linux/fs/inode.c
<<
>>
Prefs
   1/*
   2 * (C) 1997 Linus Torvalds
   3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   4 */
   5#include <linux/export.h>
   6#include <linux/fs.h>
   7#include <linux/mm.h>
   8#include <linux/backing-dev.h>
   9#include <linux/hash.h>
  10#include <linux/swap.h>
  11#include <linux/security.h>
  12#include <linux/cdev.h>
  13#include <linux/bootmem.h>
  14#include <linux/fsnotify.h>
  15#include <linux/mount.h>
  16#include <linux/posix_acl.h>
  17#include <linux/prefetch.h>
  18#include <linux/buffer_head.h> /* for inode_has_buffers */
  19#include <linux/ratelimit.h>
  20#include <linux/list_lru.h>
  21#include <linux/iversion.h>
  22#include <trace/events/writeback.h>
  23#include "internal.h"
  24
  25/*
  26 * Inode locking rules:
  27 *
  28 * inode->i_lock protects:
  29 *   inode->i_state, inode->i_hash, __iget()
  30 * Inode LRU list locks protect:
  31 *   inode->i_sb->s_inode_lru, inode->i_lru
  32 * inode->i_sb->s_inode_list_lock protects:
  33 *   inode->i_sb->s_inodes, inode->i_sb_list
  34 * bdi->wb.list_lock protects:
  35 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
  36 * inode_hash_lock protects:
  37 *   inode_hashtable, inode->i_hash
  38 *
  39 * Lock ordering:
  40 *
  41 * inode->i_sb->s_inode_list_lock
  42 *   inode->i_lock
  43 *     Inode LRU list locks
  44 *
  45 * bdi->wb.list_lock
  46 *   inode->i_lock
  47 *
  48 * inode_hash_lock
  49 *   inode->i_sb->s_inode_list_lock
  50 *   inode->i_lock
  51 *
  52 * iunique_lock
  53 *   inode_hash_lock
  54 */
  55
  56static unsigned int i_hash_mask __read_mostly;
  57static unsigned int i_hash_shift __read_mostly;
  58static struct hlist_head *inode_hashtable __read_mostly;
  59static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  60
  61/*
  62 * Empty aops. Can be used for the cases where the user does not
  63 * define any of the address_space operations.
  64 */
  65const struct address_space_operations empty_aops = {
  66};
  67EXPORT_SYMBOL(empty_aops);
  68
  69/*
  70 * Statistics gathering..
  71 */
  72struct inodes_stat_t inodes_stat;
  73
  74static DEFINE_PER_CPU(unsigned long, nr_inodes);
  75static DEFINE_PER_CPU(unsigned long, nr_unused);
  76
  77static struct kmem_cache *inode_cachep __read_mostly;
  78
  79static long get_nr_inodes(void)
  80{
  81        int i;
  82        long sum = 0;
  83        for_each_possible_cpu(i)
  84                sum += per_cpu(nr_inodes, i);
  85        return sum < 0 ? 0 : sum;
  86}
  87
  88static inline long get_nr_inodes_unused(void)
  89{
  90        int i;
  91        long sum = 0;
  92        for_each_possible_cpu(i)
  93                sum += per_cpu(nr_unused, i);
  94        return sum < 0 ? 0 : sum;
  95}
  96
  97long get_nr_dirty_inodes(void)
  98{
  99        /* not actually dirty inodes, but a wild approximation */
 100        long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
 101        return nr_dirty > 0 ? nr_dirty : 0;
 102}
 103
 104/*
 105 * Handle nr_inode sysctl
 106 */
 107#ifdef CONFIG_SYSCTL
 108int proc_nr_inodes(struct ctl_table *table, int write,
 109                   void __user *buffer, size_t *lenp, loff_t *ppos)
 110{
 111        inodes_stat.nr_inodes = get_nr_inodes();
 112        inodes_stat.nr_unused = get_nr_inodes_unused();
 113        return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 114}
 115#endif
 116
 117static int no_open(struct inode *inode, struct file *file)
 118{
 119        return -ENXIO;
 120}
 121
 122/**
 123 * inode_init_always - perform inode structure initialisation
 124 * @sb: superblock inode belongs to
 125 * @inode: inode to initialise
 126 *
 127 * These are initializations that need to be done on every inode
 128 * allocation as the fields are not initialised by slab allocation.
 129 */
 130int inode_init_always(struct super_block *sb, struct inode *inode)
 131{
 132        static const struct inode_operations empty_iops;
 133        static const struct file_operations no_open_fops = {.open = no_open};
 134        struct address_space *const mapping = &inode->i_data;
 135
 136        inode->i_sb = sb;
 137        inode->i_blkbits = sb->s_blocksize_bits;
 138        inode->i_flags = 0;
 139        atomic_set(&inode->i_count, 1);
 140        inode->i_op = &empty_iops;
 141        inode->i_fop = &no_open_fops;
 142        inode->__i_nlink = 1;
 143        inode->i_opflags = 0;
 144        if (sb->s_xattr)
 145                inode->i_opflags |= IOP_XATTR;
 146        i_uid_write(inode, 0);
 147        i_gid_write(inode, 0);
 148        atomic_set(&inode->i_writecount, 0);
 149        inode->i_size = 0;
 150        inode->i_write_hint = WRITE_LIFE_NOT_SET;
 151        inode->i_blocks = 0;
 152        inode->i_bytes = 0;
 153        inode->i_generation = 0;
 154        inode->i_pipe = NULL;
 155        inode->i_bdev = NULL;
 156        inode->i_cdev = NULL;
 157        inode->i_link = NULL;
 158        inode->i_dir_seq = 0;
 159        inode->i_rdev = 0;
 160        inode->dirtied_when = 0;
 161
 162#ifdef CONFIG_CGROUP_WRITEBACK
 163        inode->i_wb_frn_winner = 0;
 164        inode->i_wb_frn_avg_time = 0;
 165        inode->i_wb_frn_history = 0;
 166#endif
 167
 168        if (security_inode_alloc(inode))
 169                goto out;
 170        spin_lock_init(&inode->i_lock);
 171        lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 172
 173        init_rwsem(&inode->i_rwsem);
 174        lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
 175
 176        atomic_set(&inode->i_dio_count, 0);
 177
 178        mapping->a_ops = &empty_aops;
 179        mapping->host = inode;
 180        mapping->flags = 0;
 181        mapping->wb_err = 0;
 182        atomic_set(&mapping->i_mmap_writable, 0);
 183        mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 184        mapping->private_data = NULL;
 185        mapping->writeback_index = 0;
 186        inode->i_private = NULL;
 187        inode->i_mapping = mapping;
 188        INIT_HLIST_HEAD(&inode->i_dentry);      /* buggered by rcu freeing */
 189#ifdef CONFIG_FS_POSIX_ACL
 190        inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 191#endif
 192
 193#ifdef CONFIG_FSNOTIFY
 194        inode->i_fsnotify_mask = 0;
 195#endif
 196        inode->i_flctx = NULL;
 197        this_cpu_inc(nr_inodes);
 198
 199        return 0;
 200out:
 201        return -ENOMEM;
 202}
 203EXPORT_SYMBOL(inode_init_always);
 204
 205static struct inode *alloc_inode(struct super_block *sb)
 206{
 207        struct inode *inode;
 208
 209        if (sb->s_op->alloc_inode)
 210                inode = sb->s_op->alloc_inode(sb);
 211        else
 212                inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
 213
 214        if (!inode)
 215                return NULL;
 216
 217        if (unlikely(inode_init_always(sb, inode))) {
 218                if (inode->i_sb->s_op->destroy_inode)
 219                        inode->i_sb->s_op->destroy_inode(inode);
 220                else
 221                        kmem_cache_free(inode_cachep, inode);
 222                return NULL;
 223        }
 224
 225        return inode;
 226}
 227
 228void free_inode_nonrcu(struct inode *inode)
 229{
 230        kmem_cache_free(inode_cachep, inode);
 231}
 232EXPORT_SYMBOL(free_inode_nonrcu);
 233
 234void __destroy_inode(struct inode *inode)
 235{
 236        BUG_ON(inode_has_buffers(inode));
 237        inode_detach_wb(inode);
 238        security_inode_free(inode);
 239        fsnotify_inode_delete(inode);
 240        locks_free_lock_context(inode);
 241        if (!inode->i_nlink) {
 242                WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 243                atomic_long_dec(&inode->i_sb->s_remove_count);
 244        }
 245
 246#ifdef CONFIG_FS_POSIX_ACL
 247        if (inode->i_acl && !is_uncached_acl(inode->i_acl))
 248                posix_acl_release(inode->i_acl);
 249        if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
 250                posix_acl_release(inode->i_default_acl);
 251#endif
 252        this_cpu_dec(nr_inodes);
 253}
 254EXPORT_SYMBOL(__destroy_inode);
 255
 256static void i_callback(struct rcu_head *head)
 257{
 258        struct inode *inode = container_of(head, struct inode, i_rcu);
 259        kmem_cache_free(inode_cachep, inode);
 260}
 261
 262static void destroy_inode(struct inode *inode)
 263{
 264        BUG_ON(!list_empty(&inode->i_lru));
 265        __destroy_inode(inode);
 266        if (inode->i_sb->s_op->destroy_inode)
 267                inode->i_sb->s_op->destroy_inode(inode);
 268        else
 269                call_rcu(&inode->i_rcu, i_callback);
 270}
 271
 272/**
 273 * drop_nlink - directly drop an inode's link count
 274 * @inode: inode
 275 *
 276 * This is a low-level filesystem helper to replace any
 277 * direct filesystem manipulation of i_nlink.  In cases
 278 * where we are attempting to track writes to the
 279 * filesystem, a decrement to zero means an imminent
 280 * write when the file is truncated and actually unlinked
 281 * on the filesystem.
