linux/drivers/pwm/core.c
<<
>>
Prefs
   1/*
   2 * Generic pwmlib implementation
   3 *
   4 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
   5 * Copyright (C) 2011-2012 Avionic Design GmbH
   6 *
   7 *  This program is free software; you can redistribute it and/or modify
   8 *  it under the terms of the GNU General Public License as published by
   9 *  the Free Software Foundation; either version 2, or (at your option)
  10 *  any later version.
  11 *
  12 *  This program is distributed in the hope that it will be useful,
  13 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *  GNU General Public License for more details.
  16 *
  17 *  You should have received a copy of the GNU General Public License
  18 *  along with this program; see the file COPYING.  If not, write to
  19 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/pwm.h>
  24#include <linux/radix-tree.h>
  25#include <linux/list.h>
  26#include <linux/mutex.h>
  27#include <linux/err.h>
  28#include <linux/slab.h>
  29#include <linux/device.h>
  30#include <linux/debugfs.h>
  31#include <linux/seq_file.h>
  32
  33#include <dt-bindings/pwm/pwm.h>
  34
  35#define MAX_PWMS 1024
  36
  37static DEFINE_MUTEX(pwm_lookup_lock);
  38static LIST_HEAD(pwm_lookup_list);
  39static DEFINE_MUTEX(pwm_lock);
  40static LIST_HEAD(pwm_chips);
  41static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
  42static RADIX_TREE(pwm_tree, GFP_KERNEL);
  43
  44static struct pwm_device *pwm_to_device(unsigned int pwm)
  45{
  46        return radix_tree_lookup(&pwm_tree, pwm);
  47}
  48
  49static int alloc_pwms(int pwm, unsigned int count)
  50{
  51        unsigned int from = 0;
  52        unsigned int start;
  53
  54        if (pwm >= MAX_PWMS)
  55                return -EINVAL;
  56
  57        if (pwm >= 0)
  58                from = pwm;
  59
  60        start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
  61                                           count, 0);
  62
  63        if (pwm >= 0 && start != pwm)
  64                return -EEXIST;
  65
  66        if (start + count > MAX_PWMS)
  67                return -ENOSPC;
  68
  69        return start;
  70}
  71
  72static void free_pwms(struct pwm_chip *chip)
  73{
  74        unsigned int i;
  75
  76        for (i = 0; i < chip->npwm; i++) {
  77                struct pwm_device *pwm = &chip->pwms[i];
  78
  79                radix_tree_delete(&pwm_tree, pwm->pwm);
  80        }
  81
  82        bitmap_clear(allocated_pwms, chip->base, chip->npwm);
  83
  84        kfree(chip->pwms);
  85        chip->pwms = NULL;
  86}
  87
  88static struct pwm_chip *pwmchip_find_by_name(const char *name)
  89{
  90        struct pwm_chip *chip;
  91
  92        if (!name)
  93                return NULL;
  94
  95        mutex_lock(&pwm_lock);
  96
  97        list_for_each_entry(chip, &pwm_chips, list) {
  98                const char *chip_name = dev_name(chip->dev);
  99
 100                if (chip_name && strcmp(chip_name, name) == 0) {
 101                        mutex_unlock(&pwm_lock);
 102                        return chip;
 103                }
 104        }
 105
 106        mutex_unlock(&pwm_lock);
 107
 108        return NULL;
 109}
 110
 111static int pwm_device_request(struct pwm_device *pwm, const char *label)
 112{
 113        int err;
 114
 115        if (test_bit(PWMF_REQUESTED, &pwm->flags))
 116                return -EBUSY;
 117
 118        if (!try_module_get(pwm->chip->ops->owner))
 119                return -ENODEV;
 120
 121        if (pwm->chip->ops->request) {
 122                err = pwm->chip->ops->request(pwm->chip, pwm);
 123                if (err) {
 124                        module_put(pwm->chip->ops->owner);
 125                        return err;
 126                }
 127        }
 128
 129        set_bit(PWMF_REQUESTED, &pwm->flags);
