linux/fs/btrfs/ordered-data.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/slab.h>
   7#include <linux/blkdev.h>
   8#include <linux/writeback.h>
   9#include "ctree.h"
  10#include "transaction.h"
  11#include "btrfs_inode.h"
  12#include "extent_io.h"
  13#include "disk-io.h"
  14#include "compression.h"
  15
  16static struct kmem_cache *btrfs_ordered_extent_cache;
  17
  18static u64 entry_end(struct btrfs_ordered_extent *entry)
  19{
  20        if (entry->file_offset + entry->len < entry->file_offset)
  21                return (u64)-1;
  22        return entry->file_offset + entry->len;
  23}
  24
  25/* returns NULL if the insertion worked, or it returns the node it did find
  26 * in the tree
  27 */
  28static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  29                                   struct rb_node *node)
  30{
  31        struct rb_node **p = &root->rb_node;
  32        struct rb_node *parent = NULL;
  33        struct btrfs_ordered_extent *entry;
  34
  35        while (*p) {
  36                parent = *p;
  37                entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  38
  39                if (file_offset < entry->file_offset)
  40                        p = &(*p)->rb_left;
  41                else if (file_offset >= entry_end(entry))
  42                        p = &(*p)->rb_right;
  43                else
  44                        return parent;
  45        }
  46
  47        rb_link_node(node, parent, p);
  48        rb_insert_color(node, root);
  49        return NULL;
  50}
  51
  52static void ordered_data_tree_panic(struct inode *inode, int errno,
  53                                               u64 offset)
  54{
  55        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  56        btrfs_panic(fs_info, errno,
  57                    "Inconsistency in ordered tree at offset %llu", offset);
  58}
  59
  60/*
  61 * look for a given offset in the tree, and if it can't be found return the
  62 * first lesser offset
  63 */
  64static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  65                                     struct rb_node **prev_ret)
  66{
  67        struct rb_node *n = root->rb_node;
  68        struct rb_node *prev = NULL;
  69        struct rb_node *test;
  70        struct btrfs_ordered_extent *entry;
  71        struct btrfs_ordered_extent *prev_entry = NULL;
  72
  73        while (n) {
  74                entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  75                prev = n;
  76                prev_entry = entry;
  77
  78                if (file_offset < entry->file_offset)
  79                        n = n->rb_left;
  80                else if (file_offset >= entry_end(entry))
  81                        n = n->rb_right;
  82                else
  83                        return n;
  84        }
  85        if (!prev_ret)
  86                return NULL;
  87
  88        while (prev && file_offset >= entry_end(prev_entry)) {
  89                test = rb_next(prev);
  90                if (!test)
  91                        break;
  92                prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  93                                      rb_node);
  94                if (file_offset < entry_end(prev_entry))
  95                        break;
  96
  97                prev = test;
  98        }
  99        if (prev)
 100                prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 101                                      rb_node);
 102        while (prev && file_offset < entry_end(prev_entry)) {
 103                test = rb_prev(prev);
 104                if (!test)
 105                        break;
 106                prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 107                                      rb_node);
 108                prev = test;
 109        }
 110        *prev_ret = prev;
 111        return NULL;
 112}
 113
 114/*
 115 * helper to check if a given offset is inside a given entry
 116 */
 117static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
 118{
 119        if (file_offset < entry->file_offset ||
 120            entry->file_offset + entry->len <= file_offset)
 121                return 0;
 122        return 1;
 123}
 124
 125static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 126                          u64 len)
 127{
 128        if (file_offset + len <= entry->file_offset ||
 129            entry->file_offset + entry->len <= file_offset)
 130                return 0;
 131        return 1;
 132}
 133
 134/*
 135 * look find the first ordered struct that has this offset, otherwise
 136 * the first one less than this offset
 137 */
 138static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
 139                                          u64 file_offset)
 140{
 141        struct rb_root *root = &tree->tree;
 142        struct rb_node *prev = NULL;
 143        struct rb_node *ret;
 144        struct btrfs_ordered_extent *entry;
 145
 146        if (tree->last) {
 147                entry = rb_entry(tree->last, struct btrfs_ordered_extent,
 148                                 rb_node);
 149                if (offset_in_entry(entry, file_offset))
 150                        return tree->last;
 151        }
 152        ret = __tree_search(root, file_offset, &prev);
 153        if (!ret)
 154                ret = prev;
 155        if (ret)
 156                tree->last = ret;
 157        return ret;
 158}
 159
 160/* allocate and add a new ordered_extent into the per-inode tree.
