linux/fs/exec.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/exec.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 * #!-checking implemented by tytso.
   9 */
  10/*
  11 * Demand-loading implemented 01.12.91 - no need to read anything but
  12 * the header into memory. The inode of the executable is put into
  13 * "current->executable", and page faults do the actual loading. Clean.
  14 *
  15 * Once more I can proudly say that linux stood up to being changed: it
  16 * was less than 2 hours work to get demand-loading completely implemented.
  17 *
  18 * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
  19 * current->executable is only used by the procfs.  This allows a dispatch
  20 * table to check for several different types  of binary formats.  We keep
  21 * trying until we recognize the file or we run out of supported binary
  22 * formats.
  23 */
  24
  25#include <linux/slab.h>
  26#include <linux/file.h>
  27#include <linux/fdtable.h>
  28#include <linux/mm.h>
  29#include <linux/vmacache.h>
  30#include <linux/stat.h>
  31#include <linux/fcntl.h>
  32#include <linux/swap.h>
  33#include <linux/string.h>
  34#include <linux/init.h>
  35#include <linux/sched/mm.h>
  36#include <linux/sched/coredump.h>
  37#include <linux/sched/signal.h>
  38#include <linux/sched/numa_balancing.h>
  39#include <linux/sched/task.h>
  40#include <linux/pagemap.h>
  41#include <linux/perf_event.h>
  42#include <linux/highmem.h>
  43#include <linux/spinlock.h>
  44#include <linux/key.h>
  45#include <linux/personality.h>
  46#include <linux/binfmts.h>
  47#include <linux/utsname.h>
  48#include <linux/pid_namespace.h>
  49#include <linux/module.h>
  50#include <linux/namei.h>
  51#include <linux/mount.h>
  52#include <linux/security.h>
  53#include <linux/syscalls.h>
  54#include <linux/tsacct_kern.h>
  55#include <linux/cn_proc.h>
  56#include <linux/audit.h>
  57#include <linux/tracehook.h>
  58#include <linux/kmod.h>
  59#include <linux/fsnotify.h>
  60#include <linux/fs_struct.h>
  61#include <linux/pipe_fs_i.h>
  62#include <linux/oom.h>
  63#include <linux/compat.h>
  64#include <linux/vmalloc.h>
  65
  66#include <linux/uaccess.h>
  67#include <asm/mmu_context.h>
  68#include <asm/tlb.h>
  69
  70#include <trace/events/task.h>
  71#include "internal.h"
  72
  73#include <trace/events/sched.h>
  74
  75int suid_dumpable = 0;
  76
  77static LIST_HEAD(formats);
  78static DEFINE_RWLOCK(binfmt_lock);
  79
  80void __register_binfmt(struct linux_binfmt * fmt, int insert)
  81{
  82        BUG_ON(!fmt);
  83        if (WARN_ON(!fmt->load_binary))
  84                return;
  85        write_lock(&binfmt_lock);
  86        insert ? list_add(&fmt->lh, &formats) :
  87                 list_add_tail(&fmt->lh, &formats);
  88        write_unlock(&binfmt_lock);
  89}
  90
  91EXPORT_SYMBOL(__register_binfmt);
  92
  93void unregister_binfmt(struct linux_binfmt * fmt)
  94{
  95        write_lock(&binfmt_lock);
  96        list_del(&fmt->lh);
  97        write_unlock(&binfmt_lock);
  98}
  99
 100EXPORT_SYMBOL(unregister_binfmt);
 101
 102static inline void put_binfmt(struct linux_binfmt * fmt)
 103{
 104        module_put(fmt->module);
 105}
 106
 107bool path_noexec(const struct path *path)
 108{
 109        return (path->mnt->mnt_flags & MNT_NOEXEC) ||
 110               (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
 111}
 112
 113#ifdef CONFIG_USELIB
 114/*
 115 * Note that a shared library must be both readable and executable due to
 116 * security reasons.
 117 *
 118 * Also note that we take the address to load from from the file itself.
 119 */
 120SYSCALL_DEFINE1(uselib, const char __user *, library)
 121{
 122        struct linux_binfmt *fmt;
 123        struct file *file;
 124        struct filename *tmp = getname(library);
 125        int error = PTR_ERR(tmp);
 126        static const struct open_flags uselib_flags = {
 127                .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 128                .acc_mode = MAY_READ | MAY_EXEC,
 129                .intent = LOOKUP_OPEN,
 130                .lookup_flags = LOOKUP_FOLLOW,
 131        };
 132
 133        if (IS_ERR(tmp))
 134                goto out;
 135
 136        file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
 137        putname(tmp);
 138        error = PTR_ERR(file);
 139        if (IS_ERR(file))
 140                goto out;
 141
 142        error = -EINVAL;
 143        if (!S_ISREG(file_inode(file)->i_mode))
 144                goto exit;
 145
 146        error = -EACCES;
 147        if (path_noexec(&file->f_path))
 148                goto exit;
 149
 150        fsnotify_open(file);
 151
 152        error = -ENOEXEC;
 153
 154        read_lock(&binfmt_lock);
 155        list_for_each_entry(fmt, &formats, lh) {
 156                if (!fmt->load_shlib)
 157                        continue;
 158                if (!try_module_get(fmt->module))
 159                        continue;
 160                read_unlock(&binfmt_lock);
 161                error = fmt->load_shlib(file);
 162                read_lock(&binfmt_lock);
 163                put_binfmt(fmt);
 164                if (error != -ENOEXEC)
 165                        break;
 166        }
 167        read_unlock(&binfmt_lock);
 168exit:
 169        fput(file);
 170out:
 171        return error;
 172}
 173#endif /* #ifdef CONFIG_USELIB */
 174
 175#ifdef CONFIG_MMU
 176/*
 177 * The nascent bprm->mm is not visible until exec_mmap() but it can
 178 * use a lot of memory, account these pages in current->mm temporary
 179 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
 180 * change the counter back via acct_arg_size(0).
 181 */
 182static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 183{
 184        struct mm_struct *mm = current->mm;
 185        long diff = (long)(pages - bprm->vma_pages);
 186
 187        if (!mm || !diff)
 188                return;
 189
 190        bprm->vma_pages = pages;
 191        add_mm_counter(mm, MM_ANONPAGES, diff);
 192}
 193
 194static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 195                int write)
 196{
 197        struct page *page;
 198        int ret;
 199        unsigned int gup_flags = FOLL_FORCE;
 200
 201#ifdef CONFIG_STACK_GROWSUP
 202        if (write) {
 203                ret = expand_downwards(bprm->vma, pos);
 204                if (ret < 0)
 205                        return NULL;
 206        }
 207#endif
 208
 209        if (write)
 210                gup_flags |= FOLL_WRITE;
 211
 212        /*
 213         * We are doing an exec().  'current' is the process
 214         * doing the exec and bprm->mm is the new process's mm.
 215         */
 216        ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
 217                        &page, NULL, NULL);
 218        if (ret <= 0)
 219                return NULL;
 220
 221        if (write) {
 222                unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
 223                unsigned long ptr_size, limit;
 224
 225                /*
 226                 * Since the stack will hold pointers to the strings, we
 227                 * must account for them as well.
 228                 *
 229                 * The size calculation is the entire vma while each arg page is
 230                 * built, so each time we get here it's calculating how far it
 231                 * is currently (rather than each call being just the newly
 232                 * added size from the arg page).  As a result, we need to
 233                 * always add the entire size of the pointers, so that on the
 234                 * last call to get_arg_page() we'll actually have the entire
 235                 * correct size.
 236                 */
 237                ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
 238                if (ptr_size > ULONG_MAX - size)
 239                        goto fail;
 240                size += ptr_size;
 241
 242                acct_arg_size(bprm, size / PAGE_SIZE);
 243
 244                /*
 245                 * We've historically supported up to 32 pages (ARG_MAX)
 246                 * of argument strings even with small stacks
 247                 */
 248                if (size <= ARG_MAX)
 249                        return page;
 250
 251                /*
 252                 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
 253                 * (whichever is smaller) for the argv+env strings.