 130        pwm->label = label;
 131
 132        return 0;
 133}
 134
 135struct pwm_device *
 136of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
 137{
 138        struct pwm_device *pwm;
 139
 140        /* check, whether the driver supports a third cell for flags */
 141        if (pc->of_pwm_n_cells < 3)
 142                return ERR_PTR(-EINVAL);
 143
 144        /* flags in the third cell are optional */
 145        if (args->args_count < 2)
 146                return ERR_PTR(-EINVAL);
 147
 148        if (args->args[0] >= pc->npwm)
 149                return ERR_PTR(-EINVAL);
 150
 151        pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 152        if (IS_ERR(pwm))
 153                return pwm;
 154
 155        pwm->args.period = args->args[1];
 156        pwm->args.polarity = PWM_POLARITY_NORMAL;
 157
 158        if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
 159                pwm->args.polarity = PWM_POLARITY_INVERSED;
 160
 161        return pwm;
 162}
 163EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
 164
 165static struct pwm_device *
 166of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
 167{
 168        struct pwm_device *pwm;
 169
 170        /* sanity check driver support */
 171        if (pc->of_pwm_n_cells < 2)
 172                return ERR_PTR(-EINVAL);
 173
 174        /* all cells are required */
 175        if (args->args_count != pc->of_pwm_n_cells)
 176                return ERR_PTR(-EINVAL);
 177
 178        if (args->args[0] >= pc->npwm)
 179                return ERR_PTR(-EINVAL);
 180
 181        pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 182        if (IS_ERR(pwm))
 183                return pwm;
 184
 185        pwm->args.period = args->args[1];
 186
 187        return pwm;
 188}
 189
 190static void of_pwmchip_add(struct pwm_chip *chip)
 191{
 192        if (!chip->dev || !chip->dev->of_node)
 193                return;
 194
 195        if (!chip->of_xlate) {
 196                chip->of_xlate = of_pwm_simple_xlate;
 197                chip->of_pwm_n_cells = 2;
 198        }
 199
 200        of_node_get(chip->dev->of_node);
 201}
 202
 203static void of_pwmchip_remove(struct pwm_chip *chip)
 204{
 205        if (chip->dev)
 206                of_node_put(chip->dev->of_node);
 207}
 208
 209/**
 210 * pwm_set_chip_data() - set private chip data for a PWM
 211 * @pwm: PWM device
 212 * @data: pointer to chip-specific data
 213 *
 214 * Returns: 0 on success or a negative error code on failure.
 215 */
 216int pwm_set_chip_data(struct pwm_device *pwm, void *data)
 217{
 218        if (!pwm)
 219                return -EINVAL;
 220
 221        pwm->chip_data = data;
 222
 223        return 0;
 224}
 225EXPORT_SYMBOL_GPL(pwm_set_chip_data);
 226
 227/**
 228 * pwm_get_chip_data() - get private chip data for a PWM
 229 * @pwm: PWM device
 230 *
 231 * Returns: A pointer to the chip-private data for the PWM device.
 232 */
 233void *pwm_get_chip_data(struct pwm_device *pwm)
 234{
 235        return pwm ? pwm->chip_data : NULL;
 236}
 237EXPORT_SYMBOL_GPL(pwm_get_chip_data);
 238
 239static bool pwm_ops_check(const struct pwm_ops *ops)
 240{
 241        /* driver supports legacy, non-atomic operation */
 242        if (ops->config && ops->enable && ops->disable)
 243                return true;
 244
 245        /* driver supports atomic operation */
 246        if (ops->apply)
 247                return true;
 248
 249        return false;
 250}
 251
 252/**
 253 * pwmchip_add_with_polarity() - register a new PWM chip
 254 * @chip: the PWM chip to add
 255 * @polarity: initial polarity of PWM channels
 256 *
 257 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 258 * will be used. The initial polarity for all channels is specified by the
 259 * @polarity parameter.
 260 *
 261 * Returns: 0 on success or a negative error code on failure.
