to_me_hw(dev);
1020
1021        if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
1022                return;
1023
1024        dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1025        hw->pg_state = MEI_PG_OFF;
1026        if (waitqueue_active(&dev->wait_pg))
1027                wake_up(&dev->wait_pg);
1028}
1029
1030/**
1031 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
1032 *
1033 * @dev: the device structure
1034 * @intr_source: interrupt source
1035 */
1036static void mei_me_d0i3_intr(struct mei_device *dev, u32 intr_source)
1037{
1038        struct mei_me_hw *hw = to_me_hw(dev);
1039
1040        if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
1041            (intr_source & H_D0I3C_IS)) {
1042                dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1043                if (hw->pg_state == MEI_PG_ON) {
1044                        hw->pg_state = MEI_PG_OFF;
1045                        if (dev->hbm_state != MEI_HBM_IDLE) {
1046                                /*
1047                                 * force H_RDY because it could be
1048                                 * wiped off during PG
1049                                 */
1050                                dev_dbg(dev->dev, "d0i3 set host ready\n");
1051                                mei_me_host_set_ready(dev);
1052                        }
1053                } else {
1054                        hw->pg_state = MEI_PG_ON;
1055                }
1056
1057                wake_up(&dev->wait_pg);
1058        }
1059
1060        if (hw->pg_state == MEI_PG_ON && (intr_source & H_IS)) {
1061                /*
1062                 * HW sent some data and we are in D0i3, so
1063                 * we got here because of HW initiated exit from D0i3.
1064                 * Start runtime pm resume sequence to exit low power state.
1065                 */
1066                dev_dbg(dev->dev, "d0i3 want resume\n");
1067                mei_hbm_pg_resume(dev);
1068        }
1069}
1070
1071/**
1072 * mei_me_pg_intr - perform pg processing in interrupt thread handler
1073 *
1074 * @dev: the device structure
1075 * @intr_source: interrupt source
1076 */
1077static void mei_me_pg_intr(struct mei_device *dev, u32 intr_source)
1078{
1079        struct mei_me_hw *hw = to_me_hw(dev);
1080
1081        if (hw->d0i3_supported)
1082                mei_me_d0i3_intr(dev, intr_source);
1083        else
1084                mei_me_pg_legacy_intr(dev);
1085}
1086
1087/**
1088 * mei_me_pg_enter_sync - perform runtime pm entry procedure
1089 *
1090 * @dev: the device structure
1091 *
1092 * Return: 0 on success an error code otherwise
1093 */
1094int mei_me_pg_enter_sync(struct mei_device *dev)
1095{
1096        struct mei_me_hw *hw = to_me_hw(dev);
1097
1098        if (hw->d0i3_supported)
1099                return mei_me_d0i3_enter_sync(dev);
1100        else
1101                return mei_me_pg_legacy_enter_sync(dev);
1102}
1103
1104/**
1105 * mei_me_pg_exit_sync - perform runtime pm exit procedure
1106 *
1107 * @dev: the device structure
1108 *
1109 * Return: 0 on success an error code otherwise
1110 */
1111int mei_me_pg_exit_sync(struct mei_device *dev)
1112{
1113        struct mei_me_hw *hw = to_me_hw(dev);
1114
1115        if (hw->d0i3_supported)
1116                return mei_me_d0i3_exit_sync(dev);
1117        else
1118                return mei_me_pg_legacy_exit_sync(dev);
1119}
1120
1121/**
1122 * mei_me_hw_reset - resets fw via mei csr register.
1123 *
1124 * @dev: the device structure
1125 * @intr_enable: if interrupt should be enabled after reset.
1126 *
1127 * Return: 0 on success an error code otherwise
1128 */
1129static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
1130{
1131        struct mei_me_hw *hw = to_me_hw(dev);
1132        int ret;
1133        u32 hcsr;
1134
1135        if (intr_enable) {
1136                mei_me_intr_enable(dev);
1137                if (hw->d0i3_supported) {
1138                        ret = mei_me_d0i3_exit_sync(dev);
1139                        if (ret)
1140                                return ret;
1141                }
1142        }
1143
1144        pm_runtime_set_active(dev->dev);
1145
1146        hcsr = mei_hcsr_read(dev);
1147        /* H_RST may be found lit before reset is started,
1148         * for example if preceding reset flow hasn't completed.
