linux/drivers/scsi/scsi_lib.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 1999 Eric Youngdale
   3 * Copyright (C) 2014 Christoph Hellwig
   4 *
   5 *  SCSI queueing library.
   6 *      Initial versions: Eric Youngdale (eric@andante.org).
   7 *                        Based upon conversations with large numbers
   8 *                        of people at Linux Expo.
   9 */
  10
  11#include <linux/bio.h>
  12#include <linux/bitops.h>
  13#include <linux/blkdev.h>
  14#include <linux/completion.h>
  15#include <linux/kernel.h>
  16#include <linux/export.h>
  17#include <linux/init.h>
  18#include <linux/pci.h>
  19#include <linux/delay.h>
  20#include <linux/hardirq.h>
  21#include <linux/scatterlist.h>
  22#include <linux/blk-mq.h>
  23#include <linux/ratelimit.h>
  24#include <asm/unaligned.h>
  25
  26#include <scsi/scsi.h>
  27#include <scsi/scsi_cmnd.h>
  28#include <scsi/scsi_dbg.h>
  29#include <scsi/scsi_device.h>
  30#include <scsi/scsi_driver.h>
  31#include <scsi/scsi_eh.h>
  32#include <scsi/scsi_host.h>
  33#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
  34#include <scsi/scsi_dh.h>
  35
  36#include <trace/events/scsi.h>
  37
  38#include "scsi_debugfs.h"
  39#include "scsi_priv.h"
  40#include "scsi_logging.h"
  41
  42static struct kmem_cache *scsi_sdb_cache;
  43static struct kmem_cache *scsi_sense_cache;
  44static struct kmem_cache *scsi_sense_isadma_cache;
  45static DEFINE_MUTEX(scsi_sense_cache_mutex);
  46
  47static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
  48
  49static inline struct kmem_cache *
  50scsi_select_sense_cache(bool unchecked_isa_dma)
  51{
  52        return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
  53}
  54
  55static void scsi_free_sense_buffer(bool unchecked_isa_dma,
  56                                   unsigned char *sense_buffer)
  57{
  58        kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
  59                        sense_buffer);
  60}
  61
  62static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
  63        gfp_t gfp_mask, int numa_node)
  64{
  65        return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
  66                                     gfp_mask, numa_node);
  67}
  68
  69int scsi_init_sense_cache(struct Scsi_Host *shost)
  70{
  71        struct kmem_cache *cache;
  72        int ret = 0;
  73
  74        cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
  75        if (cache)
  76                return 0;
  77
  78        mutex_lock(&scsi_sense_cache_mutex);
  79        if (shost->unchecked_isa_dma) {
  80                scsi_sense_isadma_cache =
  81                        kmem_cache_create("scsi_sense_cache(DMA)",
  82                                SCSI_SENSE_BUFFERSIZE, 0,
  83                                SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
  84                if (!scsi_sense_isadma_cache)
  85                        ret = -ENOMEM;
  86        } else {
  87                scsi_sense_cache =
  88                        kmem_cache_create_usercopy("scsi_sense_cache",
  89                                SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
  90                                0, SCSI_SENSE_BUFFERSIZE, NULL);
  91                if (!scsi_sense_cache)
  92                        ret = -ENOMEM;
  93        }
  94
  95        mutex_unlock(&scsi_sense_cache_mutex);
  96        return ret;
  97}
  98
  99/*
 100 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
 101 * not change behaviour from the previous unplug mechanism, experimentation
 102 * may prove this needs changing.
 103 */
 104#define SCSI_QUEUE_DELAY        3
 105
 106static void
 107scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
 108{
 109        struct Scsi_Host *host = cmd->device->host;
 110        struct scsi_device *device = cmd->device;
 111        struct scsi_target *starget = scsi_target(device);
 112
 113        /*
 114         * Set the appropriate busy bit for the device/host.
 115         *
 116         * If the host/device isn't busy, assume that something actually
 117         * completed, and that we should be able to queue a command now.
 118         *
 119         * Note that the prior mid-layer assumption that any host could
 120         * always queue at least one command is now broken.  The mid-layer
 121         * will implement a user specifiable stall (see
 122         * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 123         * if a command is requeued with no other commands outstanding
 124         * either for the device or for the host.
 125         */
 126        switch (reason) {
 127        case SCSI_MLQUEUE_HOST_BUSY:
 128                atomic_set(&host->host_blocked, host->max_host_blocked);
 129                break;
 130        case SCSI_MLQUEUE_DEVICE_BUSY:
 131        case SCSI_MLQUEUE_EH_RETRY:
 132                atomic_set(&device->device_blocked,
 133                           device->max_device_blocked);
 134                break;
 135        case SCSI_MLQUEUE_TARGET_BUSY:
 136                atomic_set(&starget->target_blocked,
 137                           starget->max_target_blocked);
 138                break;
 139        }
 140}
 141
 142static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
 143{
 144        struct scsi_device *sdev = cmd->device;
 145
 146        if (cmd->request->rq_flags & RQF_DONTPREP) {
 147                cmd->request->rq_flags &= ~RQF_DONTPREP;
 148                scsi_mq_uninit_cmd(cmd);
 149        } else {
 150                WARN_ON_ONCE(true);
 151        }
 152        blk_mq_requeue_request(cmd->request, true);
 153        put_device(&sdev->sdev_gendev);
 154}
 155
 156/**
 157 * __scsi_queue_insert - private queue insertion
 158 * @cmd: The SCSI command being requeued
 159 * @reason:  The reason for the requeue
 160 * @unbusy: Whether the queue should be unbusied
 161 *
 162 * This is a private queue insertion.  The public interface
 163 * scsi_queue_insert() always assumes the queue should be unbusied
 164 * because it's always called before the completion.  This function is
 165 * for a requeue after completion, which should only occur in this
 166 * file.
 167 */
 168static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
 169{
 170        struct scsi_device *device = cmd->device;
 171        struct request_queue *q = device->request_queue;
 172        unsigned long flags;
 173
 174        SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 175                "Inserting command %p into mlqueue\n", cmd));
 176
 177        scsi_set_blocked(cmd, reason);
 178
 179        /*
 180         * Decrement the counters, since these commands are no longer
 181         * active on the host/device.
 182         */
 183        if (unbusy)
 184                scsi_device_unbusy(device);
 185
 186        /*
 187         * Requeue this command.  It will go before all other commands
 188         * that are already in the queue. Schedule requeue work under
 189         * lock such that the kblockd_schedule_work() call happens
 190         * before blk_cleanup_queue() finishes.
 191         */
 192        cmd->result = 0;
 193        if (q->mq_ops) {
 194                /*
 195                 * Before a SCSI command is dispatched,
 196                 * get_device(&sdev->sdev_gendev) is called and the host,
 197                 * target and device busy counters are increased. Since
 198                 * requeuing a request causes these actions to be repeated and
 199                 * since scsi_device_unbusy() has already been called,
 200                 * put_device(&device->sdev_gendev) must still be called. Call
 201                 * put_device() after blk_mq_requeue_request() to avoid that
 202                 * removal of the SCSI device can start before requeueing has
 203                 * happened.
 204                 */
 205                blk_mq_requeue_request(cmd->request, true);
 206                put_device(&device->sdev_gendev);
 207                return;
 208        }
 209        spin_lock_irqsave(q->queue_lock, flags);
 210        blk_requeue_request(q, cmd->request);
 211        kblockd_schedule_work(&device->requeue_work);
 212        spin_unlock_irqrestore(q->queue_lock, flags);
 213}
 214
 215/*
 216 * Function:    scsi_queue_insert()
 217 *
 218 * Purpose:     Insert a command in the midlevel queue.
 219 *
 220 * Arguments:   cmd    - command that we are adding to queue.
 221 *              reason - why we are inserting command to queue.
 222 *
 223 * Lock status: Assumed that lock is not held upon entry.
 224 *
 225 * Returns:     Nothing.
 226 *
 227 * Notes:       We do this for one of two cases.  Either the host is busy
 228 *              and it cannot accept any more commands for the time being,
 229 *              or the device returned QUEUE_FULL and can accept no more
 230 *              commands.
 231 * Notes:       This could be called either from an interrupt context or a
 232 *              normal process context.
 233 */
 234void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 235{
 236        __scsi_queue_insert(cmd, reason, true);
 237}
 238
 239
 240/**
 241 * __scsi_execute - insert request and wait for the result
 242 * @sdev:       scsi device
 243 * @cmd:        scsi command
 244 * @data_direction: data direction
 245 * @buffer:     data buffer
 246 * @bufflen:    len of buffer
 247 * @sense:      optional sense buffer
 248 * @sshdr:      optional decoded sense header
 249 * @timeout:    request timeout in seconds
 250 * @retries:    number of times to retry request
 251 * @flags:      flags for ->cmd_flags
 252 * @rq_flags:   flags for ->rq_flags
 253 * @resid:      optional residual length
 254 *
 255 * Returns the scsi_cmnd result field if a command was executed, or a negative
 256 * Linux error code if we didn't get that far.
 257 */
 258int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 259                 int data_direction, void *buffer, unsigned bufflen,
 260                 unsigned char *sense, struct scsi_sense_hdr *sshdr,
 261                 int timeout, int retries, u64 flags, req_flags_t rq_flags,
 262                 int *resid)
 263{
 264        struct request *req;
 265        struct scsi_request *rq;
 266        int ret = DRIVER_ERROR << 24;
 267
 268        req = blk_get_request(sdev->request_queue,
 269                        data_direction == DMA_TO_DEVICE ?
 270                        REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
 271        if (IS_ERR(req))
 272                return ret;
 273        rq = scsi_req(req);
 274
 275        if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
 276                                        buffer, bufflen, GFP_NOIO))
 277                goto out;
 278
 279        rq->cmd_len = COMMAND_SIZE(cmd[0]);
 280        memcpy(rq->cmd, cmd, rq->cmd_len);
 281        rq->retries = retries;
 282        req->timeout = timeout;
 283        req->cmd_flags |= flags;
 284        req->rq_flags |= rq_flags | RQF_QUIET;
 285
 286        /*
 287         * head injection *required* here otherwise quiesce won't work
 288         */
 289        blk_execute_rq(req->q, NULL, req, 1);
 290
 291        /*
 292         * Some devices (USB mass-storage in particular) may transfer
 293         * garbage data together with a residue indicating that the data
 294         * is invalid.  Prevent the garbage from being misinterpreted
 295         * and prevent security leaks by zeroing out the excess data.
 296         */
 297        if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
 298                memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
 299
 300        if (resid)
 301                *resid = rq->resid_len;
 302        if (sense && rq->sense_len)
 303                memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
 304        if (sshdr)
 305                scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
 306        ret = rq->result;
 307 out:
 308        blk_put_request(req);
 309
 310        return ret;
 311}
 312EXPORT_SYMBOL(__scsi_execute);
 313
 314/*
 315 * Function:    scsi_init_cmd_errh()
 316 *
 317 * Purpose:     Initialize cmd fields related to error handling.
 318 *
 319 * Arguments:   cmd     - command that is ready to be queued.
 320 *
 321 * Notes:       This function has the job of initializing a number of
 322 *              fields related to error handling.   Typically this will
 323 *              be called once for each command, as required.
 324 */
 325static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 326{
 327        cmd->serial_number = 0;
 328        scsi_set_resid(cmd, 0);
 329        memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 330        if (cmd->cmd_len == 0)
 331                cmd->cmd_len = scsi_command_size(cmd->cmnd);
 332}
 333
 334/*
 335 * Decrement the host_busy counter and wake up the error handler if necessary.
 336 * Avoid as follows that the error handler is not woken up if shost->host_busy
 337 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
 338 * with an RCU read lock in this function to ensure that this function in its
 339 * entirety either finishes before scsi_eh_scmd_add() increases the
 340 * host_failed counter or that it notices the shost state change made by
 341 * scsi_eh_scmd_add().
 342 */
 343static void scsi_dec_host_busy(struct Scsi_Host *shost)
 344{
 345        unsigned long flags;
 346
 347        rcu_read_lock();
 348        atomic_dec(&shost->host_busy);
 349        if (unlikely(scsi_host_in_recovery(shost))) {
 350                spin_lock_irqsave(shost->host_lock, flags);
 351                if (shost->host_failed || shost->host_eh_scheduled)
 352                        scsi_eh_wakeup(shost);
 353                spin_unlock_irqrestore(shost->host_lock, flags);
 354        }
 355        rcu_read_unlock();
 356}
 357
 358void scsi_device_unbusy(struct scsi_device *sdev)
 359{
 360        struct Scsi_Host *shost = sdev->host;
 361        struct scsi_target *starget = scsi_target(sdev);
 362
 363        scsi_dec_host_busy(shost);
 364
 365        if (starget->can_queue > 0)
 366                atomic_dec(&starget->target_busy);
 367
 368        atomic_dec(&sdev->device_busy);
 369}
 370
 371static void scsi_kick_queue(struct request_queue *q)
 372{
 373        if (q->mq_ops)
 374                blk_mq_run_hw_queues(q, false);
 375        else
 376                blk_run_queue(q);
 377}
 378
 379/*
 380 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 381 * and call blk_run_queue for all the scsi_devices on the target -
 382 * including current_sdev first.
 383 *
 384 * Called with *no* scsi locks held.
 385 */
 386static void scsi_single_lun_run(struct scsi_device *current_sdev)
 387{
 388        struct Scsi_Host *shost = current_sdev->host;
 389        struct scsi_device *sdev, *tmp;
 390        struct scsi_target *starget = scsi_target(current_sdev);
 391        unsigned long flags;
 392
 393        spin_lock_irqsave(shost->host_lock, flags);
 394        starget->starget_sdev_user = NULL;
 395        spin_unlock_irqrestore(shost->host_lock, flags);
 396
 397        /*
 398         * Call blk_run_queue for all LUNs on the target, starting with
 399         * current_sdev. We race with others (to set starget_sdev_user),
 400         * but in most cases, we will be first. Ideally, each LU on the
 401         * target would get some limited time or requests on the target.