 282 */
 283void drop_nlink(struct inode *inode)
 284{
 285        WARN_ON(inode->i_nlink == 0);
 286        inode->__i_nlink--;
 287        if (!inode->i_nlink)
 288                atomic_long_inc(&inode->i_sb->s_remove_count);
 289}
 290EXPORT_SYMBOL(drop_nlink);
 291
 292/**
 293 * clear_nlink - directly zero an inode's link count
 294 * @inode: inode
 295 *
 296 * This is a low-level filesystem helper to replace any
 297 * direct filesystem manipulation of i_nlink.  See
 298 * drop_nlink() for why we care about i_nlink hitting zero.
 299 */
 300void clear_nlink(struct inode *inode)
 301{
 302        if (inode->i_nlink) {
 303                inode->__i_nlink = 0;
 304                atomic_long_inc(&inode->i_sb->s_remove_count);
 305        }
 306}
 307EXPORT_SYMBOL(clear_nlink);
 308
 309/**
 310 * set_nlink - directly set an inode's link count
 311 * @inode: inode
 312 * @nlink: new nlink (should be non-zero)
 313 *
 314 * This is a low-level filesystem helper to replace any
 315 * direct filesystem manipulation of i_nlink.
 316 */
 317void set_nlink(struct inode *inode, unsigned int nlink)
 318{
 319        if (!nlink) {
 320                clear_nlink(inode);
 321        } else {
 322                /* Yes, some filesystems do change nlink from zero to one */
 323                if (inode->i_nlink == 0)
 324                        atomic_long_dec(&inode->i_sb->s_remove_count);
 325
 326                inode->__i_nlink = nlink;
 327        }
 328}
 329EXPORT_SYMBOL(set_nlink);
 330
 331/**
 332 * inc_nlink - directly increment an inode's link count
 333 * @inode: inode
 334 *
 335 * This is a low-level filesystem helper to replace any
 336 * direct filesystem manipulation of i_nlink.  Currently,
 337 * it is only here for parity with dec_nlink().
 338 */
 339void inc_nlink(struct inode *inode)
 340{
 341        if (unlikely(inode->i_nlink == 0)) {
 342                WARN_ON(!(inode->i_state & I_LINKABLE));
 343                atomic_long_dec(&inode->i_sb->s_remove_count);
 344        }
 345
 346        inode->__i_nlink++;
 347}
 348EXPORT_SYMBOL(inc_nlink);
 349
 350static void __address_space_init_once(struct address_space *mapping)
 351{
 352        INIT_RADIX_TREE(&mapping->i_pages, GFP_ATOMIC | __GFP_ACCOUNT);
 353        init_rwsem(&mapping->i_mmap_rwsem);
 354        INIT_LIST_HEAD(&mapping->private_list);
 355        spin_lock_init(&mapping->private_lock);
 356        mapping->i_mmap = RB_ROOT_CACHED;
 357}
 358
 359void address_space_init_once(struct address_space *mapping)
 360{
 361        memset(mapping, 0, sizeof(*mapping));
 362        __address_space_init_once(mapping);
 363}
 364EXPORT_SYMBOL(address_space_init_once);
 365
 366/*
 367 * These are initializations that only need to be done
 368 * once, because the fields are idempotent across use
 369 * of the inode, so let the slab aware of that.
 370 */
 371void inode_init_once(struct inode *inode)
 372{
 373        memset(inode, 0, sizeof(*inode));
 374        INIT_HLIST_NODE(&inode->i_hash);
 375        INIT_LIST_HEAD(&inode->i_devices);
 376        INIT_LIST_HEAD(&inode->i_io_list);
 377        INIT_LIST_HEAD(&inode->i_wb_list);
 378        INIT_LIST_HEAD(&inode->i_lru);
 379        __address_space_init_once(&inode->i_data);
 380        i_size_ordered_init(inode);
 381}
 382EXPORT_SYMBOL(inode_init_once);
 383
 384static void init_once(void *foo)
 385{
 386        struct inode *inode = (struct inode *) foo;
 387
 388        inode_init_once(inode);
 389}
 390
 391/*
 392 * inode->i_lock must be held
 393 */
 394void __iget(struct inode *inode)
 395{
 396        atomic_inc(&inode->i_count);
 397}
 398
 399/*
 400 * get additional reference to inode; caller must already hold one.
 401 */
 402void ihold(struct inode *inode)
 403{
 404        WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 405}
 406EXPORT_SYMBOL(ihold);
 407
 408static void inode_lru_list_add(struct inode *inode)
 409{
 410        if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
 411                this_cpu_inc(nr_unused);
 412        else
 413                inode->i_state |= I_REFERENCED;
 414}
 415
 416/*
 417 * Add inode to LRU if needed (inode is unused and clean).
 418 *
 419 * Needs inode->i_lock held.
 420 */
 421void inode_add_lru(struct inode *inode)
 422{
 423        if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
 424                                I_FREEING | I_WILL_FREE)) &&
 425            !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
 426                inode_lru_list_add(inode);
 427}
 428
 429
 430static void inode_lru_list_del(struct inode *inode)
 431{
 432
 433        if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
 434                this_cpu_dec(nr_unused);
 435}
 436
 437/**
 438 * inode_sb_list_add - add inode to the superblock list of inodes
 439 * @inode: inode to add
 440 */
 441void inode_sb_list_add(struct inode *inode)
 442{
 443        spin_lock(&inode->i_sb->s_inode_list_lock);
 444        list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 445        spin_unlock(&inode->i_sb->s_inode_list_lock);
 446}
 447EXPORT_SYMBOL_GPL(inode_sb_list_add);
 448
 449static inline void inode_sb_list_del(struct inode *inode)
 450{
 451        if (!list_empty(&inode->i_sb_list)) {
 452                spin_lock(&inode->i_sb->s_inode_list_lock);
 453                list_del_init(&inode->i_sb_list);
 454                spin_unlock(&inode->i_sb->s_inode_list_lock);
 455        }
 456}
 457
 458static unsigned long hash(struct super_block *sb, unsigned long hashval)
 459{
 460        unsigned long tmp;
 461
 462        tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 463                        L1_CACHE_BYTES;
 464        tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 465        return tmp & i_hash_mask;
 466}
 467
 468/**
 469 *      __insert_inode_hash - hash an inode
 470 *      @inode: unhashed inode
 471 *      @hashval: unsigned long value used to locate this object in the
 472 *              inode_hashtable.
 473 *
 474 *      Add an inode to the inode hash for this superblock.