 262 */
 263int pwmchip_add_with_polarity(struct pwm_chip *chip,
 264                              enum pwm_polarity polarity)
 265{
 266        struct pwm_device *pwm;
 267        unsigned int i;
 268        int ret;
 269
 270        if (!chip || !chip->dev || !chip->ops || !chip->npwm)
 271                return -EINVAL;
 272
 273        if (!pwm_ops_check(chip->ops))
 274                return -EINVAL;
 275
 276        mutex_lock(&pwm_lock);
 277
 278        ret = alloc_pwms(chip->base, chip->npwm);
 279        if (ret < 0)
 280                goto out;
 281
 282        chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
 283        if (!chip->pwms) {
 284                ret = -ENOMEM;
 285                goto out;
 286        }
 287
 288        chip->base = ret;
 289
 290        for (i = 0; i < chip->npwm; i++) {
 291                pwm = &chip->pwms[i];
 292
 293                pwm->chip = chip;
 294                pwm->pwm = chip->base + i;
 295                pwm->hwpwm = i;
 296                pwm->state.polarity = polarity;
 297
 298                if (chip->ops->get_state)
 299                        chip->ops->get_state(chip, pwm, &pwm->state);
 300
 301                radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
 302        }
 303
 304        bitmap_set(allocated_pwms, chip->base, chip->npwm);
 305
 306        INIT_LIST_HEAD(&chip->list);
 307        list_add(&chip->list, &pwm_chips);
 308
 309        ret = 0;
 310
 311        if (IS_ENABLED(CONFIG_OF))
 312                of_pwmchip_add(chip);
 313
 314        pwmchip_sysfs_export(chip);
 315
 316out:
 317        mutex_unlock(&pwm_lock);
 318        return ret;
 319}
 320EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
 321
 322/**
 323 * pwmchip_add() - register a new PWM chip
 324 * @chip: the PWM chip to add
 325 *
 326 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 327 * will be used. The initial polarity for all channels is normal.
 328 *
 329 * Returns: 0 on success or a negative error code on failure.
 330 */
 331int pwmchip_add(struct pwm_chip *chip)
 332{
 333        return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
 334}
 335EXPORT_SYMBOL_GPL(pwmchip_add);
 336
 337/**
 338 * pwmchip_remove() - remove a PWM chip
 339 * @chip: the PWM chip to remove
 340 *
 341 * Removes a PWM chip. This function may return busy if the PWM chip provides
 342 * a PWM device that is still requested.
 343 *
 344 * Returns: 0 on success or a negative error code on failure.
 345 */
 346int pwmchip_remove(struct pwm_chip *chip)
 347{
 348        unsigned int i;
 349        int ret = 0;
 350
 351        pwmchip_sysfs_unexport_children(chip);
 352
 353        mutex_lock(&pwm_lock);
 354
 355        for (i = 0; i < chip->npwm; i++) {
 356                struct pwm_device *pwm = &chip->pwms[i];
 357
 358                if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
 359                        ret = -EBUSY;
 360                        goto out;
 361                }
 362        }
 363
 364        list_del_init(&chip->list);
 365
 366        if (IS_ENABLED(CONFIG_OF))
 367                of_pwmchip_remove(chip);
 368
 369        free_pwms(chip);
 370
 371        pwmchip_sysfs_unexport(chip);
 372
 373out:
 374        mutex_unlock(&pwm_lock);
 375        return ret;
 376}
 377EXPORT_SYMBOL_GPL(pwmchip_remove);
 378
 379/**
 380 * pwm_request() - request a PWM device
 381 * @pwm: global PWM device index
 382 * @label: PWM device label
 383 *
 384 * This function is deprecated, use pwm_get() instead.
 385 *
 386 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
 387 * failure.
 388 */
 389struct pwm_device *pwm_request(int pwm, const char *label)
 390{
 391        struct pwm_device *dev;
 392        int err;
 393
 394        if (pwm < 0 || pwm >= MAX_PWMS)
 395                return ERR_PTR(-EINVAL);
 396
 397        mutex_lock(&pwm_lock);
 398
 399        dev = pwm_to_device(pwm);
 400        if (!dev) {
 401                dev = ERR_PTR(-EPROBE_DEFER);
 402                goto out;
 403        }
 404
 405        err = pwm_device_request(dev, label);
 406        if (err < 0)
 407                dev = ERR_PTR(err);
 408
 409out:
 410        mutex_unlock(&pwm_lock);
 411
 412        return dev;
 413}
 414EXPORT_SYMBOL_GPL(pwm_request);
 415
 416/**
 417 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
 418 * @chip: PWM chip
 419 * @index: per-chip index of the PWM to request
 420 * @label: a literal description string of this PWM
 421 *
 422 * Returns: A pointer to the PWM device at the given index of the given PWM
 423 * chip. A negative error code is returned if the index is not valid for the
 424 * specified PWM chip or if the PWM device cannot be requested.