 402         */
 403        scsi_kick_queue(current_sdev->request_queue);
 404
 405        spin_lock_irqsave(shost->host_lock, flags);
 406        if (starget->starget_sdev_user)
 407                goto out;
 408        list_for_each_entry_safe(sdev, tmp, &starget->devices,
 409                        same_target_siblings) {
 410                if (sdev == current_sdev)
 411                        continue;
 412                if (scsi_device_get(sdev))
 413                        continue;
 414
 415                spin_unlock_irqrestore(shost->host_lock, flags);
 416                scsi_kick_queue(sdev->request_queue);
 417                spin_lock_irqsave(shost->host_lock, flags);
 418        
 419                scsi_device_put(sdev);
 420        }
 421 out:
 422        spin_unlock_irqrestore(shost->host_lock, flags);
 423}
 424
 425static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 426{
 427        if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
 428                return true;
 429        if (atomic_read(&sdev->device_blocked) > 0)
 430                return true;
 431        return false;
 432}
 433
 434static inline bool scsi_target_is_busy(struct scsi_target *starget)
 435{
 436        if (starget->can_queue > 0) {
 437                if (atomic_read(&starget->target_busy) >= starget->can_queue)
 438                        return true;
 439                if (atomic_read(&starget->target_blocked) > 0)
 440                        return true;
 441        }
 442        return false;
 443}
 444
 445static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 446{
 447        if (shost->can_queue > 0 &&
 448            atomic_read(&shost->host_busy) >= shost->can_queue)
 449                return true;
 450        if (atomic_read(&shost->host_blocked) > 0)
 451                return true;
 452        if (shost->host_self_blocked)
 453                return true;
 454        return false;
 455}
 456
 457static void scsi_starved_list_run(struct Scsi_Host *shost)
 458{
 459        LIST_HEAD(starved_list);
 460        struct scsi_device *sdev;
 461        unsigned long flags;
 462
 463        spin_lock_irqsave(shost->host_lock, flags);
 464        list_splice_init(&shost->starved_list, &starved_list);
 465
 466        while (!list_empty(&starved_list)) {
 467                struct request_queue *slq;
 468
 469                /*
 470                 * As long as shost is accepting commands and we have
 471                 * starved queues, call blk_run_queue. scsi_request_fn
 472                 * drops the queue_lock and can add us back to the
 473                 * starved_list.
 474                 *
 475                 * host_lock protects the starved_list and starved_entry.
 476                 * scsi_request_fn must get the host_lock before checking
 477                 * or modifying starved_list or starved_entry.
 478                 */
 479                if (scsi_host_is_busy(shost))
 480                        break;
 481
 482                sdev = list_entry(starved_list.next,
 483                                  struct scsi_device, starved_entry);
 484                list_del_init(&sdev->starved_entry);
 485                if (scsi_target_is_busy(scsi_target(sdev))) {
 486                        list_move_tail(&sdev->starved_entry,
 487                                       &shost->starved_list);
 488                        continue;
 489                }
 490
 491                /*
 492                 * Once we drop the host lock, a racing scsi_remove_device()
 493                 * call may remove the sdev from the starved list and destroy
 494                 * it and the queue.  Mitigate by taking a reference to the
 495                 * queue and never touching the sdev again after we drop the
 496                 * host lock.  Note: if __scsi_remove_device() invokes
 497                 * blk_cleanup_queue() before the queue is run from this
 498                 * function then blk_run_queue() will return immediately since
 499                 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
 500                 */
 501                slq = sdev->request_queue;
 502                if (!blk_get_queue(slq))
 503                        continue;
 504                spin_unlock_irqrestore(shost->host_lock, flags);
 505
 506                scsi_kick_queue(slq);
 507                blk_put_queue(slq);
 508
 509                spin_lock_irqsave(shost->host_lock, flags);
 510        }
 511        /* put any unprocessed entries back */
 512        list_splice(&starved_list, &shost->starved_list);
 513        spin_unlock_irqrestore(shost->host_lock, flags);
 514}
 515
 516/*
 517 * Function:   scsi_run_queue()
 518 *
 519 * Purpose:    Select a proper request queue to serve next
 520 *
 521 * Arguments:  q       - last request's queue
 522 *
 523 * Returns:     Nothing
 524 *
 525 * Notes:      The previous command was completely finished, start
 526 *             a new one if possible.
 527 */
 528static void scsi_run_queue(struct request_queue *q)
 529{
 530        struct scsi_device *sdev = q->queuedata;
 531
 532        if (scsi_target(sdev)->single_lun)
 533                scsi_single_lun_run(sdev);
 534        if (!list_empty(&sdev->host->starved_list))
 535                scsi_starved_list_run(sdev->host);
 536
 537        if (q->mq_ops)
 538                blk_mq_run_hw_queues(q, false);
 539        else
 540                blk_run_queue(q);
 541}
 542
 543void scsi_requeue_run_queue(struct work_struct *work)
 544{
 545        struct scsi_device *sdev;
 546        struct request_queue *q;
 547
 548        sdev = container_of(work, struct scsi_device, requeue_work);
 549        q = sdev->request_queue;
 550        scsi_run_queue(q);
 551}
 552
 553/*
 554 * Function:    scsi_requeue_command()
 555 *
 556 * Purpose:     Handle post-processing of completed commands.
 557 *
 558 * Arguments:   q       - queue to operate on
 559 *              cmd     - command that may need to be requeued.
 560 *
 561 * Returns:     Nothing
 562 *
 563 * Notes:       After command completion, there may be blocks left
 564 *              over which weren't finished by the previous command
 565 *              this can be for a number of reasons - the main one is
 566 *              I/O errors in the middle of the request, in which case
 567 *              we need to request the blocks that come after the bad
 568 *              sector.
 569 * Notes:       Upon return, cmd is a stale pointer.
 570 */
 571static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
 572{
 573        struct scsi_device *sdev = cmd->device;
 574        struct request *req = cmd->request;
 575        unsigned long flags;
 576
 577        spin_lock_irqsave(q->queue_lock, flags);
 578        blk_unprep_request(req);
 579        req->special = NULL;
 580        scsi_put_command(cmd);
 581        blk_requeue_request(q, req);
 582        spin_unlock_irqrestore(q->queue_lock, flags);
 583
 584        scsi_run_queue(q);
 585
 586        put_device(&sdev->sdev_gendev);
 587}
 588
 589void scsi_run_host_queues(struct Scsi_Host *shost)
 590{
 591        struct scsi_device *sdev;
 592
 593        shost_for_each_device(sdev, shost)
 594                scsi_run_queue(sdev->request_queue);
 595}
 596
 597static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 598{
 599        if (!blk_rq_is_passthrough(cmd->request)) {
 600                struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 601
 602                if (drv->uninit_command)
 603                        drv->uninit_command(cmd);
 604        }
 605}
 606
 607static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
 608{
 609        struct scsi_data_buffer *sdb;
 610
 611        if (cmd->sdb.table.nents)
 612                sg_free_table_chained(&cmd->sdb.table, true);
 613        if (cmd->request->next_rq) {
 614                sdb = cmd->request->next_rq->special;
 615                if (sdb)
 616                        sg_free_table_chained(&sdb->table, true);
 617        }
 618        if (scsi_prot_sg_count(cmd))
 619                sg_free_table_chained(&cmd->prot_sdb->table, true);
 620}
 621
 622static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 623{
 624        scsi_mq_free_sgtables(cmd);
 625        scsi_uninit_cmd(cmd);
 626        scsi_del_cmd_from_list(cmd);
 627}
 628
 629/*
 630 * Function:    scsi_release_buffers()
 631 *
 632 * Purpose:     Free resources allocate for a scsi_command.
 633 *
 634 * Arguments:   cmd     - command that we are bailing.
 635 *
 636 * Lock status: Assumed that no lock is held upon entry.
 637 *
 638 * Returns:     Nothing
 639 *
 640 * Notes:       In the event that an upper level driver rejects a
 641 *              command, we must release resources allocated during
 642 *              the __init_io() function.  Primarily this would involve
 643 *              the scatter-gather table.
 644 */
 645static void scsi_release_buffers(struct scsi_cmnd *cmd)
 646{
 647        if (cmd->sdb.table.nents)
 648                sg_free_table_chained(&cmd->sdb.table, false);
 649
 650        memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 651
 652        if (scsi_prot_sg_count(cmd))
 653                sg_free_table_chained(&cmd->prot_sdb->table, false);
 654}
 655
 656static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
 657{
 658        struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
 659
 660        sg_free_table_chained(&bidi_sdb->table, false);
 661        kmem_cache_free(scsi_sdb_cache, bidi_sdb);
 662        cmd->request->next_rq->special = NULL;
 663}
 664
 665/* Returns false when no more bytes to process, true if there are more */
 666static bool scsi_end_request(struct request *req, blk_status_t error,
 667                unsigned int bytes, unsigned int bidi_bytes)
 668{
 669        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 670        struct scsi_device *sdev = cmd->device;
 671        struct request_queue *q = sdev->request_queue;
 672
 673        if (blk_update_request(req, error, bytes))
 674                return true;
 675
 676        /* Bidi request must be completed as a whole */
 677        if (unlikely(bidi_bytes) &&
 678            blk_update_request(req->next_rq, error, bidi_bytes))
 679                return true;
 680
 681        if (blk_queue_add_random(q))
 682                add_disk_randomness(req->rq_disk);
 683
 684        if (!blk_rq_is_scsi(req)) {
 685                WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
 686                cmd->flags &= ~SCMD_INITIALIZED;
 687                destroy_rcu_head(&cmd->rcu);
 688        }
 689
 690        if (req->mq_ctx) {
 691                /*
 692                 * In the MQ case the command gets freed by __blk_mq_end_request,
 693                 * so we have to do all cleanup that depends on it earlier.
 694                 *
 695                 * We also can't kick the queues from irq context, so we
 696                 * will have to defer it to a workqueue.
 697                 */
 698                scsi_mq_uninit_cmd(cmd);
 699
 700                __blk_mq_end_request(req, error);
 701
 702                if (scsi_target(sdev)->single_lun ||
 703                    !list_empty(&sdev->host->starved_list))
 704                        kblockd_schedule_work(&sdev->requeue_work);
 705                else
 706                        blk_mq_run_hw_queues(q, true);
 707        } else {
 708                unsigned long flags;
 709
 710                if (bidi_bytes)
 711                        scsi_release_bidi_buffers(cmd);
 712                scsi_release_buffers(cmd);
 713                scsi_put_command(cmd);
 714
 715                spin_lock_irqsave(q->queue_lock, flags);
 716                blk_finish_request(req, error);
 717                spin_unlock_irqrestore(q->queue_lock, flags);
 718
 719                scsi_run_queue(q);
 720        }
 721
 722        put_device(&sdev->sdev_gendev);
 723        return false;
 724}
 725
 726/**
 727 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
 728 * @cmd:        SCSI command
 729 * @result:     scsi error code
 730 *
 731 * Translate a SCSI result code into a blk_status_t value. May reset the host
 732 * byte of @cmd->result.
 733 */
 734static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
 735{
 736        switch (host_byte(result)) {
 737        case DID_OK:
 738                /*
 739                 * Also check the other bytes than the status byte in result
 740                 * to handle the case when a SCSI LLD sets result to
 741                 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
 742                 */
 743                if (scsi_status_is_good(result) && (result & ~0xff) == 0)
 744                        return BLK_STS_OK;
 745                return BLK_STS_IOERR;
 746        case DID_TRANSPORT_FAILFAST:
 747                return BLK_STS_TRANSPORT;
 748        case DID_TARGET_FAILURE:
 749                set_host_byte(cmd, DID_OK);
 750                return BLK_STS_TARGET;
 751        case DID_NEXUS_FAILURE:
 752                return BLK_STS_NEXUS;
 753        case DID_ALLOC_FAILURE:
 754                set_host_byte(cmd, DID_OK);
 755                return BLK_STS_NOSPC;
 756        case DID_MEDIUM_ERROR:
 757                set_host_byte(cmd, DID_OK);
 758                return BLK_STS_MEDIUM;
 759        default:
 760                return BLK_STS_IOERR;
 761        }
 762}
 763
 764/* Helper for scsi_io_completion() when "reprep" action required. */
 765static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
 766                                      struct request_queue *q)
 767{
 768        /* A new command will be prepared and issued. */
 769        if (q->mq_ops) {
 770                scsi_mq_requeue_cmd(cmd);
 771        } else {
 772                /* Unprep request and put it back at head of the queue. */
 773                scsi_release_buffers(cmd);
 774                scsi_requeue_command(q, cmd);
 775        }
 776}
 777
 778/* Helper for scsi_io_completion() when special action required. */
 779static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
 780{
 781        struct request_queue *q = cmd->device->request_queue;
 782        struct request *req = cmd->request;
 783        int level = 0;
 784        enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 785              ACTION_DELAYED_RETRY} action;
 786        unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
 787        struct scsi_sense_hdr sshdr;
 788        bool sense_valid;
 789        bool sense_current = true;      /* false implies "deferred sense" */
 790        blk_status_t blk_stat;
 791
 792        sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 793        if (sense_valid)
 794                sense_current = !scsi_sense_is_deferred(&sshdr);
 795
 796        blk_stat = scsi_result_to_blk_status(cmd, result);
 797
 798        if (host_byte(result) == DID_RESET) {
 799                /* Third party bus reset or reset for error recovery
 800                 * reasons.  Just retry the command and see what
 801                 * happens.
 802                 */
 803                action = ACTION_RETRY;
 804        } else if (sense_valid && sense_current) {
 805                switch (sshdr.sense_key) {
 806                case UNIT_ATTENTION:
 807                        if (cmd->device->removable) {
 808                                /* Detected disc change.  Set a bit
 809                                 * and quietly refuse further access.
 810                                 */
 811                                cmd->device->changed = 1;
 812                                action = ACTION_FAIL;
 813                        } else {
 814                                /* Must have been a power glitch, or a
 815                                 * bus reset.  Could not have been a
 816                                 * media change, so we just retry the
 817                                 * command and see what happens.
 818                                 */
 819                                action = ACTION_RETRY;
 820                        }
 821                        break;
 822                case ILLEGAL_REQUEST:
 823                        /* If we had an ILLEGAL REQUEST returned, then
 824                         * we may have performed an unsupported
 825                         * command.  The only thing this should be
 826                         * would be a ten byte read where only a six
 827                         * byte read was supported.  Also, on a system
 828                         * where READ CAPACITY failed, we may have
 829                         * read past the end of the disk.
 830                         */
 831                        if ((cmd->device->use_10_for_rw &&
 832                            sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 833                            (cmd->cmnd[0] == READ_10 ||
 834                             cmd->cmnd[0] == WRITE_10)) {
 835                                /* This will issue a new 6-byte command. */
 836                                cmd->device->use_10_for_rw = 0;
 837                                action = ACTION_REPREP;
 838                        } else if (sshdr.asc == 0x10) /* DIX */ {
 839                                action = ACTION_FAIL;
 840                                blk_stat = BLK_STS_PROTECTION;
 841                        /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 842                        } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 843                                action = ACTION_FAIL;
 844                                blk_stat = BLK_STS_TARGET;
 845                        } else
 846                                action = ACTION_FAIL;
 847                        break;
 848                case ABORTED_COMMAND:
 849                        action = ACTION_FAIL;
 850                        if (sshdr.asc == 0x10) /* DIF */
 851                                blk_stat = BLK_STS_PROTECTION;
 852                        break;
 853                case NOT_READY:
 854                        /* If the device is in the process of becoming
 855                         * ready, or has a temporary blockage, retry.