 161 * file_offset is the logical offset in the file
 162 *
 163 * start is the disk block number of an extent already reserved in the
 164 * extent allocation tree
 165 *
 166 * len is the length of the extent
 167 *
 168 * The tree is given a single reference on the ordered extent that was
 169 * inserted.
 170 */
 171static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 172                                      u64 start, u64 len, u64 disk_len,
 173                                      int type, int dio, int compress_type)
 174{
 175        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 176        struct btrfs_root *root = BTRFS_I(inode)->root;
 177        struct btrfs_ordered_inode_tree *tree;
 178        struct rb_node *node;
 179        struct btrfs_ordered_extent *entry;
 180
 181        tree = &BTRFS_I(inode)->ordered_tree;
 182        entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 183        if (!entry)
 184                return -ENOMEM;
 185
 186        entry->file_offset = file_offset;
 187        entry->start = start;
 188        entry->len = len;
 189        entry->disk_len = disk_len;
 190        entry->bytes_left = len;
 191        entry->inode = igrab(inode);
 192        entry->compress_type = compress_type;
 193        entry->truncated_len = (u64)-1;
 194        if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
 195                set_bit(type, &entry->flags);
 196
 197        if (dio)
 198                set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
 199
 200        /* one ref for the tree */
 201        refcount_set(&entry->refs, 1);
 202        init_waitqueue_head(&entry->wait);
 203        INIT_LIST_HEAD(&entry->list);
 204        INIT_LIST_HEAD(&entry->root_extent_list);
 205        INIT_LIST_HEAD(&entry->work_list);
 206        init_completion(&entry->completion);
 207        INIT_LIST_HEAD(&entry->log_list);
 208        INIT_LIST_HEAD(&entry->trans_list);
 209
 210        trace_btrfs_ordered_extent_add(inode, entry);
 211
 212        spin_lock_irq(&tree->lock);
 213        node = tree_insert(&tree->tree, file_offset,
 214                           &entry->rb_node);
 215        if (node)
 216                ordered_data_tree_panic(inode, -EEXIST, file_offset);
 217        spin_unlock_irq(&tree->lock);
 218
 219        spin_lock(&root->ordered_extent_lock);
 220        list_add_tail(&entry->root_extent_list,
 221                      &root->ordered_extents);
 222        root->nr_ordered_extents++;
 223        if (root->nr_ordered_extents == 1) {
 224                spin_lock(&fs_info->ordered_root_lock);
 225                BUG_ON(!list_empty(&root->ordered_root));
 226                list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
 227                spin_unlock(&fs_info->ordered_root_lock);
 228        }
 229        spin_unlock(&root->ordered_extent_lock);
 230
 231        /*
 232         * We don't need the count_max_extents here, we can assume that all of
 233         * that work has been done at higher layers, so this is truly the
 234         * smallest the extent is going to get.
 235         */
 236        spin_lock(&BTRFS_I(inode)->lock);
 237        btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
 238        spin_unlock(&BTRFS_I(inode)->lock);
 239
 240        return 0;
 241}
 242
 243int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 244                             u64 start, u64 len, u64 disk_len, int type)
 245{
 246        return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 247                                          disk_len, type, 0,
 248                                          BTRFS_COMPRESS_NONE);
 249}
 250
 251int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
 252                                 u64 start, u64 len, u64 disk_len, int type)
 253{
 254        return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 255                                          disk_len, type, 1,
 256                                          BTRFS_COMPRESS_NONE);
 257}
 258
 259int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
 260                                      u64 start, u64 len, u64 disk_len,
 261                                      int type, int compress_type)
 262{
 263        return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 264                                          disk_len, type, 0,
 265                                          compress_type);
 266}
 267
 268/*
 269 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 270 * when an ordered extent is finished.  If the list covers more than one
 271 * ordered extent, it is split across multiples.
