linux/fs/eventpoll.c
<<
>>
Prefs
   1/*
   2 *  fs/eventpoll.c (Efficient event retrieval implementation)
   3 *  Copyright (C) 2001,...,2009  Davide Libenzi
   4 *
   5 *  This program is free software; you can redistribute it and/or modify
   6 *  it under the terms of the GNU General Public License as published by
   7 *  the Free Software Foundation; either version 2 of the License, or
   8 *  (at your option) any later version.
   9 *
  10 *  Davide Libenzi <davidel@xmailserver.org>
  11 *
  12 */
  13
  14#include <linux/init.h>
  15#include <linux/kernel.h>
  16#include <linux/sched/signal.h>
  17#include <linux/fs.h>
  18#include <linux/file.h>
  19#include <linux/signal.h>
  20#include <linux/errno.h>
  21#include <linux/mm.h>
  22#include <linux/slab.h>
  23#include <linux/poll.h>
  24#include <linux/string.h>
  25#include <linux/list.h>
  26#include <linux/hash.h>
  27#include <linux/spinlock.h>
  28#include <linux/syscalls.h>
  29#include <linux/rbtree.h>
  30#include <linux/wait.h>
  31#include <linux/eventpoll.h>
  32#include <linux/mount.h>
  33#include <linux/bitops.h>
  34#include <linux/mutex.h>
  35#include <linux/anon_inodes.h>
  36#include <linux/device.h>
  37#include <linux/uaccess.h>
  38#include <asm/io.h>
  39#include <asm/mman.h>
  40#include <linux/atomic.h>
  41#include <linux/proc_fs.h>
  42#include <linux/seq_file.h>
  43#include <linux/compat.h>
  44#include <linux/rculist.h>
  45#include <net/busy_poll.h>
  46
  47/*
  48 * LOCKING:
  49 * There are three level of locking required by epoll :
  50 *
  51 * 1) epmutex (mutex)
  52 * 2) ep->mtx (mutex)
  53 * 3) ep->wq.lock (spinlock)
  54 *
  55 * The acquire order is the one listed above, from 1 to 3.
  56 * We need a spinlock (ep->wq.lock) because we manipulate objects
  57 * from inside the poll callback, that might be triggered from
  58 * a wake_up() that in turn might be called from IRQ context.
  59 * So we can't sleep inside the poll callback and hence we need
  60 * a spinlock. During the event transfer loop (from kernel to
  61 * user space) we could end up sleeping due a copy_to_user(), so
  62 * we need a lock that will allow us to sleep. This lock is a
  63 * mutex (ep->mtx). It is acquired during the event transfer loop,
  64 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
  65 * Then we also need a global mutex to serialize eventpoll_release_file()
  66 * and ep_free().
  67 * This mutex is acquired by ep_free() during the epoll file
  68 * cleanup path and it is also acquired by eventpoll_release_file()
  69 * if a file has been pushed inside an epoll set and it is then
  70 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
  71 * It is also acquired when inserting an epoll fd onto another epoll
  72 * fd. We do this so that we walk the epoll tree and ensure that this
  73 * insertion does not create a cycle of epoll file descriptors, which
  74 * could lead to deadlock. We need a global mutex to prevent two
  75 * simultaneous inserts (A into B and B into A) from racing and
  76 * constructing a cycle without either insert observing that it is
  77 * going to.
  78 * It is necessary to acquire multiple "ep->mtx"es at once in the
  79 * case when one epoll fd is added to another. In this case, we
  80 * always acquire the locks in the order of nesting (i.e. after
  81 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
  82 * before e2->mtx). Since we disallow cycles of epoll file
  83 * descriptors, this ensures that the mutexes are well-ordered. In
  84 * order to communicate this nesting to lockdep, when walking a tree
  85 * of epoll file descriptors, we use the current recursion depth as
  86 * the lockdep subkey.
  87 * It is possible to drop the "ep->mtx" and to use the global
  88 * mutex "epmutex" (together with "ep->wq.lock") to have it working,
  89 * but having "ep->mtx" will make the interface more scalable.
  90 * Events that require holding "epmutex" are very rare, while for
  91 * normal operations the epoll private "ep->mtx" will guarantee
  92 * a better scalability.
  93 */
  94
  95/* Epoll private bits inside the event mask */
  96#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
  97
  98#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
  99
 100#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
 101                                EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
 102
 103/* Maximum number of nesting allowed inside epoll sets */
 104#define EP_MAX_NESTS 4
 105
 106#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
 107
 108#define EP_UNACTIVE_PTR ((void *) -1L)
 109
 110#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
 111
 112struct epoll_filefd {
 113        struct file *file;
 114        int fd;
 115} __packed;
 116
 117/*
 118 * Structure used to track possible nested calls, for too deep recursions
 119 * and loop cycles.
 120 */
 121struct nested_call_node {
 122        struct list_head llink;
 123        void *cookie;
 124        void *ctx;
 125};
 126
 127/*
 128 * This structure is used as collector for nested calls, to check for
 129 * maximum recursion dept and loop cycles.
 130 */
 131struct nested_calls {
 132        struct list_head tasks_call_list;
 133        spinlock_t lock;
 134};
 135
 136/*
 137 * Each file descriptor added to the eventpoll interface will
 138 * have an entry of this type linked to the "rbr" RB tree.
 139 * Avoid increasing the size of this struct, there can be many thousands
 140 * of these on a server and we do not want this to take another cache line.
 141 */
 142struct epitem {
 143        union {
 144                /* RB tree node links this structure to the eventpoll RB tree */
 145                struct rb_node rbn;
 146                /* Used to free the struct epitem */
 147                struct rcu_head rcu;
 148        };
 149
 150        /* List header used to link this structure to the eventpoll ready list */
 151        struct list_head rdllink;
 152
 153        /*
 154         * Works together "struct eventpoll"->ovflist in keeping the
 155         * single linked chain of items.
 156         */
 157        struct epitem *next;
 158
 159        /* The file descriptor information this item refers to */
 160        struct epoll_filefd ffd;
 161
 162        /* Number of active wait queue attached to poll operations */
 163        int nwait;
 164
 165        /* List containing poll wait queues */
 166        struct list_head pwqlist;
 167
 168        /* The "container" of this item */
 169        struct eventpoll *ep;
 170
 171        /* List header used to link this item to the "struct file" items list */
 172        struct list_head fllink;
 173
 174        /* wakeup_source used when EPOLLWAKEUP is set */
 175        struct wakeup_source __rcu *ws;
 176
 177        /* The structure that describe the interested events and the source fd */
 178        struct epoll_event event;
 179};
 180
 181/*
 182 * This structure is stored inside the "private_data" member of the file
 183 * structure and represents the main data structure for the eventpoll
 184 * interface.
 185 *
 186 * Access to it is protected by the lock inside wq.
 187 */
 188struct eventpoll {
 189        /*
 190         * This mutex is used to ensure that files are not removed
 191         * while epoll is using them. This is held during the event
 192         * collection loop, the file cleanup path, the epoll file exit
 193         * code and the ctl operations.
 194         */
 195        struct mutex mtx;
 196
 197        /* Wait queue used by sys_epoll_wait() */
 198        wait_queue_head_t wq;
 199
 200        /* Wait queue used by file->poll() */
 201        wait_queue_head_t poll_wait;
 202
 203        /* List of ready file descriptors */
 204        struct list_head rdllist;
 205
 206        /* RB tree root used to store monitored fd structs */
 207        struct rb_root_cached rbr;
 208
 209        /*
 210         * This is a single linked list that chains all the "struct epitem" that
 211         * happened while transferring ready events to userspace w/out
 212         * holding ->wq.lock.
 213         */
 214        struct epitem *ovflist;
 215
 216        /* wakeup_source used when ep_scan_ready_list is running */
 217        struct wakeup_source *ws;
 218
 219        /* The user that created the eventpoll descriptor */
 220        struct user_struct *user;
 221
 222        struct file *file;
 223
 224        /* used to optimize loop detection check */
 225        int visited;
 226        struct list_head visited_list_link;
 227
 228#ifdef CONFIG_NET_RX_BUSY_POLL
 229        /* used to track busy poll napi_id */
 230        unsigned int napi_id;
 231#endif
 232};
 233
 234/* Wait structure used by the poll hooks */
 235struct eppoll_entry {
 236        /* List header used to link this structure to the "struct epitem" */
 237        struct list_head llink;
 238
 239        /* The "base" pointer is set to the container "struct epitem" */
 240        struct epitem *base;
 241
 242        /*
 243         * Wait queue item that will be linked to the target file wait
 244         * queue head.
 245         */
 246        wait_queue_entry_t wait;
 247
 248        /* The wait queue head that linked the "wait" wait queue item */
 249        wait_queue_head_t *whead;
 250};
 251
 252/* Wrapper struct used by poll queueing */
 253struct ep_pqueue {
 254        poll_table pt;
 255        struct epitem *epi;
 256};
 257
 258/* Used by the ep_send_events() function as callback private data */
 259struct ep_send_events_data {
 260        int maxevents;
 261        struct epoll_event __user *events;
 262        int res;
 263};
 264
 265/*
 266 * Configuration options available inside /proc/sys/fs/epoll/
 267 */
 268/* Maximum number of epoll watched descriptors, per user */
 269static long max_user_watches __read_mostly;
 270
 271/*
 272 * This mutex is used to serialize ep_free() and eventpoll_release_file().