 856                         */
 857                        if (sshdr.asc == 0x04) {
 858                                switch (sshdr.ascq) {
 859                                case 0x01: /* becoming ready */
 860                                case 0x04: /* format in progress */
 861                                case 0x05: /* rebuild in progress */
 862                                case 0x06: /* recalculation in progress */
 863                                case 0x07: /* operation in progress */
 864                                case 0x08: /* Long write in progress */
 865                                case 0x09: /* self test in progress */
 866                                case 0x14: /* space allocation in progress */
 867                                case 0x1a: /* start stop unit in progress */
 868                                case 0x1b: /* sanitize in progress */
 869                                case 0x1d: /* configuration in progress */
 870                                case 0x24: /* depopulation in progress */
 871                                        action = ACTION_DELAYED_RETRY;
 872                                        break;
 873                                default:
 874                                        action = ACTION_FAIL;
 875                                        break;
 876                                }
 877                        } else
 878                                action = ACTION_FAIL;
 879                        break;
 880                case VOLUME_OVERFLOW:
 881                        /* See SSC3rXX or current. */
 882                        action = ACTION_FAIL;
 883                        break;
 884                default:
 885                        action = ACTION_FAIL;
 886                        break;
 887                }
 888        } else
 889                action = ACTION_FAIL;
 890
 891        if (action != ACTION_FAIL &&
 892            time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
 893                action = ACTION_FAIL;
 894
 895        switch (action) {
 896        case ACTION_FAIL:
 897                /* Give up and fail the remainder of the request */
 898                if (!(req->rq_flags & RQF_QUIET)) {
 899                        static DEFINE_RATELIMIT_STATE(_rs,
 900                                        DEFAULT_RATELIMIT_INTERVAL,
 901                                        DEFAULT_RATELIMIT_BURST);
 902
 903                        if (unlikely(scsi_logging_level))
 904                                level =
 905                                     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
 906                                                    SCSI_LOG_MLCOMPLETE_BITS);
 907
 908                        /*
 909                         * if logging is enabled the failure will be printed
 910                         * in scsi_log_completion(), so avoid duplicate messages
 911                         */
 912                        if (!level && __ratelimit(&_rs)) {
 913                                scsi_print_result(cmd, NULL, FAILED);
 914                                if (driver_byte(result) == DRIVER_SENSE)
 915                                        scsi_print_sense(cmd);
 916                                scsi_print_command(cmd);
 917                        }
 918                }
 919                if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req), 0))
 920                        return;
 921                /*FALLTHRU*/
 922        case ACTION_REPREP:
 923                scsi_io_completion_reprep(cmd, q);
 924                break;
 925        case ACTION_RETRY:
 926                /* Retry the same command immediately */
 927                __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
 928                break;
 929        case ACTION_DELAYED_RETRY:
 930                /* Retry the same command after a delay */
 931                __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
 932                break;
 933        }
 934}
 935
 936/*
 937 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
 938 * new result that may suppress further error checking. Also modifies
 939 * *blk_statp in some cases.
 940 */
 941static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
 942                                        blk_status_t *blk_statp)
 943{
 944        bool sense_valid;
 945        bool sense_current = true;      /* false implies "deferred sense" */
 946        struct request *req = cmd->request;
 947        struct scsi_sense_hdr sshdr;
 948
 949        sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 950        if (sense_valid)
 951                sense_current = !scsi_sense_is_deferred(&sshdr);
 952
 953        if (blk_rq_is_passthrough(req)) {
 954                if (sense_valid) {
 955                        /*
 956                         * SG_IO wants current and deferred errors
 957                         */
 958                        scsi_req(req)->sense_len =
 959                                min(8 + cmd->sense_buffer[7],
 960                                    SCSI_SENSE_BUFFERSIZE);
 961                }
 962                if (sense_current)
 963                        *blk_statp = scsi_result_to_blk_status(cmd, result);
 964        } else if (blk_rq_bytes(req) == 0 && sense_current) {
 965                /*
 966                 * Flush commands do not transfers any data, and thus cannot use
 967                 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 968                 * This sets *blk_statp explicitly for the problem case.
 969                 */
 970                *blk_statp = scsi_result_to_blk_status(cmd, result);
 971        }
 972        /*
 973         * Recovered errors need reporting, but they're always treated as
 974         * success, so fiddle the result code here.  For passthrough requests
 975         * we already took a copy of the original into sreq->result which
 976         * is what gets returned to the user
 977         */
 978        if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 979                bool do_print = true;
 980                /*
 981                 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
 982                 * skip print since caller wants ATA registers. Only occurs
 983                 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
 984                 */
 985                if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 986                        do_print = false;
 987                else if (req->rq_flags & RQF_QUIET)
 988                        do_print = false;
 989                if (do_print)
 990                        scsi_print_sense(cmd);
 991                result = 0;
 992                /* for passthrough, *blk_statp may be set */
 993                *blk_statp = BLK_STS_OK;
 994        }
 995        /*
 996         * Another corner case: the SCSI status byte is non-zero but 'good'.
 997         * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
 998         * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
 999         * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1000         * intermediate statuses (both obsolete in SAM-4) as good.
1001         */
1002        if (status_byte(result) && scsi_status_is_good(result)) {
1003                result = 0;
1004                *blk_statp = BLK_STS_OK;
1005        }
1006        return result;
1007}
1008
1009/*
1010 * Function:    scsi_io_completion()
1011 *
1012 * Purpose:     Completion processing for block device I/O requests.
1013 *
1014 * Arguments:   cmd   - command that is finished.
1015 *
1016 * Lock status: Assumed that no lock is held upon entry.
1017 *
1018 * Returns:     Nothing
1019 *
1020 * Notes:       We will finish off the specified number of sectors.  If we
1021 *              are done, the command block will be released and the queue
1022 *              function will be goosed.  If we are not done then we have to
1023 *              figure out what to do next:
1024 *
1025 *              a) We can call scsi_requeue_command().  The request
1026 *                 will be unprepared and put back on the queue.  Then
1027 *                 a new command will be created for it.  This should
1028 *                 be used if we made forward progress, or if we want
1029 *                 to switch from READ(10) to READ(6) for example.
1030 *
1031 *              b) We can call __scsi_queue_insert().  The request will
1032 *                 be put back on the queue and retried using the same
1033 *                 command as before, possibly after a delay.
1034 *
1035 *              c) We can call scsi_end_request() with blk_stat other than
1036 *                 BLK_STS_OK, to fail the remainder of the request.
1037 */
1038void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1039{
1040        int result = cmd->result;
1041        struct request_queue *q = cmd->device->request_queue;
1042        struct request *req = cmd->request;
1043        blk_status_t blk_stat = BLK_STS_OK;
1044
1045        if (unlikely(result))   /* a nz result may or may not be an error */
1046                result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1047
1048        if (unlikely(blk_rq_is_passthrough(req))) {
1049                /*
1050                 * scsi_result_to_blk_status may have reset the host_byte
1051                 */
1052                scsi_req(req)->result = cmd->result;
1053                scsi_req(req)->resid_len = scsi_get_resid(cmd);
1054
1055                if (unlikely(scsi_bidi_cmnd(cmd))) {
1056                        /*
1057                         * Bidi commands Must be complete as a whole,
1058                         * both sides at once.
1059                         */
1060                        scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
1061                        if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
1062                                        blk_rq_bytes(req->next_rq)))
1063                                WARN_ONCE(true,
1064                                          "Bidi command with remaining bytes");
1065                        return;
1066                }
1067        }
1068
1069        /* no bidi support yet, other than in pass-through */
1070        if (unlikely(blk_bidi_rq(req))) {
1071                WARN_ONCE(true, "Only support bidi command in passthrough");
1072                scmd_printk(KERN_ERR, cmd, "Killing bidi command\n");
1073                if (scsi_end_request(req, BLK_STS_IOERR, blk_rq_bytes(req),
1074                                     blk_rq_bytes(req->next_rq)))
1075                        WARN_ONCE(true, "Bidi command with remaining bytes");
1076                return;
1077        }
1078
1079        /*
1080         * Next deal with any sectors which we were able to correctly
1081         * handle.
1082         */
1083        SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1084                "%u sectors total, %d bytes done.\n",
1085                blk_rq_sectors(req), good_bytes));
1086
1087        /*
1088         * Next deal with any sectors which we were able to correctly
1089         * handle. Failed, zero length commands always need to drop down
1090         * to retry code. Fast path should return in this block.
1091         */
1092        if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1093                if (likely(!scsi_end_request(req, blk_stat, good_bytes, 0)))
1094                        return; /* no bytes remaining */
1095        }
1096
1097        /* Kill remainder if no retries. */
1098        if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1099                if (scsi_end_request(req, blk_stat, blk_rq_bytes(req), 0))
1100                        WARN_ONCE(true,
1101                            "Bytes remaining after failed, no-retry command");
1102                return;
1103        }
1104
1105        /*
1106         * If there had been no error, but we have leftover bytes in the
1107         * requeues just queue the command up again.
1108         */
1109        if (likely(result == 0))
1110                scsi_io_completion_reprep(cmd, q);
1111        else
1112                scsi_io_completion_action(cmd, result);
1113}
1114
1115static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1116{
1117        int count;
1118
1119        /*
1120         * If sg table allocation fails, requeue request later.
1121         */
1122        if (unlikely(sg_alloc_table_chained(&sdb->table,
1123                        blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1124                return BLKPREP_DEFER;
1125
1126        /* 
1127         * Next, walk the list, and fill in the addresses and sizes of
1128         * each segment.
1129         */
1130        count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1131        BUG_ON(count > sdb->table.nents);
1132        sdb->table.nents = count;
1133        sdb->length = blk_rq_payload_bytes(req);
1134        return BLKPREP_OK;
1135}
1136
1137/*
1138 * Function:    scsi_init_io()
1139 *
1140 * Purpose:     SCSI I/O initialize function.
1141 *
1142 * Arguments:   cmd   - Command descriptor we wish to initialize
1143 *
1144 * Returns:     0 on success
1145 *              BLKPREP_DEFER if the failure is retryable
1146 *              BLKPREP_KILL if the failure is fatal
1147 */
1148int scsi_init_io(struct scsi_cmnd *cmd)
1149{
1150        struct scsi_device *sdev = cmd->device;
1151        struct request *rq = cmd->request;
1152        bool is_mq = (rq->mq_ctx != NULL);
1153        int error = BLKPREP_KILL;
1154
1155        if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1156                goto err_exit;
1157
1158        error = scsi_init_sgtable(rq, &cmd->sdb);
1159        if (error)
1160                goto err_exit;
1161
1162        if (blk_bidi_rq(rq)) {
1163                if (!rq->q->mq_ops) {
1164                        struct scsi_data_buffer *bidi_sdb =
1165                                kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1166                        if (!bidi_sdb) {
1167                                error = BLKPREP_DEFER;
1168                                goto err_exit;
1169                        }
1170
1171                        rq->next_rq->special = bidi_sdb;
1172                }
1173
1174                error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1175                if (error)
1176                        goto err_exit;
1177        }
1178
1179        if (blk_integrity_rq(rq)) {
1180                struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1181                int ivecs, count;
1182
1183                if (prot_sdb == NULL) {
1184                        /*
1185                         * This can happen if someone (e.g. multipath)
1186                         * queues a command to a device on an adapter
1187                         * that does not support DIX.
1188                         */
1189                        WARN_ON_ONCE(1);
1190                        error = BLKPREP_KILL;
1191                        goto err_exit;
1192                }
1193
1194                ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1195
1196                if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1197                                prot_sdb->table.sgl)) {
1198                        error = BLKPREP_DEFER;
1199                        goto err_exit;
1200                }
1201
1202                count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1203                                                prot_sdb->table.sgl);
1204                BUG_ON(unlikely(count > ivecs));
1205                BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1206
1207                cmd->prot_sdb = prot_sdb;
1208                cmd->prot_sdb->table.nents = count;
1209        }
1210
1211        return BLKPREP_OK;
1212err_exit:
1213        if (is_mq) {
1214                scsi_mq_free_sgtables(cmd);
1215        } else {
1216                scsi_release_buffers(cmd);
1217                cmd->request->special = NULL;
1218                scsi_put_command(cmd);
1219                put_device(&sdev->sdev_gendev);
1220        }
1221        return error;
1222}
1223EXPORT_SYMBOL(scsi_init_io);
1224
1225/**
1226 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1227 * @rq: Request associated with the SCSI command to be initialized.
1228 *
1229 * This function initializes the members of struct scsi_cmnd that must be
1230 * initialized before request processing starts and that won't be
1231 * reinitialized if a SCSI command is requeued.
1232 *
1233 * Called from inside blk_get_request() for pass-through requests and from
1234 * inside scsi_init_command() for filesystem requests.
1235 */
1236static void scsi_initialize_rq(struct request *rq)
1237{
1238        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1239
1240        scsi_req_init(&cmd->req);
1241        init_rcu_head(&cmd->rcu);
1242        cmd->jiffies_at_alloc = jiffies;
1243        cmd->retries = 0;
1244}
1245
1246/* Add a command to the list used by the aacraid and dpt_i2o drivers */
1247void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1248{
1249        struct scsi_device *sdev = cmd->device;
1250        struct Scsi_Host *shost = sdev->host;
1251        unsigned long flags;
1252
1253        if (shost->use_cmd_list) {
1254                spin_lock_irqsave(&sdev->list_lock, flags);
1255                list_add_tail(&cmd->list, &sdev->cmd_list);
1256                spin_unlock_irqrestore(&sdev->list_lock, flags);
1257        }
1258}
1259
1260/* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1261void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1262{
1263        struct scsi_device *sdev = cmd->device;
1264        struct Scsi_Host *shost = sdev->host;
1265        unsigned long flags;
1266
1267        if (shost->use_cmd_list) {
1268                spin_lock_irqsave(&sdev->list_lock, flags);
1269                BUG_ON(list_empty(&cmd->list));
1270                list_del_init(&cmd->list);
1271                spin_unlock_irqrestore(&sdev->list_lock, flags);
1272        }
1273}
1274
1275/* Called after a request has been started. */
1276void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1277{
1278        void *buf = cmd->sense_buffer;
1279        void *prot = cmd->prot_sdb;
1280        struct request *rq = blk_mq_rq_from_pdu(cmd);
1281        unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1282        unsigned long jiffies_at_alloc;
1283        int retries;
1284
1285        if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1286                flags |= SCMD_INITIALIZED;
1287                scsi_initialize_rq(rq);
1288        }
1289
1290        jiffies_at_alloc = cmd->jiffies_at_alloc;
1291        retries = cmd->retries;
1292        /* zero out the cmd, except for the embedded scsi_request */
1293        memset((char *)cmd + sizeof(cmd->req), 0,
1294                sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1295
1296        cmd->device = dev;
1297        cmd->sense_buffer = buf;
1298        cmd->prot_sdb = prot;
1299        cmd->flags = flags;
1300        INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1301        cmd->jiffies_at_alloc = jiffies_at_alloc;
1302        cmd->retries = retries;
1303
1304        scsi_add_cmd_to_list(cmd);
1305}
1306
1307static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1308{
1309        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1310
1311        /*
1312         * Passthrough requests may transfer data, in which case they must
1313         * a bio attached to them.  Or they might contain a SCSI command
1314         * that does not transfer data, in which case they may optionally
1315         * submit a request without an attached bio.
