linux/drivers/thunderbolt/nhi.c
<<
>>
Prefs
   1/*
   2 * Thunderbolt Cactus Ridge driver - NHI driver
   3 *
   4 * The NHI (native host interface) is the pci device that allows us to send and
   5 * receive frames from the thunderbolt bus.
   6 *
   7 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
   8 */
   9
  10#include <linux/pm_runtime.h>
  11#include <linux/slab.h>
  12#include <linux/errno.h>
  13#include <linux/pci.h>
  14#include <linux/interrupt.h>
  15#include <linux/module.h>
  16#include <linux/delay.h>
  17
  18#include "nhi.h"
  19#include "nhi_regs.h"
  20#include "tb.h"
  21
  22#define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
  23
  24/*
  25 * Used to enable end-to-end workaround for missing RX packets. Do not
  26 * use this ring for anything else.
  27 */
  28#define RING_E2E_UNUSED_HOPID   2
  29/* HopIDs 0-7 are reserved by the Thunderbolt protocol */
  30#define RING_FIRST_USABLE_HOPID 8
  31
  32/*
  33 * Minimal number of vectors when we use MSI-X. Two for control channel
  34 * Rx/Tx and the rest four are for cross domain DMA paths.
  35 */
  36#define MSIX_MIN_VECS           6
  37#define MSIX_MAX_VECS           16
  38
  39#define NHI_MAILBOX_TIMEOUT     500 /* ms */
  40
  41static int ring_interrupt_index(struct tb_ring *ring)
  42{
  43        int bit = ring->hop;
  44        if (!ring->is_tx)
  45                bit += ring->nhi->hop_count;
  46        return bit;
  47}
  48
  49/**
  50 * ring_interrupt_active() - activate/deactivate interrupts for a single ring
  51 *
  52 * ring->nhi->lock must be held.
  53 */
  54static void ring_interrupt_active(struct tb_ring *ring, bool active)
  55{
  56        int reg = REG_RING_INTERRUPT_BASE +
  57                  ring_interrupt_index(ring) / 32 * 4;
  58        int bit = ring_interrupt_index(ring) & 31;
  59        int mask = 1 << bit;
  60        u32 old, new;
  61
  62        if (ring->irq > 0) {
  63                u32 step, shift, ivr, misc;
  64                void __iomem *ivr_base;
  65                int index;
  66
  67                if (ring->is_tx)
  68                        index = ring->hop;
  69                else
  70                        index = ring->hop + ring->nhi->hop_count;
  71
  72                /*
  73                 * Ask the hardware to clear interrupt status bits automatically
  74                 * since we already know which interrupt was triggered.
  75                 */
  76                misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
  77                if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
  78                        misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
  79                        iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
  80                }
  81
  82                ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
  83                step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
  84                shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
  85                ivr = ioread32(ivr_base + step);
  86                ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
  87                if (active)
  88                        ivr |= ring->vector << shift;
  89                iowrite32(ivr, ivr_base + step);
  90        }
  91
  92        old = ioread32(ring->nhi->iobase + reg);
  93        if (active)
  94                new = old | mask;
  95        else
  96                new = old & ~mask;
  97
  98        dev_info(&ring->nhi->pdev->dev,
  99                 "%s interrupt at register %#x bit %d (%#x -> %#x)\n",
 100                 active ? "enabling" : "disabling", reg, bit, old, new);
 101
 102        if (new == old)
 103                dev_WARN(&ring->nhi->pdev->dev,
 104                                         "interrupt for %s %d is already %s\n",
 105                                         RING_TYPE(ring), ring->hop,
 106                                         active ? "enabled" : "disabled");
 107        iowrite32(new, ring->nhi->iobase + reg);
 108}
 109
 110/**
 111 * nhi_disable_interrupts() - disable interrupts for all rings
 112 *
 113 * Use only during init and shutdown.
 114 */
 115static void nhi_disable_interrupts(struct tb_nhi *nhi)
 116{
 117        int i = 0;
 118        /* disable interrupts */
 119        for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
 120                iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
 121
 122        /* clear interrupt status bits */
 123        for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
 124                ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
 125}
 126
 127/* ring helper methods */
 128
 129static void __iomem *ring_desc_base(struct tb_ring *ring)
 130{
 131        void __iomem *io = ring->nhi->iobase;
 132        io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
 133        io += ring->hop * 16;
 134        return io;
 135}
 136
 137static void __iomem *ring_options_base(struct tb_ring *ring)
 138{
 139        void __iomem *io = ring->nhi->iobase;
 140        io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
 141        io += ring->hop * 32;
 142        return io;
 143}
 144
 145static void ring_iowrite16desc(struct tb_ring *ring, u32 value, u32 offset)
 146{
 147        iowrite16(value, ring_desc_base(ring) + offset);
 148}
 149
 150static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
 151{
 152        iowrite32(value, ring_desc_base(ring) + offset);
 153}
 154
 155static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
 156{
 157        iowrite32(value, ring_desc_base(ring) + offset);
 158        iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
 159}
 160
 161static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
 162{
 163        iowrite32(value, ring_options_base(ring) + offset);
 164}
 165
 166static bool ring_full(struct tb_ring *ring)
 167{
 168        return ((ring->head + 1) % ring->size) == ring->tail;
 169}
 170
 171static bool ring_empty(struct tb_ring *ring)
 172{
 173        return ring->head == ring->tail;
 174}
 175
 176/**
 177 * ring_write_descriptors() - post frames from ring->queue to the controller
 178 *
 179 * ring->lock is held.