 272 */
 273void btrfs_add_ordered_sum(struct inode *inode,
 274                           struct btrfs_ordered_extent *entry,
 275                           struct btrfs_ordered_sum *sum)
 276{
 277        struct btrfs_ordered_inode_tree *tree;
 278
 279        tree = &BTRFS_I(inode)->ordered_tree;
 280        spin_lock_irq(&tree->lock);
 281        list_add_tail(&sum->list, &entry->list);
 282        spin_unlock_irq(&tree->lock);
 283}
 284
 285/*
 286 * this is used to account for finished IO across a given range
 287 * of the file.  The IO may span ordered extents.  If
 288 * a given ordered_extent is completely done, 1 is returned, otherwise
 289 * 0.
 290 *
 291 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 292 * to make sure this function only returns 1 once for a given ordered extent.
 293 *
 294 * file_offset is updated to one byte past the range that is recorded as
 295 * complete.  This allows you to walk forward in the file.
 296 */
 297int btrfs_dec_test_first_ordered_pending(struct inode *inode,
 298                                   struct btrfs_ordered_extent **cached,
 299                                   u64 *file_offset, u64 io_size, int uptodate)
 300{
 301        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 302        struct btrfs_ordered_inode_tree *tree;
 303        struct rb_node *node;
 304        struct btrfs_ordered_extent *entry = NULL;
 305        int ret;
 306        unsigned long flags;
 307        u64 dec_end;
 308        u64 dec_start;
 309        u64 to_dec;
 310
 311        tree = &BTRFS_I(inode)->ordered_tree;
 312        spin_lock_irqsave(&tree->lock, flags);
 313        node = tree_search(tree, *file_offset);
 314        if (!node) {
 315                ret = 1;
 316                goto out;
 317        }
 318
 319        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 320        if (!offset_in_entry(entry, *file_offset)) {
 321                ret = 1;
 322                goto out;
 323        }
 324
 325        dec_start = max(*file_offset, entry->file_offset);
 326        dec_end = min(*file_offset + io_size, entry->file_offset +
 327                      entry->len);
 328        *file_offset = dec_end;
 329        if (dec_start > dec_end) {
 330                btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
 331                           dec_start, dec_end);
 332        }
 333        to_dec = dec_end - dec_start;
 334        if (to_dec > entry->bytes_left) {
 335                btrfs_crit(fs_info,
 336                           "bad ordered accounting left %llu size %llu",
 337                           entry->bytes_left, to_dec);
 338        }
 339        entry->bytes_left -= to_dec;
 340        if (!uptodate)
 341                set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 342
 343        if (entry->bytes_left == 0) {
 344                ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 345                /* test_and_set_bit implies a barrier */
 346                cond_wake_up_nomb(&entry->wait);
 347        } else {
 348                ret = 1;
 349        }
 350out:
 351        if (!ret && cached && entry) {
 352                *cached = entry;
 353                refcount_inc(&entry->refs);
 354        }
 355        spin_unlock_irqrestore(&tree->lock, flags);
 356        return ret == 0;
 357}
 358
 359/*
 360 * this is used to account for finished IO across a given range
 361 * of the file.  The IO should not span ordered extents.  If
 362 * a given ordered_extent is completely done, 1 is returned, otherwise
 363 * 0.
 364 *
 365 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 366 * to make sure this function only returns 1 once for a given ordered extent.