1316         */
1317        if (req->bio) {
1318                int ret = scsi_init_io(cmd);
1319                if (unlikely(ret))
1320                        return ret;
1321        } else {
1322                BUG_ON(blk_rq_bytes(req));
1323
1324                memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1325        }
1326
1327        cmd->cmd_len = scsi_req(req)->cmd_len;
1328        cmd->cmnd = scsi_req(req)->cmd;
1329        cmd->transfersize = blk_rq_bytes(req);
1330        cmd->allowed = scsi_req(req)->retries;
1331        return BLKPREP_OK;
1332}
1333
1334/*
1335 * Setup a normal block command.  These are simple request from filesystems
1336 * that still need to be translated to SCSI CDBs from the ULD.
1337 */
1338static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1339{
1340        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1341
1342        if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1343                int ret = sdev->handler->prep_fn(sdev, req);
1344                if (ret != BLKPREP_OK)
1345                        return ret;
1346        }
1347
1348        cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1349        memset(cmd->cmnd, 0, BLK_MAX_CDB);
1350        return scsi_cmd_to_driver(cmd)->init_command(cmd);
1351}
1352
1353static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1354{
1355        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1356
1357        if (!blk_rq_bytes(req))
1358                cmd->sc_data_direction = DMA_NONE;
1359        else if (rq_data_dir(req) == WRITE)
1360                cmd->sc_data_direction = DMA_TO_DEVICE;
1361        else
1362                cmd->sc_data_direction = DMA_FROM_DEVICE;
1363
1364        if (blk_rq_is_scsi(req))
1365                return scsi_setup_scsi_cmnd(sdev, req);
1366        else
1367                return scsi_setup_fs_cmnd(sdev, req);
1368}
1369
1370static int
1371scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1372{
1373        int ret = BLKPREP_OK;
1374
1375        /*
1376         * If the device is not in running state we will reject some
1377         * or all commands.
1378         */
1379        if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1380                switch (sdev->sdev_state) {
1381                case SDEV_OFFLINE:
1382                case SDEV_TRANSPORT_OFFLINE:
1383                        /*
1384                         * If the device is offline we refuse to process any
1385                         * commands.  The device must be brought online
1386                         * before trying any recovery commands.
1387                         */
1388                        sdev_printk(KERN_ERR, sdev,
1389                                    "rejecting I/O to offline device\n");
1390                        ret = BLKPREP_KILL;
1391                        break;
1392                case SDEV_DEL:
1393                        /*
1394                         * If the device is fully deleted, we refuse to
1395                         * process any commands as well.
1396                         */
1397                        sdev_printk(KERN_ERR, sdev,
1398                                    "rejecting I/O to dead device\n");
1399                        ret = BLKPREP_KILL;
1400                        break;
1401                case SDEV_BLOCK:
1402                case SDEV_CREATED_BLOCK:
1403                        ret = BLKPREP_DEFER;
1404                        break;
1405                case SDEV_QUIESCE:
1406                        /*
1407                         * If the devices is blocked we defer normal commands.
1408                         */
1409                        if (req && !(req->rq_flags & RQF_PREEMPT))
1410                                ret = BLKPREP_DEFER;
1411                        break;
1412                default:
1413                        /*
1414                         * For any other not fully online state we only allow
1415                         * special commands.  In particular any user initiated
1416                         * command is not allowed.
1417                         */
1418                        if (req && !(req->rq_flags & RQF_PREEMPT))
1419                                ret = BLKPREP_KILL;
1420                        break;
1421                }
1422        }
1423        return ret;
1424}
1425
1426static int
1427scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1428{
1429        struct scsi_device *sdev = q->queuedata;
1430
1431        switch (ret) {
1432        case BLKPREP_KILL:
1433        case BLKPREP_INVALID:
1434                scsi_req(req)->result = DID_NO_CONNECT << 16;
1435                /* release the command and kill it */
1436                if (req->special) {
1437                        struct scsi_cmnd *cmd = req->special;
1438                        scsi_release_buffers(cmd);
1439                        scsi_put_command(cmd);
1440                        put_device(&sdev->sdev_gendev);
1441                        req->special = NULL;
1442                }
1443                break;
1444        case BLKPREP_DEFER:
1445                /*
1446                 * If we defer, the blk_peek_request() returns NULL, but the
1447                 * queue must be restarted, so we schedule a callback to happen
1448                 * shortly.
1449                 */
1450                if (atomic_read(&sdev->device_busy) == 0)
1451                        blk_delay_queue(q, SCSI_QUEUE_DELAY);
1452                break;
1453        default:
1454                req->rq_flags |= RQF_DONTPREP;
1455        }
1456
1457        return ret;
1458}
1459
1460static int scsi_prep_fn(struct request_queue *q, struct request *req)
1461{
1462        struct scsi_device *sdev = q->queuedata;
1463        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1464        int ret;
1465
1466        ret = scsi_prep_state_check(sdev, req);
1467        if (ret != BLKPREP_OK)
1468                goto out;
1469
1470        if (!req->special) {
1471                /* Bail if we can't get a reference to the device */
1472                if (unlikely(!get_device(&sdev->sdev_gendev))) {
1473                        ret = BLKPREP_DEFER;
1474                        goto out;
1475                }
1476
1477                scsi_init_command(sdev, cmd);
1478                req->special = cmd;
1479        }
1480
1481        cmd->tag = req->tag;
1482        cmd->request = req;
1483        cmd->prot_op = SCSI_PROT_NORMAL;
1484
1485        ret = scsi_setup_cmnd(sdev, req);
1486out:
1487        return scsi_prep_return(q, req, ret);
1488}
1489
1490static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1491{
1492        scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1493}
1494
1495/*
1496 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1497 * return 0.
1498 *
1499 * Called with the queue_lock held.
1500 */
1501static inline int scsi_dev_queue_ready(struct request_queue *q,
1502                                  struct scsi_device *sdev)
1503{
1504        unsigned int busy;
1505
1506        busy = atomic_inc_return(&sdev->device_busy) - 1;
1507        if (atomic_read(&sdev->device_blocked)) {
1508                if (busy)
1509                        goto out_dec;
1510
1511                /*
1512                 * unblock after device_blocked iterates to zero
1513                 */
1514                if (atomic_dec_return(&sdev->device_blocked) > 0) {
1515                        /*
1516                         * For the MQ case we take care of this in the caller.
1517                         */
1518                        if (!q->mq_ops)
1519                                blk_delay_queue(q, SCSI_QUEUE_DELAY);
1520                        goto out_dec;
1521                }
1522                SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1523                                   "unblocking device at zero depth\n"));
1524        }
1525
1526        if (busy >= sdev->queue_depth)
1527                goto out_dec;
1528
1529        return 1;
1530out_dec:
1531        atomic_dec(&sdev->device_busy);
1532        return 0;
1533}
1534
1535/*
1536 * scsi_target_queue_ready: checks if there we can send commands to target
1537 * @sdev: scsi device on starget to check.
1538 */
1539static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1540                                           struct scsi_device *sdev)
1541{
1542        struct scsi_target *starget = scsi_target(sdev);
1543        unsigned int busy;
1544
1545        if (starget->single_lun) {
1546                spin_lock_irq(shost->host_lock);
1547                if (starget->starget_sdev_user &&
1548                    starget->starget_sdev_user != sdev) {
1549                        spin_unlock_irq(shost->host_lock);
1550                        return 0;
1551                }
1552                starget->starget_sdev_user = sdev;
1553                spin_unlock_irq(shost->host_lock);
1554        }
1555
1556        if (starget->can_queue <= 0)
1557                return 1;
1558
1559        busy = atomic_inc_return(&starget->target_busy) - 1;
1560        if (atomic_read(&starget->target_blocked) > 0) {
1561                if (busy)
1562                        goto starved;
1563
1564                /*
1565                 * unblock after target_blocked iterates to zero
1566                 */
1567                if (atomic_dec_return(&starget->target_blocked) > 0)
1568                        goto out_dec;
1569
1570                SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1571                                 "unblocking target at zero depth\n"));
1572        }
1573
1574        if (busy >= starget->can_queue)
1575                goto starved;
1576
1577        return 1;
1578
1579starved:
1580        spin_lock_irq(shost->host_lock);
1581        list_move_tail(&sdev->starved_entry, &shost->starved_list);
1582        spin_unlock_irq(shost->host_lock);
1583out_dec:
1584        if (starget->can_queue > 0)
1585                atomic_dec(&starget->target_busy);
1586        return 0;
1587}
1588
1589/*
1590 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1591 * return 0. We must end up running the queue again whenever 0 is
1592 * returned, else IO can hang.
1593 */
1594static inline int scsi_host_queue_ready(struct request_queue *q,
1595                                   struct Scsi_Host *shost,
1596                                   struct scsi_device *sdev)
1597{
1598        unsigned int busy;
1599
1600        if (scsi_host_in_recovery(shost))
1601                return 0;
1602
1603        busy = atomic_inc_return(&shost->host_busy) - 1;
1604        if (atomic_read(&shost->host_blocked) > 0) {
1605                if (busy)
1606                        goto starved;
1607
1608                /*
1609                 * unblock after host_blocked iterates to zero
1610                 */
1611                if (atomic_dec_return(&shost->host_blocked) > 0)
1612                        goto out_dec;
1613
1614                SCSI_LOG_MLQUEUE(3,
1615                        shost_printk(KERN_INFO, shost,
1616                                     "unblocking host at zero depth\n"));
1617        }
1618
1619        if (shost->can_queue > 0 && busy >= shost->can_queue)
1620                goto starved;
1621        if (shost->host_self_blocked)
1622                goto starved;
1623
1624        /* We're OK to process the command, so we can't be starved */
1625        if (!list_empty(&sdev->starved_entry)) {
1626                spin_lock_irq(shost->host_lock);
1627                if (!list_empty(&sdev->starved_entry))
1628                        list_del_init(&sdev->starved_entry);
1629                spin_unlock_irq(shost->host_lock);
1630        }
1631
1632        return 1;
1633
1634starved:
1635        spin_lock_irq(shost->host_lock);
1636        if (list_empty(&sdev->starved_entry))
1637                list_add_tail(&sdev->starved_entry, &shost->starved_list);
1638        spin_unlock_irq(shost->host_lock);
1639out_dec:
1640        scsi_dec_host_busy(shost);
1641        return 0;
1642}
1643
1644/*
1645 * Busy state exporting function for request stacking drivers.
1646 *
1647 * For efficiency, no lock is taken to check the busy state of
1648 * shost/starget/sdev, since the returned value is not guaranteed and
1649 * may be changed after request stacking drivers call the function,
1650 * regardless of taking lock or not.
1651 *
1652 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1653 * needs to return 'not busy'. Otherwise, request stacking drivers
1654 * may hold requests forever.
1655 */
1656static int scsi_lld_busy(struct request_queue *q)
1657{
1658        struct scsi_device *sdev = q->queuedata;
1659        struct Scsi_Host *shost;
1660
1661        if (blk_queue_dying(q))
1662                return 0;
1663
1664        shost = sdev->host;
1665
1666        /*
1667         * Ignore host/starget busy state.
1668         * Since block layer does not have a concept of fairness across
1669         * multiple queues, congestion of host/starget needs to be handled
1670         * in SCSI layer.
1671         */
1672        if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1673                return 1;
1674
1675        return 0;
1676}
1677
1678/*
1679 * Kill a request for a dead device
1680 */
1681static void scsi_kill_request(struct request *req, struct request_queue *q)
1682{
1683        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1684        struct scsi_device *sdev;
1685        struct scsi_target *starget;
1686        struct Scsi_Host *shost;
1687
1688        blk_start_request(req);
1689
1690        scmd_printk(KERN_INFO, cmd, "killing request\n");
1691
1692        sdev = cmd->device;
1693        starget = scsi_target(sdev);
1694        shost = sdev->host;
1695        scsi_init_cmd_errh(cmd);
1696        cmd->result = DID_NO_CONNECT << 16;
1697        atomic_inc(&cmd->device->iorequest_cnt);
1698
1699        /*
1700         * SCSI request completion path will do scsi_device_unbusy(),
1701         * bump busy counts.  To bump the counters, we need to dance
1702         * with the locks as normal issue path does.
1703         */
1704        atomic_inc(&sdev->device_busy);
1705        atomic_inc(&shost->host_busy);
1706        if (starget->can_queue > 0)
1707                atomic_inc(&starget->target_busy);
1708
1709        blk_complete_request(req);
1710}
1711
1712static void scsi_softirq_done(struct request *rq)
1713{
1714        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1715        unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1716        int disposition;
1717
1718        INIT_LIST_HEAD(&cmd->eh_entry);
1719
1720        atomic_inc(&cmd->device->iodone_cnt);
1721        if (cmd->result)
1722                atomic_inc(&cmd->device->ioerr_cnt);
1723
1724        disposition = scsi_decide_disposition(cmd);
1725        if (disposition != SUCCESS &&
1726            time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1727                sdev_printk(KERN_ERR, cmd->device,
1728                            "timing out command, waited %lus\n",
1729                            wait_for/HZ);
1730                disposition = SUCCESS;
1731        }
1732
1733        scsi_log_completion(cmd, disposition);
1734
1735        switch (disposition) {
1736                case SUCCESS:
1737                        scsi_finish_command(cmd);
1738                        break;
1739                case NEEDS_RETRY:
1740                        scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1741                        break;
1742                case ADD_TO_MLQUEUE:
1743                        scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1744                        break;
1745                default:
1746                        scsi_eh_scmd_add(cmd);
1747                        break;
1748        }
1749}
1750
1751/**
1752 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1753 * @cmd: command block we are dispatching.
1754 *
1755 * Return: nonzero return request was rejected and device's queue needs to be
1756 * plugged.