 180 */
 181static void ring_write_descriptors(struct tb_ring *ring)
 182{
 183        struct ring_frame *frame, *n;
 184        struct ring_desc *descriptor;
 185        list_for_each_entry_safe(frame, n, &ring->queue, list) {
 186                if (ring_full(ring))
 187                        break;
 188                list_move_tail(&frame->list, &ring->in_flight);
 189                descriptor = &ring->descriptors[ring->head];
 190                descriptor->phys = frame->buffer_phy;
 191                descriptor->time = 0;
 192                descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
 193                if (ring->is_tx) {
 194                        descriptor->length = frame->size;
 195                        descriptor->eof = frame->eof;
 196                        descriptor->sof = frame->sof;
 197                }
 198                ring->head = (ring->head + 1) % ring->size;
 199                ring_iowrite16desc(ring, ring->head, ring->is_tx ? 10 : 8);
 200        }
 201}
 202
 203/**
 204 * ring_work() - progress completed frames
 205 *
 206 * If the ring is shutting down then all frames are marked as canceled and
 207 * their callbacks are invoked.
 208 *
 209 * Otherwise we collect all completed frame from the ring buffer, write new
 210 * frame to the ring buffer and invoke the callbacks for the completed frames.
 211 */
 212static void ring_work(struct work_struct *work)
 213{
 214        struct tb_ring *ring = container_of(work, typeof(*ring), work);
 215        struct ring_frame *frame;
 216        bool canceled = false;
 217        unsigned long flags;
 218        LIST_HEAD(done);
 219
 220        spin_lock_irqsave(&ring->lock, flags);
 221
 222        if (!ring->running) {
 223                /*  Move all frames to done and mark them as canceled. */
 224                list_splice_tail_init(&ring->in_flight, &done);
 225                list_splice_tail_init(&ring->queue, &done);
 226                canceled = true;
 227                goto invoke_callback;
 228        }
 229
 230        while (!ring_empty(ring)) {
 231                if (!(ring->descriptors[ring->tail].flags
 232                                & RING_DESC_COMPLETED))
 233                        break;
 234                frame = list_first_entry(&ring->in_flight, typeof(*frame),
 235                                         list);
 236                list_move_tail(&frame->list, &done);
 237                if (!ring->is_tx) {
 238                        frame->size = ring->descriptors[ring->tail].length;
 239                        frame->eof = ring->descriptors[ring->tail].eof;
 240                        frame->sof = ring->descriptors[ring->tail].sof;
 241                        frame->flags = ring->descriptors[ring->tail].flags;
 242                }
 243                ring->tail = (ring->tail + 1) % ring->size;
 244        }
 245        ring_write_descriptors(ring);
 246
 247invoke_callback:
 248        /* allow callbacks to schedule new work */
 249        spin_unlock_irqrestore(&ring->lock, flags);
 250        while (!list_empty(&done)) {
 251                frame = list_first_entry(&done, typeof(*frame), list);
 252                /*
 253                 * The callback may reenqueue or delete frame.
 254                 * Do not hold on to it.
 255                 */
 256                list_del_init(&frame->list);
 257                if (frame->callback)
 258                        frame->callback(ring, frame, canceled);
 259        }
 260}
 261
 262int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
 263{
 264        unsigned long flags;
 265        int ret = 0;
 266
 267        spin_lock_irqsave(&ring->lock, flags);
 268        if (ring->running) {
 269                list_add_tail(&frame->list, &ring->queue);
 270                ring_write_descriptors(ring);
 271        } else {
 272                ret = -ESHUTDOWN;
 273        }
 274        spin_unlock_irqrestore(&ring->lock, flags);
 275        return ret;
 276}
 277EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
 278
 279/**
 280 * tb_ring_poll() - Poll one completed frame from the ring
 281 * @ring: Ring to poll
 282 *
 283 * This function can be called when @start_poll callback of the @ring
 284 * has been called. It will read one completed frame from the ring and
 285 * return it to the caller. Returns %NULL if there is no more completed
 286 * frames.