 425 */
 426struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
 427                                         unsigned int index,
 428                                         const char *label)
 429{
 430        struct pwm_device *pwm;
 431        int err;
 432
 433        if (!chip || index >= chip->npwm)
 434                return ERR_PTR(-EINVAL);
 435
 436        mutex_lock(&pwm_lock);
 437        pwm = &chip->pwms[index];
 438
 439        err = pwm_device_request(pwm, label);
 440        if (err < 0)
 441                pwm = ERR_PTR(err);
 442
 443        mutex_unlock(&pwm_lock);
 444        return pwm;
 445}
 446EXPORT_SYMBOL_GPL(pwm_request_from_chip);
 447
 448/**
 449 * pwm_free() - free a PWM device
 450 * @pwm: PWM device
 451 *
 452 * This function is deprecated, use pwm_put() instead.
 453 */
 454void pwm_free(struct pwm_device *pwm)
 455{
 456        pwm_put(pwm);
 457}
 458EXPORT_SYMBOL_GPL(pwm_free);
 459
 460/**
 461 * pwm_apply_state() - atomically apply a new state to a PWM device
 462 * @pwm: PWM device
 463 * @state: new state to apply. This can be adjusted by the PWM driver
 464 *         if the requested config is not achievable, for example,
 465 *         ->duty_cycle and ->period might be approximated.
 466 */
 467int pwm_apply_state(struct pwm_device *pwm, struct pwm_state *state)
 468{
 469        int err;
 470
 471        if (!pwm || !state || !state->period ||
 472            state->duty_cycle > state->period)
 473                return -EINVAL;
 474
 475        if (!memcmp(state, &pwm->state, sizeof(*state)))
 476                return 0;
 477
 478        if (pwm->chip->ops->apply) {
 479                err = pwm->chip->ops->apply(pwm->chip, pwm, state);
 480                if (err)
 481                        return err;
 482
 483                pwm->state = *state;
 484        } else {
 485                /*
 486                 * FIXME: restore the initial state in case of error.
 487                 */
 488                if (state->polarity != pwm->state.polarity) {
 489                        if (!pwm->chip->ops->set_polarity)
 490                                return -ENOTSUPP;
 491
 492                        /*
 493                         * Changing the polarity of a running PWM is
 494                         * only allowed when the PWM driver implements
 495                         * ->apply().
 496                         */
 497                        if (pwm->state.enabled) {
 498                                pwm->chip->ops->disable(pwm->chip, pwm);
 499                                pwm->state.enabled = false;
 500                        }
 501
 502                        err = pwm->chip->ops->set_polarity(pwm->chip, pwm,
 503                                                           state->polarity);
 504                        if (err)
 505                                return err;
 506
 507                        pwm->state.polarity = state->polarity;
 508                }
 509
 510                if (state->period != pwm->state.period ||
 511                    state->duty_cycle != pwm->state.duty_cycle) {
 512                        err = pwm->chip->ops->config(pwm->chip, pwm,
 513                                                     state->duty_cycle,
 514                                                     state->period);
 515                        if (err)
 516                                return err;
 517
 518                        pwm->state.duty_cycle = state->duty_cycle;
 519                        pwm->state.period = state->period;
 520                }
 521
 522                if (state->enabled != pwm->state.enabled) {
 523                        if (state->enabled) {
 524                                err = pwm->chip->ops->enable(pwm->chip, pwm);
 525                                if (err)
 526                                        return err;
 527                        } else {
 528                                pwm->chip->ops->disable(pwm->chip, pwm);
 529                        }
 530
 531                        pwm->state.enabled = state->enabled;
 532                }
 533        }
 534
 535        return 0;
 536}
 537EXPORT_SYMBOL_GPL(pwm_apply_state);
 538
 539/**
 540 * pwm_capture() - capture and report a PWM signal
 541 * @pwm: PWM device
 542 * @result: structure to fill with capture result
 543 * @timeout: time to wait, in milliseconds, before giving up on capture
 544 *
 545 * Returns: 0 on success or a negative error code on failure.