1757 */
1758static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1759{
1760        struct Scsi_Host *host = cmd->device->host;
1761        int rtn = 0;
1762
1763        atomic_inc(&cmd->device->iorequest_cnt);
1764
1765        /* check if the device is still usable */
1766        if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1767                /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1768                 * returns an immediate error upwards, and signals
1769                 * that the device is no longer present */
1770                cmd->result = DID_NO_CONNECT << 16;
1771                goto done;
1772        }
1773
1774        /* Check to see if the scsi lld made this device blocked. */
1775        if (unlikely(scsi_device_blocked(cmd->device))) {
1776                /*
1777                 * in blocked state, the command is just put back on
1778                 * the device queue.  The suspend state has already
1779                 * blocked the queue so future requests should not
1780                 * occur until the device transitions out of the
1781                 * suspend state.
1782                 */
1783                SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1784                        "queuecommand : device blocked\n"));
1785                return SCSI_MLQUEUE_DEVICE_BUSY;
1786        }
1787
1788        /* Store the LUN value in cmnd, if needed. */
1789        if (cmd->device->lun_in_cdb)
1790                cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1791                               (cmd->device->lun << 5 & 0xe0);
1792
1793        scsi_log_send(cmd);
1794
1795        /*
1796         * Before we queue this command, check if the command
1797         * length exceeds what the host adapter can handle.
1798         */
1799        if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1800                SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1801                               "queuecommand : command too long. "
1802                               "cdb_size=%d host->max_cmd_len=%d\n",
1803                               cmd->cmd_len, cmd->device->host->max_cmd_len));
1804                cmd->result = (DID_ABORT << 16);
1805                goto done;
1806        }
1807
1808        if (unlikely(host->shost_state == SHOST_DEL)) {
1809                cmd->result = (DID_NO_CONNECT << 16);
1810                goto done;
1811
1812        }
1813
1814        trace_scsi_dispatch_cmd_start(cmd);
1815        rtn = host->hostt->queuecommand(host, cmd);
1816        if (rtn) {
1817                trace_scsi_dispatch_cmd_error(cmd, rtn);
1818                if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1819                    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1820                        rtn = SCSI_MLQUEUE_HOST_BUSY;
1821
1822                SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1823                        "queuecommand : request rejected\n"));
1824        }
1825
1826        return rtn;
1827 done:
1828        cmd->scsi_done(cmd);
1829        return 0;
1830}
1831
1832/**
1833 * scsi_done - Invoke completion on finished SCSI command.
1834 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1835 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1836 *
1837 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1838 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1839 * calls blk_complete_request() for further processing.
1840 *
1841 * This function is interrupt context safe.
1842 */
1843static void scsi_done(struct scsi_cmnd *cmd)
1844{
1845        trace_scsi_dispatch_cmd_done(cmd);
1846        blk_complete_request(cmd->request);
1847}
1848
1849/*
1850 * Function:    scsi_request_fn()
1851 *
1852 * Purpose:     Main strategy routine for SCSI.
1853 *
1854 * Arguments:   q       - Pointer to actual queue.
1855 *
1856 * Returns:     Nothing
1857 *
1858 * Lock status: request queue lock assumed to be held when called.
1859 *
1860 * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1861 * protection for ZBC disks.
1862 */
1863static void scsi_request_fn(struct request_queue *q)
1864        __releases(q->queue_lock)
1865        __acquires(q->queue_lock)
1866{
1867        struct scsi_device *sdev = q->queuedata;
1868        struct Scsi_Host *shost;
1869        struct scsi_cmnd *cmd;
1870        struct request *req;
1871
1872        /*
1873         * To start with, we keep looping until the queue is empty, or until
1874         * the host is no longer able to accept any more requests.
1875         */
1876        shost = sdev->host;
1877        for (;;) {
1878                int rtn;
1879                /*
1880                 * get next queueable request.  We do this early to make sure
1881                 * that the request is fully prepared even if we cannot
1882                 * accept it.
1883                 */
1884                req = blk_peek_request(q);
1885                if (!req)
1886                        break;
1887
1888                if (unlikely(!scsi_device_online(sdev))) {
1889                        sdev_printk(KERN_ERR, sdev,
1890                                    "rejecting I/O to offline device\n");
1891                        scsi_kill_request(req, q);
1892                        continue;
1893                }
1894
1895                if (!scsi_dev_queue_ready(q, sdev))
1896                        break;
1897
1898                /*
1899                 * Remove the request from the request list.
1900                 */
1901                if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1902                        blk_start_request(req);
1903
1904                spin_unlock_irq(q->queue_lock);
1905                cmd = blk_mq_rq_to_pdu(req);
1906                if (cmd != req->special) {
1907                        printk(KERN_CRIT "impossible request in %s.\n"
1908                                         "please mail a stack trace to "
1909                                         "linux-scsi@vger.kernel.org\n",
1910                                         __func__);
1911                        blk_dump_rq_flags(req, "foo");
1912                        BUG();
1913                }
1914
1915                /*
1916                 * We hit this when the driver is using a host wide
1917                 * tag map. For device level tag maps the queue_depth check
1918                 * in the device ready fn would prevent us from trying
1919                 * to allocate a tag. Since the map is a shared host resource
1920                 * we add the dev to the starved list so it eventually gets
1921                 * a run when a tag is freed.
1922                 */
1923                if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1924                        spin_lock_irq(shost->host_lock);
1925                        if (list_empty(&sdev->starved_entry))
1926                                list_add_tail(&sdev->starved_entry,
1927                                              &shost->starved_list);
1928                        spin_unlock_irq(shost->host_lock);
1929                        goto not_ready;
1930                }
1931
1932                if (!scsi_target_queue_ready(shost, sdev))
1933                        goto not_ready;
1934
1935                if (!scsi_host_queue_ready(q, shost, sdev))
1936                        goto host_not_ready;
1937        
1938                if (sdev->simple_tags)
1939                        cmd->flags |= SCMD_TAGGED;
1940                else
1941                        cmd->flags &= ~SCMD_TAGGED;
1942
1943                /*
1944                 * Finally, initialize any error handling parameters, and set up
1945                 * the timers for timeouts.
1946                 */
1947                scsi_init_cmd_errh(cmd);
1948
1949                /*
1950                 * Dispatch the command to the low-level driver.
1951                 */
1952                cmd->scsi_done = scsi_done;
1953                rtn = scsi_dispatch_cmd(cmd);
1954                if (rtn) {
1955                        scsi_queue_insert(cmd, rtn);
1956                        spin_lock_irq(q->queue_lock);
1957                        goto out_delay;
1958                }
1959                spin_lock_irq(q->queue_lock);
1960        }
1961
1962        return;
1963
1964 host_not_ready:
1965        if (scsi_target(sdev)->can_queue > 0)
1966                atomic_dec(&scsi_target(sdev)->target_busy);
1967 not_ready:
1968        /*
1969         * lock q, handle tag, requeue req, and decrement device_busy. We
1970         * must return with queue_lock held.
1971         *
1972         * Decrementing device_busy without checking it is OK, as all such
1973         * cases (host limits or settings) should run the queue at some
1974         * later time.
1975         */
1976        spin_lock_irq(q->queue_lock);
1977        blk_requeue_request(q, req);
1978        atomic_dec(&sdev->device_busy);
1979out_delay:
1980        if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1981                blk_delay_queue(q, SCSI_QUEUE_DELAY);
1982}
1983
1984static inline blk_status_t prep_to_mq(int ret)
1985{
1986        switch (ret) {
1987        case BLKPREP_OK:
1988                return BLK_STS_OK;
1989        case BLKPREP_DEFER:
1990                return BLK_STS_RESOURCE;
1991        default:
1992                return BLK_STS_IOERR;
1993        }
1994}
1995
1996/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1997static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1998{
1999        return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
2000                sizeof(struct scatterlist);
2001}
2002
2003static int scsi_mq_prep_fn(struct request *req)
2004{
2005        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2006        struct scsi_device *sdev = req->q->queuedata;
2007        struct Scsi_Host *shost = sdev->host;
2008        struct scatterlist *sg;
2009
2010        scsi_init_command(sdev, cmd);
2011
2012        req->special = cmd;
2013
2014        cmd->request = req;
2015
2016        cmd->tag = req->tag;
2017        cmd->prot_op = SCSI_PROT_NORMAL;
2018
2019        sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2020        cmd->sdb.table.sgl = sg;
2021
2022        if (scsi_host_get_prot(shost)) {
2023                memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
2024
2025                cmd->prot_sdb->table.sgl =
2026                        (struct scatterlist *)(cmd->prot_sdb + 1);
2027        }
2028
2029        if (blk_bidi_rq(req)) {
2030                struct request *next_rq = req->next_rq;
2031                struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
2032
2033                memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
2034                bidi_sdb->table.sgl =
2035                        (struct scatterlist *)(bidi_sdb + 1);
2036
2037                next_rq->special = bidi_sdb;
2038        }
2039
2040        blk_mq_start_request(req);
2041
2042        return scsi_setup_cmnd(sdev, req);
2043}
2044
2045static void scsi_mq_done(struct scsi_cmnd *cmd)
2046{
2047        trace_scsi_dispatch_cmd_done(cmd);
2048        blk_mq_complete_request(cmd->request);
2049}
2050
2051static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
2052{
2053        struct request_queue *q = hctx->queue;
2054        struct scsi_device *sdev = q->queuedata;
2055
2056        atomic_dec(&sdev->device_busy);
2057        put_device(&sdev->sdev_gendev);
2058}
2059
2060static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
2061{
2062        struct request_queue *q = hctx->queue;
2063        struct scsi_device *sdev = q->queuedata;
2064
2065        if (!get_device(&sdev->sdev_gendev))
2066                goto out;
2067        if (!scsi_dev_queue_ready(q, sdev))
2068                goto out_put_device;
2069
2070        return true;
2071
2072out_put_device:
2073        put_device(&sdev->sdev_gendev);
2074out:
2075        if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
2076                blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2077        return false;
2078}
2079
2080static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
2081                         const struct blk_mq_queue_data *bd)
2082{
2083        struct request *req = bd->rq;
2084        struct request_queue *q = req->q;
2085        struct scsi_device *sdev = q->queuedata;
2086        struct Scsi_Host *shost = sdev->host;
2087        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2088        blk_status_t ret;
2089        int reason;
2090
2091        ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2092        if (ret != BLK_STS_OK)
2093                goto out_put_budget;
2094
2095        ret = BLK_STS_RESOURCE;
2096        if (!scsi_target_queue_ready(shost, sdev))
2097                goto out_put_budget;
2098        if (!scsi_host_queue_ready(q, shost, sdev))
2099                goto out_dec_target_busy;
2100
2101        if (!(req->rq_flags & RQF_DONTPREP)) {
2102                ret = prep_to_mq(scsi_mq_prep_fn(req));
2103                if (ret != BLK_STS_OK)
2104                        goto out_dec_host_busy;
2105                req->rq_flags |= RQF_DONTPREP;
2106        } else {
2107                blk_mq_start_request(req);
2108        }
2109
2110        if (sdev->simple_tags)
2111                cmd->flags |= SCMD_TAGGED;
2112        else
2113                cmd->flags &= ~SCMD_TAGGED;
2114
2115        scsi_init_cmd_errh(cmd);
2116        cmd->scsi_done = scsi_mq_done;
2117
2118        reason = scsi_dispatch_cmd(cmd);
2119        if (reason) {
2120                scsi_set_blocked(cmd, reason);
2121                ret = BLK_STS_RESOURCE;
2122                goto out_dec_host_busy;
2123        }
2124
2125        return BLK_STS_OK;
2126
2127out_dec_host_busy:
2128        scsi_dec_host_busy(shost);
2129out_dec_target_busy:
2130        if (scsi_target(sdev)->can_queue > 0)
2131                atomic_dec(&scsi_target(sdev)->target_busy);
2132out_put_budget:
2133        scsi_mq_put_budget(hctx);
2134        switch (ret) {
2135        case BLK_STS_OK:
2136                break;
2137        case BLK_STS_RESOURCE:
2138                if (atomic_read(&sdev->device_busy) ||
2139                    scsi_device_blocked(sdev))
2140                        ret = BLK_STS_DEV_RESOURCE;
2141                break;
2142        default:
2143                /*
2144                 * Make sure to release all allocated ressources when
2145                 * we hit an error, as we will never see this command
2146                 * again.
2147                 */
2148                if (req->rq_flags & RQF_DONTPREP)
2149                        scsi_mq_uninit_cmd(cmd);
2150                break;
2151        }
2152        return ret;
2153}
2154
2155static enum blk_eh_timer_return scsi_timeout(struct request *req,
2156                bool reserved)
2157{
2158        if (reserved)
2159                return BLK_EH_RESET_TIMER;
2160        return scsi_times_out(req);
2161}
2162
2163static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2164                                unsigned int hctx_idx, unsigned int numa_node)
2165{
2166        struct Scsi_Host *shost = set->driver_data;
2167        const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2168        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2169        struct scatterlist *sg;
2170
2171        if (unchecked_isa_dma)
2172                cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2173        cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2174                                                    GFP_KERNEL, numa_node);
2175        if (!cmd->sense_buffer)
2176                return -ENOMEM;
2177        cmd->req.sense = cmd->sense_buffer;
2178
2179        if (scsi_host_get_prot(shost)) {
2180                sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2181                        shost->hostt->cmd_size;
2182                cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2183        }
2184
2185        return 0;
2186}
2187
2188static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2189                                 unsigned int hctx_idx)
2190{
2191        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2192
2193        scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2194                               cmd->sense_buffer);
2195}
2196
2197static int scsi_map_queues(struct blk_mq_tag_set *set)
2198{
2199        struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2200
2201        if (shost->hostt->map_queues)
2202                return shost->hostt->map_queues(shost);
2203        return blk_mq_map_queues(set);
2204}
2205
2206void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2207{
2208        struct device *dev = shost->dma_dev;
2209
2210        /*
2211         * this limit is imposed by hardware restrictions
2212         */
2213        blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2214                                        SG_MAX_SEGMENTS));
2215
2216        if (scsi_host_prot_dma(shost)) {
2217                shost->sg_prot_tablesize =
2218                        min_not_zero(shost->sg_prot_tablesize,
2219                                     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2220                BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2221                blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2222        }
2223
2224        blk_queue_max_hw_sectors(q, shost->max_sectors);
2225        if (shost->unchecked_isa_dma)
2226                blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
2227        blk_queue_segment_boundary(q, shost->dma_boundary);
2228        dma_set_seg_boundary(dev, shost->dma_boundary);
2229
2230        blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2231
2232        if (!shost->use_clustering)
2233                q->limits.cluster = 0;
2234
2235        /*
2236         * Set a reasonable default alignment:  The larger of 32-byte (dword),
2237         * which is a common minimum for HBAs, and the minimum DMA alignment,
2238         * which is set by the platform.