 367 */
 368int btrfs_dec_test_ordered_pending(struct inode *inode,
 369                                   struct btrfs_ordered_extent **cached,
 370                                   u64 file_offset, u64 io_size, int uptodate)
 371{
 372        struct btrfs_ordered_inode_tree *tree;
 373        struct rb_node *node;
 374        struct btrfs_ordered_extent *entry = NULL;
 375        unsigned long flags;
 376        int ret;
 377
 378        tree = &BTRFS_I(inode)->ordered_tree;
 379        spin_lock_irqsave(&tree->lock, flags);
 380        if (cached && *cached) {
 381                entry = *cached;
 382                goto have_entry;
 383        }
 384
 385        node = tree_search(tree, file_offset);
 386        if (!node) {
 387                ret = 1;
 388                goto out;
 389        }
 390
 391        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 392have_entry:
 393        if (!offset_in_entry(entry, file_offset)) {
 394                ret = 1;
 395                goto out;
 396        }
 397
 398        if (io_size > entry->bytes_left) {
 399                btrfs_crit(BTRFS_I(inode)->root->fs_info,
 400                           "bad ordered accounting left %llu size %llu",
 401                       entry->bytes_left, io_size);
 402        }
 403        entry->bytes_left -= io_size;
 404        if (!uptodate)
 405                set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 406
 407        if (entry->bytes_left == 0) {
 408                ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 409                /* test_and_set_bit implies a barrier */
 410                cond_wake_up_nomb(&entry->wait);
 411        } else {
 412                ret = 1;
 413        }
 414out:
 415        if (!ret && cached && entry) {
 416                *cached = entry;
 417                refcount_inc(&entry->refs);
 418        }
 419        spin_unlock_irqrestore(&tree->lock, flags);
 420        return ret == 0;
 421}
 422
 423/*
 424 * used to drop a reference on an ordered extent.  This will free
 425 * the extent if the last reference is dropped
 426 */
 427void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 428{
 429        struct list_head *cur;
 430        struct btrfs_ordered_sum *sum;
 431
 432        trace_btrfs_ordered_extent_put(entry->inode, entry);
 433
 434        if (refcount_dec_and_test(&entry->refs)) {
 435                ASSERT(list_empty(&entry->log_list));
 436                ASSERT(list_empty(&entry->trans_list));
 437                ASSERT(list_empty(&entry->root_extent_list));
 438                ASSERT(RB_EMPTY_NODE(&entry->rb_node));
 439                if (entry->inode)
 440                        btrfs_add_delayed_iput(entry->inode);
 441                while (!list_empty(&entry->list)) {
 442                        cur = entry->list.next;
 443                        sum = list_entry(cur, struct btrfs_ordered_sum, list);
 444                        list_del(&sum->list);
 445                        kfree(sum);
 446                }
 447                kmem_cache_free(btrfs_ordered_extent_cache, entry);
 448        }
 449}
 450
 451/*
 452 * remove an ordered extent from the tree.  No references are dropped
 453 * and waiters are woken up.
 454 */
 455void btrfs_remove_ordered_extent(struct inode *inode,
 456                                 struct btrfs_ordered_extent *entry)
 457{
 458        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 459        struct btrfs_ordered_inode_tree *tree;
 460        struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
 461        struct btrfs_root *root = btrfs_inode->root;
 462        struct rb_node *node;
 463        bool dec_pending_ordered = false;
 464
 465        /* This is paired with btrfs_add_ordered_extent. */
 466        spin_lock(&btrfs_inode->lock);
 467        btrfs_mod_outstanding_extents(btrfs_inode, -1);
 468        spin_unlock(&btrfs_inode->lock);
 469        if (root != fs_info->tree_root)
 470                btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false);
 471
 472        tree = &btrfs_inode->ordered_tree;
 473        spin_lock_irq(&tree->lock);
 474        node = &entry->rb_node;
 475        rb_erase(node, &tree->tree);
 476        RB_CLEAR_NODE(node);
 477        if (tree->last == node)
 478                tree->last = NULL;
 479        set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 480        if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
 481                dec_pending_ordered = true;
 482        spin_unlock_irq(&tree->lock);
 483
 484        /*
 485         * The current running transaction is waiting on us, we need to let it
 486         * know that we're complete and wake it up.
 487         */
 488        if (dec_pending_ordered) {
 489                struct btrfs_transaction *trans;
 490
 491                /*
 492                 * The checks for trans are just a formality, it should be set,
 493                 * but if it isn't we don't want to deref/assert under the spin
 494                 * lock, so be nice and check if trans is set, but ASSERT() so
 495                 * if it isn't set a developer will notice.