 273 */
 274static DEFINE_MUTEX(epmutex);
 275
 276/* Used to check for epoll file descriptor inclusion loops */
 277static struct nested_calls poll_loop_ncalls;
 278
 279/* Slab cache used to allocate "struct epitem" */
 280static struct kmem_cache *epi_cache __read_mostly;
 281
 282/* Slab cache used to allocate "struct eppoll_entry" */
 283static struct kmem_cache *pwq_cache __read_mostly;
 284
 285/* Visited nodes during ep_loop_check(), so we can unset them when we finish */
 286static LIST_HEAD(visited_list);
 287
 288/*
 289 * List of files with newly added links, where we may need to limit the number
 290 * of emanating paths. Protected by the epmutex.
 291 */
 292static LIST_HEAD(tfile_check_list);
 293
 294#ifdef CONFIG_SYSCTL
 295
 296#include <linux/sysctl.h>
 297
 298static long zero;
 299static long long_max = LONG_MAX;
 300
 301struct ctl_table epoll_table[] = {
 302        {
 303                .procname       = "max_user_watches",
 304                .data           = &max_user_watches,
 305                .maxlen         = sizeof(max_user_watches),
 306                .mode           = 0644,
 307                .proc_handler   = proc_doulongvec_minmax,
 308                .extra1         = &zero,
 309                .extra2         = &long_max,
 310        },
 311        { }
 312};
 313#endif /* CONFIG_SYSCTL */
 314
 315static const struct file_operations eventpoll_fops;
 316
 317static inline int is_file_epoll(struct file *f)
 318{
 319        return f->f_op == &eventpoll_fops;
 320}
 321
 322/* Setup the structure that is used as key for the RB tree */
 323static inline void ep_set_ffd(struct epoll_filefd *ffd,
 324                              struct file *file, int fd)
 325{
 326        ffd->file = file;
 327        ffd->fd = fd;
 328}
 329
 330/* Compare RB tree keys */
 331static inline int ep_cmp_ffd(struct epoll_filefd *p1,
 332                             struct epoll_filefd *p2)
 333{
 334        return (p1->file > p2->file ? +1:
 335                (p1->file < p2->file ? -1 : p1->fd - p2->fd));
 336}
 337
 338/* Tells us if the item is currently linked */
 339static inline int ep_is_linked(struct epitem *epi)
 340{
 341        return !list_empty(&epi->rdllink);
 342}
 343
 344static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
 345{
 346        return container_of(p, struct eppoll_entry, wait);
 347}
 348
 349/* Get the "struct epitem" from a wait queue pointer */
 350static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
 351{
 352        return container_of(p, struct eppoll_entry, wait)->base;
 353}
 354
 355/* Get the "struct epitem" from an epoll queue wrapper */
 356static inline struct epitem *ep_item_from_epqueue(poll_table *p)
 357{
 358        return container_of(p, struct ep_pqueue, pt)->epi;
 359}
 360
 361/* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
 362static inline int ep_op_has_event(int op)
 363{
 364        return op != EPOLL_CTL_DEL;
 365}
 366
 367/* Initialize the poll safe wake up structure */
 368static void ep_nested_calls_init(struct nested_calls *ncalls)
 369{
 370        INIT_LIST_HEAD(&ncalls->tasks_call_list);
 371        spin_lock_init(&ncalls->lock);
 372}
 373
 374/**
 375 * ep_events_available - Checks if ready events might be available.
 376 *
 377 * @ep: Pointer to the eventpoll context.
 378 *
 379 * Returns: Returns a value different than zero if ready events are available,
 380 *          or zero otherwise.
 381 */
 382static inline int ep_events_available(struct eventpoll *ep)
 383{
 384        return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
 385}
 386
 387#ifdef CONFIG_NET_RX_BUSY_POLL
 388static bool ep_busy_loop_end(void *p, unsigned long start_time)
 389{
 390        struct eventpoll *ep = p;
 391
 392        return ep_events_available(ep) || busy_loop_timeout(start_time);
 393}
 394
 395/*
 396 * Busy poll if globally on and supporting sockets found && no events,
 397 * busy loop will return if need_resched or ep_events_available.
 398 *
 399 * we must do our busy polling with irqs enabled
 400 */
 401static void ep_busy_loop(struct eventpoll *ep, int nonblock)
 402{
 403        unsigned int napi_id = READ_ONCE(ep->napi_id);
 404
 405        if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
 406                napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
 407}
 408
 409static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
 410{
 411        if (ep->napi_id)
 412                ep->napi_id = 0;
 413}
 414
 415/*
 416 * Set epoll busy poll NAPI ID from sk.
 417 */
 418static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
 419{
 420        struct eventpoll *ep;
 421        unsigned int napi_id;
 422        struct socket *sock;
 423        struct sock *sk;
 424        int err;
 425
 426        if (!net_busy_loop_on())
 427                return;
 428
 429        sock = sock_from_file(epi->ffd.file, &err);
 430        if (!sock)
 431                return;
 432
 433        sk = sock->sk;
 434        if (!sk)
 435                return;
 436
 437        napi_id = READ_ONCE(sk->sk_napi_id);
 438        ep = epi->ep;
 439
 440        /* Non-NAPI IDs can be rejected
 441         *      or
 442         * Nothing to do if we already have this ID
 443         */
 444        if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
 445                return;
 446
 447        /* record NAPI ID for use in next busy poll */
 448        ep->napi_id = napi_id;
 449}
 450
 451#else
 452
 453static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
 454{
 455}
 456
 457static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
 458{
 459}
 460
 461static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
 462{
 463}
 464
 465#endif /* CONFIG_NET_RX_BUSY_POLL */
 466
 467/**
 468 * ep_call_nested - Perform a bound (possibly) nested call, by checking
 469 *                  that the recursion limit is not exceeded, and that
 470 *                  the same nested call (by the meaning of same cookie) is
 471 *                  no re-entered.
 472 *
 473 * @ncalls: Pointer to the nested_calls structure to be used for this call.
 474 * @max_nests: Maximum number of allowed nesting calls.
 475 * @nproc: Nested call core function pointer.
 476 * @priv: Opaque data to be passed to the @nproc callback.
 477 * @cookie: Cookie to be used to identify this nested call.
 478 * @ctx: This instance context.
 479 *
 480 * Returns: Returns the code returned by the @nproc callback, or -1 if
 481 *          the maximum recursion limit has been exceeded.
 482 */
 483static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
 484                          int (*nproc)(void *, void *, int), void *priv,
 485                          void *cookie, void *ctx)
 486{
 487        int error, call_nests = 0;
 488        unsigned long flags;
 489        struct list_head *lsthead = &ncalls->tasks_call_list;
 490        struct nested_call_node *tncur;
 491        struct nested_call_node tnode;
 492
 493        spin_lock_irqsave(&ncalls->lock, flags);
 494
 495        /*
 496         * Try to see if the current task is already inside this wakeup call.
 497         * We use a list here, since the population inside this set is always
 498         * very much limited.
 499         */
 500        list_for_each_entry(tncur, lsthead, llink) {
 501                if (tncur->ctx == ctx &&
 502                    (tncur->cookie == cookie || ++call_nests > max_nests)) {
 503                        /*
 504                         * Ops ... loop detected or maximum nest level reached.
 505                         * We abort this wake by breaking the cycle itself.
 506                         */
 507                        error = -1;
 508                        goto out_unlock;
 509                }
 510        }
 511
 512        /* Add the current task and cookie to the list */
 513        tnode.ctx = ctx;
 514        tnode.cookie = cookie;
 515        list_add(&tnode.llink, lsthead);
 516
 517        spin_unlock_irqrestore(&ncalls->lock, flags);
 518
 519        /* Call the nested function */
 520        error = (*nproc)(priv, cookie, call_nests);
 521
 522        /* Remove the current task from the list */
 523        spin_lock_irqsave(&ncalls->lock, flags);
 524        list_del(&tnode.llink);
 525out_unlock:
 526        spin_unlock_irqrestore(&ncalls->lock, flags);
 527
 528        return error;
 529}
 530
 531/*
 532 * As described in commit 0ccf831cb lockdep: annotate epoll
 533 * the use of wait queues used by epoll is done in a very controlled
 534 * manner. Wake ups can nest inside each other, but are never done
 535 * with the same locking. For example:
 536 *
 537 *   dfd = socket(...);
 538 *   efd1 = epoll_create();
 539 *   efd2 = epoll_create();
 540 *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
 541 *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
 542 *
 543 * When a packet arrives to the device underneath "dfd", the net code will
 544 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
 545 * callback wakeup entry on that queue, and the wake_up() performed by the
 546 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
 547 * (efd1) notices that it may have some event ready, so it needs to wake up
 548 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
 549 * that ends up in another wake_up(), after having checked about the
 550 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
 551 * avoid stack blasting.
 552 *
 553 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
 554 * this special case of epoll.
 555 */
 556#ifdef CONFIG_DEBUG_LOCK_ALLOC
 557
 558static struct nested_calls poll_safewake_ncalls;
 559
 560static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
 561{
 562        unsigned long flags;
 563        wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie;
 564
 565        spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1);
 566        wake_up_locked_poll(wqueue, EPOLLIN);
 567        spin_unlock_irqrestore(&wqueue->lock, flags);
 568
 569        return 0;
 570}
 571
 572static void ep_poll_safewake(wait_queue_head_t *wq)
 573{
 574        int this_cpu = get_cpu();
 575
 576        ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
 577                       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
 578
 579        put_cpu();
 580}
 581
 582#else
 583
 584static void ep_poll_safewake(wait_queue_head_t *wq)
 585{
 586        wake_up_poll(wq, EPOLLIN);
 587}
 588
 589#endif
 590
 591static void ep_remove_wait_queue(struct eppoll_entry *pwq)
 592{
 593        wait_queue_head_t *whead;
 594
 595        rcu_read_lock();
 596        /*
 597         * If it is cleared by POLLFREE, it should be rcu-safe.