 475 */
 476void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 477{
 478        struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 479
 480        spin_lock(&inode_hash_lock);
 481        spin_lock(&inode->i_lock);
 482        hlist_add_head(&inode->i_hash, b);
 483        spin_unlock(&inode->i_lock);
 484        spin_unlock(&inode_hash_lock);
 485}
 486EXPORT_SYMBOL(__insert_inode_hash);
 487
 488/**
 489 *      __remove_inode_hash - remove an inode from the hash
 490 *      @inode: inode to unhash
 491 *
 492 *      Remove an inode from the superblock.
 493 */
 494void __remove_inode_hash(struct inode *inode)
 495{
 496        spin_lock(&inode_hash_lock);
 497        spin_lock(&inode->i_lock);
 498        hlist_del_init(&inode->i_hash);
 499        spin_unlock(&inode->i_lock);
 500        spin_unlock(&inode_hash_lock);
 501}
 502EXPORT_SYMBOL(__remove_inode_hash);
 503
 504void clear_inode(struct inode *inode)
 505{
 506        /*
 507         * We have to cycle the i_pages lock here because reclaim can be in the
 508         * process of removing the last page (in __delete_from_page_cache())
 509         * and we must not free the mapping under it.
 510         */
 511        xa_lock_irq(&inode->i_data.i_pages);
 512        BUG_ON(inode->i_data.nrpages);
 513        BUG_ON(inode->i_data.nrexceptional);
 514        xa_unlock_irq(&inode->i_data.i_pages);
 515        BUG_ON(!list_empty(&inode->i_data.private_list));
 516        BUG_ON(!(inode->i_state & I_FREEING));
 517        BUG_ON(inode->i_state & I_CLEAR);
 518        BUG_ON(!list_empty(&inode->i_wb_list));
 519        /* don't need i_lock here, no concurrent mods to i_state */
 520        inode->i_state = I_FREEING | I_CLEAR;
 521}
 522EXPORT_SYMBOL(clear_inode);
 523
 524/*
 525 * Free the inode passed in, removing it from the lists it is still connected
 526 * to. We remove any pages still attached to the inode and wait for any IO that
 527 * is still in progress before finally destroying the inode.
 528 *
 529 * An inode must already be marked I_FREEING so that we avoid the inode being
 530 * moved back onto lists if we race with other code that manipulates the lists
 531 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 532 *
 533 * An inode must already be removed from the LRU list before being evicted from
 534 * the cache. This should occur atomically with setting the I_FREEING state
 535 * flag, so no inodes here should ever be on the LRU when being evicted.
 536 */
 537static void evict(struct inode *inode)
 538{
 539        const struct super_operations *op = inode->i_sb->s_op;
 540
 541        BUG_ON(!(inode->i_state & I_FREEING));
 542        BUG_ON(!list_empty(&inode->i_lru));
 543
 544        if (!list_empty(&inode->i_io_list))
 545                inode_io_list_del(inode);
 546
 547        inode_sb_list_del(inode);
 548
 549        /*
 550         * Wait for flusher thread to be done with the inode so that filesystem
 551         * does not start destroying it while writeback is still running. Since
 552         * the inode has I_FREEING set, flusher thread won't start new work on
 553         * the inode.  We just have to wait for running writeback to finish.
 554         */
 555        inode_wait_for_writeback(inode);
 556
 557        if (op->evict_inode) {
 558                op->evict_inode(inode);
 559        } else {
 560                truncate_inode_pages_final(&inode->i_data);
 561                clear_inode(inode);
 562        }
 563        if (S_ISBLK(inode->i_mode) && inode->i_bdev)
 564                bd_forget(inode);
 565        if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 566                cd_forget(inode);
 567
 568        remove_inode_hash(inode);
 569
 570        spin_lock(&inode->i_lock);
 571        wake_up_bit(&inode->i_state, __I_NEW);
 572        BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 573        spin_unlock(&inode->i_lock);
 574
 575        destroy_inode(inode);
 576}
 577
 578/*
 579 * dispose_list - dispose of the contents of a local list
 580 * @head: the head of the list to free
 581 *
 582 * Dispose-list gets a local list with local inodes in it, so it doesn't
 583 * need to worry about list corruption and SMP locks.
 584 */
 585static void dispose_list(struct list_head *head)
 586{
 587        while (!list_empty(head)) {
 588                struct inode *inode;
 589
 590                inode = list_first_entry(head, struct inode, i_lru);
 591                list_del_init(&inode->i_lru);
 592
 593                evict(inode);
 594                cond_resched();
 595        }
 596}
 597
 598/**
 599 * evict_inodes - evict all evictable inodes for a superblock
 600 * @sb:         superblock to operate on
 601 *
 602 * Make sure that no inodes with zero refcount are retained.  This is
 603 * called by superblock shutdown after having SB_ACTIVE flag removed,
 604 * so any inode reaching zero refcount during or after that call will
 605 * be immediately evicted.
 606 */
 607void evict_inodes(struct super_block *sb)
 608{
 609        struct inode *inode, *next;
 610        LIST_HEAD(dispose);
 611
 612again:
 613        spin_lock(&sb->s_inode_list_lock);
 614        list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 615                if (atomic_read(&inode->i_count))
 616                        continue;
 617
 618                spin_lock(&inode->i_lock);
 619                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 620                        spin_unlock(&inode->i_lock);
 621                        continue;
 622                }
 623
 624                inode->i_state |= I_FREEING;
 625                inode_lru_list_del(inode);
 626                spin_unlock(&inode->i_lock);
 627                list_add(&inode->i_lru, &dispose);
 628
 629                /*
 630                 * We can have a ton of inodes to evict at unmount time given
 631                 * enough memory, check to see if we need to go to sleep for a
 632                 * bit so we don't livelock.
 633                 */
 634                if (need_resched()) {
 635                        spin_unlock(&sb->s_inode_list_lock);
 636                        cond_resched();
 637                        dispose_list(&dispose);
 638                        goto again;
 639                }
 640        }
 641        spin_unlock(&sb->s_inode_list_lock);
 642
 643        dispose_list(&dispose);
 644}
 645EXPORT_SYMBOL_GPL(evict_inodes);
 646
 647/**
 648 * invalidate_inodes    - attempt to free all inodes on a superblock
 649 * @sb:         superblock to operate on
 650 * @kill_dirty: flag to guide handling of dirty inodes
 651 *
 652 * Attempts to free all inodes for a given superblock.  If there were any
 653 * busy inodes return a non-zero value, else zero.
 654 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
 655 * them as busy.
 656 */
 657int invalidate_inodes(struct super_block *sb, bool kill_dirty)
 658{
 659        int busy = 0;
 660        struct inode *inode, *next;
 661        LIST_HEAD(dispose);
 662
 663        spin_lock(&sb->s_inode_list_lock);
 664        list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 665                spin_lock(&inode->i_lock);
 666                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 667                        spin_unlock(&inode->i_lock);
 668                        continue;
 669                }
 670                if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
 671                        spin_unlock(&inode->i_lock);
 672                        busy = 1;
 673                        continue;
 674                }
 675                if (atomic_read(&inode->i_count)) {
 676                        spin_unlock(&inode->i_lock);
 677                        busy = 1;
 678                        continue;
 679                }
 680
 681                inode->i_state |= I_FREEING;
 682                inode_lru_list_del(inode);
 683                spin_unlock(&inode->i_lock);
 684                list_add(&inode->i_lru, &dispose);
 685        }
 686        spin_unlock(&sb->s_inode_list_lock);
 687
 688        dispose_list(&dispose);
 689
 690        return busy;
 691}
 692
 693/*
 694 * Isolate the inode from the LRU in preparation for freeing it.
 695 *
 696 * Any inodes which are pinned purely because of attached pagecache have their
 697 * pagecache removed.  If the inode has metadata buffers attached to
 698 * mapping->private_list then try to remove them.
 699 *
 700 * If the inode has the I_REFERENCED flag set, then it means that it has been
 701 * used recently - the flag is set in iput_final(). When we encounter such an
 702 * inode, clear the flag and move it to the back of the LRU so it gets another
 703 * pass through the LRU before it gets reclaimed. This is necessary because of
 704 * the fact we are doing lazy LRU updates to minimise lock contention so the
 705 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 706 * with this flag set because they are the inodes that are out of order.