 546 */
 547int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
 548                unsigned long timeout)
 549{
 550        int err;
 551
 552        if (!pwm || !pwm->chip->ops)
 553                return -EINVAL;
 554
 555        if (!pwm->chip->ops->capture)
 556                return -ENOSYS;
 557
 558        mutex_lock(&pwm_lock);
 559        err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
 560        mutex_unlock(&pwm_lock);
 561
 562        return err;
 563}
 564EXPORT_SYMBOL_GPL(pwm_capture);
 565
 566/**
 567 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
 568 * @pwm: PWM device
 569 *
 570 * This function will adjust the PWM config to the PWM arguments provided
 571 * by the DT or PWM lookup table. This is particularly useful to adapt
 572 * the bootloader config to the Linux one.
 573 */
 574int pwm_adjust_config(struct pwm_device *pwm)
 575{
 576        struct pwm_state state;
 577        struct pwm_args pargs;
 578
 579        pwm_get_args(pwm, &pargs);
 580        pwm_get_state(pwm, &state);
 581
 582        /*
 583         * If the current period is zero it means that either the PWM driver
 584         * does not support initial state retrieval or the PWM has not yet
 585         * been configured.
 586         *
 587         * In either case, we setup the new period and polarity, and assign a
 588         * duty cycle of 0.
 589         */
 590        if (!state.period) {
 591                state.duty_cycle = 0;
 592                state.period = pargs.period;
 593                state.polarity = pargs.polarity;
 594
 595                return pwm_apply_state(pwm, &state);
 596        }
 597
 598        /*
 599         * Adjust the PWM duty cycle/period based on the period value provided
 600         * in PWM args.
 601         */
 602        if (pargs.period != state.period) {
 603                u64 dutycycle = (u64)state.duty_cycle * pargs.period;
 604
 605                do_div(dutycycle, state.period);
 606                state.duty_cycle = dutycycle;
 607                state.period = pargs.period;
 608        }
 609
 610        /*
 611         * If the polarity changed, we should also change the duty cycle.
 612         */
 613        if (pargs.polarity != state.polarity) {
 614                state.polarity = pargs.polarity;
 615                state.duty_cycle = state.period - state.duty_cycle;
 616        }
 617
 618        return pwm_apply_state(pwm, &state);
 619}
 620EXPORT_SYMBOL_GPL(pwm_adjust_config);
 621
 622static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
 623{
 624        struct pwm_chip *chip;
 625
 626        mutex_lock(&pwm_lock);
 627
 628        list_for_each_entry(chip, &pwm_chips, list)
 629                if (chip->dev && chip->dev->of_node == np) {
 630                        mutex_unlock(&pwm_lock);
 631                        return chip;
 632                }
 633
 634        mutex_unlock(&pwm_lock);
 635
 636        return ERR_PTR(-EPROBE_DEFER);
 637}
 638
 639/**
 640 * of_pwm_get() - request a PWM via the PWM framework
 641 * @np: device node to get the PWM from
 642 * @con_id: consumer name
 643 *
 644 * Returns the PWM device parsed from the phandle and index specified in the
 645 * "pwms" property of a device tree node or a negative error-code on failure.
 646 * Values parsed from the device tree are stored in the returned PWM device
 647 * object.
 648 *
 649 * If con_id is NULL, the first PWM device listed in the "pwms" property will
 650 * be requested. Otherwise the "pwm-names" property is used to do a reverse
 651 * lookup of the PWM index. This also means that the "pwm-names" property
 652 * becomes mandatory for devices that look up the PWM device via the con_id
 653 * parameter.
 654 *
 655 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 656 * error code on failure.