1149         * In that case asserting H_RST will be ignored, therefore
1150         * we need to clean H_RST bit to start a successful reset sequence.
1151         */
1152        if ((hcsr & H_RST) == H_RST) {
1153                dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
1154                hcsr &= ~H_RST;
1155                mei_hcsr_set(dev, hcsr);
1156                hcsr = mei_hcsr_read(dev);
1157        }
1158
1159        hcsr |= H_RST | H_IG | H_CSR_IS_MASK;
1160
1161        if (!intr_enable)
1162                hcsr &= ~H_CSR_IE_MASK;
1163
1164        dev->recvd_hw_ready = false;
1165        mei_hcsr_write(dev, hcsr);
1166
1167        /*
1168         * Host reads the H_CSR once to ensure that the
1169         * posted write to H_CSR completes.
1170         */
1171        hcsr = mei_hcsr_read(dev);
1172
1173        if ((hcsr & H_RST) == 0)
1174                dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
1175
1176        if ((hcsr & H_RDY) == H_RDY)
1177                dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
1178
1179        if (!intr_enable) {
1180                mei_me_hw_reset_release(dev);
1181                if (hw->d0i3_supported) {
1182                        ret = mei_me_d0i3_enter(dev);
1183                        if (ret)
1184                                return ret;
1185                }
1186        }
1187        return 0;
1188}
1189
1190/**
1191 * mei_me_irq_quick_handler - The ISR of the MEI device
1192 *
1193 * @irq: The irq number
1194 * @dev_id: pointer to the device structure
1195 *
1196 * Return: irqreturn_t
1197 */
1198irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
1199{
1200        struct mei_device *dev = (struct mei_device *)dev_id;
1201        u32 hcsr;
1202
1203        hcsr = mei_hcsr_read(dev);
1204        if (!me_intr_src(hcsr))
1205                return IRQ_NONE;
1206
1207        dev_dbg(dev->dev, "interrupt source 0x%08X\n", me_intr_src(hcsr));
1208
1209        /* disable interrupts on device */
1210        me_intr_disable(dev, hcsr);
1211        return IRQ_WAKE_THREAD;
1212}
1213
1214/**
1215 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
1216 * processing.
1217 *
1218 * @irq: The irq number
1219 * @dev_id: pointer to the device structure
1220 *
1221 * Return: irqreturn_t
1222 *
1223 */
1224irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
1225{
1226        struct mei_device *dev = (struct mei_device *) dev_id;
1227        struct list_head cmpl_list;
1228        s32 slots;
1229        u32 hcsr;
1230        int rets = 0;
1231
1232        dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
1233        /* initialize our complete list */
1234        mutex_lock(&dev->device_lock);
1235
1236        hcsr = mei_hcsr_read(dev);
1237        me_intr_clear(dev, hcsr);
1238
1239        INIT_LIST_HEAD(&cmpl_list);
1240
1241        /* check if ME wants a reset */
1242        if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
1243                dev_warn(dev->dev, "FW not ready: resetting.\n");
1244                schedule_work(&dev->reset_work);
1245                goto end;
1246        }
1247
1248        if (mei_me_hw_is_resetting(dev))
1249                mei_hcsr_set_hig(dev);
1250
1251        mei_me_pg_intr(dev, me_intr_src(hcsr));
1252
1253        /*  check if we need to start the dev */
1254        if (!mei_host_is_ready(dev)) {
1255                if (mei_hw_is_ready(dev)) {
1256                        dev_dbg(dev->dev, "we need to start the dev.\n");
1257                        dev->recvd_hw_ready = true;
1258                        wake_up(&dev->wait_hw_ready);
1259                } else {
1260                        dev_dbg(dev->dev, "Spurious Interrupt\n");
1261                }
1262                goto end;
1263        }
1264        /* check slots available for reading */
1265        slots = mei_count_full_read_slots(dev);
1266        while (slots > 0) {
1267                dev_dbg(dev->dev, "slots to read = %08x\n", slots);
1268                rets = mei_irq_read_handler(dev, &cmpl_list, &slots);
1269                /* There is a race between ME write and interrupt delivery:
1270                 * Not all data is always available immediately after the
1271                 * interrupt, so try to read again on the next interrupt.