 707 */
 708static enum lru_status inode_lru_isolate(struct list_head *item,
 709                struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 710{
 711        struct list_head *freeable = arg;
 712        struct inode    *inode = container_of(item, struct inode, i_lru);
 713
 714        /*
 715         * we are inverting the lru lock/inode->i_lock here, so use a trylock.
 716         * If we fail to get the lock, just skip it.
 717         */
 718        if (!spin_trylock(&inode->i_lock))
 719                return LRU_SKIP;
 720
 721        /*
 722         * Referenced or dirty inodes are still in use. Give them another pass
 723         * through the LRU as we canot reclaim them now.
 724         */
 725        if (atomic_read(&inode->i_count) ||
 726            (inode->i_state & ~I_REFERENCED)) {
 727                list_lru_isolate(lru, &inode->i_lru);
 728                spin_unlock(&inode->i_lock);
 729                this_cpu_dec(nr_unused);
 730                return LRU_REMOVED;
 731        }
 732
 733        /* recently referenced inodes get one more pass */
 734        if (inode->i_state & I_REFERENCED) {
 735                inode->i_state &= ~I_REFERENCED;
 736                spin_unlock(&inode->i_lock);
 737                return LRU_ROTATE;
 738        }
 739
 740        if (inode_has_buffers(inode) || inode->i_data.nrpages) {
 741                __iget(inode);
 742                spin_unlock(&inode->i_lock);
 743                spin_unlock(lru_lock);
 744                if (remove_inode_buffers(inode)) {
 745                        unsigned long reap;
 746                        reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
 747                        if (current_is_kswapd())
 748                                __count_vm_events(KSWAPD_INODESTEAL, reap);
 749                        else
 750                                __count_vm_events(PGINODESTEAL, reap);
 751                        if (current->reclaim_state)
 752                                current->reclaim_state->reclaimed_slab += reap;
 753                }
 754                iput(inode);
 755                spin_lock(lru_lock);
 756                return LRU_RETRY;
 757        }
 758
 759        WARN_ON(inode->i_state & I_NEW);
 760        inode->i_state |= I_FREEING;
 761        list_lru_isolate_move(lru, &inode->i_lru, freeable);
 762        spin_unlock(&inode->i_lock);
 763
 764        this_cpu_dec(nr_unused);
 765        return LRU_REMOVED;
 766}
 767
 768/*
 769 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 770 * This is called from the superblock shrinker function with a number of inodes
 771 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 772 * then are freed outside inode_lock by dispose_list().
 773 */
 774long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
 775{
 776        LIST_HEAD(freeable);
 777        long freed;
 778
 779        freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
 780                                     inode_lru_isolate, &freeable);
 781        dispose_list(&freeable);
 782        return freed;
 783}
 784
 785static void __wait_on_freeing_inode(struct inode *inode);
 786/*
 787 * Called with the inode lock held.
 788 */
 789static struct inode *find_inode(struct super_block *sb,
 790                                struct hlist_head *head,
 791                                int (*test)(struct inode *, void *),
 792                                void *data)
 793{
 794        struct inode *inode = NULL;
 795
 796repeat:
 797        hlist_for_each_entry(inode, head, i_hash) {
 798                if (inode->i_sb != sb)
 799                        continue;
 800                if (!test(inode, data))
 801                        continue;
 802                spin_lock(&inode->i_lock);
 803                if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 804                        __wait_on_freeing_inode(inode);
 805                        goto repeat;
 806                }
 807                if (unlikely(inode->i_state & I_CREATING)) {
 808                        spin_unlock(&inode->i_lock);
 809                        return ERR_PTR(-ESTALE);
 810                }
 811                __iget(inode);
 812                spin_unlock(&inode->i_lock);
 813                return inode;
 814        }
 815        return NULL;
 816}
 817
 818/*
 819 * find_inode_fast is the fast path version of find_inode, see the comment at
 820 * iget_locked for details.
 821 */
 822static struct inode *find_inode_fast(struct super_block *sb,
 823                                struct hlist_head *head, unsigned long ino)
 824{
 825        struct inode *inode = NULL;
 826
 827repeat:
 828        hlist_for_each_entry(inode, head, i_hash) {
 829                if (inode->i_ino != ino)
 830                        continue;
 831                if (inode->i_sb != sb)
 832                        continue;
 833                spin_lock(&inode->i_lock);
 834                if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 835                        __wait_on_freeing_inode(inode);
 836                        goto repeat;
 837                }
 838                if (unlikely(inode->i_state & I_CREATING)) {
 839                        spin_unlock(&inode->i_lock);
 840                        return ERR_PTR(-ESTALE);
 841                }
 842                __iget(inode);
 843                spin_unlock(&inode->i_lock);
 844                return inode;
 845        }
 846        return NULL;
 847}
 848
 849/*
 850 * Each cpu owns a range of LAST_INO_BATCH numbers.
 851 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 852 * to renew the exhausted range.
 853 *
 854 * This does not significantly increase overflow rate because every CPU can
 855 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 856 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 857 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 858 * overflow rate by 2x, which does not seem too significant.
 859 *
 860 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 861 * error if st_ino won't fit in target struct field. Use 32bit counter
 862 * here to attempt to avoid that.
 863 */
 864#define LAST_INO_BATCH 1024
 865static DEFINE_PER_CPU(unsigned int, last_ino);
 866
 867unsigned int get_next_ino(void)
 868{
 869        unsigned int *p = &get_cpu_var(last_ino);
 870        unsigned int res = *p;
 871
 872#ifdef CONFIG_SMP
 873        if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 874                static atomic_t shared_last_ino;
 875                int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 876
 877                res = next - LAST_INO_BATCH;
 878        }
 879#endif
 880
 881        res++;
 882        /* get_next_ino should not provide a 0 inode number */
 883        if (unlikely(!res))
 884                res++;
 885        *p = res;
 886        put_cpu_var(last_ino);
 887        return res;
 888}
 889EXPORT_SYMBOL(get_next_ino);
 890
 891/**
 892 *      new_inode_pseudo        - obtain an inode
 893 *      @sb: superblock
 894 *
 895 *      Allocates a new inode for given superblock.
 896 *      Inode wont be chained in superblock s_inodes list
 897 *      This means :
 898 *      - fs can't be unmount
 899 *      - quotas, fsnotify, writeback can't work
 900 */
 901struct inode *new_inode_pseudo(struct super_block *sb)
 902{
 903        struct inode *inode = alloc_inode(sb);
 904
 905        if (inode) {
 906                spin_lock(&inode->i_lock);
 907                inode->i_state = 0;
 908                spin_unlock(&inode->i_lock);
 909                INIT_LIST_HEAD(&inode->i_sb_list);
 910        }
 911        return inode;
 912}
 913
 914/**
 915 *      new_inode       - obtain an inode
 916 *      @sb: superblock
 917 *
 918 *      Allocates a new inode for given superblock. The default gfp_mask
 919 *      for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
 920 *      If HIGHMEM pages are unsuitable or it is known that pages allocated
 921 *      for the page cache are not reclaimable or migratable,
 922 *      mapping_set_gfp_mask() must be called with suitable flags on the
 923 *      newly created inode's mapping
 924 *
 925 */
 926struct inode *new_inode(struct super_block *sb)
 927{
 928        struct inode *inode;
 929
 930        spin_lock_prefetch(&sb->s_inode_list_lock);
 931
 932        inode = new_inode_pseudo(sb);
 933        if (inode)
 934                inode_sb_list_add(inode);
 935        return inode;
 936}
 937EXPORT_SYMBOL(new_inode);
 938
 939#ifdef CONFIG_DEBUG_LOCK_ALLOC
 940void lockdep_annotate_inode_mutex_key(struct inode *inode)
 941{
 942        if (S_ISDIR(inode->i_mode)) {
 943                struct file_system_type *type = inode->i_sb->s_type;
 944
 945                /* Set new key only if filesystem hasn't already changed it */
 946                if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
 947                        /*
 948                         * ensure nobody is actually holding i_mutex
 949                         */
 950                        // mutex_destroy(&inode->i_mutex);
 951                        init_rwsem(&inode->i_rwsem);
 952                        lockdep_set_class(&inode->i_rwsem,
 953                                          &type->i_mutex_dir_key);
 954                }
 955        }
 956}
 957EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
 958#endif
 959
 960/**
 961 * unlock_new_inode - clear the I_NEW state and wake up any waiters
 962 * @inode:      new inode to unlock
 963 *
 964 * Called when the inode is fully initialised to clear the new state of the
 965 * inode and wake up anyone waiting for the inode to finish initialisation.