 598         * If we read NULL we need a barrier paired with
 599         * smp_store_release() in ep_poll_callback(), otherwise
 600         * we rely on whead->lock.
 601         */
 602        whead = smp_load_acquire(&pwq->whead);
 603        if (whead)
 604                remove_wait_queue(whead, &pwq->wait);
 605        rcu_read_unlock();
 606}
 607
 608/*
 609 * This function unregisters poll callbacks from the associated file
 610 * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
 611 * ep_free).
 612 */
 613static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
 614{
 615        struct list_head *lsthead = &epi->pwqlist;
 616        struct eppoll_entry *pwq;
 617
 618        while (!list_empty(lsthead)) {
 619                pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
 620
 621                list_del(&pwq->llink);
 622                ep_remove_wait_queue(pwq);
 623                kmem_cache_free(pwq_cache, pwq);
 624        }
 625}
 626
 627/* call only when ep->mtx is held */
 628static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
 629{
 630        return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
 631}
 632
 633/* call only when ep->mtx is held */
 634static inline void ep_pm_stay_awake(struct epitem *epi)
 635{
 636        struct wakeup_source *ws = ep_wakeup_source(epi);
 637
 638        if (ws)
 639                __pm_stay_awake(ws);
 640}
 641
 642static inline bool ep_has_wakeup_source(struct epitem *epi)
 643{
 644        return rcu_access_pointer(epi->ws) ? true : false;
 645}
 646
 647/* call when ep->mtx cannot be held (ep_poll_callback) */
 648static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
 649{
 650        struct wakeup_source *ws;
 651
 652        rcu_read_lock();
 653        ws = rcu_dereference(epi->ws);
 654        if (ws)
 655                __pm_stay_awake(ws);
 656        rcu_read_unlock();
 657}
 658
 659/**
 660 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
 661 *                      the scan code, to call f_op->poll(). Also allows for
 662 *                      O(NumReady) performance.
 663 *
 664 * @ep: Pointer to the epoll private data structure.
 665 * @sproc: Pointer to the scan callback.
 666 * @priv: Private opaque data passed to the @sproc callback.
 667 * @depth: The current depth of recursive f_op->poll calls.
 668 * @ep_locked: caller already holds ep->mtx
 669 *
 670 * Returns: The same integer error code returned by the @sproc callback.
 671 */
 672static __poll_t ep_scan_ready_list(struct eventpoll *ep,
 673                              __poll_t (*sproc)(struct eventpoll *,
 674                                           struct list_head *, void *),
 675                              void *priv, int depth, bool ep_locked)
 676{
 677        __poll_t res;
 678        int pwake = 0;
 679        struct epitem *epi, *nepi;
 680        LIST_HEAD(txlist);
 681
 682        lockdep_assert_irqs_enabled();
 683
 684        /*
 685         * We need to lock this because we could be hit by
 686         * eventpoll_release_file() and epoll_ctl().
 687         */
 688
 689        if (!ep_locked)
 690                mutex_lock_nested(&ep->mtx, depth);
 691
 692        /*
 693         * Steal the ready list, and re-init the original one to the
 694         * empty list. Also, set ep->ovflist to NULL so that events
 695         * happening while looping w/out locks, are not lost. We cannot
 696         * have the poll callback to queue directly on ep->rdllist,
 697         * because we want the "sproc" callback to be able to do it
 698         * in a lockless way.
 699         */
 700        spin_lock_irq(&ep->wq.lock);
 701        list_splice_init(&ep->rdllist, &txlist);
 702        ep->ovflist = NULL;
 703        spin_unlock_irq(&ep->wq.lock);
 704
 705        /*
 706         * Now call the callback function.
 707         */
 708        res = (*sproc)(ep, &txlist, priv);
 709
 710        spin_lock_irq(&ep->wq.lock);
 711        /*
 712         * During the time we spent inside the "sproc" callback, some
 713         * other events might have been queued by the poll callback.
 714         * We re-insert them inside the main ready-list here.
 715         */
 716        for (nepi = ep->ovflist; (epi = nepi) != NULL;
 717             nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
 718                /*
 719                 * We need to check if the item is already in the list.
 720                 * During the "sproc" callback execution time, items are
 721                 * queued into ->ovflist but the "txlist" might already
 722                 * contain them, and the list_splice() below takes care of them.
 723                 */
 724                if (!ep_is_linked(epi)) {
 725                        list_add_tail(&epi->rdllink, &ep->rdllist);
 726                        ep_pm_stay_awake(epi);
 727                }
 728        }
 729        /*
 730         * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
 731         * releasing the lock, events will be queued in the normal way inside
 732         * ep->rdllist.
 733         */
 734        ep->ovflist = EP_UNACTIVE_PTR;
 735
 736        /*
 737         * Quickly re-inject items left on "txlist".
 738         */
 739        list_splice(&txlist, &ep->rdllist);
 740        __pm_relax(ep->ws);
 741
 742        if (!list_empty(&ep->rdllist)) {
 743                /*
 744                 * Wake up (if active) both the eventpoll wait list and
 745                 * the ->poll() wait list (delayed after we release the lock).
 746                 */
 747                if (waitqueue_active(&ep->wq))
 748                        wake_up_locked(&ep->wq);
 749                if (waitqueue_active(&ep->poll_wait))
 750                        pwake++;
 751        }
 752        spin_unlock_irq(&ep->wq.lock);
 753
 754        if (!ep_locked)
 755                mutex_unlock(&ep->mtx);
 756
 757        /* We have to call this outside the lock */
 758        if (pwake)
 759                ep_poll_safewake(&ep->poll_wait);
 760
 761        return res;
 762}
 763
 764static void epi_rcu_free(struct rcu_head *head)
 765{
 766        struct epitem *epi = container_of(head, struct epitem, rcu);
 767        kmem_cache_free(epi_cache, epi);
 768}
 769
 770/*
 771 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
 772 * all the associated resources. Must be called with "mtx" held.
 773 */
 774static int ep_remove(struct eventpoll *ep, struct epitem *epi)
 775{
 776        struct file *file = epi->ffd.file;
 777
 778        lockdep_assert_irqs_enabled();
 779
 780        /*
 781         * Removes poll wait queue hooks.
 782         */
 783        ep_unregister_pollwait(ep, epi);
 784
 785        /* Remove the current item from the list of epoll hooks */
 786        spin_lock(&file->f_lock);
 787        list_del_rcu(&epi->fllink);
 788        spin_unlock(&file->f_lock);
 789
 790        rb_erase_cached(&epi->rbn, &ep->rbr);
 791
 792        spin_lock_irq(&ep->wq.lock);
 793        if (ep_is_linked(epi))
 794                list_del_init(&epi->rdllink);
 795        spin_unlock_irq(&ep->wq.lock);
 796
 797        wakeup_source_unregister(ep_wakeup_source(epi));
 798        /*
 799         * At this point it is safe to free the eventpoll item. Use the union
 800         * field epi->rcu, since we are trying to minimize the size of
 801         * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
 802         * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
 803         * use of the rbn field.
 804         */
 805        call_rcu(&epi->rcu, epi_rcu_free);
 806
 807        atomic_long_dec(&ep->user->epoll_watches);
 808
 809        return 0;
 810}
 811
 812static void ep_free(struct eventpoll *ep)
 813{
 814        struct rb_node *rbp;
 815        struct epitem *epi;
 816
 817        /* We need to release all tasks waiting for these file */
 818        if (waitqueue_active(&ep->poll_wait))
 819                ep_poll_safewake(&ep->poll_wait);
 820
 821        /*
 822         * We need to lock this because we could be hit by
 823         * eventpoll_release_file() while we're freeing the "struct eventpoll".
 824         * We do not need to hold "ep->mtx" here because the epoll file
 825         * is on the way to be removed and no one has references to it
 826         * anymore. The only hit might come from eventpoll_release_file() but
 827         * holding "epmutex" is sufficient here.
 828         */
 829        mutex_lock(&epmutex);
 830
 831        /*
 832         * Walks through the whole tree by unregistering poll callbacks.
 833         */
 834        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
 835                epi = rb_entry(rbp, struct epitem, rbn);
 836
 837                ep_unregister_pollwait(ep, epi);
 838                cond_resched();
 839        }
 840
 841        /*
 842         * Walks through the whole tree by freeing each "struct epitem". At this
 843         * point we are sure no poll callbacks will be lingering around, and also by
 844         * holding "epmutex" we can be sure that no file cleanup code will hit
 845         * us during this operation. So we can avoid the lock on "ep->wq.lock".
 846         * We do not need to lock ep->mtx, either, we only do it to prevent
 847         * a lockdep warning.
 848         */
 849        mutex_lock(&ep->mtx);
 850        while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
 851                epi = rb_entry(rbp, struct epitem, rbn);
 852                ep_remove(ep, epi);
 853                cond_resched();
 854        }
 855        mutex_unlock(&ep->mtx);
 856
 857        mutex_unlock(&epmutex);
 858        mutex_destroy(&ep->mtx);
 859        free_uid(ep->user);
 860        wakeup_source_unregister(ep->ws);
 861        kfree(ep);
 862}
 863
 864static int ep_eventpoll_release(struct inode *inode, struct file *file)
 865{
 866        struct eventpoll *ep = file->private_data;
 867
 868        if (ep)
 869                ep_free(ep);
 870
 871        return 0;
 872}
 873
 874static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
 875                               void *priv);
 876static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
 877                                 poll_table *pt);
 878
 879/*
 880 * Differs from ep_eventpoll_poll() in that internal callers already have
 881 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
 882 * is correctly annotated.