 287 */
 288struct ring_frame *tb_ring_poll(struct tb_ring *ring)
 289{
 290        struct ring_frame *frame = NULL;
 291        unsigned long flags;
 292
 293        spin_lock_irqsave(&ring->lock, flags);
 294        if (!ring->running)
 295                goto unlock;
 296        if (ring_empty(ring))
 297                goto unlock;
 298
 299        if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
 300                frame = list_first_entry(&ring->in_flight, typeof(*frame),
 301                                         list);
 302                list_del_init(&frame->list);
 303
 304                if (!ring->is_tx) {
 305                        frame->size = ring->descriptors[ring->tail].length;
 306                        frame->eof = ring->descriptors[ring->tail].eof;
 307                        frame->sof = ring->descriptors[ring->tail].sof;
 308                        frame->flags = ring->descriptors[ring->tail].flags;
 309                }
 310
 311                ring->tail = (ring->tail + 1) % ring->size;
 312        }
 313
 314unlock:
 315        spin_unlock_irqrestore(&ring->lock, flags);
 316        return frame;
 317}
 318EXPORT_SYMBOL_GPL(tb_ring_poll);
 319
 320static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
 321{
 322        int idx = ring_interrupt_index(ring);
 323        int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
 324        int bit = idx % 32;
 325        u32 val;
 326
 327        val = ioread32(ring->nhi->iobase + reg);
 328        if (mask)
 329                val &= ~BIT(bit);
 330        else
 331                val |= BIT(bit);
 332        iowrite32(val, ring->nhi->iobase + reg);
 333}
 334
 335/* Both @nhi->lock and @ring->lock should be held */
 336static void __ring_interrupt(struct tb_ring *ring)
 337{
 338        if (!ring->running)
 339                return;
 340
 341        if (ring->start_poll) {
 342                __ring_interrupt_mask(ring, true);
 343                ring->start_poll(ring->poll_data);
 344        } else {
 345                schedule_work(&ring->work);
 346        }
 347}
 348
 349/**
 350 * tb_ring_poll_complete() - Re-start interrupt for the ring
 351 * @ring: Ring to re-start the interrupt
 352 *
 353 * This will re-start (unmask) the ring interrupt once the user is done
 354 * with polling.
 355 */
 356void tb_ring_poll_complete(struct tb_ring *ring)
 357{
 358        unsigned long flags;
 359
 360        spin_lock_irqsave(&ring->nhi->lock, flags);
 361        spin_lock(&ring->lock);
 362        if (ring->start_poll)
 363                __ring_interrupt_mask(ring, false);
 364        spin_unlock(&ring->lock);
 365        spin_unlock_irqrestore(&ring->nhi->lock, flags);
 366}
 367EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
 368
 369static irqreturn_t ring_msix(int irq, void *data)
 370{
 371        struct tb_ring *ring = data;
 372
 373        spin_lock(&ring->nhi->lock);
 374        spin_lock(&ring->lock);
 375        __ring_interrupt(ring);
 376        spin_unlock(&ring->lock);
 377        spin_unlock(&ring->nhi->lock);
 378
 379        return IRQ_HANDLED;
 380}
 381
 382static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
 383{
 384        struct tb_nhi *nhi = ring->nhi;
 385        unsigned long irqflags;
 386        int ret;
 387
 388        if (!nhi->pdev->msix_enabled)
 389                return 0;
 390
 391        ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
 392        if (ret < 0)
 393                return ret;
 394
 395        ring->vector = ret;
 396
 397        ring->irq = pci_irq_vector(ring->nhi->pdev, ring->vector);
 398        if (ring->irq < 0)
 399                return ring->irq;
 400
 401        irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
 402        return request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
 403}
 404
 405static void ring_release_msix(struct tb_ring *ring)
 406{
 407        if (ring->irq <= 0)
 408                return;
 409
 410        free_irq(ring->irq, ring);
 411        ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
 412        ring->vector = 0;
 413        ring->irq = 0;
 414}
 415
 416static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
 417{
 418        int ret = 0;
 419
 420        spin_lock_irq(&nhi->lock);
 421
 422        if (ring->hop < 0) {
 423                unsigned int i;
 424
 425                /*
 426                 * Automatically allocate HopID from the non-reserved
 427                 * range 8 .. hop_count - 1.