 966 */
 967void unlock_new_inode(struct inode *inode)
 968{
 969        lockdep_annotate_inode_mutex_key(inode);
 970        spin_lock(&inode->i_lock);
 971        WARN_ON(!(inode->i_state & I_NEW));
 972        inode->i_state &= ~I_NEW & ~I_CREATING;
 973        smp_mb();
 974        wake_up_bit(&inode->i_state, __I_NEW);
 975        spin_unlock(&inode->i_lock);
 976}
 977EXPORT_SYMBOL(unlock_new_inode);
 978
 979void discard_new_inode(struct inode *inode)
 980{
 981        lockdep_annotate_inode_mutex_key(inode);
 982        spin_lock(&inode->i_lock);
 983        WARN_ON(!(inode->i_state & I_NEW));
 984        inode->i_state &= ~I_NEW;
 985        smp_mb();
 986        wake_up_bit(&inode->i_state, __I_NEW);
 987        spin_unlock(&inode->i_lock);
 988        iput(inode);
 989}
 990EXPORT_SYMBOL(discard_new_inode);
 991
 992/**
 993 * lock_two_nondirectories - take two i_mutexes on non-directory objects
 994 *
 995 * Lock any non-NULL argument that is not a directory.
 996 * Zero, one or two objects may be locked by this function.
 997 *
 998 * @inode1: first inode to lock
 999 * @inode2: second inode to lock
1000 */
1001void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1002{
1003        if (inode1 > inode2)
1004                swap(inode1, inode2);
1005
1006        if (inode1 && !S_ISDIR(inode1->i_mode))
1007                inode_lock(inode1);
1008        if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1009                inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1010}
1011EXPORT_SYMBOL(lock_two_nondirectories);
1012
1013/**
1014 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1015 * @inode1: first inode to unlock
1016 * @inode2: second inode to unlock
1017 */
1018void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1019{
1020        if (inode1 && !S_ISDIR(inode1->i_mode))
1021                inode_unlock(inode1);
1022        if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1023                inode_unlock(inode2);
1024}
1025EXPORT_SYMBOL(unlock_two_nondirectories);
1026
1027/**
1028 * inode_insert5 - obtain an inode from a mounted file system
1029 * @inode:      pre-allocated inode to use for insert to cache
1030 * @hashval:    hash value (usually inode number) to get
1031 * @test:       callback used for comparisons between inodes
1032 * @set:        callback used to initialize a new struct inode
1033 * @data:       opaque data pointer to pass to @test and @set
1034 *
1035 * Search for the inode specified by @hashval and @data in the inode cache,
1036 * and if present it is return it with an increased reference count. This is
1037 * a variant of iget5_locked() for callers that don't want to fail on memory
1038 * allocation of inode.
1039 *
1040 * If the inode is not in cache, insert the pre-allocated inode to cache and
1041 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1042 * to fill it in before unlocking it via unlock_new_inode().
1043 *
1044 * Note both @test and @set are called with the inode_hash_lock held, so can't
1045 * sleep.
1046 */
1047struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1048                            int (*test)(struct inode *, void *),
1049                            int (*set)(struct inode *, void *), void *data)
1050{
1051        struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1052        struct inode *old;
1053        bool creating = inode->i_state & I_CREATING;
1054
1055again:
1056        spin_lock(&inode_hash_lock);
1057        old = find_inode(inode->i_sb, head, test, data);
1058        if (unlikely(old)) {
1059                /*
1060                 * Uhhuh, somebody else created the same inode under us.
1061                 * Use the old inode instead of the preallocated one.
1062                 */
1063                spin_unlock(&inode_hash_lock);
1064                if (IS_ERR(old))
1065                        return NULL;
1066                wait_on_inode(old);
1067                if (unlikely(inode_unhashed(old))) {
1068                        iput(old);
1069                        goto again;
1070                }
1071                return old;
1072        }
1073
1074        if (set && unlikely(set(inode, data))) {
1075                inode = NULL;
1076                goto unlock;
1077        }
1078
1079        /*
1080         * Return the locked inode with I_NEW set, the
1081         * caller is responsible for filling in the contents
1082         */
1083        spin_lock(&inode->i_lock);
1084        inode->i_state |= I_NEW;
1085        hlist_add_head(&inode->i_hash, head);
1086        spin_unlock(&inode->i_lock);
1087        if (!creating)
1088                inode_sb_list_add(inode);
1089unlock:
1090        spin_unlock(&inode_hash_lock);
1091
1092        return inode;
1093}
1094EXPORT_SYMBOL(inode_insert5);
1095
1096/**
1097 * iget5_locked - obtain an inode from a mounted file system
1098 * @sb:         super block of file system
1099 * @hashval:    hash value (usually inode number) to get
1100 * @test:       callback used for comparisons between inodes
1101 * @set:        callback used to initialize a new struct inode
1102 * @data:       opaque data pointer to pass to @test and @set
1103 *
1104 * Search for the inode specified by @hashval and @data in the inode cache,
1105 * and if present it is return it with an increased reference count. This is
1106 * a generalized version of iget_locked() for file systems where the inode
1107 * number is not sufficient for unique identification of an inode.
1108 *
1109 * If the inode is not in cache, allocate a new inode and return it locked,
1110 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1111 * before unlocking it via unlock_new_inode().
1112 *
1113 * Note both @test and @set are called with the inode_hash_lock held, so can't
1114 * sleep.
1115 */
1116struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1117                int (*test)(struct inode *, void *),
1118                int (*set)(struct inode *, void *), void *data)
1119{
1120        struct inode *inode = ilookup5(sb, hashval, test, data);
1121
1122        if (!inode) {
1123                struct inode *new = alloc_inode(sb);
1124
1125                if (new) {
1126                        new->i_state = 0;
1127                        inode = inode_insert5(new, hashval, test, set, data);
1128                        if (unlikely(inode != new))
1129                                destroy_inode(new);
1130                }
1131        }
1132        return inode;
1133}
1134EXPORT_SYMBOL(iget5_locked);
1135
1136/**
1137 * iget_locked - obtain an inode from a mounted file system
1138 * @sb:         super block of file system
1139 * @ino:        inode number to get
1140 *
1141 * Search for the inode specified by @ino in the inode cache and if present
1142 * return it with an increased reference count. This is for file systems
1143 * where the inode number is sufficient for unique identification of an inode.
1144 *
1145 * If the inode is not in cache, allocate a new inode and return it locked,
1146 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1147 * before unlocking it via unlock_new_inode().
1148 */
1149struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1150{
1151        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1152        struct inode *inode;
1153again:
1154        spin_lock(&inode_hash_lock);
1155        inode = find_inode_fast(sb, head, ino);
1156        spin_unlock(&inode_hash_lock);
1157        if (inode) {
1158                if (IS_ERR(inode))
1159                        return NULL;
1160                wait_on_inode(inode);
1161                if (unlikely(inode_unhashed(inode))) {
1162                        iput(inode);
1163                        goto again;
1164                }
1165                return inode;
1166        }
1167
1168        inode = alloc_inode(sb);
1169        if (inode) {
1170                struct inode *old;
1171
1172                spin_lock(&inode_hash_lock);
1173                /* We released the lock, so.. */
1174                old = find_inode_fast(sb, head, ino);
1175                if (!old) {
1176                        inode->i_ino = ino;
1177                        spin_lock(&inode->i_lock);
1178                        inode->i_state = I_NEW;
1179                        hlist_add_head(&inode->i_hash, head);
1180                        spin_unlock(&inode->i_lock);
1181                        inode_sb_list_add(inode);
1182                        spin_unlock(&inode_hash_lock);
1183
1184                        /* Return the locked inode with I_NEW set, the
1185                         * caller is responsible for filling in the contents
1186                         */
1187                        return inode;
1188                }
1189
1190                /*
1191                 * Uhhuh, somebody else created the same inode under
1192                 * us. Use the old inode instead of the one we just
1193                 * allocated.