 883 */
 884static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
 885                                 int depth)
 886{
 887        struct eventpoll *ep;
 888        bool locked;
 889
 890        pt->_key = epi->event.events;
 891        if (!is_file_epoll(epi->ffd.file))
 892                return vfs_poll(epi->ffd.file, pt) & epi->event.events;
 893
 894        ep = epi->ffd.file->private_data;
 895        poll_wait(epi->ffd.file, &ep->poll_wait, pt);
 896        locked = pt && (pt->_qproc == ep_ptable_queue_proc);
 897
 898        return ep_scan_ready_list(epi->ffd.file->private_data,
 899                                  ep_read_events_proc, &depth, depth,
 900                                  locked) & epi->event.events;
 901}
 902
 903static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
 904                               void *priv)
 905{
 906        struct epitem *epi, *tmp;
 907        poll_table pt;
 908        int depth = *(int *)priv;
 909
 910        init_poll_funcptr(&pt, NULL);
 911        depth++;
 912
 913        list_for_each_entry_safe(epi, tmp, head, rdllink) {
 914                if (ep_item_poll(epi, &pt, depth)) {
 915                        return EPOLLIN | EPOLLRDNORM;
 916                } else {
 917                        /*
 918                         * Item has been dropped into the ready list by the poll
 919                         * callback, but it's not actually ready, as far as
 920                         * caller requested events goes. We can remove it here.
 921                         */
 922                        __pm_relax(ep_wakeup_source(epi));
 923                        list_del_init(&epi->rdllink);
 924                }
 925        }
 926
 927        return 0;
 928}
 929
 930static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
 931{
 932        struct eventpoll *ep = file->private_data;
 933        int depth = 0;
 934
 935        /* Insert inside our poll wait queue */
 936        poll_wait(file, &ep->poll_wait, wait);
 937
 938        /*
 939         * Proceed to find out if wanted events are really available inside
 940         * the ready list.
 941         */
 942        return ep_scan_ready_list(ep, ep_read_events_proc,
 943                                  &depth, depth, false);
 944}
 945
 946#ifdef CONFIG_PROC_FS
 947static void ep_show_fdinfo(struct seq_file *m, struct file *f)
 948{
 949        struct eventpoll *ep = f->private_data;
 950        struct rb_node *rbp;
 951
 952        mutex_lock(&ep->mtx);
 953        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
 954                struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
 955                struct inode *inode = file_inode(epi->ffd.file);
 956
 957                seq_printf(m, "tfd: %8d events: %8x data: %16llx "
 958                           " pos:%lli ino:%lx sdev:%x\n",
 959                           epi->ffd.fd, epi->event.events,
 960                           (long long)epi->event.data,
 961                           (long long)epi->ffd.file->f_pos,
 962                           inode->i_ino, inode->i_sb->s_dev);
 963                if (seq_has_overflowed(m))
 964                        break;
 965        }
 966        mutex_unlock(&ep->mtx);
 967}
 968#endif
 969
 970/* File callbacks that implement the eventpoll file behaviour */
 971static const struct file_operations eventpoll_fops = {
 972#ifdef CONFIG_PROC_FS
 973        .show_fdinfo    = ep_show_fdinfo,
 974#endif
 975        .release        = ep_eventpoll_release,
 976        .poll           = ep_eventpoll_poll,
 977        .llseek         = noop_llseek,
 978};
 979
 980/*
 981 * This is called from eventpoll_release() to unlink files from the eventpoll
 982 * interface. We need to have this facility to cleanup correctly files that are
 983 * closed without being removed from the eventpoll interface.
 984 */
 985void eventpoll_release_file(struct file *file)
 986{
 987        struct eventpoll *ep;
 988        struct epitem *epi, *next;
 989
 990        /*
 991         * We don't want to get "file->f_lock" because it is not
 992         * necessary. It is not necessary because we're in the "struct file"
 993         * cleanup path, and this means that no one is using this file anymore.
 994         * So, for example, epoll_ctl() cannot hit here since if we reach this
 995         * point, the file counter already went to zero and fget() would fail.
 996         * The only hit might come from ep_free() but by holding the mutex
 997         * will correctly serialize the operation. We do need to acquire
 998         * "ep->mtx" after "epmutex" because ep_remove() requires it when called
 999         * from anywhere but ep_free().
1000         *
1001         * Besides, ep_remove() acquires the lock, so we can't hold it here.
1002         */
1003        mutex_lock(&epmutex);
1004        list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1005                ep = epi->ep;
1006                mutex_lock_nested(&ep->mtx, 0);
1007                ep_remove(ep, epi);
1008                mutex_unlock(&ep->mtx);
1009        }
1010        mutex_unlock(&epmutex);
1011}
1012
1013static int ep_alloc(struct eventpoll **pep)
1014{
1015        int error;
1016        struct user_struct *user;
1017        struct eventpoll *ep;
1018
1019        user = get_current_user();
1020        error = -ENOMEM;
1021        ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1022        if (unlikely(!ep))
1023                goto free_uid;
1024
1025        mutex_init(&ep->mtx);
1026        init_waitqueue_head(&ep->wq);
1027        init_waitqueue_head(&ep->poll_wait);
1028        INIT_LIST_HEAD(&ep->rdllist);
1029        ep->rbr = RB_ROOT_CACHED;
1030        ep->ovflist = EP_UNACTIVE_PTR;
1031        ep->user = user;
1032
1033        *pep = ep;
1034
1035        return 0;
1036
1037free_uid:
1038        free_uid(user);
1039        return error;
1040}
1041
1042/*
1043 * Search the file inside the eventpoll tree. The RB tree operations
1044 * are protected by the "mtx" mutex, and ep_find() must be called with
1045 * "mtx" held.
1046 */
1047static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1048{
1049        int kcmp;
1050        struct rb_node *rbp;
1051        struct epitem *epi, *epir = NULL;
1052        struct epoll_filefd ffd;
1053
1054        ep_set_ffd(&ffd, file, fd);
1055        for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1056                epi = rb_entry(rbp, struct epitem, rbn);
1057                kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1058                if (kcmp > 0)
1059                        rbp = rbp->rb_right;
1060                else if (kcmp < 0)
1061                        rbp = rbp->rb_left;
1062                else {
1063                        epir = epi;
1064                        break;
1065                }
1066        }
1067
1068        return epir;
1069}
1070
1071#ifdef CONFIG_CHECKPOINT_RESTORE
1072static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1073{
1074        struct rb_node *rbp;
1075        struct epitem *epi;
1076
1077        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1078                epi = rb_entry(rbp, struct epitem, rbn);
1079                if (epi->ffd.fd == tfd) {
1080                        if (toff == 0)
1081                                return epi;
1082                        else
1083                                toff--;
1084                }
1085                cond_resched();
1086        }
1087
1088        return NULL;
1089}
1090
1091struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1092                                     unsigned long toff)
1093{
1094        struct file *file_raw;
1095        struct eventpoll *ep;
1096        struct epitem *epi;
1097
1098        if (!is_file_epoll(file))
1099                return ERR_PTR(-EINVAL);
1100
1101        ep = file->private_data;
1102
1103        mutex_lock(&ep->mtx);
1104        epi = ep_find_tfd(ep, tfd, toff);
1105        if (epi)
1106                file_raw = epi->ffd.file;
1107        else
1108                file_raw = ERR_PTR(-ENOENT);
1109        mutex_unlock(&ep->mtx);
1110
1111        return file_raw;
1112}
1113#endif /* CONFIG_CHECKPOINT_RESTORE */
1114
1115/*
1116 * This is the callback that is passed to the wait queue wakeup
1117 * mechanism. It is called by the stored file descriptors when they
1118 * have events to report.
1119 */
1120static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1121{
1122        int pwake = 0;
1123        unsigned long flags;
1124        struct epitem *epi = ep_item_from_wait(wait);
1125        struct eventpoll *ep = epi->ep;
1126        __poll_t pollflags = key_to_poll(key);
1127        int ewake = 0;
1128
1129        spin_lock_irqsave(&ep->wq.lock, flags);
1130
1131        ep_set_busy_poll_napi_id(epi);
1132
1133        /*
1134         * If the event mask does not contain any poll(2) event, we consider the
1135         * descriptor to be disabled. This condition is likely the effect of the
1136         * EPOLLONESHOT bit that disables the descriptor when an event is received,
1137         * until the next EPOLL_CTL_MOD will be issued.
1138         */
1139        if (!(epi->event.events & ~EP_PRIVATE_BITS))
1140                goto out_unlock;
1141
1142        /*
1143         * Check the events coming with the callback. At this stage, not
1144         * every device reports the events in the "key" parameter of the
1145         * callback. We need to be able to handle both cases here, hence the
1146         * test for "key" != NULL before the event match test.
1147         */
1148        if (pollflags && !(pollflags & epi->event.events))
1149                goto out_unlock;
1150
1151        /*
1152         * If we are transferring events to userspace, we can hold no locks
1153         * (because we're accessing user memory, and because of linux f_op->poll()
1154         * semantics). All the events that happen during that period of time are
1155         * chained in ep->ovflist and requeued later on.
1156         */
1157        if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1158                if (epi->next == EP_UNACTIVE_PTR) {
1159                        epi->next = ep->ovflist;
1160                        ep->ovflist = epi;
1161                        if (epi->ws) {
1162                                /*
1163                                 * Activate ep->ws since epi->ws may get
1164                                 * deactivated at any time.