 496                 */
 497                spin_lock(&fs_info->trans_lock);
 498                trans = fs_info->running_transaction;
 499                if (trans)
 500                        refcount_inc(&trans->use_count);
 501                spin_unlock(&fs_info->trans_lock);
 502
 503                ASSERT(trans);
 504                if (trans) {
 505                        if (atomic_dec_and_test(&trans->pending_ordered))
 506                                wake_up(&trans->pending_wait);
 507                        btrfs_put_transaction(trans);
 508                }
 509        }
 510
 511        spin_lock(&root->ordered_extent_lock);
 512        list_del_init(&entry->root_extent_list);
 513        root->nr_ordered_extents--;
 514
 515        trace_btrfs_ordered_extent_remove(inode, entry);
 516
 517        if (!root->nr_ordered_extents) {
 518                spin_lock(&fs_info->ordered_root_lock);
 519                BUG_ON(list_empty(&root->ordered_root));
 520                list_del_init(&root->ordered_root);
 521                spin_unlock(&fs_info->ordered_root_lock);
 522        }
 523        spin_unlock(&root->ordered_extent_lock);
 524        wake_up(&entry->wait);
 525}
 526
 527static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 528{
 529        struct btrfs_ordered_extent *ordered;
 530
 531        ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 532        btrfs_start_ordered_extent(ordered->inode, ordered, 1);
 533        complete(&ordered->completion);
 534}
 535
 536/*
 537 * wait for all the ordered extents in a root.  This is done when balancing
 538 * space between drives.
 539 */
 540u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
 541                               const u64 range_start, const u64 range_len)
 542{
 543        struct btrfs_fs_info *fs_info = root->fs_info;
 544        LIST_HEAD(splice);
 545        LIST_HEAD(skipped);
 546        LIST_HEAD(works);
 547        struct btrfs_ordered_extent *ordered, *next;
 548        u64 count = 0;
 549        const u64 range_end = range_start + range_len;
 550
 551        mutex_lock(&root->ordered_extent_mutex);
 552        spin_lock(&root->ordered_extent_lock);
 553        list_splice_init(&root->ordered_extents, &splice);
 554        while (!list_empty(&splice) && nr) {
 555                ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 556                                           root_extent_list);
 557
 558                if (range_end <= ordered->start ||
 559                    ordered->start + ordered->disk_len <= range_start) {
 560                        list_move_tail(&ordered->root_extent_list, &skipped);
 561                        cond_resched_lock(&root->ordered_extent_lock);
 562                        continue;
 563                }
 564
 565                list_move_tail(&ordered->root_extent_list,
 566                               &root->ordered_extents);
 567                refcount_inc(&ordered->refs);
 568                spin_unlock(&root->ordered_extent_lock);
 569
 570                btrfs_init_work(&ordered->flush_work,
 571                                btrfs_flush_delalloc_helper,
 572                                btrfs_run_ordered_extent_work, NULL, NULL);
 573                list_add_tail(&ordered->work_list, &works);
 574                btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
 575
 576                cond_resched();
 577                spin_lock(&root->ordered_extent_lock);
 578                if (nr != U64_MAX)
 579                        nr--;
 580                count++;
 581        }
 582        list_splice_tail(&skipped, &root->ordered_extents);
 583        list_splice_tail(&splice, &root->ordered_extents);
 584        spin_unlock(&root->ordered_extent_lock);
 585
 586        list_for_each_entry_safe(ordered, next, &works, work_list) {
 587                list_del_init(&ordered->work_list);
 588                wait_for_completion(&ordered->completion);
 589                btrfs_put_ordered_extent(ordered);
 590                cond_resched();
 591        }
 592        mutex_unlock(&root->ordered_extent_mutex);
 593
 594        return count;
 595}
 596
 597u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
 598                             const u64 range_start, const u64 range_len)
 599{
 600        struct btrfs_root *root;
 601        struct list_head splice;
 602        u64 total_done = 0;
 603        u64 done;
 604
 605        INIT_LIST_HEAD(&splice);
 606
 607        mutex_lock(&fs_info->ordered_operations_mutex);
 608        spin_lock(&fs_info->ordered_root_lock);
 609        list_splice_init(&fs_info->ordered_roots, &splice);
 610        while (!list_empty(&splice) && nr) {
 611                root = list_first_entry(&splice, struct btrfs_root,
 612                                        ordered_root);
 613                root = btrfs_grab_fs_root(root);
 614                BUG_ON(!root);
 615                list_move_tail(&root->ordered_root,
 616                               &fs_info->ordered_roots);
 617                spin_unlock(&fs_info->ordered_root_lock);
 618
 619                done = btrfs_wait_ordered_extents(root, nr,
 620                                                  range_start, range_len);
 621                btrfs_put_fs_root(root);
 622                total_done += done;
 623
 624                spin_lock(&fs_info->ordered_root_lock);
 625                if (nr != U64_MAX) {
 626                        nr -= done;
 627                }
 628        }
 629        list_splice_tail(&splice, &fs_info->ordered_roots);
 630        spin_unlock(&fs_info->ordered_root_lock);
 631        mutex_unlock(&fs_info->ordered_operations_mutex);
 632
 633        return total_done;
 634}
 635
 636/*
 637 * Used to start IO or wait for a given ordered extent to finish.