1194                 */
1195                spin_unlock(&inode_hash_lock);
1196                destroy_inode(inode);
1197                if (IS_ERR(old))
1198                        return NULL;
1199                inode = old;
1200                wait_on_inode(inode);
1201                if (unlikely(inode_unhashed(inode))) {
1202                        iput(inode);
1203                        goto again;
1204                }
1205        }
1206        return inode;
1207}
1208EXPORT_SYMBOL(iget_locked);
1209
1210/*
1211 * search the inode cache for a matching inode number.
1212 * If we find one, then the inode number we are trying to
1213 * allocate is not unique and so we should not use it.
1214 *
1215 * Returns 1 if the inode number is unique, 0 if it is not.
1216 */
1217static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1218{
1219        struct hlist_head *b = inode_hashtable + hash(sb, ino);
1220        struct inode *inode;
1221
1222        spin_lock(&inode_hash_lock);
1223        hlist_for_each_entry(inode, b, i_hash) {
1224                if (inode->i_ino == ino && inode->i_sb == sb) {
1225                        spin_unlock(&inode_hash_lock);
1226                        return 0;
1227                }
1228        }
1229        spin_unlock(&inode_hash_lock);
1230
1231        return 1;
1232}
1233
1234/**
1235 *      iunique - get a unique inode number
1236 *      @sb: superblock
1237 *      @max_reserved: highest reserved inode number
1238 *
1239 *      Obtain an inode number that is unique on the system for a given
1240 *      superblock. This is used by file systems that have no natural
1241 *      permanent inode numbering system. An inode number is returned that
1242 *      is higher than the reserved limit but unique.
1243 *
1244 *      BUGS:
1245 *      With a large number of inodes live on the file system this function
1246 *      currently becomes quite slow.
1247 */
1248ino_t iunique(struct super_block *sb, ino_t max_reserved)
1249{
1250        /*
1251         * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1252         * error if st_ino won't fit in target struct field. Use 32bit counter
1253         * here to attempt to avoid that.
1254         */
1255        static DEFINE_SPINLOCK(iunique_lock);
1256        static unsigned int counter;
1257        ino_t res;
1258
1259        spin_lock(&iunique_lock);
1260        do {
1261                if (counter <= max_reserved)
1262                        counter = max_reserved + 1;
1263                res = counter++;
1264        } while (!test_inode_iunique(sb, res));
1265        spin_unlock(&iunique_lock);
1266
1267        return res;
1268}
1269EXPORT_SYMBOL(iunique);
1270
1271struct inode *igrab(struct inode *inode)
1272{
1273        spin_lock(&inode->i_lock);
1274        if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1275                __iget(inode);
1276                spin_unlock(&inode->i_lock);
1277        } else {
1278                spin_unlock(&inode->i_lock);
1279                /*
1280                 * Handle the case where s_op->clear_inode is not been
1281                 * called yet, and somebody is calling igrab
1282                 * while the inode is getting freed.
1283                 */
1284                inode = NULL;
1285        }
1286        return inode;
1287}
1288EXPORT_SYMBOL(igrab);
1289
1290/**
1291 * ilookup5_nowait - search for an inode in the inode cache
1292 * @sb:         super block of file system to search
1293 * @hashval:    hash value (usually inode number) to search for
1294 * @test:       callback used for comparisons between inodes
1295 * @data:       opaque data pointer to pass to @test
1296 *
1297 * Search for the inode specified by @hashval and @data in the inode cache.
1298 * If the inode is in the cache, the inode is returned with an incremented
1299 * reference count.
1300 *
1301 * Note: I_NEW is not waited upon so you have to be very careful what you do
1302 * with the returned inode.  You probably should be using ilookup5() instead.
1303 *
1304 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1305 */
1306struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1307                int (*test)(struct inode *, void *), void *data)
1308{
1309        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1310        struct inode *inode;
1311
1312        spin_lock(&inode_hash_lock);
1313        inode = find_inode(sb, head, test, data);
1314        spin_unlock(&inode_hash_lock);
1315
1316        return IS_ERR(inode) ? NULL : inode;
1317}
1318EXPORT_SYMBOL(ilookup5_nowait);
1319
1320/**
1321 * ilookup5 - search for an inode in the inode cache
1322 * @sb:         super block of file system to search
1323 * @hashval:    hash value (usually inode number) to search for
1324 * @test:       callback used for comparisons between inodes
1325 * @data:       opaque data pointer to pass to @test
1326 *
1327 * Search for the inode specified by @hashval and @data in the inode cache,
1328 * and if the inode is in the cache, return the inode with an incremented
1329 * reference count.  Waits on I_NEW before returning the inode.
1330 * returned with an incremented reference count.
1331 *
1332 * This is a generalized version of ilookup() for file systems where the
1333 * inode number is not sufficient for unique identification of an inode.
1334 *
1335 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1336 */
1337struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1338                int (*test)(struct inode *, void *), void *data)
1339{
1340        struct inode *inode;
1341again:
1342        inode = ilookup5_nowait(sb, hashval, test, data);
1343        if (inode) {
1344                wait_on_inode(inode);
1345                if (unlikely(inode_unhashed(inode))) {
1346                        iput(inode);
1347                        goto again;
1348                }
1349        }
1350        return inode;
1351}
1352EXPORT_SYMBOL(ilookup5);
1353
1354/**
1355 * ilookup - search for an inode in the inode cache
1356 * @sb:         super block of file system to search
1357 * @ino:        inode number to search for
1358 *
1359 * Search for the inode @ino in the inode cache, and if the inode is in the
1360 * cache, the inode is returned with an incremented reference count.
1361 */
1362struct inode *ilookup(struct super_block *sb, unsigned long ino)
1363{
1364        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1365        struct inode *inode;
1366again:
1367        spin_lock(&inode_hash_lock);
1368        inode = find_inode_fast(sb, head, ino);
1369        spin_unlock(&inode_hash_lock);
1370
1371        if (inode) {
1372                if (IS_ERR(inode))
1373                        return NULL;
1374                wait_on_inode(inode);
1375                if (unlikely(inode_unhashed(inode))) {
1376                        iput(inode);
1377                        goto again;
1378                }
1379        }
1380        return inode;
1381}
1382EXPORT_SYMBOL(ilookup);
1383
1384/**
1385 * find_inode_nowait - find an inode in the inode cache
1386 * @sb:         super block of file system to search
1387 * @hashval:    hash value (usually inode number) to search for
1388 * @match:      callback used for comparisons between inodes
1389 * @data:       opaque data pointer to pass to @match
1390 *
1391 * Search for the inode specified by @hashval and @data in the inode
1392 * cache, where the helper function @match will return 0 if the inode
1393 * does not match, 1 if the inode does match, and -1 if the search
1394 * should be stopped.  The @match function must be responsible for
1395 * taking the i_lock spin_lock and checking i_state for an inode being
1396 * freed or being initialized, and incrementing the reference count
1397 * before returning 1.  It also must not sleep, since it is called with
1398 * the inode_hash_lock spinlock held.
1399 *
1400 * This is a even more generalized version of ilookup5() when the
1401 * function must never block --- find_inode() can block in
1402 * __wait_on_freeing_inode() --- or when the caller can not increment
1403 * the reference count because the resulting iput() might cause an
1404 * inode eviction.  The tradeoff is that the @match funtion must be
1405 * very carefully implemented.