 428                 */
 429                for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
 430                        if (ring->is_tx) {
 431                                if (!nhi->tx_rings[i]) {
 432                                        ring->hop = i;
 433                                        break;
 434                                }
 435                        } else {
 436                                if (!nhi->rx_rings[i]) {
 437                                        ring->hop = i;
 438                                        break;
 439                                }
 440                        }
 441                }
 442        }
 443
 444        if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
 445                dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
 446                ret = -EINVAL;
 447                goto err_unlock;
 448        }
 449        if (ring->is_tx && nhi->tx_rings[ring->hop]) {
 450                dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
 451                         ring->hop);
 452                ret = -EBUSY;
 453                goto err_unlock;
 454        } else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
 455                dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
 456                         ring->hop);
 457                ret = -EBUSY;
 458                goto err_unlock;
 459        }
 460
 461        if (ring->is_tx)
 462                nhi->tx_rings[ring->hop] = ring;
 463        else
 464                nhi->rx_rings[ring->hop] = ring;
 465
 466err_unlock:
 467        spin_unlock_irq(&nhi->lock);
 468
 469        return ret;
 470}
 471
 472static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
 473                                     bool transmit, unsigned int flags,
 474                                     u16 sof_mask, u16 eof_mask,
 475                                     void (*start_poll)(void *),
 476                                     void *poll_data)
 477{
 478        struct tb_ring *ring = NULL;
 479        dev_info(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
 480                 transmit ? "TX" : "RX", hop, size);
 481
 482        /* Tx Ring 2 is reserved for E2E workaround */
 483        if (transmit && hop == RING_E2E_UNUSED_HOPID)
 484                return NULL;
 485
 486        ring = kzalloc(sizeof(*ring), GFP_KERNEL);
 487        if (!ring)
 488                return NULL;
 489
 490        spin_lock_init(&ring->lock);
 491        INIT_LIST_HEAD(&ring->queue);
 492        INIT_LIST_HEAD(&ring->in_flight);
 493        INIT_WORK(&ring->work, ring_work);
 494
 495        ring->nhi = nhi;
 496        ring->hop = hop;
 497        ring->is_tx = transmit;
 498        ring->size = size;
 499        ring->flags = flags;
 500        ring->sof_mask = sof_mask;
 501        ring->eof_mask = eof_mask;
 502        ring->head = 0;
 503        ring->tail = 0;
 504        ring->running = false;
 505        ring->start_poll = start_poll;
 506        ring->poll_data = poll_data;
 507
 508        ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
 509                        size * sizeof(*ring->descriptors),
 510                        &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
 511        if (!ring->descriptors)
 512                goto err_free_ring;
 513
 514        if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
 515                goto err_free_descs;
 516
 517        if (nhi_alloc_hop(nhi, ring))
 518                goto err_release_msix;
 519
 520        return ring;
 521
 522err_release_msix:
 523        ring_release_msix(ring);
 524err_free_descs:
 525        dma_free_coherent(&ring->nhi->pdev->dev,
 526                          ring->size * sizeof(*ring->descriptors),
 527                          ring->descriptors, ring->descriptors_dma);
 528err_free_ring:
 529        kfree(ring);
 530
 531        return NULL;
 532}
 533
 534/**
 535 * tb_ring_alloc_tx() - Allocate DMA ring for transmit
 536 * @nhi: Pointer to the NHI the ring is to be allocated
 537 * @hop: HopID (ring) to allocate
 538 * @size: Number of entries in the ring
 539 * @flags: Flags for the ring
 540 */
 541struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
 542                                 unsigned int flags)
 543{
 544        return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, NULL, NULL);
 545}
 546EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
 547
 548/**
 549 * tb_ring_alloc_rx() - Allocate DMA ring for receive
 550 * @nhi: Pointer to the NHI the ring is to be allocated
 551 * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
 552 * @size: Number of entries in the ring
 553 * @flags: Flags for the ring
 554 * @sof_mask: Mask of PDF values that start a frame
 555 * @eof_mask: Mask of PDF values that end a frame
 556 * @start_poll: If not %NULL the ring will call this function when an
 557 *              interrupt is triggered and masked, instead of callback
 558 *              in each Rx frame.
 559 * @poll_data: Optional data passed to @start_poll
 560 */
 561struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
 562                                 unsigned int flags, u16 sof_mask, u16 eof_mask,
 563                                 void (*start_poll)(void *), void *poll_data)
 564{
 565        return tb_ring_alloc(nhi, hop, size, false, flags, sof_mask, eof_mask,
 566                             start_poll, poll_data);
 567}
 568EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
 569
 570/**
 571 * tb_ring_start() - enable a ring
 572 *
 573 * Must not be invoked in parallel with tb_ring_stop().
 574 */
 575void tb_ring_start(struct tb_ring *ring)
 576{
 577        u16 frame_size;
 578        u32 flags;
 579
 580        spin_lock_irq(&ring->nhi->lock);
 581        spin_lock(&ring->lock);
 582        if (ring->nhi->going_away)
 583                goto err;
 584        if (ring->running) {
 585                dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
 586                goto err;
 587        }
 588        dev_info(&ring->nhi->pdev->dev, "starting %s %d\n",
 589                 RING_TYPE(ring), ring->hop);
 590
 591        if (ring->flags & RING_FLAG_FRAME) {
 592                /* Means 4096 */
 593                frame_size = 0;
 594                flags = RING_FLAG_ENABLE;
 595        } else {
 596                frame_size = TB_FRAME_SIZE;
 597                flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
 598        }
 599
 600        if (ring->flags & RING_FLAG_E2E && !ring->is_tx) {
 601                u32 hop;
 602
 603                /*
 604                 * In order not to lose Rx packets we enable end-to-end
 605                 * workaround which transfers Rx credits to an unused Tx
 606                 * HopID.