1272                 */
1273                if (rets == -ENODATA)
1274                        break;
1275
1276                if (rets &&
1277                    (dev->dev_state != MEI_DEV_RESETTING &&
1278                     dev->dev_state != MEI_DEV_POWER_DOWN)) {
1279                        dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
1280                                                rets);
1281                        schedule_work(&dev->reset_work);
1282                        goto end;
1283                }
1284        }
1285
1286        dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1287
1288        /*
1289         * During PG handshake only allowed write is the replay to the
1290         * PG exit message, so block calling write function
1291         * if the pg event is in PG handshake
1292         */
1293        if (dev->pg_event != MEI_PG_EVENT_WAIT &&
1294            dev->pg_event != MEI_PG_EVENT_RECEIVED) {
1295                rets = mei_irq_write_handler(dev, &cmpl_list);
1296                dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1297        }
1298
1299        mei_irq_compl_handler(dev, &cmpl_list);
1300
1301end:
1302        dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1303        mei_me_intr_enable(dev);
1304        mutex_unlock(&dev->device_lock);
1305        return IRQ_HANDLED;
1306}
1307
1308static const struct mei_hw_ops mei_me_hw_ops = {
1309
1310        .fw_status = mei_me_fw_status,
1311        .pg_state  = mei_me_pg_state,
1312
1313        .host_is_ready = mei_me_host_is_ready,
1314
1315        .hw_is_ready = mei_me_hw_is_ready,
1316        .hw_reset = mei_me_hw_reset,
1317        .hw_config = mei_me_hw_config,
1318        .hw_start = mei_me_hw_start,
1319
1320        .pg_in_transition = mei_me_pg_in_transition,
1321        .pg_is_enabled = mei_me_pg_is_enabled,
1322
1323        .intr_clear = mei_me_intr_clear,
1324        .intr_enable = mei_me_intr_enable,
1325        .intr_disable = mei_me_intr_disable,
1326        .synchronize_irq = mei_me_synchronize_irq,
1327
1328        .hbuf_free_slots = mei_me_hbuf_empty_slots,
1329        .hbuf_is_ready = mei_me_hbuf_is_empty,
1330        .hbuf_depth = mei_me_hbuf_depth,
1331
1332        .write = mei_me_hbuf_write,
1333
1334        .rdbuf_full_slots = mei_me_count_full_read_slots,
1335        .read_hdr = mei_me_mecbrw_read,
1336        .read = mei_me_read_slots
1337};
1338
1339static bool mei_me_fw_type_nm(struct pci_dev *pdev)
1340{
1341        u32 reg;
1342
1343        pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
1344        trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_2", PCI_CFG_HFS_2, reg);
1345        /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
1346        return (reg & 0x600) == 0x200;
1347}
1348
1349#define MEI_CFG_FW_NM                           \
1350        .quirk_probe = mei_me_fw_type_nm
1351
1352static bool mei_me_fw_type_sps(struct pci_dev *pdev)
1353{
1354        u32 reg;
1355        unsigned int devfn;
1356
1357        /*
1358         * Read ME FW Status register to check for SPS Firmware
1359         * The SPS FW is only signaled in pci function 0
1360         */
1361        devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1362        pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_1, &reg);
1363        trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
1364        /* if bits [19:16] = 15, running SPS Firmware */
1365        return (reg & 0xf0000) == 0xf0000;
1366}
1367
1368#define MEI_CFG_FW_SPS                           \
1369        .quirk_probe = mei_me_fw_type_sps
1370
1371
1372#define MEI_CFG_ICH_HFS                      \
1373        .fw_status.count = 0
1374