 254                 * This ensures that:
 255                 *  - the remaining binfmt code will not run out of stack space,
 256                 *  - the program will have a reasonable amount of stack left
 257                 *    to work from.
 258                 */
 259                limit = _STK_LIM / 4 * 3;
 260                limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
 261                if (size > limit)
 262                        goto fail;
 263        }
 264
 265        return page;
 266
 267fail:
 268        put_page(page);
 269        return NULL;
 270}
 271
 272static void put_arg_page(struct page *page)
 273{
 274        put_page(page);
 275}
 276
 277static void free_arg_pages(struct linux_binprm *bprm)
 278{
 279}
 280
 281static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 282                struct page *page)
 283{
 284        flush_cache_page(bprm->vma, pos, page_to_pfn(page));
 285}
 286
 287static int __bprm_mm_init(struct linux_binprm *bprm)
 288{
 289        int err;
 290        struct vm_area_struct *vma = NULL;
 291        struct mm_struct *mm = bprm->mm;
 292
 293        bprm->vma = vma = vm_area_alloc(mm);
 294        if (!vma)
 295                return -ENOMEM;
 296        vma_set_anonymous(vma);
 297
 298        if (down_write_killable(&mm->mmap_sem)) {
 299                err = -EINTR;
 300                goto err_free;
 301        }
 302
 303        /*
 304         * Place the stack at the largest stack address the architecture
 305         * supports. Later, we'll move this to an appropriate place. We don't
 306         * use STACK_TOP because that can depend on attributes which aren't
 307         * configured yet.
 308         */
 309        BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
 310        vma->vm_end = STACK_TOP_MAX;
 311        vma->vm_start = vma->vm_end - PAGE_SIZE;
 312        vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
 313        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 314
 315        err = insert_vm_struct(mm, vma);
 316        if (err)
 317                goto err;
 318
 319        mm->stack_vm = mm->total_vm = 1;
 320        arch_bprm_mm_init(mm, vma);
 321        up_write(&mm->mmap_sem);
 322        bprm->p = vma->vm_end - sizeof(void *);
 323        return 0;
 324err:
 325        up_write(&mm->mmap_sem);
 326err_free:
 327        bprm->vma = NULL;
 328        vm_area_free(vma);
 329        return err;
 330}
 331
 332static bool valid_arg_len(struct linux_binprm *bprm, long len)
 333{
 334        return len <= MAX_ARG_STRLEN;
 335}
 336
 337#else
 338
 339static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 340{
 341}
 342
 343static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 344                int write)
 345{
 346        struct page *page;
 347
 348        page = bprm->page[pos / PAGE_SIZE];
 349        if (!page && write) {
 350                page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
 351                if (!page)
 352                        return NULL;
 353                bprm->page[pos / PAGE_SIZE] = page;
 354        }
 355
 356        return page;
 357}
 358
 359static void put_arg_page(struct page *page)
 360{
 361}
 362
 363static void free_arg_page(struct linux_binprm *bprm, int i)
 364{
 365        if (bprm->page[i]) {
 366                __free_page(bprm->page[i]);
 367                bprm->page[i] = NULL;
 368        }
 369}
 370
 371static void free_arg_pages(struct linux_binprm *bprm)
 372{
 373        int i;
 374
 375        for (i = 0; i < MAX_ARG_PAGES; i++)
 376                free_arg_page(bprm, i);
 377}
 378
 379static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 380                struct page *page)
 381{
 382}
 383
 384static int __bprm_mm_init(struct linux_binprm *bprm)
 385{
 386        bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
 387        return 0;
 388}
 389
 390static bool valid_arg_len(struct linux_binprm *bprm, long len)
 391{
 392        return len <= bprm->p;
 393}
 394
 395#endif /* CONFIG_MMU */
 396
 397/*
 398 * Create a new mm_struct and populate it with a temporary stack
 399 * vm_area_struct.  We don't have enough context at this point to set the stack
 400 * flags, permissions, and offset, so we use temporary values.  We'll update
 401 * them later in setup_arg_pages().
 402 */
 403static int bprm_mm_init(struct linux_binprm *bprm)
 404{
 405        int err;
 406        struct mm_struct *mm = NULL;
 407
 408        bprm->mm = mm = mm_alloc();
 409        err = -ENOMEM;
 410        if (!mm)
 411                goto err;
 412
 413        /* Save current stack limit for all calculations made during exec. */
 414        task_lock(current->group_leader);
 415        bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
 416        task_unlock(current->group_leader);
 417
 418        err = __bprm_mm_init(bprm);
 419        if (err)
 420                goto err;
 421
 422        return 0;
 423
 424err:
 425        if (mm) {
 426                bprm->mm = NULL;
 427                mmdrop(mm);
 428        }
 429
 430        return err;
 431}
 432
 433struct user_arg_ptr {
 434#ifdef CONFIG_COMPAT
 435        bool is_compat;
 436#endif
 437        union {
 438                const char __user *const __user *native;
 439#ifdef CONFIG_COMPAT
 440                const compat_uptr_t __user *compat;
 441#endif
 442        } ptr;
 443};
 444
 445static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
 446{
 447        const char __user *native;
 448
 449#ifdef CONFIG_COMPAT
 450        if (unlikely(argv.is_compat)) {
 451                compat_uptr_t compat;
 452
 453                if (get_user(compat, argv.ptr.compat + nr))
 454                        return ERR_PTR(-EFAULT);
 455
 456                return compat_ptr(compat);
 457        }
 458#endif
 459
 460        if (get_user(native, argv.ptr.native + nr))
 461                return ERR_PTR(-EFAULT);
 462
 463        return native;
 464}
 465
 466/*
 467 * count() counts the number of strings in array ARGV.
 468 */
 469static int count(struct user_arg_ptr argv, int max)
 470{
 471        int i = 0;
 472
 473        if (argv.ptr.native != NULL) {
 474                for (;;) {
 475                        const char __user *p = get_user_arg_ptr(argv, i);
 476
 477                        if (!p)
 478                                break;
 479
 480                        if (IS_ERR(p))
 481                                return -EFAULT;
 482
 483                        if (i >= max)
 484                                return -E2BIG;
 485                        ++i;
 486
 487                        if (fatal_signal_pending(current))
 488                                return -ERESTARTNOHAND;
 489                        cond_resched();
 490                }
 491        }
 492        return i;
 493}
 494
 495/*
 496 * 'copy_strings()' copies argument/environment strings from the old
 497 * processes's memory to the new process's stack.  The call to get_user_pages()
 498 * ensures the destination page is created and not swapped out.