2239         *
2240         * Devices that require a bigger alignment can increase it later.
2241         */
2242        blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2243}
2244EXPORT_SYMBOL_GPL(__scsi_init_queue);
2245
2246static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2247                            gfp_t gfp)
2248{
2249        struct Scsi_Host *shost = q->rq_alloc_data;
2250        const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2251        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2252
2253        memset(cmd, 0, sizeof(*cmd));
2254
2255        if (unchecked_isa_dma)
2256                cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2257        cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2258                                                    NUMA_NO_NODE);
2259        if (!cmd->sense_buffer)
2260                goto fail;
2261        cmd->req.sense = cmd->sense_buffer;
2262
2263        if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2264                cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2265                if (!cmd->prot_sdb)
2266                        goto fail_free_sense;
2267        }
2268
2269        return 0;
2270
2271fail_free_sense:
2272        scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2273fail:
2274        return -ENOMEM;
2275}
2276
2277static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2278{
2279        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2280
2281        if (cmd->prot_sdb)
2282                kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2283        scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2284                               cmd->sense_buffer);
2285}
2286
2287struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2288{
2289        struct Scsi_Host *shost = sdev->host;
2290        struct request_queue *q;
2291
2292        q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL);
2293        if (!q)
2294                return NULL;
2295        q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2296        q->rq_alloc_data = shost;
2297        q->request_fn = scsi_request_fn;
2298        q->init_rq_fn = scsi_old_init_rq;
2299        q->exit_rq_fn = scsi_old_exit_rq;
2300        q->initialize_rq_fn = scsi_initialize_rq;
2301
2302        if (blk_init_allocated_queue(q) < 0) {
2303                blk_cleanup_queue(q);
2304                return NULL;
2305        }
2306
2307        __scsi_init_queue(shost, q);
2308        blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2309        blk_queue_prep_rq(q, scsi_prep_fn);
2310        blk_queue_unprep_rq(q, scsi_unprep_fn);
2311        blk_queue_softirq_done(q, scsi_softirq_done);
2312        blk_queue_rq_timed_out(q, scsi_times_out);
2313        blk_queue_lld_busy(q, scsi_lld_busy);
2314        return q;
2315}
2316
2317static const struct blk_mq_ops scsi_mq_ops = {
2318        .get_budget     = scsi_mq_get_budget,
2319        .put_budget     = scsi_mq_put_budget,
2320        .queue_rq       = scsi_queue_rq,
2321        .complete       = scsi_softirq_done,
2322        .timeout        = scsi_timeout,
2323#ifdef CONFIG_BLK_DEBUG_FS
2324        .show_rq        = scsi_show_rq,
2325#endif
2326        .init_request   = scsi_mq_init_request,
2327        .exit_request   = scsi_mq_exit_request,
2328        .initialize_rq_fn = scsi_initialize_rq,
2329        .map_queues     = scsi_map_queues,
2330};
2331
2332struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2333{
2334        sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2335        if (IS_ERR(sdev->request_queue))
2336                return NULL;
2337
2338        sdev->request_queue->queuedata = sdev;
2339        __scsi_init_queue(sdev->host, sdev->request_queue);
2340        blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
2341        return sdev->request_queue;
2342}
2343
2344int scsi_mq_setup_tags(struct Scsi_Host *shost)
2345{
2346        unsigned int cmd_size, sgl_size;
2347
2348        sgl_size = scsi_mq_sgl_size(shost);
2349        cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2350        if (scsi_host_get_prot(shost))
2351                cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2352
2353        memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2354        shost->tag_set.ops = &scsi_mq_ops;
2355        shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2356        shost->tag_set.queue_depth = shost->can_queue;
2357        shost->tag_set.cmd_size = cmd_size;
2358        shost->tag_set.numa_node = NUMA_NO_NODE;
2359        shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2360        shost->tag_set.flags |=
2361                BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2362        shost->tag_set.driver_data = shost;
2363
2364        return blk_mq_alloc_tag_set(&shost->tag_set);
2365}
2366
2367void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2368{
2369        blk_mq_free_tag_set(&shost->tag_set);
2370}
2371
2372/**
2373 * scsi_device_from_queue - return sdev associated with a request_queue
2374 * @q: The request queue to return the sdev from
2375 *
2376 * Return the sdev associated with a request queue or NULL if the
2377 * request_queue does not reference a SCSI device.
2378 */
2379struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2380{
2381        struct scsi_device *sdev = NULL;
2382
2383        if (q->mq_ops) {
2384                if (q->mq_ops == &scsi_mq_ops)
2385                        sdev = q->queuedata;
2386        } else if (q->request_fn == scsi_request_fn)
2387                sdev = q->queuedata;
2388        if (!sdev || !get_device(&sdev->sdev_gendev))
2389                sdev = NULL;
2390
2391        return sdev;
2392}
2393EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2394
2395/*
2396 * Function:    scsi_block_requests()
2397 *
2398 * Purpose:     Utility function used by low-level drivers to prevent further
2399 *              commands from being queued to the device.
2400 *
2401 * Arguments:   shost       - Host in question
2402 *
2403 * Returns:     Nothing
2404 *
2405 * Lock status: No locks are assumed held.
2406 *
2407 * Notes:       There is no timer nor any other means by which the requests
2408 *              get unblocked other than the low-level driver calling
2409 *              scsi_unblock_requests().
2410 */
2411void scsi_block_requests(struct Scsi_Host *shost)
2412{
2413        shost->host_self_blocked = 1;
2414}
2415EXPORT_SYMBOL(scsi_block_requests);
2416
2417/*
2418 * Function:    scsi_unblock_requests()
2419 *
2420 * Purpose:     Utility function used by low-level drivers to allow further
2421 *              commands from being queued to the device.
2422 *
2423 * Arguments:   shost       - Host in question
2424 *
2425 * Returns:     Nothing
2426 *
2427 * Lock status: No locks are assumed held.
2428 *
2429 * Notes:       There is no timer nor any other means by which the requests
2430 *              get unblocked other than the low-level driver calling
2431 *              scsi_unblock_requests().
2432 *
2433 *              This is done as an API function so that changes to the
2434 *              internals of the scsi mid-layer won't require wholesale
2435 *              changes to drivers that use this feature.
2436 */
2437void scsi_unblock_requests(struct Scsi_Host *shost)
2438{
2439        shost->host_self_blocked = 0;
2440        scsi_run_host_queues(shost);
2441}
2442EXPORT_SYMBOL(scsi_unblock_requests);
2443
2444int __init scsi_init_queue(void)
2445{
2446        scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2447                                           sizeof(struct scsi_data_buffer),
2448                                           0, 0, NULL);
2449        if (!scsi_sdb_cache) {
2450                printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2451                return -ENOMEM;
2452        }
2453
2454        return 0;
2455}
2456
2457void scsi_exit_queue(void)
2458{
2459        kmem_cache_destroy(scsi_sense_cache);
2460        kmem_cache_destroy(scsi_sense_isadma_cache);
2461        kmem_cache_destroy(scsi_sdb_cache);
2462}
2463
2464/**
2465 *      scsi_mode_select - issue a mode select
2466 *      @sdev:  SCSI device to be queried
2467 *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2468 *      @sp:    Save page bit (0 == don't save, 1 == save)
2469 *      @modepage: mode page being requested
2470 *      @buffer: request buffer (may not be smaller than eight bytes)
2471 *      @len:   length of request buffer.
2472 *      @timeout: command timeout
2473 *      @retries: number of retries before failing
2474 *      @data: returns a structure abstracting the mode header data
2475 *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2476 *              must be SCSI_SENSE_BUFFERSIZE big.
2477 *
2478 *      Returns zero if successful; negative error number or scsi
2479 *      status on error
2480 *
2481 */
2482int
2483scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2484                 unsigned char *buffer, int len, int timeout, int retries,
2485                 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2486{
2487        unsigned char cmd[10];
2488        unsigned char *real_buffer;
2489        int ret;
2490
2491        memset(cmd, 0, sizeof(cmd));
2492        cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2493
2494        if (sdev->use_10_for_ms) {
2495                if (len > 65535)
2496                        return -EINVAL;
2497                real_buffer = kmalloc(8 + len, GFP_KERNEL);
2498                if (!real_buffer)
2499                        return -ENOMEM;
2500                memcpy(real_buffer + 8, buffer, len);
2501                len += 8;
2502                real_buffer[0] = 0;
2503                real_buffer[1] = 0;
2504                real_buffer[2] = data->medium_type;
2505                real_buffer[3] = data->device_specific;
2506                real_buffer[4] = data->longlba ? 0x01 : 0;
2507                real_buffer[5] = 0;
2508                real_buffer[6] = data->block_descriptor_length >> 8;
2509                real_buffer[7] = data->block_descriptor_length;
2510
2511                cmd[0] = MODE_SELECT_10;
2512                cmd[7] = len >> 8;
2513                cmd[8] = len;
2514        } else {
2515                if (len > 255 || data->block_descriptor_length > 255 ||
2516                    data->longlba)
2517                        return -EINVAL;
2518
2519                real_buffer = kmalloc(4 + len, GFP_KERNEL);
2520                if (!real_buffer)
2521                        return -ENOMEM;
2522                memcpy(real_buffer + 4, buffer, len);
2523                len += 4;
2524                real_buffer[0] = 0;
2525                real_buffer[1] = data->medium_type;
2526                real_buffer[2] = data->device_specific;
2527                real_buffer[3] = data->block_descriptor_length;
2528                
2529
2530                cmd[0] = MODE_SELECT;
2531                cmd[4] = len;
2532        }
2533
2534        ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2535                               sshdr, timeout, retries, NULL);
2536        kfree(real_buffer);
2537        return ret;
2538}
2539EXPORT_SYMBOL_GPL(scsi_mode_select);
2540
2541/**
2542 *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2543 *      @sdev:  SCSI device to be queried
2544 *      @dbd:   set if mode sense will allow block descriptors to be returned
2545 *      @modepage: mode page being requested
2546 *      @buffer: request buffer (may not be smaller than eight bytes)
2547 *      @len:   length of request buffer.
2548 *      @timeout: command timeout
2549 *      @retries: number of retries before failing
2550 *      @data: returns a structure abstracting the mode header data
2551 *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2552 *              must be SCSI_SENSE_BUFFERSIZE big.
2553 *
2554 *      Returns zero if unsuccessful, or the header offset (either 4
2555 *      or 8 depending on whether a six or ten byte command was
2556 *      issued) if successful.
2557 */
2558int
2559scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2560                  unsigned char *buffer, int len, int timeout, int retries,
2561                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2562{
2563        unsigned char cmd[12];
2564        int use_10_for_ms;
2565        int header_length;
2566        int result, retry_count = retries;
2567        struct scsi_sense_hdr my_sshdr;
2568
2569        memset(data, 0, sizeof(*data));
2570        memset(&cmd[0], 0, 12);
2571        cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2572        cmd[2] = modepage;
2573
2574        /* caller might not be interested in sense, but we need it */
2575        if (!sshdr)
2576                sshdr = &my_sshdr;
2577
2578 retry:
2579        use_10_for_ms = sdev->use_10_for_ms;
2580
2581        if (use_10_for_ms) {
2582                if (len < 8)
2583                        len = 8;
2584
2585                cmd[0] = MODE_SENSE_10;
2586                cmd[8] = len;
2587                header_length = 8;
2588        } else {
2589                if (len < 4)
2590                        len = 4;
2591
2592                cmd[0] = MODE_SENSE;
2593                cmd[4] = len;
2594                header_length = 4;
2595        }
2596
2597        memset(buffer, 0, len);
2598
2599        result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2600                                  sshdr, timeout, retries, NULL);
2601
2602        /* This code looks awful: what it's doing is making sure an
2603         * ILLEGAL REQUEST sense return identifies the actual command
2604         * byte as the problem.  MODE_SENSE commands can return
2605         * ILLEGAL REQUEST if the code page isn't supported */
2606
2607        if (use_10_for_ms && !scsi_status_is_good(result) &&
2608            driver_byte(result) == DRIVER_SENSE) {
2609                if (scsi_sense_valid(sshdr)) {
2610                        if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2611                            (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2612                                /* 
2613                                 * Invalid command operation code
2614                                 */
2615                                sdev->use_10_for_ms = 0;
2616                                goto retry;
2617                        }
2618                }
2619        }
2620
2621        if(scsi_status_is_good(result)) {
2622                if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2623                             (modepage == 6 || modepage == 8))) {
2624                        /* Initio breakage? */
2625                        header_length = 0;
2626                        data->length = 13;
2627                        data->medium_type = 0;
2628                        data->device_specific = 0;
2629                        data->longlba = 0;
2630                        data->block_descriptor_length = 0;
2631                } else if(use_10_for_ms) {
2632                        data->length = buffer[0]*256 + buffer[1] + 2;
2633                        data->medium_type = buffer[2];
2634                        data->device_specific = buffer[3];
2635                        data->longlba = buffer[4] & 0x01;
2636                        data->block_descriptor_length = buffer[6]*256
2637                                + buffer[7];
2638                } else {
2639                        data->length = buffer[0] + 1;
2640                        data->medium_type = buffer[1];
2641                        data->device_specific = buffer[2];
2642                        data->block_descriptor_length = buffer[3];
2643                }
2644                data->header_length = header_length;
2645        } else if ((status_byte(result) == CHECK_CONDITION) &&
2646                   scsi_sense_valid(sshdr) &&
2647                   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2648                retry_count--;
2649                goto retry;
2650        }
2651
2652        return result;
2653}
2654EXPORT_SYMBOL(scsi_mode_sense);
2655
2656/**
2657 *      scsi_test_unit_ready - test if unit is ready
2658 *      @sdev:  scsi device to change the state of.
2659 *      @timeout: command timeout
2660 *      @retries: number of retries before failing
2661 *      @sshdr: outpout pointer for decoded sense information.
2662 *
2663 *      Returns zero if unsuccessful or an error if TUR failed.  For
2664 *      removable media, UNIT_ATTENTION sets ->changed flag.