1375#define MEI_CFG_ICH10_HFS                        \
1376        .fw_status.count = 1,                   \
1377        .fw_status.status[0] = PCI_CFG_HFS_1
1378
1379#define MEI_CFG_PCH_HFS                         \
1380        .fw_status.count = 2,                   \
1381        .fw_status.status[0] = PCI_CFG_HFS_1,   \
1382        .fw_status.status[1] = PCI_CFG_HFS_2
1383
1384#define MEI_CFG_PCH8_HFS                        \
1385        .fw_status.count = 6,                   \
1386        .fw_status.status[0] = PCI_CFG_HFS_1,   \
1387        .fw_status.status[1] = PCI_CFG_HFS_2,   \
1388        .fw_status.status[2] = PCI_CFG_HFS_3,   \
1389        .fw_status.status[3] = PCI_CFG_HFS_4,   \
1390        .fw_status.status[4] = PCI_CFG_HFS_5,   \
1391        .fw_status.status[5] = PCI_CFG_HFS_6
1392
1393#define MEI_CFG_DMA_128 \
1394        .dma_size[DMA_DSCR_HOST] = SZ_128K, \
1395        .dma_size[DMA_DSCR_DEVICE] = SZ_128K, \
1396        .dma_size[DMA_DSCR_CTRL] = PAGE_SIZE
1397
1398/* ICH Legacy devices */
1399static const struct mei_cfg mei_me_ich_cfg = {
1400        MEI_CFG_ICH_HFS,
1401};
1402
1403/* ICH devices */
1404static const struct mei_cfg mei_me_ich10_cfg = {
1405        MEI_CFG_ICH10_HFS,
1406};
1407
1408/* PCH devices */
1409static const struct mei_cfg mei_me_pch_cfg = {
1410        MEI_CFG_PCH_HFS,
1411};
1412
1413/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
1414static const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
1415        MEI_CFG_PCH_HFS,
1416        MEI_CFG_FW_NM,
1417};
1418
1419/* PCH8 Lynx Point and newer devices */
1420static const struct mei_cfg mei_me_pch8_cfg = {
1421        MEI_CFG_PCH8_HFS,
1422};
1423
1424/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
1425static const struct mei_cfg mei_me_pch8_sps_cfg = {
1426        MEI_CFG_PCH8_HFS,
1427        MEI_CFG_FW_SPS,
1428};
1429
1430/* Cannon Lake and newer devices */
1431static const struct mei_cfg mei_me_pch12_cfg = {
1432        MEI_CFG_PCH8_HFS,
1433        MEI_CFG_DMA_128,
1434};
1435
1436/*
1437 * mei_cfg_list - A list of platform platform specific configurations.
1438 * Note: has to be synchronized with  enum mei_cfg_idx.
1439 */
1440static const struct mei_cfg *const mei_cfg_list[] = {
1441        [MEI_ME_UNDEF_CFG] = NULL,
1442        [MEI_ME_ICH_CFG] = &mei_me_ich_cfg,
1443        [MEI_ME_ICH10_CFG] = &mei_me_ich10_cfg,
1444        [MEI_ME_PCH_CFG] = &mei_me_pch_cfg,
1445        [MEI_ME_PCH_CPT_PBG_CFG] = &mei_me_pch_cpt_pbg_cfg,
1446        [MEI_ME_PCH8_CFG] = &mei_me_pch8_cfg,
1447        [MEI_ME_PCH8_SPS_CFG] = &mei_me_pch8_sps_cfg,
1448        [MEI_ME_PCH12_CFG] = &mei_me_pch12_cfg,
1449};
1450
1451const struct mei_cfg *mei_me_get_cfg(kernel_ulong_t idx)
1452{
1453        BUILD_BUG_ON(ARRAY_SIZE(mei_cfg_list) != MEI_ME_NUM_CFG);
1454
1455        if (idx >= MEI_ME_NUM_CFG)
1456                return NULL;
1457
1458        return mei_cfg_list[idx];
1459};
1460
1461/**
1462 * mei_me_dev_init - allocates and initializes the mei device structure
1463 *
1464 * @pdev: The pci device structure
1465 * @cfg: per device generation config
1466 *
1467 * Return: The mei_device pointer on success, NULL on failure.
1468 */
1469struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
1470                                   const struct mei_cfg *cfg)
1471{
1472        struct mei_device *dev;
1473        struct mei_me_hw *hw;
1474
1475        dev = devm_kzalloc(&pdev->dev, sizeof(struct mei_device) +
1476                           sizeof(struct mei_me_hw), GFP_KERNEL);
1477        if (!dev)
1478                return NULL;
1479        hw = to_me_hw(dev);
1480
1481        mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
1482        hw->cfg = cfg;
1483        return dev;
1484}
1485
1486