 499 */
 500static int copy_strings(int argc, struct user_arg_ptr argv,
 501                        struct linux_binprm *bprm)
 502{
 503        struct page *kmapped_page = NULL;
 504        char *kaddr = NULL;
 505        unsigned long kpos = 0;
 506        int ret;
 507
 508        while (argc-- > 0) {
 509                const char __user *str;
 510                int len;
 511                unsigned long pos;
 512
 513                ret = -EFAULT;
 514                str = get_user_arg_ptr(argv, argc);
 515                if (IS_ERR(str))
 516                        goto out;
 517
 518                len = strnlen_user(str, MAX_ARG_STRLEN);
 519                if (!len)
 520                        goto out;
 521
 522                ret = -E2BIG;
 523                if (!valid_arg_len(bprm, len))
 524                        goto out;
 525
 526                /* We're going to work our way backwords. */
 527                pos = bprm->p;
 528                str += len;
 529                bprm->p -= len;
 530
 531                while (len > 0) {
 532                        int offset, bytes_to_copy;
 533
 534                        if (fatal_signal_pending(current)) {
 535                                ret = -ERESTARTNOHAND;
 536                                goto out;
 537                        }
 538                        cond_resched();
 539
 540                        offset = pos % PAGE_SIZE;
 541                        if (offset == 0)
 542                                offset = PAGE_SIZE;
 543
 544                        bytes_to_copy = offset;
 545                        if (bytes_to_copy > len)
 546                                bytes_to_copy = len;
 547
 548                        offset -= bytes_to_copy;
 549                        pos -= bytes_to_copy;
 550                        str -= bytes_to_copy;
 551                        len -= bytes_to_copy;
 552
 553                        if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
 554                                struct page *page;
 555
 556                                page = get_arg_page(bprm, pos, 1);
 557                                if (!page) {
 558                                        ret = -E2BIG;
 559                                        goto out;
 560                                }
 561
 562                                if (kmapped_page) {
 563                                        flush_kernel_dcache_page(kmapped_page);
 564                                        kunmap(kmapped_page);
 565                                        put_arg_page(kmapped_page);
 566                                }
 567                                kmapped_page = page;
 568                                kaddr = kmap(kmapped_page);
 569                                kpos = pos & PAGE_MASK;
 570                                flush_arg_page(bprm, kpos, kmapped_page);
 571                        }
 572                        if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
 573                                ret = -EFAULT;
 574                                goto out;
 575                        }
 576                }
 577        }
 578        ret = 0;
 579out:
 580        if (kmapped_page) {
 581                flush_kernel_dcache_page(kmapped_page);
 582                kunmap(kmapped_page);
 583                put_arg_page(kmapped_page);
 584        }
 585        return ret;
 586}
 587
 588/*
 589 * Like copy_strings, but get argv and its values from kernel memory.
 590 */
 591int copy_strings_kernel(int argc, const char *const *__argv,
 592                        struct linux_binprm *bprm)
 593{
 594        int r;
 595        mm_segment_t oldfs = get_fs();
 596        struct user_arg_ptr argv = {
 597                .ptr.native = (const char __user *const  __user *)__argv,
 598        };
 599
 600        set_fs(KERNEL_DS);
 601        r = copy_strings(argc, argv, bprm);
 602        set_fs(oldfs);
 603
 604        return r;
 605}
 606EXPORT_SYMBOL(copy_strings_kernel);
 607
 608#ifdef CONFIG_MMU
 609
 610/*
 611 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
 612 * the binfmt code determines where the new stack should reside, we shift it to
 613 * its final location.  The process proceeds as follows:
 614 *
 615 * 1) Use shift to calculate the new vma endpoints.
 616 * 2) Extend vma to cover both the old and new ranges.  This ensures the
 617 *    arguments passed to subsequent functions are consistent.
 618 * 3) Move vma's page tables to the new range.
 619 * 4) Free up any cleared pgd range.
 620 * 5) Shrink the vma to cover only the new range.
 621 */
 622static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
 623{
 624        struct mm_struct *mm = vma->vm_mm;
 625        unsigned long old_start = vma->vm_start;
 626        unsigned long old_end = vma->vm_end;
 627        unsigned long length = old_end - old_start;
 628        unsigned long new_start = old_start - shift;
 629        unsigned long new_end = old_end - shift;
 630        struct mmu_gather tlb;
 631
 632        BUG_ON(new_start > new_end);
 633
 634        /*
 635         * ensure there are no vmas between where we want to go
 636         * and where we are
 637         */
 638        if (vma != find_vma(mm, new_start))
 639                return -EFAULT;
 640
 641        /*
 642         * cover the whole range: [new_start, old_end)
 643         */
 644        if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
 645                return -ENOMEM;
 646
 647        /*
 648         * move the page tables downwards, on failure we rely on
 649         * process cleanup to remove whatever mess we made.
 650         */
 651        if (length != move_page_tables(vma, old_start,
 652                                       vma, new_start, length, false))
 653                return -ENOMEM;
 654
 655        lru_add_drain();
 656        tlb_gather_mmu(&tlb, mm, old_start, old_end);
 657        if (new_end > old_start) {
 658                /*
 659                 * when the old and new regions overlap clear from new_end.
 660                 */
 661                free_pgd_range(&tlb, new_end, old_end, new_end,
 662                        vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
 663        } else {
 664                /*
 665                 * otherwise, clean from old_start; this is done to not touch
 666                 * the address space in [new_end, old_start) some architectures
 667                 * have constraints on va-space that make this illegal (IA64) -
 668                 * for the others its just a little faster.
 669                 */
 670                free_pgd_range(&tlb, old_start, old_end, new_end,
 671                        vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
 672        }
 673        tlb_finish_mmu(&tlb, old_start, old_end);
 674
 675        /*
 676         * Shrink the vma to just the new range.  Always succeeds.
 677         */
 678        vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
 679
 680        return 0;
 681}
 682
 683/*
 684 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
 685 * the stack is optionally relocated, and some extra space is added.
 686 */
 687int setup_arg_pages(struct linux_binprm *bprm,
 688                    unsigned long stack_top,
 689                    int executable_stack)
 690{
 691        unsigned long ret;
 692        unsigned long stack_shift;
 693        struct mm_struct *mm = current->mm;
 694        struct vm_area_struct *vma = bprm->vma;
 695        struct vm_area_struct *prev = NULL;
 696        unsigned long vm_flags;
 697        unsigned long stack_base;
 698        unsigned long stack_size;
 699        unsigned long stack_expand;
 700        unsigned long rlim_stack;
 701
 702#ifdef CONFIG_STACK_GROWSUP
 703        /* Limit stack size */
 704        stack_base = bprm->rlim_stack.rlim_max;
 705        if (stack_base > STACK_SIZE_MAX)
 706                stack_base = STACK_SIZE_MAX;
 707
 708        /* Add space for stack randomization. */
 709        stack_base += (STACK_RND_MASK << PAGE_SHIFT);
 710
 711        /* Make sure we didn't let the argument array grow too large. */
 712        if (vma->vm_end - vma->vm_start > stack_base)
 713                return -ENOMEM;
 714
 715        stack_base = PAGE_ALIGN(stack_top - stack_base);
 716
 717        stack_shift = vma->vm_start - stack_base;
 718        mm->arg_start = bprm->p - stack_shift;
 719        bprm->p = vma->vm_end - stack_shift;
 720#else
 721        stack_top = arch_align_stack(stack_top);
 722        stack_top = PAGE_ALIGN(stack_top);
 723
 724        if (unlikely(stack_top < mmap_min_addr) ||
 725            unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
 726                return -ENOMEM;
 727
 728        stack_shift = vma->vm_end - stack_top;
 729
 730        bprm->p -= stack_shift;
 731        mm->arg_start = bprm->p;
 732#endif
 733
 734        if (bprm->loader)
 735                bprm->loader -= stack_shift;
 736        bprm->exec -= stack_shift;
 737
 738        if (down_write_killable(&mm->mmap_sem))
 739                return -EINTR;
 740
 741        vm_flags = VM_STACK_FLAGS;
 742
 743        /*
 744         * Adjust stack execute permissions; explicitly enable for
 745         * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
 746         * (arch default) otherwise.
 747         */
 748        if (unlikely(executable_stack == EXSTACK_ENABLE_X))
 749                vm_flags |= VM_EXEC;
 750        else if (executable_stack == EXSTACK_DISABLE_X)
 751                vm_flags &= ~VM_EXEC;
 752        vm_flags |= mm->def_flags;
 753        vm_flags |= VM_STACK_INCOMPLETE_SETUP;
 754
 755        ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
 756                        vm_flags);
 757        if (ret)
 758                goto out_unlock;
 759        BUG_ON(prev != vma);
 760
 761        /* Move stack pages down in memory. */
 762        if (stack_shift) {
 763                ret = shift_arg_pages(vma, stack_shift);
 764                if (ret)
 765                        goto out_unlock;
 766        }
 767
 768        /* mprotect_fixup is overkill to remove the temporary stack flags */
 769        vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
 770
 771        stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
 772        stack_size = vma->vm_end - vma->vm_start;
 773        /*
 774         * Align this down to a page boundary as expand_stack
 775         * will align it up.