2665 **/
2666int
2667scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2668                     struct scsi_sense_hdr *sshdr)
2669{
2670        char cmd[] = {
2671                TEST_UNIT_READY, 0, 0, 0, 0, 0,
2672        };
2673        int result;
2674
2675        /* try to eat the UNIT_ATTENTION if there are enough retries */
2676        do {
2677                result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2678                                          timeout, 1, NULL);
2679                if (sdev->removable && scsi_sense_valid(sshdr) &&
2680                    sshdr->sense_key == UNIT_ATTENTION)
2681                        sdev->changed = 1;
2682        } while (scsi_sense_valid(sshdr) &&
2683                 sshdr->sense_key == UNIT_ATTENTION && --retries);
2684
2685        return result;
2686}
2687EXPORT_SYMBOL(scsi_test_unit_ready);
2688
2689/**
2690 *      scsi_device_set_state - Take the given device through the device state model.
2691 *      @sdev:  scsi device to change the state of.
2692 *      @state: state to change to.
2693 *
2694 *      Returns zero if successful or an error if the requested
2695 *      transition is illegal.
2696 */
2697int
2698scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2699{
2700        enum scsi_device_state oldstate = sdev->sdev_state;
2701
2702        if (state == oldstate)
2703                return 0;
2704
2705        switch (state) {
2706        case SDEV_CREATED:
2707                switch (oldstate) {
2708                case SDEV_CREATED_BLOCK:
2709                        break;
2710                default:
2711                        goto illegal;
2712                }
2713                break;
2714                        
2715        case SDEV_RUNNING:
2716                switch (oldstate) {
2717                case SDEV_CREATED:
2718                case SDEV_OFFLINE:
2719                case SDEV_TRANSPORT_OFFLINE:
2720                case SDEV_QUIESCE:
2721                case SDEV_BLOCK:
2722                        break;
2723                default:
2724                        goto illegal;
2725                }
2726                break;
2727
2728        case SDEV_QUIESCE:
2729                switch (oldstate) {
2730                case SDEV_RUNNING:
2731                case SDEV_OFFLINE:
2732                case SDEV_TRANSPORT_OFFLINE:
2733                        break;
2734                default:
2735                        goto illegal;
2736                }
2737                break;
2738
2739        case SDEV_OFFLINE:
2740        case SDEV_TRANSPORT_OFFLINE:
2741                switch (oldstate) {
2742                case SDEV_CREATED:
2743                case SDEV_RUNNING:
2744                case SDEV_QUIESCE:
2745                case SDEV_BLOCK:
2746                        break;
2747                default:
2748                        goto illegal;
2749                }
2750                break;
2751
2752        case SDEV_BLOCK:
2753                switch (oldstate) {
2754                case SDEV_RUNNING:
2755                case SDEV_CREATED_BLOCK:
2756                        break;
2757                default:
2758                        goto illegal;
2759                }
2760                break;
2761
2762        case SDEV_CREATED_BLOCK:
2763                switch (oldstate) {
2764                case SDEV_CREATED:
2765                        break;
2766                default:
2767                        goto illegal;
2768                }
2769                break;
2770
2771        case SDEV_CANCEL:
2772                switch (oldstate) {
2773                case SDEV_CREATED:
2774                case SDEV_RUNNING:
2775                case SDEV_QUIESCE:
2776                case SDEV_OFFLINE:
2777                case SDEV_TRANSPORT_OFFLINE:
2778                        break;
2779                default:
2780                        goto illegal;
2781                }
2782                break;
2783
2784        case SDEV_DEL:
2785                switch (oldstate) {
2786                case SDEV_CREATED:
2787                case SDEV_RUNNING:
2788                case SDEV_OFFLINE:
2789                case SDEV_TRANSPORT_OFFLINE:
2790                case SDEV_CANCEL:
2791                case SDEV_BLOCK:
2792                case SDEV_CREATED_BLOCK:
2793                        break;
2794                default:
2795                        goto illegal;
2796                }
2797                break;
2798
2799        }
2800        sdev->sdev_state = state;
2801        return 0;
2802
2803 illegal:
2804        SCSI_LOG_ERROR_RECOVERY(1,
2805                                sdev_printk(KERN_ERR, sdev,
2806                                            "Illegal state transition %s->%s",
2807                                            scsi_device_state_name(oldstate),
2808                                            scsi_device_state_name(state))
2809                                );
2810        return -EINVAL;
2811}
2812EXPORT_SYMBOL(scsi_device_set_state);
2813
2814/**
2815 *      sdev_evt_emit - emit a single SCSI device uevent
2816 *      @sdev: associated SCSI device
2817 *      @evt: event to emit
2818 *
2819 *      Send a single uevent (scsi_event) to the associated scsi_device.
2820 */
2821static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2822{
2823        int idx = 0;
2824        char *envp[3];
2825
2826        switch (evt->evt_type) {
2827        case SDEV_EVT_MEDIA_CHANGE:
2828                envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2829                break;
2830        case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2831                scsi_rescan_device(&sdev->sdev_gendev);
2832                envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2833                break;
2834        case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2835                envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2836                break;
2837        case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2838               envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2839                break;
2840        case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2841                envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2842                break;
2843        case SDEV_EVT_LUN_CHANGE_REPORTED:
2844                envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2845                break;
2846        case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2847                envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2848                break;
2849        case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2850                envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2851                break;
2852        default:
2853                /* do nothing */
2854                break;
2855        }
2856
2857        envp[idx++] = NULL;
2858
2859        kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2860}
2861
2862/**
2863 *      sdev_evt_thread - send a uevent for each scsi event
2864 *      @work: work struct for scsi_device
2865 *
2866 *      Dispatch queued events to their associated scsi_device kobjects
2867 *      as uevents.
2868 */
2869void scsi_evt_thread(struct work_struct *work)
2870{
2871        struct scsi_device *sdev;
2872        enum scsi_device_event evt_type;
2873        LIST_HEAD(event_list);
2874
2875        sdev = container_of(work, struct scsi_device, event_work);
2876
2877        for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2878                if (test_and_clear_bit(evt_type, sdev->pending_events))
2879                        sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2880
2881        while (1) {
2882                struct scsi_event *evt;
2883                struct list_head *this, *tmp;
2884                unsigned long flags;
2885
2886                spin_lock_irqsave(&sdev->list_lock, flags);
2887                list_splice_init(&sdev->event_list, &event_list);
2888                spin_unlock_irqrestore(&sdev->list_lock, flags);
2889
2890                if (list_empty(&event_list))
2891                        break;
2892
2893                list_for_each_safe(this, tmp, &event_list) {
2894                        evt = list_entry(this, struct scsi_event, node);
2895                        list_del(&evt->node);
2896                        scsi_evt_emit(sdev, evt);
2897                        kfree(evt);
2898                }
2899        }
2900}
2901
2902/**
2903 *      sdev_evt_send - send asserted event to uevent thread
2904 *      @sdev: scsi_device event occurred on
2905 *      @evt: event to send
2906 *
2907 *      Assert scsi device event asynchronously.
2908 */
2909void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2910{
2911        unsigned long flags;
2912
2913#if 0
2914        /* FIXME: currently this check eliminates all media change events
2915         * for polled devices.  Need to update to discriminate between AN
2916         * and polled events */
2917        if (!test_bit(evt->evt_type, sdev->supported_events)) {
2918                kfree(evt);
2919                return;
2920        }
2921#endif
2922
2923        spin_lock_irqsave(&sdev->list_lock, flags);
2924        list_add_tail(&evt->node, &sdev->event_list);
2925        schedule_work(&sdev->event_work);
2926        spin_unlock_irqrestore(&sdev->list_lock, flags);
2927}
2928EXPORT_SYMBOL_GPL(sdev_evt_send);
2929
2930/**
2931 *      sdev_evt_alloc - allocate a new scsi event
2932 *      @evt_type: type of event to allocate
2933 *      @gfpflags: GFP flags for allocation
2934 *
2935 *      Allocates and returns a new scsi_event.
2936 */
2937struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2938                                  gfp_t gfpflags)
2939{
2940        struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2941        if (!evt)
2942                return NULL;
2943
2944        evt->evt_type = evt_type;
2945        INIT_LIST_HEAD(&evt->node);
2946
2947        /* evt_type-specific initialization, if any */
2948        switch (evt_type) {
2949        case SDEV_EVT_MEDIA_CHANGE:
2950        case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2951        case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2952        case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2953        case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2954        case SDEV_EVT_LUN_CHANGE_REPORTED:
2955        case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2956        case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2957        default:
2958                /* do nothing */
2959                break;
2960        }
2961
2962        return evt;
2963}
2964EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2965
2966/**
2967 *      sdev_evt_send_simple - send asserted event to uevent thread
2968 *      @sdev: scsi_device event occurred on
2969 *      @evt_type: type of event to send
2970 *      @gfpflags: GFP flags for allocation
2971 *
2972 *      Assert scsi device event asynchronously, given an event type.
2973 */
2974void sdev_evt_send_simple(struct scsi_device *sdev,
2975                          enum scsi_device_event evt_type, gfp_t gfpflags)
2976{
2977        struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2978        if (!evt) {
2979                sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2980                            evt_type);
2981                return;
2982        }
2983
2984        sdev_evt_send(sdev, evt);
2985}
2986EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2987
2988/**
2989 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2990 * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2991 */
2992static int scsi_request_fn_active(struct scsi_device *sdev)
2993{
2994        struct request_queue *q = sdev->request_queue;
2995        int request_fn_active;
2996
2997        WARN_ON_ONCE(sdev->host->use_blk_mq);
2998
2999        spin_lock_irq(q->queue_lock);
3000        request_fn_active = q->request_fn_active;
3001        spin_unlock_irq(q->queue_lock);
3002
3003        return request_fn_active;
3004}
3005
3006/**
3007 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
3008 * @sdev: SCSI device pointer.
3009 *
3010 * Wait until the ongoing shost->hostt->queuecommand() calls that are
3011 * invoked from scsi_request_fn() have finished.
3012 */
3013static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
3014{
3015        WARN_ON_ONCE(sdev->host->use_blk_mq);
3016
3017        while (scsi_request_fn_active(sdev))
3018                msleep(20);
3019}
3020
3021/**
3022 *      scsi_device_quiesce - Block user issued commands.
3023 *      @sdev:  scsi device to quiesce.
3024 *
3025 *      This works by trying to transition to the SDEV_QUIESCE state
3026 *      (which must be a legal transition).  When the device is in this
3027 *      state, only special requests will be accepted, all others will
3028 *      be deferred.  Since special requests may also be requeued requests,
3029 *      a successful return doesn't guarantee the device will be 
3030 *      totally quiescent.
3031 *
3032 *      Must be called with user context, may sleep.
3033 *
3034 *      Returns zero if unsuccessful or an error if not.
3035 */
3036int
3037scsi_device_quiesce(struct scsi_device *sdev)
3038{
3039        struct request_queue *q = sdev->request_queue;
3040        int err;
3041
3042        /*
3043         * It is allowed to call scsi_device_quiesce() multiple times from
3044         * the same context but concurrent scsi_device_quiesce() calls are
3045         * not allowed.
3046         */
3047        WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
3048
3049        blk_set_preempt_only(q);
3050
3051        blk_mq_freeze_queue(q);
3052        /*
3053         * Ensure that the effect of blk_set_preempt_only() will be visible
3054         * for percpu_ref_tryget() callers that occur after the queue
3055         * unfreeze even if the queue was already frozen before this function
3056         * was called. See also https://lwn.net/Articles/573497/.
3057         */
3058        synchronize_rcu();
3059        blk_mq_unfreeze_queue(q);
3060
3061        mutex_lock(&sdev->state_mutex);
3062        err = scsi_device_set_state(sdev, SDEV_QUIESCE);
3063        if (err == 0)
3064                sdev->quiesced_by = current;
3065        else
3066                blk_clear_preempt_only(q);
3067        mutex_unlock(&sdev->state_mutex);
3068
3069        return err;
3070}
3071EXPORT_SYMBOL(scsi_device_quiesce);
3072
3073/**
3074 *      scsi_device_resume - Restart user issued commands to a quiesced device.
3075 *      @sdev:  scsi device to resume.
3076 *
3077 *      Moves the device from quiesced back to running and restarts the
3078 *      queues.
3079 *
3080 *      Must be called with user context, may sleep.
3081 */
3082void scsi_device_resume(struct scsi_device *sdev)
3083{
3084        /* check if the device state was mutated prior to resume, and if
3085         * so assume the state is being managed elsewhere (for example
3086         * device deleted during suspend)
3087         */
3088        mutex_lock(&sdev->state_mutex);
3089        WARN_ON_ONCE(!sdev->quiesced_by);
3090        sdev->quiesced_by = NULL;
3091        blk_clear_preempt_only(sdev->request_queue);
3092        if (sdev->sdev_state == SDEV_QUIESCE)
3093                scsi_device_set_state(sdev, SDEV_RUNNING);
3094        mutex_unlock(&sdev->state_mutex);
3095}
3096EXPORT_SYMBOL(scsi_device_resume);
3097
3098static void
3099device_quiesce_fn(struct scsi_device *sdev, void *data)
3100{
3101        scsi_device_quiesce(sdev);
3102}
3103
3104void
3105scsi_target_quiesce(struct scsi_target *starget)
3106{
3107        starget_for_each_device(starget, NULL, device_quiesce_fn);
3108}
3109EXPORT_SYMBOL(scsi_target_quiesce);
3110
3111static void
3112device_resume_fn(struct scsi_device *sdev, void *data)
3113{
3114        scsi_device_resume(sdev);
3115}
3116
3117void
3118scsi_target_resume(struct scsi_target *starget)
3119{
3120        starget_for_each_device(starget, NULL, device_resume_fn);
3121}
3122EXPORT_SYMBOL(scsi_target_resume);
3123
3124/**
3125 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3126 * @sdev: device to block
3127 *
3128 * Pause SCSI command processing on the specified device. Does not sleep.
3129 *
3130 * Returns zero if successful or a negative error code upon failure.
3131 *
3132 * Notes:
3133 * This routine transitions the device to the SDEV_BLOCK state (which must be
3134 * a legal transition). When the device is in this state, command processing
3135 * is paused until the device leaves the SDEV_BLOCK state. See also
3136 * scsi_internal_device_unblock_nowait().
3137 */
3138int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3139{
3140        struct request_queue *q = sdev->request_queue;
3141        unsigned long flags;
3142        int err = 0;
3143
3144        err = scsi_device_set_state(sdev, SDEV_BLOCK);
3145        if (err) {
3146                err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3147
3148                if (err)
3149                        return err;
3150        }
3151
3152        /* 
3153         * The device has transitioned to SDEV_BLOCK.  Stop the
3154         * block layer from calling the midlayer with this device's
3155         * request queue. 
3156         */
3157        if (q->mq_ops) {
3158                blk_mq_quiesce_queue_nowait(q);
3159        } else {
3160                spin_lock_irqsave(q->queue_lock, flags);
3161                blk_stop_queue(q);
3162                spin_unlock_irqrestore(q->queue_lock, flags);
3163        }
3164
3165        return 0;
3166}
3167EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3168
3169/**
3170 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3171 * @sdev: device to block
3172 *
3173 * Pause SCSI command processing on the specified device and wait until all
3174 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3175 *
3176 * Returns zero if successful or a negative error code upon failure.