 638 *
 639 * If wait is one, this effectively waits on page writeback for all the pages
 640 * in the extent, and it waits on the io completion code to insert
 641 * metadata into the btree corresponding to the extent
 642 */
 643void btrfs_start_ordered_extent(struct inode *inode,
 644                                       struct btrfs_ordered_extent *entry,
 645                                       int wait)
 646{
 647        u64 start = entry->file_offset;
 648        u64 end = start + entry->len - 1;
 649
 650        trace_btrfs_ordered_extent_start(inode, entry);
 651
 652        /*
 653         * pages in the range can be dirty, clean or writeback.  We
 654         * start IO on any dirty ones so the wait doesn't stall waiting
 655         * for the flusher thread to find them
 656         */
 657        if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 658                filemap_fdatawrite_range(inode->i_mapping, start, end);
 659        if (wait) {
 660                wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
 661                                                 &entry->flags));
 662        }
 663}
 664
 665/*
 666 * Used to wait on ordered extents across a large range of bytes.
 667 */
 668int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 669{
 670        int ret = 0;
 671        int ret_wb = 0;
 672        u64 end;
 673        u64 orig_end;
 674        struct btrfs_ordered_extent *ordered;
 675
 676        if (start + len < start) {
 677                orig_end = INT_LIMIT(loff_t);
 678        } else {
 679                orig_end = start + len - 1;
 680                if (orig_end > INT_LIMIT(loff_t))
 681                        orig_end = INT_LIMIT(loff_t);
 682        }
 683
 684        /* start IO across the range first to instantiate any delalloc
 685         * extents
 686         */
 687        ret = btrfs_fdatawrite_range(inode, start, orig_end);
 688        if (ret)
 689                return ret;
 690
 691        /*
 692         * If we have a writeback error don't return immediately. Wait first
 693         * for any ordered extents that haven't completed yet. This is to make
 694         * sure no one can dirty the same page ranges and call writepages()
 695         * before the ordered extents complete - to avoid failures (-EEXIST)
 696         * when adding the new ordered extents to the ordered tree.
 697         */
 698        ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 699
 700        end = orig_end;
 701        while (1) {
 702                ordered = btrfs_lookup_first_ordered_extent(inode, end);
 703                if (!ordered)
 704                        break;
 705                if (ordered->file_offset > orig_end) {
 706                        btrfs_put_ordered_extent(ordered);
 707                        break;
 708                }
 709                if (ordered->file_offset + ordered->len <= start) {
 710                        btrfs_put_ordered_extent(ordered);
 711                        break;
 712                }
 713                btrfs_start_ordered_extent(inode, ordered, 1);
 714                end = ordered->file_offset;
 715                if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 716                        ret = -EIO;
 717                btrfs_put_ordered_extent(ordered);
 718                if (ret || end == 0 || end == start)
 719                        break;
 720                end--;
 721        }
 722        return ret_wb ? ret_wb : ret;
 723}
 724
 725/*
 726 * find an ordered extent corresponding to file_offset.  return NULL if
 727 * nothing is found, otherwise take a reference on the extent and return it
 728 */
 729struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
 730                                                         u64 file_offset)
 731{
 732        struct btrfs_ordered_inode_tree *tree;
 733        struct rb_node *node;
 734        struct btrfs_ordered_extent *entry = NULL;
 735
 736        tree = &BTRFS_I(inode)->ordered_tree;
 737        spin_lock_irq(&tree->lock);
 738        node = tree_search(tree, file_offset);
 739        if (!node)
 740                goto out;
 741
 742        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 743        if (!offset_in_entry(entry, file_offset))
 744                entry = NULL;
 745        if (entry)
 746                refcount_inc(&entry->refs);
 747out:
 748        spin_unlock_irq(&tree->lock);
 749        return entry;
 750}
 751
 752/* Since the DIO code tries to lock a wide area we need to look for any ordered
 753 * extents that exist in the range, rather than just the start of the range.