 776         */
 777        rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
 778#ifdef CONFIG_STACK_GROWSUP
 779        if (stack_size + stack_expand > rlim_stack)
 780                stack_base = vma->vm_start + rlim_stack;
 781        else
 782                stack_base = vma->vm_end + stack_expand;
 783#else
 784        if (stack_size + stack_expand > rlim_stack)
 785                stack_base = vma->vm_end - rlim_stack;
 786        else
 787                stack_base = vma->vm_start - stack_expand;
 788#endif
 789        current->mm->start_stack = bprm->p;
 790        ret = expand_stack(vma, stack_base);
 791        if (ret)
 792                ret = -EFAULT;
 793
 794out_unlock:
 795        up_write(&mm->mmap_sem);
 796        return ret;
 797}
 798EXPORT_SYMBOL(setup_arg_pages);
 799
 800#else
 801
 802/*
 803 * Transfer the program arguments and environment from the holding pages
 804 * onto the stack. The provided stack pointer is adjusted accordingly.
 805 */
 806int transfer_args_to_stack(struct linux_binprm *bprm,
 807                           unsigned long *sp_location)
 808{
 809        unsigned long index, stop, sp;
 810        int ret = 0;
 811
 812        stop = bprm->p >> PAGE_SHIFT;
 813        sp = *sp_location;
 814
 815        for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
 816                unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
 817                char *src = kmap(bprm->page[index]) + offset;
 818                sp -= PAGE_SIZE - offset;
 819                if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
 820                        ret = -EFAULT;
 821                kunmap(bprm->page[index]);
 822                if (ret)
 823                        goto out;
 824        }
 825
 826        *sp_location = sp;
 827
 828out:
 829        return ret;
 830}
 831EXPORT_SYMBOL(transfer_args_to_stack);
 832
 833#endif /* CONFIG_MMU */
 834
 835static struct file *do_open_execat(int fd, struct filename *name, int flags)
 836{
 837        struct file *file;
 838        int err;
 839        struct open_flags open_exec_flags = {
 840                .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 841                .acc_mode = MAY_EXEC,
 842                .intent = LOOKUP_OPEN,
 843                .lookup_flags = LOOKUP_FOLLOW,
 844        };
 845
 846        if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
 847                return ERR_PTR(-EINVAL);
 848        if (flags & AT_SYMLINK_NOFOLLOW)
 849                open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
 850        if (flags & AT_EMPTY_PATH)
 851                open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
 852
 853        file = do_filp_open(fd, name, &open_exec_flags);
 854        if (IS_ERR(file))
 855                goto out;
 856
 857        err = -EACCES;
 858        if (!S_ISREG(file_inode(file)->i_mode))
 859                goto exit;
 860
 861        if (path_noexec(&file->f_path))
 862                goto exit;
 863
 864        err = deny_write_access(file);
 865        if (err)
 866                goto exit;
 867
 868        if (name->name[0] != '\0')
 869                fsnotify_open(file);
 870
 871out:
 872        return file;
 873
 874exit:
 875        fput(file);
 876        return ERR_PTR(err);
 877}
 878
 879struct file *open_exec(const char *name)
 880{
 881        struct filename *filename = getname_kernel(name);
 882        struct file *f = ERR_CAST(filename);
 883
 884        if (!IS_ERR(filename)) {
 885                f = do_open_execat(AT_FDCWD, filename, 0);
 886                putname(filename);
 887        }
 888        return f;
 889}
 890EXPORT_SYMBOL(open_exec);
 891
 892int kernel_read_file(struct file *file, void **buf, loff_t *size,
 893                     loff_t max_size, enum kernel_read_file_id id)
 894{
 895        loff_t i_size, pos;
 896        ssize_t bytes = 0;
 897        int ret;
 898
 899        if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
 900                return -EINVAL;
 901
 902        ret = deny_write_access(file);
 903        if (ret)
 904                return ret;
 905
 906        ret = security_kernel_read_file(file, id);
 907        if (ret)
 908                goto out;
 909
 910        i_size = i_size_read(file_inode(file));
 911        if (max_size > 0 && i_size > max_size) {
 912                ret = -EFBIG;
 913                goto out;
 914        }
 915        if (i_size <= 0) {
 916                ret = -EINVAL;
 917                goto out;
 918        }
 919
 920        if (id != READING_FIRMWARE_PREALLOC_BUFFER)
 921                *buf = vmalloc(i_size);
 922        if (!*buf) {
 923                ret = -ENOMEM;
 924                goto out;
 925        }
 926
 927        pos = 0;
 928        while (pos < i_size) {
 929                bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
 930                if (bytes < 0) {
 931                        ret = bytes;
 932                        goto out;
 933                }
 934
 935                if (bytes == 0)
 936                        break;
 937        }
 938
 939        if (pos != i_size) {
 940                ret = -EIO;
 941                goto out_free;
 942        }
 943
 944        ret = security_kernel_post_read_file(file, *buf, i_size, id);
 945        if (!ret)
 946                *size = pos;
 947
 948out_free:
 949        if (ret < 0) {
 950                if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
 951                        vfree(*buf);
 952                        *buf = NULL;
 953                }
 954        }
 955
 956out:
 957        allow_write_access(file);
 958        return ret;
 959}
 960EXPORT_SYMBOL_GPL(kernel_read_file);
 961
 962int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
 963                               loff_t max_size, enum kernel_read_file_id id)
 964{
 965        struct file *file;
 966        int ret;
 967
 968        if (!path || !*path)
 969                return -EINVAL;
 970
 971        file = filp_open(path, O_RDONLY, 0);
 972        if (IS_ERR(file))
 973                return PTR_ERR(file);
 974
 975        ret = kernel_read_file(file, buf, size, max_size, id);
 976        fput(file);
 977        return ret;
 978}
 979EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
 980
 981int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
 982                             enum kernel_read_file_id id)
 983{
 984        struct fd f = fdget(fd);
 985        int ret = -EBADF;
 986
 987        if (!f.file)
 988                goto out;
 989
 990        ret = kernel_read_file(f.file, buf, size, max_size, id);
 991out:
 992        fdput(f);
 993        return ret;
 994}
 995EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
 996
 997ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
 998{
 999        ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1000        if (res > 0)
1001                flush_icache_range(addr, addr + len);
1002        return res;
1003}
1004EXPORT_SYMBOL(read_code);
1005
1006static int exec_mmap(struct mm_struct *mm)
1007{
1008        struct task_struct *tsk;
1009        struct mm_struct *old_mm, *active_mm;
1010
1011        /* Notify parent that we're no longer interested in the old VM */
1012        tsk = current;
1013        old_mm = current->mm;
1014        mm_release(tsk, old_mm);
1015
1016        if (old_mm) {
1017                sync_mm_rss(old_mm);
1018                /*
1019                 * Make sure that if there is a core dump in progress
1020                 * for the old mm, we get out and die instead of going
1021                 * through with the exec.  We must hold mmap_sem around
1022                 * checking core_state and changing tsk->mm.