1165                                 */
1166                                __pm_stay_awake(ep->ws);
1167                        }
1168
1169                }
1170                goto out_unlock;
1171        }
1172
1173        /* If this file is already in the ready list we exit soon */
1174        if (!ep_is_linked(epi)) {
1175                list_add_tail(&epi->rdllink, &ep->rdllist);
1176                ep_pm_stay_awake_rcu(epi);
1177        }
1178
1179        /*
1180         * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1181         * wait list.
1182         */
1183        if (waitqueue_active(&ep->wq)) {
1184                if ((epi->event.events & EPOLLEXCLUSIVE) &&
1185                                        !(pollflags & POLLFREE)) {
1186                        switch (pollflags & EPOLLINOUT_BITS) {
1187                        case EPOLLIN:
1188                                if (epi->event.events & EPOLLIN)
1189                                        ewake = 1;
1190                                break;
1191                        case EPOLLOUT:
1192                                if (epi->event.events & EPOLLOUT)
1193                                        ewake = 1;
1194                                break;
1195                        case 0:
1196                                ewake = 1;
1197                                break;
1198                        }
1199                }
1200                wake_up_locked(&ep->wq);
1201        }
1202        if (waitqueue_active(&ep->poll_wait))
1203                pwake++;
1204
1205out_unlock:
1206        spin_unlock_irqrestore(&ep->wq.lock, flags);
1207
1208        /* We have to call this outside the lock */
1209        if (pwake)
1210                ep_poll_safewake(&ep->poll_wait);
1211
1212        if (!(epi->event.events & EPOLLEXCLUSIVE))
1213                ewake = 1;
1214
1215        if (pollflags & POLLFREE) {
1216                /*
1217                 * If we race with ep_remove_wait_queue() it can miss
1218                 * ->whead = NULL and do another remove_wait_queue() after
1219                 * us, so we can't use __remove_wait_queue().
1220                 */
1221                list_del_init(&wait->entry);
1222                /*
1223                 * ->whead != NULL protects us from the race with ep_free()
1224                 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1225                 * held by the caller. Once we nullify it, nothing protects
1226                 * ep/epi or even wait.
1227                 */
1228                smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1229        }
1230
1231        return ewake;
1232}
1233
1234/*
1235 * This is the callback that is used to add our wait queue to the
1236 * target file wakeup lists.
1237 */
1238static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1239                                 poll_table *pt)
1240{
1241        struct epitem *epi = ep_item_from_epqueue(pt);
1242        struct eppoll_entry *pwq;
1243
1244        if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1245                init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1246                pwq->whead = whead;
1247                pwq->base = epi;
1248                if (epi->event.events & EPOLLEXCLUSIVE)
1249                        add_wait_queue_exclusive(whead, &pwq->wait);
1250                else
1251                        add_wait_queue(whead, &pwq->wait);
1252                list_add_tail(&pwq->llink, &epi->pwqlist);
1253                epi->nwait++;
1254        } else {
1255                /* We have to signal that an error occurred */
1256                epi->nwait = -1;
1257        }
1258}
1259
1260static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1261{
1262        int kcmp;
1263        struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1264        struct epitem *epic;
1265        bool leftmost = true;
1266
1267        while (*p) {
1268                parent = *p;
1269                epic = rb_entry(parent, struct epitem, rbn);
1270                kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1271                if (kcmp > 0) {
1272                        p = &parent->rb_right;
1273                        leftmost = false;
1274                } else
1275                        p = &parent->rb_left;
1276        }
1277        rb_link_node(&epi->rbn, parent, p);
1278        rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1279}
1280
1281
1282
1283#define PATH_ARR_SIZE 5
1284/*
1285 * These are the number paths of length 1 to 5, that we are allowing to emanate
1286 * from a single file of interest. For example, we allow 1000 paths of length
1287 * 1, to emanate from each file of interest. This essentially represents the
1288 * potential wakeup paths, which need to be limited in order to avoid massive
1289 * uncontrolled wakeup storms. The common use case should be a single ep which
1290 * is connected to n file sources. In this case each file source has 1 path
1291 * of length 1. Thus, the numbers below should be more than sufficient. These
1292 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1293 * and delete can't add additional paths. Protected by the epmutex.
1294 */
1295static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1296static int path_count[PATH_ARR_SIZE];
1297
1298static int path_count_inc(int nests)
1299{
1300        /* Allow an arbitrary number of depth 1 paths */
1301        if (nests == 0)
1302                return 0;
1303
1304        if (++path_count[nests] > path_limits[nests])
1305                return -1;
1306        return 0;
1307}
1308
1309static void path_count_init(void)
1310{
1311        int i;
1312
1313        for (i = 0; i < PATH_ARR_SIZE; i++)
1314                path_count[i] = 0;
1315}
1316
1317static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1318{
1319        int error = 0;
1320        struct file *file = priv;
1321        struct file *child_file;
1322        struct epitem *epi;
1323
1324        /* CTL_DEL can remove links here, but that can't increase our count */
1325        rcu_read_lock();
1326        list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1327                child_file = epi->ep->file;
1328                if (is_file_epoll(child_file)) {
1329                        if (list_empty(&child_file->f_ep_links)) {
1330                                if (path_count_inc(call_nests)) {
1331                                        error = -1;
1332                                        break;
1333                                }
1334                        } else {
1335                                error = ep_call_nested(&poll_loop_ncalls,
1336                                                        EP_MAX_NESTS,
1337                                                        reverse_path_check_proc,
1338                                                        child_file, child_file,
1339                                                        current);
1340                        }
1341                        if (error != 0)
1342                                break;
1343                } else {
1344                        printk(KERN_ERR "reverse_path_check_proc: "
1345                                "file is not an ep!\n");
1346                }
1347        }
1348        rcu_read_unlock();
1349        return error;
1350}
1351
1352/**
1353 * reverse_path_check - The tfile_check_list is list of file *, which have
1354 *                      links that are proposed to be newly added. We need to
1355 *                      make sure that those added links don't add too many
1356 *                      paths such that we will spend all our time waking up
1357 *                      eventpoll objects.
1358 *
1359 * Returns: Returns zero if the proposed links don't create too many paths,
1360 *          -1 otherwise.
1361 */
1362static int reverse_path_check(void)
1363{
1364        int error = 0;
1365        struct file *current_file;
1366
1367        /* let's call this for all tfiles */
1368        list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1369                path_count_init();
1370                error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1371                                        reverse_path_check_proc, current_file,
1372                                        current_file, current);
1373                if (error)
1374                        break;
1375        }
1376        return error;
1377}
1378
1379static int ep_create_wakeup_source(struct epitem *epi)
1380{
1381        const char *name;
1382        struct wakeup_source *ws;
1383
1384        if (!epi->ep->ws) {
1385                epi->ep->ws = wakeup_source_register("eventpoll");
1386                if (!epi->ep->ws)
1387                        return -ENOMEM;
1388        }
1389
1390        name = epi->ffd.file->f_path.dentry->d_name.name;
1391        ws = wakeup_source_register(name);
1392
1393        if (!ws)
1394                return -ENOMEM;
1395        rcu_assign_pointer(epi->ws, ws);
1396
1397        return 0;
1398}
1399
1400/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1401static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1402{
1403        struct wakeup_source *ws = ep_wakeup_source(epi);
1404
1405        RCU_INIT_POINTER(epi->ws, NULL);
1406
1407        /*
1408         * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1409         * used internally by wakeup_source_remove, too (called by
1410         * wakeup_source_unregister), so we cannot use call_rcu
1411         */
1412        synchronize_rcu();
1413        wakeup_source_unregister(ws);
1414}
1415
1416/*
1417 * Must be called with "mtx" held.
1418 */
1419static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1420                     struct file *tfile, int fd, int full_check)
1421{
1422        int error, pwake = 0;
1423        __poll_t revents;
1424        long user_watches;
1425        struct epitem *epi;
1426        struct ep_pqueue epq;
1427
1428        lockdep_assert_irqs_enabled();
1429
1430        user_watches = atomic_long_read(&ep->user->epoll_watches);
1431        if (unlikely(user_watches >= max_user_watches))
1432                return -ENOSPC;
1433        if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1434                return -ENOMEM;
1435
1436        /* Item initialization follow here ... */
1437        INIT_LIST_HEAD(&epi->rdllink);
1438        INIT_LIST_HEAD(&epi->fllink);
1439        INIT_LIST_HEAD(&epi->pwqlist);
1440        epi->ep = ep;
1441        ep_set_ffd(&epi->ffd, tfile, fd);
1442        epi->event = *event;
1443        epi->nwait = 0;
1444        epi->next = EP_UNACTIVE_PTR;
1445        if (epi->event.events & EPOLLWAKEUP) {
1446                error = ep_create_wakeup_source(epi);
1447                if (error)
1448                        goto error_create_wakeup_source;
1449        } else {
1450                RCU_INIT_POINTER(epi->ws, NULL);
1451        }
1452
1453        /* Initialize the poll table using the queue callback */
1454        epq.epi = epi;
1455        init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1456
1457        /*
1458         * Attach the item to the poll hooks and get current event bits.
1459         * We can safely use the file* here because its usage count has
1460         * been increased by the caller of this function. Note that after
1461         * this operation completes, the poll callback can start hitting
1462         * the new item.
1463         */
1464        revents = ep_item_poll(epi, &epq.pt, 1);
1465
1466        /*
1467         * We have to check if something went wrong during the poll wait queue
1468         * install process. Namely an allocation for a wait queue failed due
1469         * high memory pressure.