 754 */
 755struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
 756                struct btrfs_inode *inode, u64 file_offset, u64 len)
 757{
 758        struct btrfs_ordered_inode_tree *tree;
 759        struct rb_node *node;
 760        struct btrfs_ordered_extent *entry = NULL;
 761
 762        tree = &inode->ordered_tree;
 763        spin_lock_irq(&tree->lock);
 764        node = tree_search(tree, file_offset);
 765        if (!node) {
 766                node = tree_search(tree, file_offset + len);
 767                if (!node)
 768                        goto out;
 769        }
 770
 771        while (1) {
 772                entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 773                if (range_overlaps(entry, file_offset, len))
 774                        break;
 775
 776                if (entry->file_offset >= file_offset + len) {
 777                        entry = NULL;
 778                        break;
 779                }
 780                entry = NULL;
 781                node = rb_next(node);
 782                if (!node)
 783                        break;
 784        }
 785out:
 786        if (entry)
 787                refcount_inc(&entry->refs);
 788        spin_unlock_irq(&tree->lock);
 789        return entry;
 790}
 791
 792/*
 793 * lookup and return any extent before 'file_offset'.  NULL is returned
 794 * if none is found
 795 */
 796struct btrfs_ordered_extent *
 797btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
 798{
 799        struct btrfs_ordered_inode_tree *tree;
 800        struct rb_node *node;
 801        struct btrfs_ordered_extent *entry = NULL;
 802
 803        tree = &BTRFS_I(inode)->ordered_tree;
 804        spin_lock_irq(&tree->lock);
 805        node = tree_search(tree, file_offset);
 806        if (!node)
 807                goto out;
 808
 809        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 810        refcount_inc(&entry->refs);
 811out:
 812        spin_unlock_irq(&tree->lock);
 813        return entry;
 814}
 815
 816/*
 817 * After an extent is done, call this to conditionally update the on disk
 818 * i_size.  i_size is updated to cover any fully written part of the file.
 819 */
 820int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
 821                                struct btrfs_ordered_extent *ordered)
 822{
 823        struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
 824        u64 disk_i_size;
 825        u64 new_i_size;
 826        u64 i_size = i_size_read(inode);
 827        struct rb_node *node;
 828        struct rb_node *prev = NULL;
 829        struct btrfs_ordered_extent *test;
 830        int ret = 1;
 831        u64 orig_offset = offset;
 832
 833        spin_lock_irq(&tree->lock);
 834        if (ordered) {
 835                offset = entry_end(ordered);
 836                if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
 837                        offset = min(offset,
 838                                     ordered->file_offset +
 839                                     ordered->truncated_len);
 840        } else {
 841                offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
 842        }
 843        disk_i_size = BTRFS_I(inode)->disk_i_size;
 844
 845        /*
 846         * truncate file.
 847         * If ordered is not NULL, then this is called from endio and
 848         * disk_i_size will be updated by either truncate itself or any
 849         * in-flight IOs which are inside the disk_i_size.
 850         *
 851         * Because btrfs_setsize() may set i_size with disk_i_size if truncate
 852         * fails somehow, we need to make sure we have a precise disk_i_size by
 853         * updating it as usual.
 854         *
 855         */
 856        if (!ordered && disk_i_size > i_size) {
 857                BTRFS_I(inode)->disk_i_size = orig_offset;
 858                ret = 0;
 859                goto out;
 860        }
 861
 862        /*
 863         * if the disk i_size is already at the inode->i_size, or
 864         * this ordered extent is inside the disk i_size, we're done
 865         */
 866        if (disk_i_size == i_size)
 867                goto out;
 868
 869        /*
 870         * We still need to update disk_i_size if outstanding_isize is greater
 871         * than disk_i_size.
 872         */
 873        if (offset <= disk_i_size &&
 874            (!ordered || ordered->outstanding_isize <= disk_i_size))
 875                goto out;
 876
 877        /*
 878         * walk backward from this ordered extent to disk_i_size.