1023                 */
1024                down_read(&old_mm->mmap_sem);
1025                if (unlikely(old_mm->core_state)) {
1026                        up_read(&old_mm->mmap_sem);
1027                        return -EINTR;
1028                }
1029        }
1030        task_lock(tsk);
1031        active_mm = tsk->active_mm;
1032        tsk->mm = mm;
1033        tsk->active_mm = mm;
1034        activate_mm(active_mm, mm);
1035        tsk->mm->vmacache_seqnum = 0;
1036        vmacache_flush(tsk);
1037        task_unlock(tsk);
1038        if (old_mm) {
1039                up_read(&old_mm->mmap_sem);
1040                BUG_ON(active_mm != old_mm);
1041                setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1042                mm_update_next_owner(old_mm);
1043                mmput(old_mm);
1044                return 0;
1045        }
1046        mmdrop(active_mm);
1047        return 0;
1048}
1049
1050/*
1051 * This function makes sure the current process has its own signal table,
1052 * so that flush_signal_handlers can later reset the handlers without
1053 * disturbing other processes.  (Other processes might share the signal
1054 * table via the CLONE_SIGHAND option to clone().)
1055 */
1056static int de_thread(struct task_struct *tsk)
1057{
1058        struct signal_struct *sig = tsk->signal;
1059        struct sighand_struct *oldsighand = tsk->sighand;
1060        spinlock_t *lock = &oldsighand->siglock;
1061
1062        if (thread_group_empty(tsk))
1063                goto no_thread_group;
1064
1065        /*
1066         * Kill all other threads in the thread group.
1067         */
1068        spin_lock_irq(lock);
1069        if (signal_group_exit(sig)) {
1070                /*
1071                 * Another group action in progress, just
1072                 * return so that the signal is processed.
1073                 */
1074                spin_unlock_irq(lock);
1075                return -EAGAIN;
1076        }
1077
1078        sig->group_exit_task = tsk;
1079        sig->notify_count = zap_other_threads(tsk);
1080        if (!thread_group_leader(tsk))
1081                sig->notify_count--;
1082
1083        while (sig->notify_count) {
1084                __set_current_state(TASK_KILLABLE);
1085                spin_unlock_irq(lock);
1086                schedule();
1087                if (unlikely(__fatal_signal_pending(tsk)))
1088                        goto killed;
1089                spin_lock_irq(lock);
1090        }
1091        spin_unlock_irq(lock);
1092
1093        /*
1094         * At this point all other threads have exited, all we have to
1095         * do is to wait for the thread group leader to become inactive,
1096         * and to assume its PID:
1097         */
1098        if (!thread_group_leader(tsk)) {
1099                struct task_struct *leader = tsk->group_leader;
1100
1101                for (;;) {
1102                        cgroup_threadgroup_change_begin(tsk);
1103                        write_lock_irq(&tasklist_lock);
1104                        /*
1105                         * Do this under tasklist_lock to ensure that
1106                         * exit_notify() can't miss ->group_exit_task
1107                         */
1108                        sig->notify_count = -1;
1109                        if (likely(leader->exit_state))
1110                                break;
1111                        __set_current_state(TASK_KILLABLE);
1112                        write_unlock_irq(&tasklist_lock);
1113                        cgroup_threadgroup_change_end(tsk);
1114                        schedule();
1115                        if (unlikely(__fatal_signal_pending(tsk)))
1116                                goto killed;
1117                }
1118
1119                /*
1120                 * The only record we have of the real-time age of a
1121                 * process, regardless of execs it's done, is start_time.
1122                 * All the past CPU time is accumulated in signal_struct
1123                 * from sister threads now dead.  But in this non-leader
1124                 * exec, nothing survives from the original leader thread,
1125                 * whose birth marks the true age of this process now.
1126                 * When we take on its identity by switching to its PID, we
1127                 * also take its birthdate (always earlier than our own).
1128                 */
1129                tsk->start_time = leader->start_time;
1130                tsk->real_start_time = leader->real_start_time;
1131
1132                BUG_ON(!same_thread_group(leader, tsk));
1133                BUG_ON(has_group_leader_pid(tsk));
1134                /*
1135                 * An exec() starts a new thread group with the
1136                 * TGID of the previous thread group. Rehash the
1137                 * two threads with a switched PID, and release
1138                 * the former thread group leader:
1139                 */
1140
1141                /* Become a process group leader with the old leader's pid.
1142                 * The old leader becomes a thread of the this thread group.
1143                 * Note: The old leader also uses this pid until release_task
1144                 *       is called.  Odd but simple and correct.
1145                 */
1146                tsk->pid = leader->pid;
1147                change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1148                transfer_pid(leader, tsk, PIDTYPE_TGID);
1149                transfer_pid(leader, tsk, PIDTYPE_PGID);
1150                transfer_pid(leader, tsk, PIDTYPE_SID);
1151
1152                list_replace_rcu(&leader->tasks, &tsk->tasks);
1153                list_replace_init(&leader->sibling, &tsk->sibling);
1154
1155                tsk->group_leader = tsk;
1156                leader->group_leader = tsk;
1157
1158                tsk->exit_signal = SIGCHLD;
1159                leader->exit_signal = -1;
1160
1161                BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1162                leader->exit_state = EXIT_DEAD;
1163
1164                /*
1165                 * We are going to release_task()->ptrace_unlink() silently,
1166                 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1167                 * the tracer wont't block again waiting for this thread.
1168                 */
1169                if (unlikely(leader->ptrace))
1170                        __wake_up_parent(leader, leader->parent);
1171                write_unlock_irq(&tasklist_lock);
1172                cgroup_threadgroup_change_end(tsk);
1173
1174                release_task(leader);
1175        }
1176
1177        sig->group_exit_task = NULL;
1178        sig->notify_count = 0;
1179
1180no_thread_group:
1181        /* we have changed execution domain */
1182        tsk->exit_signal = SIGCHLD;
1183
1184#ifdef CONFIG_POSIX_TIMERS
1185        exit_itimers(sig);
1186        flush_itimer_signals();
1187#endif
1188
1189        if (atomic_read(&oldsighand->count) != 1) {
1190                struct sighand_struct *newsighand;
1191                /*
1192                 * This ->sighand is shared with the CLONE_SIGHAND
1193                 * but not CLONE_THREAD task, switch to the new one.
1194                 */
1195                newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1196                if (!newsighand)
1197                        return -ENOMEM;
1198
1199                atomic_set(&newsighand->count, 1);
1200                memcpy(newsighand->action, oldsighand->action,
1201                       sizeof(newsighand->action));
1202
1203                write_lock_irq(&tasklist_lock);
1204                spin_lock(&oldsighand->siglock);
1205                rcu_assign_pointer(tsk->sighand, newsighand);
1206                spin_unlock(&oldsighand->siglock);
1207                write_unlock_irq(&tasklist_lock);
1208
1209                __cleanup_sighand(oldsighand);
1210        }
1211
1212        BUG_ON(!thread_group_leader(tsk));
1213        return 0;
1214
1215killed:
1216        /* protects against exit_notify() and __exit_signal() */
1217        read_lock(&tasklist_lock);
1218        sig->group_exit_task = NULL;
1219        sig->notify_count = 0;
1220        read_unlock(&tasklist_lock);
1221        return -EAGAIN;
1222}
1223
1224char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1225{
1226        task_lock(tsk);
1227        strncpy(buf, tsk->comm, buf_size);
1228        task_unlock(tsk);
1229        return buf;
1230}
1231EXPORT_SYMBOL_GPL(__get_task_comm);
1232
1233/*
1234 * These functions flushes out all traces of the currently running executable
1235 * so that a new one can be started
1236 */
1237
1238void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1239{
1240        task_lock(tsk);
1241        trace_task_rename(tsk, buf);
1242        strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1243        task_unlock(tsk);
1244        perf_event_comm(tsk, exec);
1245}
1246
1247/*
1248 * Calling this is the point of no return. None of the failures will be
1249 * seen by userspace since either the process is already taking a fatal
1250 * signal (via de_thread() or coredump), or will have SEGV raised
1251 * (after exec_mmap()) by search_binary_handlers (see below).
1252 */
1253int flush_old_exec(struct linux_binprm * bprm)
1254{
1255        int retval;
1256
1257        /*
1258         * Make sure we have a private signal table and that
1259         * we are unassociated from the previous thread group.