 657 */
 658struct pwm_device *of_pwm_get(struct device_node *np, const char *con_id)
 659{
 660        struct pwm_device *pwm = NULL;
 661        struct of_phandle_args args;
 662        struct pwm_chip *pc;
 663        int index = 0;
 664        int err;
 665
 666        if (con_id) {
 667                index = of_property_match_string(np, "pwm-names", con_id);
 668                if (index < 0)
 669                        return ERR_PTR(index);
 670        }
 671
 672        err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
 673                                         &args);
 674        if (err) {
 675                pr_err("%s(): can't parse \"pwms\" property\n", __func__);
 676                return ERR_PTR(err);
 677        }
 678
 679        pc = of_node_to_pwmchip(args.np);
 680        if (IS_ERR(pc)) {
 681                if (PTR_ERR(pc) != -EPROBE_DEFER)
 682                        pr_err("%s(): PWM chip not found\n", __func__);
 683
 684                pwm = ERR_CAST(pc);
 685                goto put;
 686        }
 687
 688        pwm = pc->of_xlate(pc, &args);
 689        if (IS_ERR(pwm))
 690                goto put;
 691
 692        /*
 693         * If a consumer name was not given, try to look it up from the
 694         * "pwm-names" property if it exists. Otherwise use the name of
 695         * the user device node.
 696         */
 697        if (!con_id) {
 698                err = of_property_read_string_index(np, "pwm-names", index,
 699                                                    &con_id);
 700                if (err < 0)
 701                        con_id = np->name;
 702        }
 703
 704        pwm->label = con_id;
 705
 706put:
 707        of_node_put(args.np);
 708
 709        return pwm;
 710}
 711EXPORT_SYMBOL_GPL(of_pwm_get);
 712
 713/**
 714 * pwm_add_table() - register PWM device consumers
 715 * @table: array of consumers to register
 716 * @num: number of consumers in table
 717 */
 718void pwm_add_table(struct pwm_lookup *table, size_t num)
 719{
 720        mutex_lock(&pwm_lookup_lock);
 721
 722        while (num--) {
 723                list_add_tail(&table->list, &pwm_lookup_list);
 724                table++;
 725        }
 726
 727        mutex_unlock(&pwm_lookup_lock);
 728}
 729
 730/**
 731 * pwm_remove_table() - unregister PWM device consumers
 732 * @table: array of consumers to unregister
 733 * @num: number of consumers in table
 734 */
 735void pwm_remove_table(struct pwm_lookup *table, size_t num)
 736{
 737        mutex_lock(&pwm_lookup_lock);
 738
 739        while (num--) {
 740                list_del(&table->list);
 741                table++;
 742        }
 743
 744        mutex_unlock(&pwm_lookup_lock);
 745}
 746
 747/**
 748 * pwm_get() - look up and request a PWM device
 749 * @dev: device for PWM consumer
 750 * @con_id: consumer name
 751 *
 752 * Lookup is first attempted using DT. If the device was not instantiated from
 753 * a device tree, a PWM chip and a relative index is looked up via a table
 754 * supplied by board setup code (see pwm_add_table()).
 755 *
 756 * Once a PWM chip has been found the specified PWM device will be requested
 757 * and is ready to be used.
 758 *
 759 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 760 * error code on failure.
 761 */
 762struct pwm_device *pwm_get(struct device *dev, const char *con_id)
 763{
 764        const char *dev_id = dev ? dev_name(dev) : NULL;
 765        struct pwm_device *pwm;
 766        struct pwm_chip *chip;
 767        unsigned int best = 0;
 768        struct pwm_lookup *p, *chosen = NULL;
 769        unsigned int match;
 770        int err;
 771
 772        /* look up via DT first */
 773        if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
 774                return of_pwm_get(dev->of_node, con_id);
 775
 776        /*
 777         * We look up the provider in the static table typically provided by
 778         * board setup code. We first try to lookup the consumer device by
 779         * name. If the consumer device was passed in as NULL or if no match
 780         * was found, we try to find the consumer by directly looking it up
 781         * by name.
 782         *
 783         * If a match is found, the provider PWM chip is looked up by name
 784         * and a PWM device is requested using the PWM device per-chip index.
 785         *
 786         * The lookup algorithm was shamelessly taken from the clock
 787         * framework:
 788         *
 789         * We do slightly fuzzy matching here:
 790         *  An entry with a NULL ID is assumed to be a wildcard.