 607                 */
 608                hop = RING_E2E_UNUSED_HOPID << REG_RX_OPTIONS_E2E_HOP_SHIFT;
 609                hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
 610                flags |= hop | RING_FLAG_E2E_FLOW_CONTROL;
 611        }
 612
 613        ring_iowrite64desc(ring, ring->descriptors_dma, 0);
 614        if (ring->is_tx) {
 615                ring_iowrite32desc(ring, ring->size, 12);
 616                ring_iowrite32options(ring, 0, 4); /* time releated ? */
 617                ring_iowrite32options(ring, flags, 0);
 618        } else {
 619                u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
 620
 621                ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
 622                ring_iowrite32options(ring, sof_eof_mask, 4);
 623                ring_iowrite32options(ring, flags, 0);
 624        }
 625        ring_interrupt_active(ring, true);
 626        ring->running = true;
 627err:
 628        spin_unlock(&ring->lock);
 629        spin_unlock_irq(&ring->nhi->lock);
 630}
 631EXPORT_SYMBOL_GPL(tb_ring_start);
 632
 633/**
 634 * tb_ring_stop() - shutdown a ring
 635 *
 636 * Must not be invoked from a callback.
 637 *
 638 * This method will disable the ring. Further calls to
 639 * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
 640 * called.
 641 *
 642 * All enqueued frames will be canceled and their callbacks will be executed
 643 * with frame->canceled set to true (on the callback thread). This method
 644 * returns only after all callback invocations have finished.
 645 */
 646void tb_ring_stop(struct tb_ring *ring)
 647{
 648        spin_lock_irq(&ring->nhi->lock);
 649        spin_lock(&ring->lock);
 650        dev_info(&ring->nhi->pdev->dev, "stopping %s %d\n",
 651                 RING_TYPE(ring), ring->hop);
 652        if (ring->nhi->going_away)
 653                goto err;
 654        if (!ring->running) {
 655                dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
 656                         RING_TYPE(ring), ring->hop);
 657                goto err;
 658        }
 659        ring_interrupt_active(ring, false);
 660
 661        ring_iowrite32options(ring, 0, 0);
 662        ring_iowrite64desc(ring, 0, 0);
 663        ring_iowrite16desc(ring, 0, ring->is_tx ? 10 : 8);
 664        ring_iowrite32desc(ring, 0, 12);
 665        ring->head = 0;
 666        ring->tail = 0;
 667        ring->running = false;
 668
 669err:
 670        spin_unlock(&ring->lock);
 671        spin_unlock_irq(&ring->nhi->lock);
 672
 673        /*
 674         * schedule ring->work to invoke callbacks on all remaining frames.
 675         */
 676        schedule_work(&ring->work);
 677        flush_work(&ring->work);
 678}
 679EXPORT_SYMBOL_GPL(tb_ring_stop);
 680
 681/*
 682 * tb_ring_free() - free ring
 683 *
 684 * When this method returns all invocations of ring->callback will have
 685 * finished.
 686 *
 687 * Ring must be stopped.
 688 *
 689 * Must NOT be called from ring_frame->callback!
 690 */
 691void tb_ring_free(struct tb_ring *ring)
 692{
 693        spin_lock_irq(&ring->nhi->lock);
 694        /*
 695         * Dissociate the ring from the NHI. This also ensures that
 696         * nhi_interrupt_work cannot reschedule ring->work.
 697         */
 698        if (ring->is_tx)
 699                ring->nhi->tx_rings[ring->hop] = NULL;
 700        else
 701                ring->nhi->rx_rings[ring->hop] = NULL;
 702
 703        if (ring->running) {
 704                dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
 705                         RING_TYPE(ring), ring->hop);
 706        }
 707        spin_unlock_irq(&ring->nhi->lock);
 708
 709        ring_release_msix(ring);
 710
 711        dma_free_coherent(&ring->nhi->pdev->dev,
 712                          ring->size * sizeof(*ring->descriptors),
 713                          ring->descriptors, ring->descriptors_dma);
 714
 715        ring->descriptors = NULL;
 716        ring->descriptors_dma = 0;
 717
 718
 719        dev_info(&ring->nhi->pdev->dev,
 720                 "freeing %s %d\n",
 721                 RING_TYPE(ring),
 722                 ring->hop);
 723
 724        /**
 725         * ring->work can no longer be scheduled (it is scheduled only
 726         * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
 727         * to finish before freeing the ring.
 728         */
 729        flush_work(&ring->work);
 730        kfree(ring);
 731}
 732EXPORT_SYMBOL_GPL(tb_ring_free);
 733
 734/**
 735 * nhi_mailbox_cmd() - Send a command through NHI mailbox
 736 * @nhi: Pointer to the NHI structure
 737 * @cmd: Command to send
 738 * @data: Data to be send with the command
 739 *
 740 * Sends mailbox command to the firmware running on NHI. Returns %0 in
 741 * case of success and negative errno in case of failure.