1260         */
1261        retval = de_thread(current);
1262        if (retval)
1263                goto out;
1264
1265        /*
1266         * Must be called _before_ exec_mmap() as bprm->mm is
1267         * not visibile until then. This also enables the update
1268         * to be lockless.
1269         */
1270        set_mm_exe_file(bprm->mm, bprm->file);
1271
1272        /*
1273         * Release all of the old mmap stuff
1274         */
1275        acct_arg_size(bprm, 0);
1276        retval = exec_mmap(bprm->mm);
1277        if (retval)
1278                goto out;
1279
1280        /*
1281         * After clearing bprm->mm (to mark that current is using the
1282         * prepared mm now), we have nothing left of the original
1283         * process. If anything from here on returns an error, the check
1284         * in search_binary_handler() will SEGV current.
1285         */
1286        bprm->mm = NULL;
1287
1288        set_fs(USER_DS);
1289        current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1290                                        PF_NOFREEZE | PF_NO_SETAFFINITY);
1291        flush_thread();
1292        current->personality &= ~bprm->per_clear;
1293
1294        /*
1295         * We have to apply CLOEXEC before we change whether the process is
1296         * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1297         * trying to access the should-be-closed file descriptors of a process
1298         * undergoing exec(2).
1299         */
1300        do_close_on_exec(current->files);
1301        return 0;
1302
1303out:
1304        return retval;
1305}
1306EXPORT_SYMBOL(flush_old_exec);
1307
1308void would_dump(struct linux_binprm *bprm, struct file *file)
1309{
1310        struct inode *inode = file_inode(file);
1311        if (inode_permission(inode, MAY_READ) < 0) {
1312                struct user_namespace *old, *user_ns;
1313                bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1314
1315                /* Ensure mm->user_ns contains the executable */
1316                user_ns = old = bprm->mm->user_ns;
1317                while ((user_ns != &init_user_ns) &&
1318                       !privileged_wrt_inode_uidgid(user_ns, inode))
1319                        user_ns = user_ns->parent;
1320
1321                if (old != user_ns) {
1322                        bprm->mm->user_ns = get_user_ns(user_ns);
1323                        put_user_ns(old);
1324                }
1325        }
1326}
1327EXPORT_SYMBOL(would_dump);
1328
1329void setup_new_exec(struct linux_binprm * bprm)
1330{
1331        /*
1332         * Once here, prepare_binrpm() will not be called any more, so
1333         * the final state of setuid/setgid/fscaps can be merged into the
1334         * secureexec flag.
1335         */
1336        bprm->secureexec |= bprm->cap_elevated;
1337
1338        if (bprm->secureexec) {
1339                /* Make sure parent cannot signal privileged process. */
1340                current->pdeath_signal = 0;
1341
1342                /*
1343                 * For secureexec, reset the stack limit to sane default to
1344                 * avoid bad behavior from the prior rlimits. This has to
1345                 * happen before arch_pick_mmap_layout(), which examines
1346                 * RLIMIT_STACK, but after the point of no return to avoid
1347                 * needing to clean up the change on failure.
1348                 */
1349                if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1350                        bprm->rlim_stack.rlim_cur = _STK_LIM;
1351        }
1352
1353        arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1354
1355        current->sas_ss_sp = current->sas_ss_size = 0;
1356
1357        /*
1358         * Figure out dumpability. Note that this checking only of current
1359         * is wrong, but userspace depends on it. This should be testing
1360         * bprm->secureexec instead.
1361         */
1362        if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1363            !(uid_eq(current_euid(), current_uid()) &&
1364              gid_eq(current_egid(), current_gid())))
1365                set_dumpable(current->mm, suid_dumpable);
1366        else
1367                set_dumpable(current->mm, SUID_DUMP_USER);
1368
1369        arch_setup_new_exec();
1370        perf_event_exec();
1371        __set_task_comm(current, kbasename(bprm->filename), true);
1372
1373        /* Set the new mm task size. We have to do that late because it may
1374         * depend on TIF_32BIT which is only updated in flush_thread() on
1375         * some architectures like powerpc
1376         */
1377        current->mm->task_size = TASK_SIZE;
1378
1379        /* An exec changes our domain. We are no longer part of the thread
1380           group */
1381        current->self_exec_id++;
1382        flush_signal_handlers(current, 0);
1383}
1384EXPORT_SYMBOL(setup_new_exec);
1385
1386/* Runs immediately before start_thread() takes over. */
1387void finalize_exec(struct linux_binprm *bprm)
1388{
1389        /* Store any stack rlimit changes before starting thread. */
1390        task_lock(current->group_leader);
1391        current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1392        task_unlock(current->group_leader);
1393}
1394EXPORT_SYMBOL(finalize_exec);
1395
1396/*
1397 * Prepare credentials and lock ->cred_guard_mutex.
1398 * install_exec_creds() commits the new creds and drops the lock.
1399 * Or, if exec fails before, free_bprm() should release ->cred and
1400 * and unlock.
1401 */
1402int prepare_bprm_creds(struct linux_binprm *bprm)
1403{
1404        if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1405                return -ERESTARTNOINTR;
1406
1407        bprm->cred = prepare_exec_creds();
1408        if (likely(bprm->cred))
1409                return 0;
1410
1411        mutex_unlock(&current->signal->cred_guard_mutex);
1412        return -ENOMEM;
1413}
1414
1415static void free_bprm(struct linux_binprm *bprm)
1416{
1417        free_arg_pages(bprm);
1418        if (bprm->cred) {
1419                mutex_unlock(&current->signal->cred_guard_mutex);
1420                abort_creds(bprm->cred);
1421        }
1422        if (bprm->file) {
1423                allow_write_access(bprm->file);
1424                fput(bprm->file);
1425        }
1426        /* If a binfmt changed the interp, free it. */
1427        if (bprm->interp != bprm->filename)
1428                kfree(bprm->interp);
1429        kfree(bprm);
1430}
1431
1432int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1433{
1434        /* If a binfmt changed the interp, free it first. */
1435        if (bprm->interp != bprm->filename)
1436                kfree(bprm->interp);
1437        bprm->interp = kstrdup(interp, GFP_KERNEL);
1438        if (!bprm->interp)
1439                return -ENOMEM;
1440        return 0;
1441}
1442EXPORT_SYMBOL(bprm_change_interp);
1443
1444/*
1445 * install the new credentials for this executable
1446 */
1447void install_exec_creds(struct linux_binprm *bprm)
1448{
1449        security_bprm_committing_creds(bprm);
1450
1451        commit_creds(bprm->cred);
1452        bprm->cred = NULL;
1453
1454        /*
1455         * Disable monitoring for regular users
1456         * when executing setuid binaries. Must
1457         * wait until new credentials are committed
1458         * by commit_creds() above
1459         */
1460        if (get_dumpable(current->mm) != SUID_DUMP_USER)
1461                perf_event_exit_task(current);
1462        /*
1463         * cred_guard_mutex must be held at least to this point to prevent
1464         * ptrace_attach() from altering our determination of the task's
1465         * credentials; any time after this it may be unlocked.
1466         */
1467        security_bprm_committed_creds(bprm);
1468        mutex_unlock(&current->signal->cred_guard_mutex);
1469}
1470EXPORT_SYMBOL(install_exec_creds);
1471
1472/*
1473 * determine how safe it is to execute the proposed program
1474 * - the caller must hold ->cred_guard_mutex to protect against
1475 *   PTRACE_ATTACH or seccomp thread-sync
1476 */
1477static void check_unsafe_exec(struct linux_binprm *bprm)
1478{
1479        struct task_struct *p = current, *t;
1480        unsigned n_fs;
1481
1482        if (p->ptrace)
1483                bprm->unsafe |= LSM_UNSAFE_PTRACE;
1484
1485        /*
1486         * This isn't strictly necessary, but it makes it harder for LSMs to
1487         * mess up.