 791         *  If an entry has a device ID, it must match
 792         *  If an entry has a connection ID, it must match
 793         * Then we take the most specific entry - with the following order
 794         * of precedence: dev+con > dev only > con only.
 795         */
 796        mutex_lock(&pwm_lookup_lock);
 797
 798        list_for_each_entry(p, &pwm_lookup_list, list) {
 799                match = 0;
 800
 801                if (p->dev_id) {
 802                        if (!dev_id || strcmp(p->dev_id, dev_id))
 803                                continue;
 804
 805                        match += 2;
 806                }
 807
 808                if (p->con_id) {
 809                        if (!con_id || strcmp(p->con_id, con_id))
 810                                continue;
 811
 812                        match += 1;
 813                }
 814
 815                if (match > best) {
 816                        chosen = p;
 817
 818                        if (match != 3)
 819                                best = match;
 820                        else
 821                                break;
 822                }
 823        }
 824
 825        mutex_unlock(&pwm_lookup_lock);
 826
 827        if (!chosen)
 828                return ERR_PTR(-ENODEV);
 829
 830        chip = pwmchip_find_by_name(chosen->provider);
 831
 832        /*
 833         * If the lookup entry specifies a module, load the module and retry
 834         * the PWM chip lookup. This can be used to work around driver load
 835         * ordering issues if driver's can't be made to properly support the
 836         * deferred probe mechanism.
 837         */
 838        if (!chip && chosen->module) {
 839                err = request_module(chosen->module);
 840                if (err == 0)
 841                        chip = pwmchip_find_by_name(chosen->provider);
 842        }
 843
 844        if (!chip)
 845                return ERR_PTR(-EPROBE_DEFER);
 846
 847        pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
 848        if (IS_ERR(pwm))
 849                return pwm;
 850
 851        pwm->args.period = chosen->period;
 852        pwm->args.polarity = chosen->polarity;
 853
 854        return pwm;
 855}
 856EXPORT_SYMBOL_GPL(pwm_get);
 857
 858/**
 859 * pwm_put() - release a PWM device
 860 * @pwm: PWM device
 861 */
 862void pwm_put(struct pwm_device *pwm)
 863{
 864        if (!pwm)
 865                return;
 866
 867        mutex_lock(&pwm_lock);
 868
 869        if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
 870                pr_warn("PWM device already freed\n");
 871                goto out;
 872        }
 873
 874        if (pwm->chip->ops->free)
 875                pwm->chip->ops->free(pwm->chip, pwm);
 876
 877        pwm->label = NULL;
 878
 879        module_put(pwm->chip->ops->owner);
 880out:
 881        mutex_unlock(&pwm_lock);
 882}
 883EXPORT_SYMBOL_GPL(pwm_put);
 884
 885static void devm_pwm_release(struct device *dev, void *res)
 886{
 887        pwm_put(*(struct pwm_device **)res);
 888}
 889
 890/**
 891 * devm_pwm_get() - resource managed pwm_get()
 892 * @dev: device for PWM consumer
 893 * @con_id: consumer name
 894 *
 895 * This function performs like pwm_get() but the acquired PWM device will
 896 * automatically be released on driver detach.
 897 *
 898 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 899 * error code on failure.
 900 */
 901struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
 902{
 903        struct pwm_device **ptr, *pwm;
 904
 905        ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
 906        if (!ptr)
 907                return ERR_PTR(-ENOMEM);
 908
 909        pwm = pwm_get(dev, con_id);
 910        if (!IS_ERR(pwm)) {
 911                *ptr = pwm;
 912                devres_add(dev, ptr);
 913        } else {
 914                devres_free(ptr);
 915        }
 916
 917        return pwm;
 918}
 919EXPORT_SYMBOL_GPL(devm_pwm_get);
 920
 921/**
 922 * devm_of_pwm_get() - resource managed of_pwm_get()
 923 * @dev: device for PWM consumer
 924 * @np: device node to get the PWM from
 925 * @con_id: consumer name
 926 *
 927 * This function performs like of_pwm_get() but the acquired PWM device will
 928 * automatically be released on driver detach.