1470         */
1471        error = -ENOMEM;
1472        if (epi->nwait < 0)
1473                goto error_unregister;
1474
1475        /* Add the current item to the list of active epoll hook for this file */
1476        spin_lock(&tfile->f_lock);
1477        list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1478        spin_unlock(&tfile->f_lock);
1479
1480        /*
1481         * Add the current item to the RB tree. All RB tree operations are
1482         * protected by "mtx", and ep_insert() is called with "mtx" held.
1483         */
1484        ep_rbtree_insert(ep, epi);
1485
1486        /* now check if we've created too many backpaths */
1487        error = -EINVAL;
1488        if (full_check && reverse_path_check())
1489                goto error_remove_epi;
1490
1491        /* We have to drop the new item inside our item list to keep track of it */
1492        spin_lock_irq(&ep->wq.lock);
1493
1494        /* record NAPI ID of new item if present */
1495        ep_set_busy_poll_napi_id(epi);
1496
1497        /* If the file is already "ready" we drop it inside the ready list */
1498        if (revents && !ep_is_linked(epi)) {
1499                list_add_tail(&epi->rdllink, &ep->rdllist);
1500                ep_pm_stay_awake(epi);
1501
1502                /* Notify waiting tasks that events are available */
1503                if (waitqueue_active(&ep->wq))
1504                        wake_up_locked(&ep->wq);
1505                if (waitqueue_active(&ep->poll_wait))
1506                        pwake++;
1507        }
1508
1509        spin_unlock_irq(&ep->wq.lock);
1510
1511        atomic_long_inc(&ep->user->epoll_watches);
1512
1513        /* We have to call this outside the lock */
1514        if (pwake)
1515                ep_poll_safewake(&ep->poll_wait);
1516
1517        return 0;
1518
1519error_remove_epi:
1520        spin_lock(&tfile->f_lock);
1521        list_del_rcu(&epi->fllink);
1522        spin_unlock(&tfile->f_lock);
1523
1524        rb_erase_cached(&epi->rbn, &ep->rbr);
1525
1526error_unregister:
1527        ep_unregister_pollwait(ep, epi);
1528
1529        /*
1530         * We need to do this because an event could have been arrived on some
1531         * allocated wait queue. Note that we don't care about the ep->ovflist
1532         * list, since that is used/cleaned only inside a section bound by "mtx".
1533         * And ep_insert() is called with "mtx" held.
1534         */
1535        spin_lock_irq(&ep->wq.lock);
1536        if (ep_is_linked(epi))
1537                list_del_init(&epi->rdllink);
1538        spin_unlock_irq(&ep->wq.lock);
1539
1540        wakeup_source_unregister(ep_wakeup_source(epi));
1541
1542error_create_wakeup_source:
1543        kmem_cache_free(epi_cache, epi);
1544
1545        return error;
1546}
1547
1548/*
1549 * Modify the interest event mask by dropping an event if the new mask
1550 * has a match in the current file status. Must be called with "mtx" held.
1551 */
1552static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1553                     const struct epoll_event *event)
1554{
1555        int pwake = 0;
1556        poll_table pt;
1557
1558        lockdep_assert_irqs_enabled();
1559
1560        init_poll_funcptr(&pt, NULL);
1561
1562        /*
1563         * Set the new event interest mask before calling f_op->poll();
1564         * otherwise we might miss an event that happens between the
1565         * f_op->poll() call and the new event set registering.
1566         */
1567        epi->event.events = event->events; /* need barrier below */
1568        epi->event.data = event->data; /* protected by mtx */
1569        if (epi->event.events & EPOLLWAKEUP) {
1570                if (!ep_has_wakeup_source(epi))
1571                        ep_create_wakeup_source(epi);
1572        } else if (ep_has_wakeup_source(epi)) {
1573                ep_destroy_wakeup_source(epi);
1574        }
1575
1576        /*
1577         * The following barrier has two effects:
1578         *
1579         * 1) Flush epi changes above to other CPUs.  This ensures
1580         *    we do not miss events from ep_poll_callback if an
1581         *    event occurs immediately after we call f_op->poll().
1582         *    We need this because we did not take ep->wq.lock while
1583         *    changing epi above (but ep_poll_callback does take
1584         *    ep->wq.lock).
1585         *
1586         * 2) We also need to ensure we do not miss _past_ events
1587         *    when calling f_op->poll().  This barrier also
1588         *    pairs with the barrier in wq_has_sleeper (see
1589         *    comments for wq_has_sleeper).
1590         *
1591         * This barrier will now guarantee ep_poll_callback or f_op->poll
1592         * (or both) will notice the readiness of an item.
1593         */
1594        smp_mb();
1595
1596        /*
1597         * Get current event bits. We can safely use the file* here because
1598         * its usage count has been increased by the caller of this function.
1599         * If the item is "hot" and it is not registered inside the ready
1600         * list, push it inside.
1601         */
1602        if (ep_item_poll(epi, &pt, 1)) {
1603                spin_lock_irq(&ep->wq.lock);
1604                if (!ep_is_linked(epi)) {
1605                        list_add_tail(&epi->rdllink, &ep->rdllist);
1606                        ep_pm_stay_awake(epi);
1607
1608                        /* Notify waiting tasks that events are available */
1609                        if (waitqueue_active(&ep->wq))
1610                                wake_up_locked(&ep->wq);
1611                        if (waitqueue_active(&ep->poll_wait))
1612                                pwake++;
1613                }
1614                spin_unlock_irq(&ep->wq.lock);
1615        }
1616
1617        /* We have to call this outside the lock */
1618        if (pwake)
1619                ep_poll_safewake(&ep->poll_wait);
1620
1621        return 0;
1622}
1623
1624static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1625                               void *priv)
1626{
1627        struct ep_send_events_data *esed = priv;
1628        __poll_t revents;
1629        struct epitem *epi;
1630        struct epoll_event __user *uevent;
1631        struct wakeup_source *ws;
1632        poll_table pt;
1633
1634        init_poll_funcptr(&pt, NULL);
1635
1636        /*
1637         * We can loop without lock because we are passed a task private list.
1638         * Items cannot vanish during the loop because ep_scan_ready_list() is
1639         * holding "mtx" during this call.
1640         */
1641        for (esed->res = 0, uevent = esed->events;
1642             !list_empty(head) && esed->res < esed->maxevents;) {
1643                epi = list_first_entry(head, struct epitem, rdllink);
1644
1645                /*
1646                 * Activate ep->ws before deactivating epi->ws to prevent
1647                 * triggering auto-suspend here (in case we reactive epi->ws
1648                 * below).
1649                 *
1650                 * This could be rearranged to delay the deactivation of epi->ws
1651                 * instead, but then epi->ws would temporarily be out of sync
1652                 * with ep_is_linked().
1653                 */
1654                ws = ep_wakeup_source(epi);
1655                if (ws) {
1656                        if (ws->active)
1657                                __pm_stay_awake(ep->ws);
1658                        __pm_relax(ws);
1659                }
1660
1661                list_del_init(&epi->rdllink);
1662
1663                revents = ep_item_poll(epi, &pt, 1);
1664
1665                /*
1666                 * If the event mask intersect the caller-requested one,
1667                 * deliver the event to userspace. Again, ep_scan_ready_list()
1668                 * is holding "mtx", so no operations coming from userspace
1669                 * can change the item.
1670                 */
1671                if (revents) {
1672                        if (__put_user(revents, &uevent->events) ||
1673                            __put_user(epi->event.data, &uevent->data)) {
1674                                list_add(&epi->rdllink, head);
1675                                ep_pm_stay_awake(epi);
1676                                if (!esed->res)
1677                                        esed->res = -EFAULT;
1678                                return 0;
1679                        }
1680                        esed->res++;
1681                        uevent++;
1682                        if (epi->event.events & EPOLLONESHOT)
1683                                epi->event.events &= EP_PRIVATE_BITS;
1684                        else if (!(epi->event.events & EPOLLET)) {
1685                                /*
1686                                 * If this file has been added with Level
1687                                 * Trigger mode, we need to insert back inside
1688                                 * the ready list, so that the next call to
1689                                 * epoll_wait() will check again the events
1690                                 * availability. At this point, no one can insert
1691                                 * into ep->rdllist besides us. The epoll_ctl()
1692                                 * callers are locked out by
1693                                 * ep_scan_ready_list() holding "mtx" and the
1694                                 * poll callback will queue them in ep->ovflist.
1695                                 */
1696                                list_add_tail(&epi->rdllink, &ep->rdllist);
1697                                ep_pm_stay_awake(epi);
1698                        }
1699                }
1700        }
1701
1702        return 0;
1703}
1704
1705static int ep_send_events(struct eventpoll *ep,
1706                          struct epoll_event __user *events, int maxevents)
1707{
1708        struct ep_send_events_data esed;
1709
1710        esed.maxevents = maxevents;
1711        esed.events = events;
1712
1713        ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1714        return esed.res;
1715}
1716
1717static inline struct timespec64 ep_set_mstimeout(long ms)
1718{
1719        struct timespec64 now, ts = {
1720                .tv_sec = ms / MSEC_PER_SEC,
1721                .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1722        };
1723
1724        ktime_get_ts64(&now);
1725        return timespec64_add_safe(now, ts);
1726}
1727
1728/**
1729 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1730 *           event buffer.
1731 *
1732 * @ep: Pointer to the eventpoll context.
1733 * @events: Pointer to the userspace buffer where the ready events should be
1734 *          stored.
1735 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1736 * @timeout: Maximum timeout for the ready events fetch operation, in
1737 *           milliseconds. If the @timeout is zero, the function will not block,
1738 *           while if the @timeout is less than zero, the function will block
1739 *           until at least one event has been retrieved (or an error
1740 *           occurred).
1741 *
1742 * Returns: Returns the number of ready events which have been fetched, or an
1743 *          error code, in case of error.