1488         */
1489        if (task_no_new_privs(current))
1490                bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1491
1492        t = p;
1493        n_fs = 1;
1494        spin_lock(&p->fs->lock);
1495        rcu_read_lock();
1496        while_each_thread(p, t) {
1497                if (t->fs == p->fs)
1498                        n_fs++;
1499        }
1500        rcu_read_unlock();
1501
1502        if (p->fs->users > n_fs)
1503                bprm->unsafe |= LSM_UNSAFE_SHARE;
1504        else
1505                p->fs->in_exec = 1;
1506        spin_unlock(&p->fs->lock);
1507}
1508
1509static void bprm_fill_uid(struct linux_binprm *bprm)
1510{
1511        struct inode *inode;
1512        unsigned int mode;
1513        kuid_t uid;
1514        kgid_t gid;
1515
1516        /*
1517         * Since this can be called multiple times (via prepare_binprm),
1518         * we must clear any previous work done when setting set[ug]id
1519         * bits from any earlier bprm->file uses (for example when run
1520         * first for a setuid script then again for its interpreter).
1521         */
1522        bprm->cred->euid = current_euid();
1523        bprm->cred->egid = current_egid();
1524
1525        if (!mnt_may_suid(bprm->file->f_path.mnt))
1526                return;
1527
1528        if (task_no_new_privs(current))
1529                return;
1530
1531        inode = bprm->file->f_path.dentry->d_inode;
1532        mode = READ_ONCE(inode->i_mode);
1533        if (!(mode & (S_ISUID|S_ISGID)))
1534                return;
1535
1536        /* Be careful if suid/sgid is set */
1537        inode_lock(inode);
1538
1539        /* reload atomically mode/uid/gid now that lock held */
1540        mode = inode->i_mode;
1541        uid = inode->i_uid;
1542        gid = inode->i_gid;
1543        inode_unlock(inode);
1544
1545        /* We ignore suid/sgid if there are no mappings for them in the ns */
1546        if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1547                 !kgid_has_mapping(bprm->cred->user_ns, gid))
1548                return;
1549
1550        if (mode & S_ISUID) {
1551                bprm->per_clear |= PER_CLEAR_ON_SETID;
1552                bprm->cred->euid = uid;
1553        }
1554
1555        if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1556                bprm->per_clear |= PER_CLEAR_ON_SETID;
1557                bprm->cred->egid = gid;
1558        }
1559}
1560
1561/*
1562 * Fill the binprm structure from the inode.
1563 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1564 *
1565 * This may be called multiple times for binary chains (scripts for example).
1566 */
1567int prepare_binprm(struct linux_binprm *bprm)
1568{
1569        int retval;
1570        loff_t pos = 0;
1571
1572        bprm_fill_uid(bprm);
1573
1574        /* fill in binprm security blob */
1575        retval = security_bprm_set_creds(bprm);
1576        if (retval)
1577                return retval;
1578        bprm->called_set_creds = 1;
1579
1580        memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1581        return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1582}
1583
1584EXPORT_SYMBOL(prepare_binprm);
1585
1586/*
1587 * Arguments are '\0' separated strings found at the location bprm->p
1588 * points to; chop off the first by relocating brpm->p to right after
1589 * the first '\0' encountered.
1590 */
1591int remove_arg_zero(struct linux_binprm *bprm)
1592{
1593        int ret = 0;
1594        unsigned long offset;
1595        char *kaddr;
1596        struct page *page;
1597
1598        if (!bprm->argc)
1599                return 0;
1600
1601        do {
1602                offset = bprm->p & ~PAGE_MASK;
1603                page = get_arg_page(bprm, bprm->p, 0);
1604                if (!page) {
1605                        ret = -EFAULT;
1606                        goto out;
1607                }
1608                kaddr = kmap_atomic(page);
1609
1610                for (; offset < PAGE_SIZE && kaddr[offset];
1611                                offset++, bprm->p++)
1612                        ;
1613
1614                kunmap_atomic(kaddr);
1615                put_arg_page(page);
1616        } while (offset == PAGE_SIZE);
1617
1618        bprm->p++;
1619        bprm->argc--;
1620        ret = 0;
1621
1622out:
1623        return ret;
1624}
1625EXPORT_SYMBOL(remove_arg_zero);
1626
1627#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1628/*
1629 * cycle the list of binary formats handler, until one recognizes the image
1630 */
1631int search_binary_handler(struct linux_binprm *bprm)
1632{
1633        bool need_retry = IS_ENABLED(CONFIG_MODULES);
1634        struct linux_binfmt *fmt;
1635        int retval;
1636
1637        /* This allows 4 levels of binfmt rewrites before failing hard. */
1638        if (bprm->recursion_depth > 5)
1639                return -ELOOP;
1640
1641        retval = security_bprm_check(bprm);
1642        if (retval)
1643                return retval;
1644
1645        retval = -ENOENT;
1646 retry:
1647        read_lock(&binfmt_lock);
1648        list_for_each_entry(fmt, &formats, lh) {
1649                if (!try_module_get(fmt->module))
1650                        continue;
1651                read_unlock(&binfmt_lock);
1652                bprm->recursion_depth++;
1653                retval = fmt->load_binary(bprm);
1654                read_lock(&binfmt_lock);
1655                put_binfmt(fmt);
1656                bprm->recursion_depth--;
1657                if (retval < 0 && !bprm->mm) {
1658                        /* we got to flush_old_exec() and failed after it */
1659                        read_unlock(&binfmt_lock);
1660                        force_sigsegv(SIGSEGV, current);
1661                        return retval;
1662                }
1663                if (retval != -ENOEXEC || !bprm->file) {
1664                        read_unlock(&binfmt_lock);
1665                        return retval;
1666                }
1667        }
1668        read_unlock(&binfmt_lock);
1669
1670        if (need_retry) {
1671                if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1672                    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1673                        return retval;
1674                if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1675                        return retval;
1676                need_retry = false;
1677                goto retry;
1678        }
1679
1680        return retval;
1681}
1682EXPORT_SYMBOL(search_binary_handler);
1683
1684static int exec_binprm(struct linux_binprm *bprm)
1685{
1686        pid_t old_pid, old_vpid;
1687        int ret;
1688
1689        /* Need to fetch pid before load_binary changes it */
1690        old_pid = current->pid;
1691        rcu_read_lock();
1692        old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1693        rcu_read_unlock();
1694
1695        ret = search_binary_handler(bprm);
1696        if (ret >= 0) {
1697                audit_bprm(bprm);
1698                trace_sched_process_exec(current, old_pid, bprm);
1699                ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1700                proc_exec_connector(current);
1701        }
1702
1703        return ret;
1704}
1705
1706/*
1707 * sys_execve() executes a new program.
1708 */
1709static int __do_execve_file(int fd, struct filename *filename,
1710                            struct user_arg_ptr argv,
1711                            struct user_arg_ptr envp,
1712                            int flags, struct file *file)
1713{
1714        char *pathbuf = NULL;
1715        struct linux_binprm *bprm;
1716        struct files_struct *displaced;
1717        int retval;
1718
1719        if (IS_ERR(filename))
1720                return PTR_ERR(filename);
1721
1722        /*
1723         * We move the actual failure in case of RLIMIT_NPROC excess from
1724         * set*uid() to execve() because too many poorly written programs
1725         * don't check setuid() return code.  Here we additionally recheck
1726         * whether NPROC limit is still exceeded.