1406 */
1407struct inode *find_inode_nowait(struct super_block *sb,
1408                                unsigned long hashval,
1409                                int (*match)(struct inode *, unsigned long,
1410                                             void *),
1411                                void *data)
1412{
1413        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1414        struct inode *inode, *ret_inode = NULL;
1415        int mval;
1416
1417        spin_lock(&inode_hash_lock);
1418        hlist_for_each_entry(inode, head, i_hash) {
1419                if (inode->i_sb != sb)
1420                        continue;
1421                mval = match(inode, hashval, data);
1422                if (mval == 0)
1423                        continue;
1424                if (mval == 1)
1425                        ret_inode = inode;
1426                goto out;
1427        }
1428out:
1429        spin_unlock(&inode_hash_lock);
1430        return ret_inode;
1431}
1432EXPORT_SYMBOL(find_inode_nowait);
1433
1434int insert_inode_locked(struct inode *inode)
1435{
1436        struct super_block *sb = inode->i_sb;
1437        ino_t ino = inode->i_ino;
1438        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1439
1440        while (1) {
1441                struct inode *old = NULL;
1442                spin_lock(&inode_hash_lock);
1443                hlist_for_each_entry(old, head, i_hash) {
1444                        if (old->i_ino != ino)
1445                                continue;
1446                        if (old->i_sb != sb)
1447                                continue;
1448                        spin_lock(&old->i_lock);
1449                        if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1450                                spin_unlock(&old->i_lock);
1451                                continue;
1452                        }
1453                        break;
1454                }
1455                if (likely(!old)) {
1456                        spin_lock(&inode->i_lock);
1457                        inode->i_state |= I_NEW | I_CREATING;
1458                        hlist_add_head(&inode->i_hash, head);
1459                        spin_unlock(&inode->i_lock);
1460                        spin_unlock(&inode_hash_lock);
1461                        return 0;
1462                }
1463                if (unlikely(old->i_state & I_CREATING)) {
1464                        spin_unlock(&old->i_lock);
1465                        spin_unlock(&inode_hash_lock);
1466                        return -EBUSY;
1467                }
1468                __iget(old);
1469                spin_unlock(&old->i_lock);
1470                spin_unlock(&inode_hash_lock);
1471                wait_on_inode(old);
1472                if (unlikely(!inode_unhashed(old))) {
1473                        iput(old);
1474                        return -EBUSY;
1475                }
1476                iput(old);
1477        }
1478}
1479EXPORT_SYMBOL(insert_inode_locked);
1480
1481int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1482                int (*test)(struct inode *, void *), void *data)
1483{
1484        struct inode *old;
1485
1486        inode->i_state |= I_CREATING;
1487        old = inode_insert5(inode, hashval, test, NULL, data);
1488
1489        if (old != inode) {
1490                iput(old);
1491                return -EBUSY;
1492        }
1493        return 0;
1494}
1495EXPORT_SYMBOL(insert_inode_locked4);
1496
1497
1498int generic_delete_inode(struct inode *inode)
1499{
1500        return 1;
1501}
1502EXPORT_SYMBOL(generic_delete_inode);
1503
1504/*
1505 * Called when we're dropping the last reference
1506 * to an inode.
1507 *
1508 * Call the FS "drop_inode()" function, defaulting to
1509 * the legacy UNIX filesystem behaviour.  If it tells
1510 * us to evict inode, do so.  Otherwise, retain inode
1511 * in cache if fs is alive, sync and evict if fs is
1512 * shutting down.
1513 */
1514static void iput_final(struct inode *inode)
1515{
1516        struct super_block *sb = inode->i_sb;
1517        const struct super_operations *op = inode->i_sb->s_op;
1518        int drop;
1519
1520        WARN_ON(inode->i_state & I_NEW);
1521
1522        if (op->drop_inode)
1523                drop = op->drop_inode(inode);
1524        else
1525                drop = generic_drop_inode(inode);
1526
1527        if (!drop && (sb->s_flags & SB_ACTIVE)) {
1528                inode_add_lru(inode);
1529                spin_unlock(&inode->i_lock);
1530                return;
1531        }
1532
1533        if (!drop) {
1534                inode->i_state |= I_WILL_FREE;
1535                spin_unlock(&inode->i_lock);
1536                write_inode_now(inode, 1);
1537                spin_lock(&inode->i_lock);
1538                WARN_ON(inode->i_state & I_NEW);
1539                inode->i_state &= ~I_WILL_FREE;
1540        }
1541
1542        inode->i_state |= I_FREEING;
1543        if (!list_empty(&inode->i_lru))
1544                inode_lru_list_del(inode);
1545        spin_unlock(&inode->i_lock);
1546
1547        evict(inode);
1548}
1549
1550/**
1551 *      iput    - put an inode
1552 *      @inode: inode to put
1553 *
1554 *      Puts an inode, dropping its usage count. If the inode use count hits
1555 *      zero, the inode is then freed and may also be destroyed.
1556 *
1557 *      Consequently, iput() can sleep.
1558 */
1559void iput(struct inode *inode)
1560{
1561        if (!inode)
1562                return;
1563        BUG_ON(inode->i_state & I_CLEAR);
1564retry:
1565        if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1566                if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1567                        atomic_inc(&inode->i_count);
1568                        spin_unlock(&inode->i_lock);
1569                        trace_writeback_lazytime_iput(inode);
1570                        mark_inode_dirty_sync(inode);
1571                        goto retry;
1572                }
1573                iput_final(inode);
1574        }
1575}
1576EXPORT_SYMBOL(iput);
1577
1578/**
1579 *      bmap    - find a block number in a file
1580 *      @inode: inode of file
1581 *      @block: block to find
1582 *
1583 *      Returns the block number on the device holding the inode that
1584 *      is the disk block number for the block of the file requested.
1585 *      That is, asked for block 4 of inode 1 the function will return the
1586 *      disk block relative to the disk start that holds that block of the
1587 *      file.
1588 */
1589sector_t bmap(struct inode *inode, sector_t block)
1590{
1591        sector_t res = 0;
1592        if (inode->i_mapping->a_ops->bmap)
1593                res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1594        return res;
1595}
1596EXPORT_SYMBOL(bmap);
1597
1598/*
1599 * With relative atime, only update atime if the previous atime is
1600 * earlier than either the ctime or mtime or if at least a day has
1601 * passed since the last atime update.
1602 */
1603static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1604                             struct timespec now)
1605{
1606
1607        if (!(mnt->mnt_flags & MNT_RELATIME))
1608                return 1;
1609        /*
1610         * Is mtime younger than atime? If yes, update atime:
1611         */
1612        if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1613                return 1;
1614        /*
1615         * Is ctime younger than atime? If yes, update atime:
1616         */
1617        if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1618                return 1;
1619
1620        /*
1621         * Is the previous atime value older than a day? If yes,
1622         * update atime:
1623         */
1624        if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1625                return 1;
1626        /*
1627         * Good, we can skip the atime update:
1628         */
1629        return 0;
1630}
1631
1632int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1633{
1634        int iflags = I_DIRTY_TIME;
1635        bool dirty = false;
1636
1637        if (flags & S_ATIME)
1638                inode->i_atime = *time;
1639        if (flags & S_VERSION)
1640                dirty = inode_maybe_inc_iversion(inode, false);
1641        if (flags & S_CTIME)
1642                inode->i_ctime = *time;
1643        if (flags & S_MTIME)
1644                inode->i_mtime = *time;
1645        if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1646            !(inode->i_sb->s_flags & SB_LAZYTIME))
1647                dirty = true;
1648
1649        if (dirty)
1650                iflags |= I_DIRTY_SYNC;
1651        __mark_inode_dirty(inode, iflags);
1652        return 0;
1653}
1654EXPORT_SYMBOL(generic_update_time);
1655
1656/*
1657 * This does the actual work of updating an inodes time or version.  Must have
1658 * had called mnt_want_write() before calling this.
1659 */
1660static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1661{
1662        int (*update_time)(struct inode *, struct timespec64 *, int);
1663
1664        update_time = inode->i_op->update_time ? inode->i_op->update_time :
1665                generic_update_time;
1666
1667        return update_time(inode, time, flags);
1668}
1669
1670/**
1671 *      touch_atime     -       update the access time
1672 *      @path: the &struct path to update
1673 *      @inode: inode to update
1674 *
1675 *      Update the accessed time on an inode and mark it for writeback.
1676 *      This function automatically handles read only file systems and media,
1677 *      as well as the "noatime" flag and inode specific "noatime" markers.
1678 */
1679bool atime_needs_update(const struct path *path, struct inode *inode)
1680{
1681        struct vfsmount *mnt = path->mnt;
1682        struct timespec64 now;
1683
1684        if (inode->i_flags & S_NOATIME)
1685                return false;
1686
1687        /* Atime updates will likely cause i_uid and i_gid to be written
1688         * back improprely if their true value is unknown to the vfs.