 742 */
 743int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
 744{
 745        ktime_t timeout;
 746        u32 val;
 747
 748        iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
 749
 750        val = ioread32(nhi->iobase + REG_INMAIL_CMD);
 751        val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
 752        val |= REG_INMAIL_OP_REQUEST | cmd;
 753        iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
 754
 755        timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
 756        do {
 757                val = ioread32(nhi->iobase + REG_INMAIL_CMD);
 758                if (!(val & REG_INMAIL_OP_REQUEST))
 759                        break;
 760                usleep_range(10, 20);
 761        } while (ktime_before(ktime_get(), timeout));
 762
 763        if (val & REG_INMAIL_OP_REQUEST)
 764                return -ETIMEDOUT;
 765        if (val & REG_INMAIL_ERROR)
 766                return -EIO;
 767
 768        return 0;
 769}
 770
 771/**
 772 * nhi_mailbox_mode() - Return current firmware operation mode
 773 * @nhi: Pointer to the NHI structure
 774 *
 775 * The function reads current firmware operation mode using NHI mailbox
 776 * registers and returns it to the caller.
 777 */
 778enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
 779{
 780        u32 val;
 781
 782        val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
 783        val &= REG_OUTMAIL_CMD_OPMODE_MASK;
 784        val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
 785
 786        return (enum nhi_fw_mode)val;
 787}
 788
 789static void nhi_interrupt_work(struct work_struct *work)
 790{
 791        struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
 792        int value = 0; /* Suppress uninitialized usage warning. */
 793        int bit;
 794        int hop = -1;
 795        int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
 796        struct tb_ring *ring;
 797
 798        spin_lock_irq(&nhi->lock);
 799
 800        /*
 801         * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
 802         * (TX, RX, RX overflow). We iterate over the bits and read a new
 803         * dwords as required. The registers are cleared on read.
 804         */
 805        for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
 806                if (bit % 32 == 0)
 807                        value = ioread32(nhi->iobase
 808                                         + REG_RING_NOTIFY_BASE
 809                                         + 4 * (bit / 32));
 810                if (++hop == nhi->hop_count) {
 811                        hop = 0;
 812                        type++;
 813                }
 814                if ((value & (1 << (bit % 32))) == 0)
 815                        continue;
 816                if (type == 2) {
 817                        dev_warn(&nhi->pdev->dev,
 818                                 "RX overflow for ring %d\n",
 819                                 hop);
 820                        continue;
 821                }
 822                if (type == 0)
 823                        ring = nhi->tx_rings[hop];
 824                else
 825                        ring = nhi->rx_rings[hop];
 826                if (ring == NULL) {
 827                        dev_warn(&nhi->pdev->dev,
 828                                 "got interrupt for inactive %s ring %d\n",
 829                                 type ? "RX" : "TX",
 830                                 hop);
 831                        continue;
 832                }
 833
 834                spin_lock(&ring->lock);
 835                __ring_interrupt(ring);
 836                spin_unlock(&ring->lock);
 837        }
 838        spin_unlock_irq(&nhi->lock);
 839}
 840
 841static irqreturn_t nhi_msi(int irq, void *data)
 842{
 843        struct tb_nhi *nhi = data;
 844        schedule_work(&nhi->interrupt_work);
 845        return IRQ_HANDLED;
 846}
 847
 848static int nhi_suspend_noirq(struct device *dev)
 849{
 850        struct pci_dev *pdev = to_pci_dev(dev);
 851        struct tb *tb = pci_get_drvdata(pdev);
 852
 853        return tb_domain_suspend_noirq(tb);
 854}
 855
 856static void nhi_enable_int_throttling(struct tb_nhi *nhi)
 857{
 858        /* Throttling is specified in 256ns increments */
 859        u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
 860        unsigned int i;
 861
 862        /*
 863         * Configure interrupt throttling for all vectors even if we
 864         * only use few.
 865         */
 866        for (i = 0; i < MSIX_MAX_VECS; i++) {
 867                u32 reg = REG_INT_THROTTLING_RATE + i * 4;
 868                iowrite32(throttle, nhi->iobase + reg);
 869        }
 870}
 871
 872static int nhi_resume_noirq(struct device *dev)
 873{
 874        struct pci_dev *pdev = to_pci_dev(dev);
 875        struct tb *tb = pci_get_drvdata(pdev);
 876
 877        /*
 878         * Check that the device is still there. It may be that the user
 879         * unplugged last device which causes the host controller to go
 880         * away on PCs.