1727         */
1728        if ((current->flags & PF_NPROC_EXCEEDED) &&
1729            atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1730                retval = -EAGAIN;
1731                goto out_ret;
1732        }
1733
1734        /* We're below the limit (still or again), so we don't want to make
1735         * further execve() calls fail. */
1736        current->flags &= ~PF_NPROC_EXCEEDED;
1737
1738        retval = unshare_files(&displaced);
1739        if (retval)
1740                goto out_ret;
1741
1742        retval = -ENOMEM;
1743        bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1744        if (!bprm)
1745                goto out_files;
1746
1747        retval = prepare_bprm_creds(bprm);
1748        if (retval)
1749                goto out_free;
1750
1751        check_unsafe_exec(bprm);
1752        current->in_execve = 1;
1753
1754        if (!file)
1755                file = do_open_execat(fd, filename, flags);
1756        retval = PTR_ERR(file);
1757        if (IS_ERR(file))
1758                goto out_unmark;
1759
1760        sched_exec();
1761
1762        bprm->file = file;
1763        if (!filename) {
1764                bprm->filename = "none";
1765        } else if (fd == AT_FDCWD || filename->name[0] == '/') {
1766                bprm->filename = filename->name;
1767        } else {
1768                if (filename->name[0] == '\0')
1769                        pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1770                else
1771                        pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1772                                            fd, filename->name);
1773                if (!pathbuf) {
1774                        retval = -ENOMEM;
1775                        goto out_unmark;
1776                }
1777                /*
1778                 * Record that a name derived from an O_CLOEXEC fd will be
1779                 * inaccessible after exec. Relies on having exclusive access to
1780                 * current->files (due to unshare_files above).
1781                 */
1782                if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1783                        bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1784                bprm->filename = pathbuf;
1785        }
1786        bprm->interp = bprm->filename;
1787
1788        retval = bprm_mm_init(bprm);
1789        if (retval)
1790                goto out_unmark;
1791
1792        bprm->argc = count(argv, MAX_ARG_STRINGS);
1793        if ((retval = bprm->argc) < 0)
1794                goto out;
1795
1796        bprm->envc = count(envp, MAX_ARG_STRINGS);
1797        if ((retval = bprm->envc) < 0)
1798                goto out;
1799
1800        retval = prepare_binprm(bprm);
1801        if (retval < 0)
1802                goto out;
1803
1804        retval = copy_strings_kernel(1, &bprm->filename, bprm);
1805        if (retval < 0)
1806                goto out;
1807
1808        bprm->exec = bprm->p;
1809        retval = copy_strings(bprm->envc, envp, bprm);
1810        if (retval < 0)
1811                goto out;
1812
1813        retval = copy_strings(bprm->argc, argv, bprm);
1814        if (retval < 0)
1815                goto out;
1816
1817        would_dump(bprm, bprm->file);
1818
1819        retval = exec_binprm(bprm);
1820        if (retval < 0)
1821                goto out;
1822
1823        /* execve succeeded */
1824        current->fs->in_exec = 0;
1825        current->in_execve = 0;
1826        membarrier_execve(current);
1827        rseq_execve(current);
1828        acct_update_integrals(current);
1829        task_numa_free(current);
1830        free_bprm(bprm);
1831        kfree(pathbuf);
1832        if (filename)
1833                putname(filename);
1834        if (displaced)
1835                put_files_struct(displaced);
1836        return retval;
1837
1838out:
1839        if (bprm->mm) {
1840                acct_arg_size(bprm, 0);
1841                mmput(bprm->mm);
1842        }
1843
1844out_unmark:
1845        current->fs->in_exec = 0;
1846        current->in_execve = 0;
1847
1848out_free:
1849        free_bprm(bprm);
1850        kfree(pathbuf);
1851
1852out_files:
1853        if (displaced)
1854                reset_files_struct(displaced);
1855out_ret:
1856        if (filename)
1857                putname(filename);
1858        return retval;
1859}
1860
1861static int do_execveat_common(int fd, struct filename *filename,
1862                              struct user_arg_ptr argv,
1863                              struct user_arg_ptr envp,
1864                              int flags)
1865{
1866        return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1867}
1868
1869int do_execve_file(struct file *file, void *__argv, void *__envp)
1870{
1871        struct user_arg_ptr argv = { .ptr.native = __argv };
1872        struct user_arg_ptr envp = { .ptr.native = __envp };
1873
1874        return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1875}
1876
1877int do_execve(struct filename *filename,
1878        const char __user *const __user *__argv,
1879        const char __user *const __user *__envp)
1880{
1881        struct user_arg_ptr argv = { .ptr.native = __argv };
1882        struct user_arg_ptr envp = { .ptr.native = __envp };
1883        return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1884}
1885
1886int do_execveat(int fd, struct filename *filename,
1887                const char __user *const __user *__argv,
1888                const char __user *const __user *__envp,
1889                int flags)
1890{
1891        struct user_arg_ptr argv = { .ptr.native = __argv };
1892        struct user_arg_ptr envp = { .ptr.native = __envp };
1893
1894        return do_execveat_common(fd, filename, argv, envp, flags);
1895}
1896
1897#ifdef CONFIG_COMPAT
1898static int compat_do_execve(struct filename *filename,
1899        const compat_uptr_t __user *__argv,
1900        const compat_uptr_t __user *__envp)
1901{
1902        struct user_arg_ptr argv = {
1903                .is_compat = true,
1904                .ptr.compat = __argv,
1905        };
1906        struct user_arg_ptr envp = {
1907                .is_compat = true,
1908                .ptr.compat = __envp,
1909        };
1910        return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1911}
1912
1913static int compat_do_execveat(int fd, struct filename *filename,
1914                              const compat_uptr_t __user *__argv,
1915                              const compat_uptr_t __user *__envp,
1916                              int flags)
1917{
1918        struct user_arg_ptr argv = {
1919                .is_compat = true,
1920                .ptr.compat = __argv,
1921        };
1922        struct user_arg_ptr envp = {
1923                .is_compat = true,
1924                .ptr.compat = __envp,
1925        };
1926        return do_execveat_common(fd, filename, argv, envp, flags);
1927}
1928#endif
1929
1930void set_binfmt(struct linux_binfmt *new)
1931{
1932        struct mm_struct *mm = current->mm;
1933
1934        if (mm->binfmt)
1935                module_put(mm->binfmt->module);
1936
1937        mm->binfmt = new;
1938        if (new)
1939                __module_get(new->module);
1940}
1941EXPORT_SYMBOL(set_binfmt);
1942
1943/*
1944 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1945 */
1946void set_dumpable(struct mm_struct *mm, int value)
1947{
1948        unsigned long old, new;
1949
1950        if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1951                return;
1952
1953        do {
1954                old = READ_ONCE(mm->flags);
1955                new = (old & ~MMF_DUMPABLE_MASK) | value;
1956        } while (cmpxchg(&mm->flags, old, new) != old);
1957}
1958
1959SYSCALL_DEFINE3(execve,
1960                const char __user *, filename,
1961                const char __user *const __user *, argv,
1962                const char __user *const __user *, envp)
1963{
1964        return do_execve(getname(filename), argv, envp);
1965}
1966
1967SYSCALL_DEFINE5(execveat,
1968                int, fd, const char __user *, filename,
1969                const char __user *const __user *, argv,
1970                const char __user *const __user *, envp,
1971                int, flags)
1972{
1973        int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1974
1975        return do_execveat(fd,
1976                           getname_flags(filename, lookup_flags, NULL),
1977                           argv, envp, flags);
1978}
1979
1980#ifdef CONFIG_COMPAT
1981COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1982        const compat_uptr_t __user *, argv,
1983        const compat_uptr_t __user *, envp)
1984{
1985        return compat_do_execve(getname(filename), argv, envp);
1986}
1987
1988COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1989                       const char __user *, filename,
1990                       const compat_uptr_t __user *, argv,
1991                       const compat_uptr_t __user *, envp,
1992                       int,  flags)
1993{
1994        int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1995
1996        return compat_do_execveat(fd,
1997                                  getname_flags(filename, lookup_flags, NULL),
1998                                  argv, envp, flags);
1999}
2000#endif
2001