 879         * if we find an ordered extent then we can't update disk i_size
 880         * yet
 881         */
 882        if (ordered) {
 883                node = rb_prev(&ordered->rb_node);
 884        } else {
 885                prev = tree_search(tree, offset);
 886                /*
 887                 * we insert file extents without involving ordered struct,
 888                 * so there should be no ordered struct cover this offset
 889                 */
 890                if (prev) {
 891                        test = rb_entry(prev, struct btrfs_ordered_extent,
 892                                        rb_node);
 893                        BUG_ON(offset_in_entry(test, offset));
 894                }
 895                node = prev;
 896        }
 897        for (; node; node = rb_prev(node)) {
 898                test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 899
 900                /* We treat this entry as if it doesn't exist */
 901                if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
 902                        continue;
 903
 904                if (entry_end(test) <= disk_i_size)
 905                        break;
 906                if (test->file_offset >= i_size)
 907                        break;
 908
 909                /*
 910                 * We don't update disk_i_size now, so record this undealt
 911                 * i_size. Or we will not know the real i_size.
 912                 */
 913                if (test->outstanding_isize < offset)
 914                        test->outstanding_isize = offset;
 915                if (ordered &&
 916                    ordered->outstanding_isize > test->outstanding_isize)
 917                        test->outstanding_isize = ordered->outstanding_isize;
 918                goto out;
 919        }
 920        new_i_size = min_t(u64, offset, i_size);
 921
 922        /*
 923         * Some ordered extents may completed before the current one, and
 924         * we hold the real i_size in ->outstanding_isize.
 925         */
 926        if (ordered && ordered->outstanding_isize > new_i_size)
 927                new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
 928        BTRFS_I(inode)->disk_i_size = new_i_size;
 929        ret = 0;
 930out:
 931        /*
 932         * We need to do this because we can't remove ordered extents until
 933         * after the i_disk_size has been updated and then the inode has been
 934         * updated to reflect the change, so we need to tell anybody who finds
 935         * this ordered extent that we've already done all the real work, we
 936         * just haven't completed all the other work.
 937         */
 938        if (ordered)
 939                set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
 940        spin_unlock_irq(&tree->lock);
 941        return ret;
 942}
 943
 944/*
 945 * search the ordered extents for one corresponding to 'offset' and
 946 * try to find a checksum.  This is used because we allow pages to
 947 * be reclaimed before their checksum is actually put into the btree
 948 */
 949int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
 950                           u32 *sum, int len)
 951{
 952        struct btrfs_ordered_sum *ordered_sum;
 953        struct btrfs_ordered_extent *ordered;
 954        struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
 955        unsigned long num_sectors;
 956        unsigned long i;
 957        u32 sectorsize = btrfs_inode_sectorsize(inode);
 958        int index = 0;
 959
 960        ordered = btrfs_lookup_ordered_extent(inode, offset);
 961        if (!ordered)
 962                return 0;
 963
 964        spin_lock_irq(&tree->lock);
 965        list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
 966                if (disk_bytenr >= ordered_sum->bytenr &&
 967                    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
 968                        i = (disk_bytenr - ordered_sum->bytenr) >>
 969                            inode->i_sb->s_blocksize_bits;
 970                        num_sectors = ordered_sum->len >>
 971                                      inode->i_sb->s_blocksize_bits;
 972                        num_sectors = min_t(int, len - index, num_sectors - i);
 973                        memcpy(sum + index, ordered_sum->sums + i,
 974                               num_sectors);
 975
 976                        index += (int)num_sectors;
 977                        if (index == len)
 978                                goto out;
 979                        disk_bytenr += num_sectors * sectorsize;
 980                }
 981        }
 982out:
 983        spin_unlock_irq(&tree->lock);
 984        btrfs_put_ordered_extent(ordered);
 985        return index;
 986}
 987
 988int __init ordered_data_init(void)
 989{
 990        btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
 991                                     sizeof(struct btrfs_ordered_extent), 0,
 992                                     SLAB_MEM_SPREAD,
 993                                     NULL);
 994        if (!btrfs_ordered_extent_cache)
 995                return -ENOMEM;
 996
 997        return 0;
 998}
 999
1000void __cold ordered_data_exit(void)
1001{
1002        kmem_cache_destroy(btrfs_ordered_extent_cache);
1003}
1004