 881         */
 882        if (!pci_device_is_present(pdev))
 883                tb->nhi->going_away = true;
 884        else
 885                nhi_enable_int_throttling(tb->nhi);
 886
 887        return tb_domain_resume_noirq(tb);
 888}
 889
 890static int nhi_suspend(struct device *dev)
 891{
 892        struct pci_dev *pdev = to_pci_dev(dev);
 893        struct tb *tb = pci_get_drvdata(pdev);
 894
 895        return tb_domain_suspend(tb);
 896}
 897
 898static void nhi_complete(struct device *dev)
 899{
 900        struct pci_dev *pdev = to_pci_dev(dev);
 901        struct tb *tb = pci_get_drvdata(pdev);
 902
 903        /*
 904         * If we were runtime suspended when system suspend started,
 905         * schedule runtime resume now. It should bring the domain back
 906         * to functional state.
 907         */
 908        if (pm_runtime_suspended(&pdev->dev))
 909                pm_runtime_resume(&pdev->dev);
 910        else
 911                tb_domain_complete(tb);
 912}
 913
 914static int nhi_runtime_suspend(struct device *dev)
 915{
 916        struct pci_dev *pdev = to_pci_dev(dev);
 917        struct tb *tb = pci_get_drvdata(pdev);
 918
 919        return tb_domain_runtime_suspend(tb);
 920}
 921
 922static int nhi_runtime_resume(struct device *dev)
 923{
 924        struct pci_dev *pdev = to_pci_dev(dev);
 925        struct tb *tb = pci_get_drvdata(pdev);
 926
 927        nhi_enable_int_throttling(tb->nhi);
 928        return tb_domain_runtime_resume(tb);
 929}
 930
 931static void nhi_shutdown(struct tb_nhi *nhi)
 932{
 933        int i;
 934        dev_info(&nhi->pdev->dev, "shutdown\n");
 935
 936        for (i = 0; i < nhi->hop_count; i++) {
 937                if (nhi->tx_rings[i])
 938                        dev_WARN(&nhi->pdev->dev,
 939                                 "TX ring %d is still active\n", i);
 940                if (nhi->rx_rings[i])
 941                        dev_WARN(&nhi->pdev->dev,
 942                                 "RX ring %d is still active\n", i);
 943        }
 944        nhi_disable_interrupts(nhi);
 945        /*
 946         * We have to release the irq before calling flush_work. Otherwise an
 947         * already executing IRQ handler could call schedule_work again.
 948         */
 949        if (!nhi->pdev->msix_enabled) {
 950                devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
 951                flush_work(&nhi->interrupt_work);
 952        }
 953        ida_destroy(&nhi->msix_ida);
 954}
 955
 956static int nhi_init_msi(struct tb_nhi *nhi)
 957{
 958        struct pci_dev *pdev = nhi->pdev;
 959        int res, irq, nvec;
 960
 961        /* In case someone left them on. */
 962        nhi_disable_interrupts(nhi);
 963
 964        nhi_enable_int_throttling(nhi);
 965
 966        ida_init(&nhi->msix_ida);
 967
 968        /*
 969         * The NHI has 16 MSI-X vectors or a single MSI. We first try to
 970         * get all MSI-X vectors and if we succeed, each ring will have
 971         * one MSI-X. If for some reason that does not work out, we
 972         * fallback to a single MSI.
 973         */
 974        nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
 975                                     PCI_IRQ_MSIX);
 976        if (nvec < 0) {
 977                nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
 978                if (nvec < 0)
 979                        return nvec;
 980
 981                INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
 982
 983                irq = pci_irq_vector(nhi->pdev, 0);
 984                if (irq < 0)
 985                        return irq;
 986
 987                res = devm_request_irq(&pdev->dev, irq, nhi_msi,
 988                                       IRQF_NO_SUSPEND, "thunderbolt", nhi);
 989                if (res) {
 990                        dev_err(&pdev->dev, "request_irq failed, aborting\n");
 991                        return res;
 992                }
 993        }
 994
 995        return 0;
 996}
 997
 998static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
 999{
1000        struct tb_nhi *nhi;
1001        struct tb *tb;
1002        int res;
1003
1004        res = pcim_enable_device(pdev);
1005        if (res) {
1006                dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1007                return res;
1008        }
1009
1010        res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1011        if (res) {
1012                dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1013                return res;
1014        }
1015
1016        nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1017        if (!nhi)
1018                return -ENOMEM;
1019
1020        nhi->pdev = pdev;
1021        /* cannot fail - table is allocated bin pcim_iomap_regions */
1022        nhi->iobase = pcim_iomap_table(pdev)[0];
1023        nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1024        if (nhi->hop_count != 12 && nhi->hop_count != 32)
1025                dev_warn(&pdev->dev, "unexpected hop count: %d\n",
1026                         nhi->hop_count);
1027
1028        nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1029                                     sizeof(*nhi->tx_rings), GFP_KERNEL);
1030        nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1031                                     sizeof(*nhi->rx_rings), GFP_KERNEL);
1032        if (!nhi->tx_rings || !nhi->rx_rings)
1033                return -ENOMEM;
1034
1035        res = nhi_init_msi(nhi);
1036        if (res) {
1037                dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1038                return res;
1039        }
1040
1041        spin_lock_init(&nhi->lock);
1042
1043        res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1044        if (res)
1045                res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1046        if (res) {
1047                dev_err(&pdev->dev, "failed to set DMA mask\n");
1048                return res;
1049        }
1050
1051        pci_set_master(pdev);
1052
1053        tb = icm_probe(nhi);
1054        if (!tb)
1055                tb = tb_probe(nhi);
1056        if (!tb) {
1057                dev_err(&nhi->pdev->dev,
1058                        "failed to determine connection manager, aborting\n");
1059                return -ENODEV;
1060        }
1061
1062        dev_info(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1063
1064        res = tb_domain_add(tb);
1065        if (res) {
1066                /*
1067                 * At this point the RX/TX rings might already have been
1068                 * activated. Do a proper shutdown.