 929 *
 930 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 931 * error code on failure.
 932 */
 933struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
 934                                   const char *con_id)
 935{
 936        struct pwm_device **ptr, *pwm;
 937
 938        ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
 939        if (!ptr)
 940                return ERR_PTR(-ENOMEM);
 941
 942        pwm = of_pwm_get(np, con_id);
 943        if (!IS_ERR(pwm)) {
 944                *ptr = pwm;
 945                devres_add(dev, ptr);
 946        } else {
 947                devres_free(ptr);
 948        }
 949
 950        return pwm;
 951}
 952EXPORT_SYMBOL_GPL(devm_of_pwm_get);
 953
 954static int devm_pwm_match(struct device *dev, void *res, void *data)
 955{
 956        struct pwm_device **p = res;
 957
 958        if (WARN_ON(!p || !*p))
 959                return 0;
 960
 961        return *p == data;
 962}
 963
 964/**
 965 * devm_pwm_put() - resource managed pwm_put()
 966 * @dev: device for PWM consumer
 967 * @pwm: PWM device
 968 *
 969 * Release a PWM previously allocated using devm_pwm_get(). Calling this
 970 * function is usually not needed because devm-allocated resources are
 971 * automatically released on driver detach.
 972 */
 973void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
 974{
 975        WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
 976}
 977EXPORT_SYMBOL_GPL(devm_pwm_put);
 978
 979#ifdef CONFIG_DEBUG_FS
 980static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
 981{
 982        unsigned int i;
 983
 984        for (i = 0; i < chip->npwm; i++) {
 985                struct pwm_device *pwm = &chip->pwms[i];
 986                struct pwm_state state;
 987
 988                pwm_get_state(pwm, &state);
 989
 990                seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
 991
 992                if (test_bit(PWMF_REQUESTED, &pwm->flags))
 993                        seq_puts(s, " requested");
 994
 995                if (state.enabled)
 996                        seq_puts(s, " enabled");
 997
 998                seq_printf(s, " period: %u ns", state.period);
 999                seq_printf(s, " duty: %u ns", state.duty_cycle);
1000                seq_printf(s, " polarity: %s",
1001                           state.polarity ? "inverse" : "normal");
1002
1003                seq_puts(s, "\n");
1004        }
1005}
1006
1007static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1008{
1009        mutex_lock(&pwm_lock);
1010        s->private = "";
1011
1012        return seq_list_start(&pwm_chips, *pos);
1013}
1014
1015static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1016{
1017        s->private = "\n";
1018
1019        return seq_list_next(v, &pwm_chips, pos);
1020}
1021
1022static void pwm_seq_stop(struct seq_file *s, void *v)
1023{
1024        mutex_unlock(&pwm_lock);
1025}
1026
1027static int pwm_seq_show(struct seq_file *s, void *v)
1028{
1029        struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1030
1031        seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1032                   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1033                   dev_name(chip->dev), chip->npwm,
1034                   (chip->npwm != 1) ? "s" : "");
1035
1036        if (chip->ops->dbg_show)
1037                chip->ops->dbg_show(chip, s);
1038        else
1039                pwm_dbg_show(chip, s);
1040
1041        return 0;
1042}
1043
1044static const struct seq_operations pwm_seq_ops = {
1045        .start = pwm_seq_start,
1046        .next = pwm_seq_next,
1047        .stop = pwm_seq_stop,
1048        .show = pwm_seq_show,
1049};
1050
1051static int pwm_seq_open(struct inode *inode, struct file *file)
1052{
1053        return seq_open(file, &pwm_seq_ops);
1054}
1055
1056static const struct file_operations pwm_debugfs_ops = {
1057        .owner = THIS_MODULE,
1058        .open = pwm_seq_open,
1059        .read = seq_read,
1060        .llseek = seq_lseek,
1061        .release = seq_release,
1062};
1063
1064static int __init pwm_debugfs_init(void)
1065{
1066        debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1067                            &pwm_debugfs_ops);
1068
1069        return 0;
1070}
1071subsys_initcall(pwm_debugfs_init);
1072#endif /* CONFIG_DEBUG_FS */
1073