1744 */
1745static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1746                   int maxevents, long timeout)
1747{
1748        int res = 0, eavail, timed_out = 0;
1749        u64 slack = 0;
1750        wait_queue_entry_t wait;
1751        ktime_t expires, *to = NULL;
1752
1753        lockdep_assert_irqs_enabled();
1754
1755        if (timeout > 0) {
1756                struct timespec64 end_time = ep_set_mstimeout(timeout);
1757
1758                slack = select_estimate_accuracy(&end_time);
1759                to = &expires;
1760                *to = timespec64_to_ktime(end_time);
1761        } else if (timeout == 0) {
1762                /*
1763                 * Avoid the unnecessary trip to the wait queue loop, if the
1764                 * caller specified a non blocking operation.
1765                 */
1766                timed_out = 1;
1767                spin_lock_irq(&ep->wq.lock);
1768                goto check_events;
1769        }
1770
1771fetch_events:
1772
1773        if (!ep_events_available(ep))
1774                ep_busy_loop(ep, timed_out);
1775
1776        spin_lock_irq(&ep->wq.lock);
1777
1778        if (!ep_events_available(ep)) {
1779                /*
1780                 * Busy poll timed out.  Drop NAPI ID for now, we can add
1781                 * it back in when we have moved a socket with a valid NAPI
1782                 * ID onto the ready list.
1783                 */
1784                ep_reset_busy_poll_napi_id(ep);
1785
1786                /*
1787                 * We don't have any available event to return to the caller.
1788                 * We need to sleep here, and we will be wake up by
1789                 * ep_poll_callback() when events will become available.
1790                 */
1791                init_waitqueue_entry(&wait, current);
1792                __add_wait_queue_exclusive(&ep->wq, &wait);
1793
1794                for (;;) {
1795                        /*
1796                         * We don't want to sleep if the ep_poll_callback() sends us
1797                         * a wakeup in between. That's why we set the task state
1798                         * to TASK_INTERRUPTIBLE before doing the checks.
1799                         */
1800                        set_current_state(TASK_INTERRUPTIBLE);
1801                        /*
1802                         * Always short-circuit for fatal signals to allow
1803                         * threads to make a timely exit without the chance of
1804                         * finding more events available and fetching
1805                         * repeatedly.
1806                         */
1807                        if (fatal_signal_pending(current)) {
1808                                res = -EINTR;
1809                                break;
1810                        }
1811                        if (ep_events_available(ep) || timed_out)
1812                                break;
1813                        if (signal_pending(current)) {
1814                                res = -EINTR;
1815                                break;
1816                        }
1817
1818                        spin_unlock_irq(&ep->wq.lock);
1819                        if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1820                                timed_out = 1;
1821
1822                        spin_lock_irq(&ep->wq.lock);
1823                }
1824
1825                __remove_wait_queue(&ep->wq, &wait);
1826                __set_current_state(TASK_RUNNING);
1827        }
1828check_events:
1829        /* Is it worth to try to dig for events ? */
1830        eavail = ep_events_available(ep);
1831
1832        spin_unlock_irq(&ep->wq.lock);
1833
1834        /*
1835         * Try to transfer events to user space. In case we get 0 events and
1836         * there's still timeout left over, we go trying again in search of
1837         * more luck.
1838         */
1839        if (!res && eavail &&
1840            !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1841                goto fetch_events;
1842
1843        return res;
1844}
1845
1846/**
1847 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1848 *                      API, to verify that adding an epoll file inside another
1849 *                      epoll structure, does not violate the constraints, in
1850 *                      terms of closed loops, or too deep chains (which can
1851 *                      result in excessive stack usage).
1852 *
1853 * @priv: Pointer to the epoll file to be currently checked.
1854 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1855 *          data structure pointer.
1856 * @call_nests: Current dept of the @ep_call_nested() call stack.
1857 *
1858 * Returns: Returns zero if adding the epoll @file inside current epoll
1859 *          structure @ep does not violate the constraints, or -1 otherwise.
1860 */
1861static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1862{
1863        int error = 0;
1864        struct file *file = priv;
1865        struct eventpoll *ep = file->private_data;
1866        struct eventpoll *ep_tovisit;
1867        struct rb_node *rbp;
1868        struct epitem *epi;
1869
1870        mutex_lock_nested(&ep->mtx, call_nests + 1);
1871        ep->visited = 1;
1872        list_add(&ep->visited_list_link, &visited_list);
1873        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1874                epi = rb_entry(rbp, struct epitem, rbn);
1875                if (unlikely(is_file_epoll(epi->ffd.file))) {
1876                        ep_tovisit = epi->ffd.file->private_data;
1877                        if (ep_tovisit->visited)
1878                                continue;
1879                        error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1880                                        ep_loop_check_proc, epi->ffd.file,
1881                                        ep_tovisit, current);
1882                        if (error != 0)
1883                                break;
1884                } else {
1885                        /*
1886                         * If we've reached a file that is not associated with
1887                         * an ep, then we need to check if the newly added
1888                         * links are going to add too many wakeup paths. We do
1889                         * this by adding it to the tfile_check_list, if it's
1890                         * not already there, and calling reverse_path_check()
1891                         * during ep_insert().
1892                         */
1893                        if (list_empty(&epi->ffd.file->f_tfile_llink))
1894                                list_add(&epi->ffd.file->f_tfile_llink,
1895                                         &tfile_check_list);
1896                }
1897        }
1898        mutex_unlock(&ep->mtx);
1899
1900        return error;
1901}
1902
1903/**
1904 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1905 *                 another epoll file (represented by @ep) does not create
1906 *                 closed loops or too deep chains.
1907 *
1908 * @ep: Pointer to the epoll private data structure.
1909 * @file: Pointer to the epoll file to be checked.
1910 *
1911 * Returns: Returns zero if adding the epoll @file inside current epoll
1912 *          structure @ep does not violate the constraints, or -1 otherwise.
1913 */
1914static int ep_loop_check(struct eventpoll *ep, struct file *file)
1915{
1916        int ret;
1917        struct eventpoll *ep_cur, *ep_next;
1918
1919        ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1920                              ep_loop_check_proc, file, ep, current);
1921        /* clear visited list */
1922        list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1923                                                        visited_list_link) {
1924                ep_cur->visited = 0;
1925                list_del(&ep_cur->visited_list_link);
1926        }
1927        return ret;
1928}
1929
1930static void clear_tfile_check_list(void)
1931{
1932        struct file *file;
1933
1934        /* first clear the tfile_check_list */
1935        while (!list_empty(&tfile_check_list)) {
1936                file = list_first_entry(&tfile_check_list, struct file,
1937                                        f_tfile_llink);
1938                list_del_init(&file->f_tfile_llink);
1939        }
1940        INIT_LIST_HEAD(&tfile_check_list);
1941}
1942
1943/*
1944 * Open an eventpoll file descriptor.
1945 */
1946static int do_epoll_create(int flags)
1947{
1948        int error, fd;
1949        struct eventpoll *ep = NULL;
1950        struct file *file;
1951
1952        /* Check the EPOLL_* constant for consistency.  */
1953        BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1954
1955        if (flags & ~EPOLL_CLOEXEC)
1956                return -EINVAL;
1957        /*
1958         * Create the internal data structure ("struct eventpoll").
1959         */
1960        error = ep_alloc(&ep);
1961        if (error < 0)
1962                return error;
1963        /*
1964         * Creates all the items needed to setup an eventpoll file. That is,
1965         * a file structure and a free file descriptor.
1966         */
1967        fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1968        if (fd < 0) {
1969                error = fd;
1970                goto out_free_ep;
1971        }
1972        file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1973                                 O_RDWR | (flags & O_CLOEXEC));
1974        if (IS_ERR(file)) {
1975                error = PTR_ERR(file);
1976                goto out_free_fd;
1977        }
1978        ep->file = file;
1979        fd_install(fd, file);
1980        return fd;
1981
1982out_free_fd:
1983        put_unused_fd(fd);
1984out_free_ep:
1985        ep_free(ep);
1986        return error;
1987}
1988
1989SYSCALL_DEFINE1(epoll_create1, int, flags)
1990{
1991        return do_epoll_create(flags);
1992}
1993
1994SYSCALL_DEFINE1(epoll_create, int, size)
1995{
1996        if (size <= 0)
1997                return -EINVAL;
1998
1999        return do_epoll_create(0);
2000}
2001
2002/*
2003 * The following function implements the controller interface for
2004 * the eventpoll file that enables the insertion/removal/change of
2005 * file descriptors inside the interest set.
2006 */
2007SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2008                struct epoll_event __user *, event)
2009{
2010        int error;
2011        int full_check = 0;
2012        struct fd f, tf;
2013        struct eventpoll *ep;
2014        struct epitem *epi;
2015        struct epoll_event epds;
2016        struct eventpoll *tep = NULL;
2017
2018        error = -EFAULT;
2019        if (ep_op_has_event(op) &&
2020            copy_from_user(&epds, event, sizeof(struct epoll_event)))
2021                goto error_return;
2022
2023        error = -EBADF;
2024        f = fdget(epfd);
2025        if (!f.file)
2026                goto error_return;
2027
2028        /* Get the "struct file *" for the target file */
2029        tf = fdget(fd);
2030        if (!tf.file)
2031                goto error_fput;
2032
2033        /* The target file descriptor must support poll */
2034        error = -EPERM;
2035        if (!file_can_poll(tf.file))
2036                goto error_tgt_fput;
2037
2038        /* Check if EPOLLWAKEUP is allowed */
2039        if (ep_op_has_event(op))
2040                ep_take_care_of_epollwakeup(&epds);
2041
2042        /*
2043         * We have to check that the file structure underneath the file descriptor
2044         * the user passed to us _is_ an eventpoll file. And also we do not permit
2045         * adding an epoll file descriptor inside itself.