1069                 */
1070                tb_domain_put(tb);
1071                nhi_shutdown(nhi);
1072                return res;
1073        }
1074        pci_set_drvdata(pdev, tb);
1075
1076        pm_runtime_allow(&pdev->dev);
1077        pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1078        pm_runtime_use_autosuspend(&pdev->dev);
1079        pm_runtime_put_autosuspend(&pdev->dev);
1080
1081        return 0;
1082}
1083
1084static void nhi_remove(struct pci_dev *pdev)
1085{
1086        struct tb *tb = pci_get_drvdata(pdev);
1087        struct tb_nhi *nhi = tb->nhi;
1088
1089        pm_runtime_get_sync(&pdev->dev);
1090        pm_runtime_dont_use_autosuspend(&pdev->dev);
1091        pm_runtime_forbid(&pdev->dev);
1092
1093        tb_domain_remove(tb);
1094        nhi_shutdown(nhi);
1095}
1096
1097/*
1098 * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1099 * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1100 * resume_noirq until we are done.
1101 */
1102static const struct dev_pm_ops nhi_pm_ops = {
1103        .suspend_noirq = nhi_suspend_noirq,
1104        .resume_noirq = nhi_resume_noirq,
1105        .freeze_noirq = nhi_suspend_noirq, /*
1106                                            * we just disable hotplug, the
1107                                            * pci-tunnels stay alive.
1108                                            */
1109        .thaw_noirq = nhi_resume_noirq,
1110        .restore_noirq = nhi_resume_noirq,
1111        .suspend = nhi_suspend,
1112        .freeze = nhi_suspend,
1113        .poweroff = nhi_suspend,
1114        .complete = nhi_complete,
1115        .runtime_suspend = nhi_runtime_suspend,
1116        .runtime_resume = nhi_runtime_resume,
1117};
1118
1119static struct pci_device_id nhi_ids[] = {
1120        /*
1121         * We have to specify class, the TB bridges use the same device and
1122         * vendor (sub)id on gen 1 and gen 2 controllers.
1123         */
1124        {
1125                .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1126                .vendor = PCI_VENDOR_ID_INTEL,
1127                .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1128                .subvendor = 0x2222, .subdevice = 0x1111,
1129        },
1130        {
1131                .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1132                .vendor = PCI_VENDOR_ID_INTEL,
1133                .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1134                .subvendor = 0x2222, .subdevice = 0x1111,
1135        },
1136        {
1137                .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1138                .vendor = PCI_VENDOR_ID_INTEL,
1139                .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1140                .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1141        },
1142        {
1143                .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1144                .vendor = PCI_VENDOR_ID_INTEL,
1145                .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1146                .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1147        },
1148
1149        /* Thunderbolt 3 */
1150        { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1151        { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1152        { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1153        { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1154        { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1155        { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1156        { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1157        { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1158        { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1159        { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1160
1161        { 0,}
1162};
1163
1164MODULE_DEVICE_TABLE(pci, nhi_ids);
1165MODULE_LICENSE("GPL");
1166
1167static struct pci_driver nhi_driver = {
1168        .name = "thunderbolt",
1169        .id_table = nhi_ids,
1170        .probe = nhi_probe,
1171        .remove = nhi_remove,
1172        .driver.pm = &nhi_pm_ops,
1173};
1174
1175static int __init nhi_init(void)
1176{
1177        int ret;
1178
1179        ret = tb_domain_init();
1180        if (ret)
1181                return ret;
1182        ret = pci_register_driver(&nhi_driver);
1183        if (ret)
1184                tb_domain_exit();
1185        return ret;
1186}
1187
1188static void __exit nhi_unload(void)
1189{
1190        pci_unregister_driver(&nhi_driver);
1191        tb_domain_exit();
1192}
1193
1194rootfs_initcall(nhi_init);
1195module_exit(nhi_unload);
1196