3177 *
3178 * Note:
3179 * This routine transitions the device to the SDEV_BLOCK state (which must be
3180 * a legal transition). When the device is in this state, command processing
3181 * is paused until the device leaves the SDEV_BLOCK state. See also
3182 * scsi_internal_device_unblock().
3183 *
3184 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3185 * scsi_internal_device_block() has blocked a SCSI device and also
3186 * remove the rport mutex lock and unlock calls from srp_queuecommand().
3187 */
3188static int scsi_internal_device_block(struct scsi_device *sdev)
3189{
3190        struct request_queue *q = sdev->request_queue;
3191        int err;
3192
3193        mutex_lock(&sdev->state_mutex);
3194        err = scsi_internal_device_block_nowait(sdev);
3195        if (err == 0) {
3196                if (q->mq_ops)
3197                        blk_mq_quiesce_queue(q);
3198                else
3199                        scsi_wait_for_queuecommand(sdev);
3200        }
3201        mutex_unlock(&sdev->state_mutex);
3202
3203        return err;
3204}
3205 
3206void scsi_start_queue(struct scsi_device *sdev)
3207{
3208        struct request_queue *q = sdev->request_queue;
3209        unsigned long flags;
3210
3211        if (q->mq_ops) {
3212                blk_mq_unquiesce_queue(q);
3213        } else {
3214                spin_lock_irqsave(q->queue_lock, flags);
3215                blk_start_queue(q);
3216                spin_unlock_irqrestore(q->queue_lock, flags);
3217        }
3218}
3219
3220/**
3221 * scsi_internal_device_unblock_nowait - resume a device after a block request
3222 * @sdev:       device to resume
3223 * @new_state:  state to set the device to after unblocking
3224 *
3225 * Restart the device queue for a previously suspended SCSI device. Does not
3226 * sleep.
3227 *
3228 * Returns zero if successful or a negative error code upon failure.
3229 *
3230 * Notes:
3231 * This routine transitions the device to the SDEV_RUNNING state or to one of
3232 * the offline states (which must be a legal transition) allowing the midlayer
3233 * to goose the queue for this device.
3234 */
3235int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3236                                        enum scsi_device_state new_state)
3237{
3238        /*
3239         * Try to transition the scsi device to SDEV_RUNNING or one of the
3240         * offlined states and goose the device queue if successful.
3241         */
3242        switch (sdev->sdev_state) {
3243        case SDEV_BLOCK:
3244        case SDEV_TRANSPORT_OFFLINE:
3245                sdev->sdev_state = new_state;
3246                break;
3247        case SDEV_CREATED_BLOCK:
3248                if (new_state == SDEV_TRANSPORT_OFFLINE ||
3249                    new_state == SDEV_OFFLINE)
3250                        sdev->sdev_state = new_state;
3251                else
3252                        sdev->sdev_state = SDEV_CREATED;
3253                break;
3254        case SDEV_CANCEL:
3255        case SDEV_OFFLINE:
3256                break;
3257        default:
3258                return -EINVAL;
3259        }
3260        scsi_start_queue(sdev);
3261
3262        return 0;
3263}
3264EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3265
3266/**
3267 * scsi_internal_device_unblock - resume a device after a block request
3268 * @sdev:       device to resume
3269 * @new_state:  state to set the device to after unblocking
3270 *
3271 * Restart the device queue for a previously suspended SCSI device. May sleep.
3272 *
3273 * Returns zero if successful or a negative error code upon failure.
3274 *
3275 * Notes:
3276 * This routine transitions the device to the SDEV_RUNNING state or to one of
3277 * the offline states (which must be a legal transition) allowing the midlayer
3278 * to goose the queue for this device.
3279 */
3280static int scsi_internal_device_unblock(struct scsi_device *sdev,
3281                                        enum scsi_device_state new_state)
3282{
3283        int ret;
3284
3285        mutex_lock(&sdev->state_mutex);
3286        ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3287        mutex_unlock(&sdev->state_mutex);
3288
3289        return ret;
3290}
3291
3292static void
3293device_block(struct scsi_device *sdev, void *data)
3294{
3295        scsi_internal_device_block(sdev);
3296}
3297
3298static int
3299target_block(struct device *dev, void *data)
3300{
3301        if (scsi_is_target_device(dev))
3302                starget_for_each_device(to_scsi_target(dev), NULL,
3303                                        device_block);
3304        return 0;
3305}
3306
3307void
3308scsi_target_block(struct device *dev)
3309{
3310        if (scsi_is_target_device(dev))
3311                starget_for_each_device(to_scsi_target(dev), NULL,
3312                                        device_block);
3313        else
3314                device_for_each_child(dev, NULL, target_block);
3315}
3316EXPORT_SYMBOL_GPL(scsi_target_block);
3317
3318static void
3319device_unblock(struct scsi_device *sdev, void *data)
3320{
3321        scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3322}
3323
3324static int
3325target_unblock(struct device *dev, void *data)
3326{
3327        if (scsi_is_target_device(dev))
3328                starget_for_each_device(to_scsi_target(dev), data,
3329                                        device_unblock);
3330        return 0;
3331}
3332
3333void
3334scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3335{
3336        if (scsi_is_target_device(dev))
3337                starget_for_each_device(to_scsi_target(dev), &new_state,
3338                                        device_unblock);
3339        else
3340                device_for_each_child(dev, &new_state, target_unblock);
3341}
3342EXPORT_SYMBOL_GPL(scsi_target_unblock);
3343
3344/**
3345 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3346 * @sgl:        scatter-gather list
3347 * @sg_count:   number of segments in sg
3348 * @offset:     offset in bytes into sg, on return offset into the mapped area
3349 * @len:        bytes to map, on return number of bytes mapped
3350 *
3351 * Returns virtual address of the start of the mapped page
3352 */
3353void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3354                          size_t *offset, size_t *len)
3355{
3356        int i;
3357        size_t sg_len = 0, len_complete = 0;
3358        struct scatterlist *sg;
3359        struct page *page;
3360
3361        WARN_ON(!irqs_disabled());
3362
3363        for_each_sg(sgl, sg, sg_count, i) {
3364                len_complete = sg_len; /* Complete sg-entries */
3365                sg_len += sg->length;
3366                if (sg_len > *offset)
3367                        break;
3368        }
3369
3370        if (unlikely(i == sg_count)) {
3371                printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3372                        "elements %d\n",
3373                       __func__, sg_len, *offset, sg_count);
3374                WARN_ON(1);
3375                return NULL;
3376        }
3377
3378        /* Offset starting from the beginning of first page in this sg-entry */
3379        *offset = *offset - len_complete + sg->offset;
3380
3381        /* Assumption: contiguous pages can be accessed as "page + i" */
3382        page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3383        *offset &= ~PAGE_MASK;
3384
3385        /* Bytes in this sg-entry from *offset to the end of the page */
3386        sg_len = PAGE_SIZE - *offset;
3387        if (*len > sg_len)
3388                *len = sg_len;
3389
3390        return kmap_atomic(page);
3391}
3392EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3393
3394/**
3395 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3396 * @virt:       virtual address to be unmapped
3397 */
3398void scsi_kunmap_atomic_sg(void *virt)
3399{
3400        kunmap_atomic(virt);
3401}
3402EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3403
3404void sdev_disable_disk_events(struct scsi_device *sdev)
3405{
3406        atomic_inc(&sdev->disk_events_disable_depth);
3407}
3408EXPORT_SYMBOL(sdev_disable_disk_events);
3409
3410void sdev_enable_disk_events(struct scsi_device *sdev)
3411{
3412        if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3413                return;
3414        atomic_dec(&sdev->disk_events_disable_depth);
3415}
3416EXPORT_SYMBOL(sdev_enable_disk_events);
3417
3418/**
3419 * scsi_vpd_lun_id - return a unique device identification
3420 * @sdev: SCSI device
3421 * @id:   buffer for the identification
3422 * @id_len:  length of the buffer
3423 *
3424 * Copies a unique device identification into @id based
3425 * on the information in the VPD page 0x83 of the device.
3426 * The string will be formatted as a SCSI name string.
3427 *
3428 * Returns the length of the identification or error on failure.
3429 * If the identifier is longer than the supplied buffer the actual
3430 * identifier length is returned and the buffer is not zero-padded.
3431 */
3432int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3433{
3434        u8 cur_id_type = 0xff;
3435        u8 cur_id_size = 0;
3436        const unsigned char *d, *cur_id_str;
3437        const struct scsi_vpd *vpd_pg83;
3438        int id_size = -EINVAL;
3439
3440        rcu_read_lock();
3441        vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3442        if (!vpd_pg83) {
3443                rcu_read_unlock();
3444                return -ENXIO;
3445        }
3446
3447        /*
3448         * Look for the correct descriptor.
3449         * Order of preference for lun descriptor:
3450         * - SCSI name string
3451         * - NAA IEEE Registered Extended
3452         * - EUI-64 based 16-byte
3453         * - EUI-64 based 12-byte
3454         * - NAA IEEE Registered
3455         * - NAA IEEE Extended
3456         * - T10 Vendor ID
3457         * as longer descriptors reduce the likelyhood
3458         * of identification clashes.
3459         */
3460
3461        /* The id string must be at least 20 bytes + terminating NULL byte */
3462        if (id_len < 21) {
3463                rcu_read_unlock();
3464                return -EINVAL;
3465        }
3466
3467        memset(id, 0, id_len);
3468        d = vpd_pg83->data + 4;
3469        while (d < vpd_pg83->data + vpd_pg83->len) {
3470                /* Skip designators not referring to the LUN */
3471                if ((d[1] & 0x30) != 0x00)
3472                        goto next_desig;
3473
3474                switch (d[1] & 0xf) {
3475                case 0x1:
3476                        /* T10 Vendor ID */
3477                        if (cur_id_size > d[3])
3478                                break;
3479                        /* Prefer anything */
3480                        if (cur_id_type > 0x01 && cur_id_type != 0xff)
3481                                break;
3482                        cur_id_size = d[3];
3483                        if (cur_id_size + 4 > id_len)
3484                                cur_id_size = id_len - 4;
3485                        cur_id_str = d + 4;
3486                        cur_id_type = d[1] & 0xf;
3487                        id_size = snprintf(id, id_len, "t10.%*pE",
3488                                           cur_id_size, cur_id_str);
3489                        break;
3490                case 0x2:
3491                        /* EUI-64 */
3492                        if (cur_id_size > d[3])
3493                                break;
3494                        /* Prefer NAA IEEE Registered Extended */
3495                        if (cur_id_type == 0x3 &&
3496                            cur_id_size == d[3])
3497                                break;
3498                        cur_id_size = d[3];
3499                        cur_id_str = d + 4;
3500                        cur_id_type = d[1] & 0xf;
3501                        switch (cur_id_size) {
3502                        case 8:
3503                                id_size = snprintf(id, id_len,
3504                                                   "eui.%8phN",
3505                                                   cur_id_str);
3506                                break;
3507                        case 12:
3508                                id_size = snprintf(id, id_len,
3509                                                   "eui.%12phN",
3510                                                   cur_id_str);
3511                                break;
3512                        case 16:
3513                                id_size = snprintf(id, id_len,
3514                                                   "eui.%16phN",
3515                                                   cur_id_str);
3516                                break;
3517                        default:
3518                                cur_id_size = 0;
3519                                break;
3520                        }
3521                        break;
3522                case 0x3:
3523                        /* NAA */
3524                        if (cur_id_size > d[3])
3525                                break;
3526                        cur_id_size = d[3];
3527                        cur_id_str = d + 4;
3528                        cur_id_type = d[1] & 0xf;
3529                        switch (cur_id_size) {
3530                        case 8:
3531                                id_size = snprintf(id, id_len,
3532                                                   "naa.%8phN",
3533                                                   cur_id_str);
3534                                break;
3535                        case 16:
3536                                id_size = snprintf(id, id_len,
3537                                                   "naa.%16phN",
3538                                                   cur_id_str);
3539                                break;
3540                        default:
3541                                cur_id_size = 0;
3542                                break;
3543                        }
3544                        break;
3545                case 0x8:
3546                        /* SCSI name string */
3547                        if (cur_id_size + 4 > d[3])
3548                                break;
3549                        /* Prefer others for truncated descriptor */
3550                        if (cur_id_size && d[3] > id_len)
3551                                break;
3552                        cur_id_size = id_size = d[3];
3553                        cur_id_str = d + 4;
3554                        cur_id_type = d[1] & 0xf;
3555                        if (cur_id_size >= id_len)
3556                                cur_id_size = id_len - 1;
3557                        memcpy(id, cur_id_str, cur_id_size);
3558                        /* Decrease priority for truncated descriptor */
3559                        if (cur_id_size != id_size)
3560                                cur_id_size = 6;
3561                        break;
3562                default:
3563                        break;
3564                }
3565next_desig:
3566                d += d[3] + 4;
3567        }
3568        rcu_read_unlock();
3569
3570        return id_size;
3571}
3572EXPORT_SYMBOL(scsi_vpd_lun_id);
3573
3574/*
3575 * scsi_vpd_tpg_id - return a target port group identifier
3576 * @sdev: SCSI device
3577 *
3578 * Returns the Target Port Group identifier from the information
3579 * froom VPD page 0x83 of the device.
3580 *
3581 * Returns the identifier or error on failure.
3582 */
3583int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3584{
3585        const unsigned char *d;
3586        const struct scsi_vpd *vpd_pg83;
3587        int group_id = -EAGAIN, rel_port = -1;
3588
3589        rcu_read_lock();
3590        vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3591        if (!vpd_pg83) {
3592                rcu_read_unlock();
3593                return -ENXIO;
3594        }
3595
3596        d = vpd_pg83->data + 4;
3597        while (d < vpd_pg83->data + vpd_pg83->len) {
3598                switch (d[1] & 0xf) {
3599                case 0x4:
3600                        /* Relative target port */
3601                        rel_port = get_unaligned_be16(&d[6]);
3602                        break;
3603                case 0x5:
3604                        /* Target port group */
3605                        group_id = get_unaligned_be16(&d[6]);
3606                        break;
3607                default:
3608                        break;
3609                }
3610                d += d[3] + 4;
3611        }
3612        rcu_read_unlock();
3613
3614        if (group_id >= 0 && rel_id && rel_port != -1)
3615                *rel_id = rel_port;
3616
3617        return group_id;
3618}
3619EXPORT_SYMBOL(scsi_vpd_tpg_id);
3620