2046         */
2047        error = -EINVAL;
2048        if (f.file == tf.file || !is_file_epoll(f.file))
2049                goto error_tgt_fput;
2050
2051        /*
2052         * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2053         * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2054         * Also, we do not currently supported nested exclusive wakeups.
2055         */
2056        if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2057                if (op == EPOLL_CTL_MOD)
2058                        goto error_tgt_fput;
2059                if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2060                                (epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2061                        goto error_tgt_fput;
2062        }
2063
2064        /*
2065         * At this point it is safe to assume that the "private_data" contains
2066         * our own data structure.
2067         */
2068        ep = f.file->private_data;
2069
2070        /*
2071         * When we insert an epoll file descriptor, inside another epoll file
2072         * descriptor, there is the change of creating closed loops, which are
2073         * better be handled here, than in more critical paths. While we are
2074         * checking for loops we also determine the list of files reachable
2075         * and hang them on the tfile_check_list, so we can check that we
2076         * haven't created too many possible wakeup paths.
2077         *
2078         * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2079         * the epoll file descriptor is attaching directly to a wakeup source,
2080         * unless the epoll file descriptor is nested. The purpose of taking the
2081         * 'epmutex' on add is to prevent complex toplogies such as loops and
2082         * deep wakeup paths from forming in parallel through multiple
2083         * EPOLL_CTL_ADD operations.
2084         */
2085        mutex_lock_nested(&ep->mtx, 0);
2086        if (op == EPOLL_CTL_ADD) {
2087                if (!list_empty(&f.file->f_ep_links) ||
2088                                                is_file_epoll(tf.file)) {
2089                        full_check = 1;
2090                        mutex_unlock(&ep->mtx);
2091                        mutex_lock(&epmutex);
2092                        if (is_file_epoll(tf.file)) {
2093                                error = -ELOOP;
2094                                if (ep_loop_check(ep, tf.file) != 0) {
2095                                        clear_tfile_check_list();
2096                                        goto error_tgt_fput;
2097                                }
2098                        } else
2099                                list_add(&tf.file->f_tfile_llink,
2100                                                        &tfile_check_list);
2101                        mutex_lock_nested(&ep->mtx, 0);
2102                        if (is_file_epoll(tf.file)) {
2103                                tep = tf.file->private_data;
2104                                mutex_lock_nested(&tep->mtx, 1);
2105                        }
2106                }
2107        }
2108
2109        /*
2110         * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2111         * above, we can be sure to be able to use the item looked up by
2112         * ep_find() till we release the mutex.
2113         */
2114        epi = ep_find(ep, tf.file, fd);
2115
2116        error = -EINVAL;
2117        switch (op) {
2118        case EPOLL_CTL_ADD:
2119                if (!epi) {
2120                        epds.events |= EPOLLERR | EPOLLHUP;
2121                        error = ep_insert(ep, &epds, tf.file, fd, full_check);
2122                } else
2123                        error = -EEXIST;
2124                if (full_check)
2125                        clear_tfile_check_list();
2126                break;
2127        case EPOLL_CTL_DEL:
2128                if (epi)
2129                        error = ep_remove(ep, epi);
2130                else
2131                        error = -ENOENT;
2132                break;
2133        case EPOLL_CTL_MOD:
2134                if (epi) {
2135                        if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2136                                epds.events |= EPOLLERR | EPOLLHUP;
2137                                error = ep_modify(ep, epi, &epds);
2138                        }
2139                } else
2140                        error = -ENOENT;
2141                break;
2142        }
2143        if (tep != NULL)
2144                mutex_unlock(&tep->mtx);
2145        mutex_unlock(&ep->mtx);
2146
2147error_tgt_fput:
2148        if (full_check)
2149                mutex_unlock(&epmutex);
2150
2151        fdput(tf);
2152error_fput:
2153        fdput(f);
2154error_return:
2155
2156        return error;
2157}
2158
2159/*
2160 * Implement the event wait interface for the eventpoll file. It is the kernel
2161 * part of the user space epoll_wait(2).
2162 */
2163static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2164                         int maxevents, int timeout)
2165{
2166        int error;
2167        struct fd f;
2168        struct eventpoll *ep;
2169
2170        /* The maximum number of event must be greater than zero */
2171        if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2172                return -EINVAL;
2173
2174        /* Verify that the area passed by the user is writeable */
2175        if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
2176                return -EFAULT;
2177
2178        /* Get the "struct file *" for the eventpoll file */
2179        f = fdget(epfd);
2180        if (!f.file)
2181                return -EBADF;
2182
2183        /*
2184         * We have to check that the file structure underneath the fd
2185         * the user passed to us _is_ an eventpoll file.
2186         */
2187        error = -EINVAL;
2188        if (!is_file_epoll(f.file))
2189                goto error_fput;
2190
2191        /*
2192         * At this point it is safe to assume that the "private_data" contains
2193         * our own data structure.
2194         */
2195        ep = f.file->private_data;
2196
2197        /* Time to fish for events ... */
2198        error = ep_poll(ep, events, maxevents, timeout);
2199
2200error_fput:
2201        fdput(f);
2202        return error;
2203}
2204
2205SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2206                int, maxevents, int, timeout)
2207{
2208        return do_epoll_wait(epfd, events, maxevents, timeout);
2209}
2210
2211/*
2212 * Implement the event wait interface for the eventpoll file. It is the kernel
2213 * part of the user space epoll_pwait(2).
2214 */
2215SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2216                int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2217                size_t, sigsetsize)
2218{
2219        int error;
2220        sigset_t ksigmask, sigsaved;
2221
2222        /*
2223         * If the caller wants a certain signal mask to be set during the wait,
2224         * we apply it here.
2225         */
2226        if (sigmask) {
2227                if (sigsetsize != sizeof(sigset_t))
2228                        return -EINVAL;
2229                if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
2230                        return -EFAULT;
2231                sigsaved = current->blocked;
2232                set_current_blocked(&ksigmask);
2233        }
2234
2235        error = do_epoll_wait(epfd, events, maxevents, timeout);
2236
2237        /*
2238         * If we changed the signal mask, we need to restore the original one.
2239         * In case we've got a signal while waiting, we do not restore the
2240         * signal mask yet, and we allow do_signal() to deliver the signal on
2241         * the way back to userspace, before the signal mask is restored.
2242         */
2243        if (sigmask) {
2244                if (error == -EINTR) {
2245                        memcpy(&current->saved_sigmask, &sigsaved,
2246                               sizeof(sigsaved));
2247                        set_restore_sigmask();
2248                } else
2249                        set_current_blocked(&sigsaved);
2250        }
2251
2252        return error;
2253}
2254
2255#ifdef CONFIG_COMPAT
2256COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2257                        struct epoll_event __user *, events,
2258                        int, maxevents, int, timeout,
2259                        const compat_sigset_t __user *, sigmask,
2260                        compat_size_t, sigsetsize)
2261{
2262        long err;
2263        sigset_t ksigmask, sigsaved;
2264
2265        /*
2266         * If the caller wants a certain signal mask to be set during the wait,
2267         * we apply it here.
2268         */
2269        if (sigmask) {
2270                if (sigsetsize != sizeof(compat_sigset_t))
2271                        return -EINVAL;
2272                if (get_compat_sigset(&ksigmask, sigmask))
2273                        return -EFAULT;
2274                sigsaved = current->blocked;
2275                set_current_blocked(&ksigmask);
2276        }
2277
2278        err = do_epoll_wait(epfd, events, maxevents, timeout);
2279
2280        /*
2281         * If we changed the signal mask, we need to restore the original one.
2282         * In case we've got a signal while waiting, we do not restore the
2283         * signal mask yet, and we allow do_signal() to deliver the signal on
2284         * the way back to userspace, before the signal mask is restored.
2285         */
2286        if (sigmask) {
2287                if (err == -EINTR) {
2288                        memcpy(&current->saved_sigmask, &sigsaved,
2289                               sizeof(sigsaved));
2290                        set_restore_sigmask();
2291                } else
2292                        set_current_blocked(&sigsaved);
2293        }
2294
2295        return err;
2296}
2297#endif
2298
2299static int __init eventpoll_init(void)
2300{
2301        struct sysinfo si;
2302
2303        si_meminfo(&si);
2304        /*
2305         * Allows top 4% of lomem to be allocated for epoll watches (per user).
2306         */
2307        max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2308                EP_ITEM_COST;
2309        BUG_ON(max_user_watches < 0);
2310
2311        /*
2312         * Initialize the structure used to perform epoll file descriptor
2313         * inclusion loops checks.
2314         */
2315        ep_nested_calls_init(&poll_loop_ncalls);
2316
2317#ifdef CONFIG_DEBUG_LOCK_ALLOC
2318        /* Initialize the structure used to perform safe poll wait head wake ups */
2319        ep_nested_calls_init(&poll_safewake_ncalls);
2320#endif
2321
2322        /*
2323         * We can have many thousands of epitems, so prevent this from
2324         * using an extra cache line on 64-bit (and smaller) CPUs
2325         */
2326        BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2327
2328        /* Allocates slab cache used to allocate "struct epitem" items */
2329        epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2330                        0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2331
2332        /* Allocates slab cache used to allocate "struct eppoll_entry" */
2333        pwq_cache = kmem_cache_create("eventpoll_pwq",
2334                sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2335
2336        return 0;
2337}
2338fs_initcall(eventpoll_init);
2339