1689         */
1690        if (HAS_UNMAPPED_ID(inode))
1691                return false;
1692
1693        if (IS_NOATIME(inode))
1694                return false;
1695        if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1696                return false;
1697
1698        if (mnt->mnt_flags & MNT_NOATIME)
1699                return false;
1700        if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1701                return false;
1702
1703        now = current_time(inode);
1704
1705        if (!relatime_need_update(mnt, inode, timespec64_to_timespec(now)))
1706                return false;
1707
1708        if (timespec64_equal(&inode->i_atime, &now))
1709                return false;
1710
1711        return true;
1712}
1713
1714void touch_atime(const struct path *path)
1715{
1716        struct vfsmount *mnt = path->mnt;
1717        struct inode *inode = d_inode(path->dentry);
1718        struct timespec64 now;
1719
1720        if (!atime_needs_update(path, inode))
1721                return;
1722
1723        if (!sb_start_write_trylock(inode->i_sb))
1724                return;
1725
1726        if (__mnt_want_write(mnt) != 0)
1727                goto skip_update;
1728        /*
1729         * File systems can error out when updating inodes if they need to
1730         * allocate new space to modify an inode (such is the case for
1731         * Btrfs), but since we touch atime while walking down the path we
1732         * really don't care if we failed to update the atime of the file,
1733         * so just ignore the return value.
1734         * We may also fail on filesystems that have the ability to make parts
1735         * of the fs read only, e.g. subvolumes in Btrfs.
1736         */
1737        now = current_time(inode);
1738        update_time(inode, &now, S_ATIME);
1739        __mnt_drop_write(mnt);
1740skip_update:
1741        sb_end_write(inode->i_sb);
1742}
1743EXPORT_SYMBOL(touch_atime);
1744
1745/*
1746 * The logic we want is
1747 *
1748 *      if suid or (sgid and xgrp)
1749 *              remove privs
1750 */
1751int should_remove_suid(struct dentry *dentry)
1752{
1753        umode_t mode = d_inode(dentry)->i_mode;
1754        int kill = 0;
1755
1756        /* suid always must be killed */
1757        if (unlikely(mode & S_ISUID))
1758                kill = ATTR_KILL_SUID;
1759
1760        /*
1761         * sgid without any exec bits is just a mandatory locking mark; leave
1762         * it alone.  If some exec bits are set, it's a real sgid; kill it.
1763         */
1764        if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1765                kill |= ATTR_KILL_SGID;
1766
1767        if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1768                return kill;
1769
1770        return 0;
1771}
1772EXPORT_SYMBOL(should_remove_suid);
1773
1774/*
1775 * Return mask of changes for notify_change() that need to be done as a
1776 * response to write or truncate. Return 0 if nothing has to be changed.
1777 * Negative value on error (change should be denied).
1778 */
1779int dentry_needs_remove_privs(struct dentry *dentry)
1780{
1781        struct inode *inode = d_inode(dentry);
1782        int mask = 0;
1783        int ret;
1784
1785        if (IS_NOSEC(inode))
1786                return 0;
1787
1788        mask = should_remove_suid(dentry);
1789        ret = security_inode_need_killpriv(dentry);
1790        if (ret < 0)
1791                return ret;
1792        if (ret)
1793                mask |= ATTR_KILL_PRIV;
1794        return mask;
1795}
1796
1797static int __remove_privs(struct dentry *dentry, int kill)
1798{
1799        struct iattr newattrs;
1800
1801        newattrs.ia_valid = ATTR_FORCE | kill;
1802        /*
1803         * Note we call this on write, so notify_change will not
1804         * encounter any conflicting delegations:
1805         */
1806        return notify_change(dentry, &newattrs, NULL);
1807}
1808
1809/*
1810 * Remove special file priviledges (suid, capabilities) when file is written
1811 * to or truncated.
1812 */
1813int file_remove_privs(struct file *file)
1814{
1815        struct dentry *dentry = file_dentry(file);
1816        struct inode *inode = file_inode(file);
1817        int kill;
1818        int error = 0;
1819
1820        /* Fast path for nothing security related */
1821        if (IS_NOSEC(inode))
1822                return 0;
1823
1824        kill = dentry_needs_remove_privs(dentry);
1825        if (kill < 0)
1826                return kill;
1827        if (kill)
1828                error = __remove_privs(dentry, kill);
1829        if (!error)
1830                inode_has_no_xattr(inode);
1831
1832        return error;
1833}
1834EXPORT_SYMBOL(file_remove_privs);
1835
1836/**
1837 *      file_update_time        -       update mtime and ctime time
1838 *      @file: file accessed
1839 *
1840 *      Update the mtime and ctime members of an inode and mark the inode
1841 *      for writeback.  Note that this function is meant exclusively for
1842 *      usage in the file write path of filesystems, and filesystems may
1843 *      choose to explicitly ignore update via this function with the
1844 *      S_NOCMTIME inode flag, e.g. for network filesystem where these
1845 *      timestamps are handled by the server.  This can return an error for
1846 *      file systems who need to allocate space in order to update an inode.
1847 */
1848
1849int file_update_time(struct file *file)
1850{
1851        struct inode *inode = file_inode(file);
1852        struct timespec64 now;
1853        int sync_it = 0;
1854        int ret;
1855
1856        /* First try to exhaust all avenues to not sync */
1857        if (IS_NOCMTIME(inode))
1858                return 0;
1859
1860        now = current_time(inode);
1861        if (!timespec64_equal(&inode->i_mtime, &now))
1862                sync_it = S_MTIME;
1863
1864        if (!timespec64_equal(&inode->i_ctime, &now))
1865                sync_it |= S_CTIME;
1866
1867        if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1868                sync_it |= S_VERSION;
1869
1870        if (!sync_it)
1871                return 0;
1872
1873        /* Finally allowed to write? Takes lock. */
1874        if (__mnt_want_write_file(file))
1875                return 0;
1876
1877        ret = update_time(inode, &now, sync_it);
1878        __mnt_drop_write_file(file);
1879
1880        return ret;
1881}
1882EXPORT_SYMBOL(file_update_time);
1883
1884int inode_needs_sync(struct inode *inode)
1885{
1886        if (IS_SYNC(inode))
1887                return 1;
1888        if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1889                return 1;
1890        return 0;
1891}
1892EXPORT_SYMBOL(inode_needs_sync);
1893
1894/*
1895 * If we try to find an inode in the inode hash while it is being
1896 * deleted, we have to wait until the filesystem completes its
1897 * deletion before reporting that it isn't found.  This function waits
1898 * until the deletion _might_ have completed.  Callers are responsible
1899 * to recheck inode state.
1900 *
1901 * It doesn't matter if I_NEW is not set initially, a call to
1902 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1903 * will DTRT.
1904 */
1905static void __wait_on_freeing_inode(struct inode *inode)
1906{
1907        wait_queue_head_t *wq;
1908        DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1909        wq = bit_waitqueue(&inode->i_state, __I_NEW);
1910        prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1911        spin_unlock(&inode->i_lock);
1912        spin_unlock(&inode_hash_lock);
1913        schedule();
1914        finish_wait(wq, &wait.wq_entry);
1915        spin_lock(&inode_hash_lock);
1916}
1917
1918static __initdata unsigned long ihash_entries;
1919static int __init set_ihash_entries(char *str)
1920{
1921        if (!str)
1922                return 0;
1923        ihash_entries = simple_strtoul(str, &str, 0);
1924        return 1;
1925}
1926__setup("ihash_entries=", set_ihash_entries);
1927
1928/*
1929 * Initialize the waitqueues and inode hash table.
1930 */
1931void __init inode_init_early(void)
1932{
1933        /* If hashes are distributed across NUMA nodes, defer
1934         * hash allocation until vmalloc space is available.
1935         */
1936        if (hashdist)
1937                return;
1938
1939        inode_hashtable =
1940                alloc_large_system_hash("Inode-cache",
1941                                        sizeof(struct hlist_head),
1942                                        ihash_entries,
1943                                        14,
1944                                        HASH_EARLY | HASH_ZERO,
1945                                        &i_hash_shift,
1946                                        &i_hash_mask,
1947                                        0,
1948                                        0);
1949}
1950
1951void __init inode_init(void)
1952{
1953        /* inode slab cache */
1954        inode_cachep = kmem_cache_create("inode_cache",
1955                                         sizeof(struct inode),
1956                                         0,
1957                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1958                                         SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1959                                         init_once);
1960
1961        /* Hash may have been set up in inode_init_early */
1962        if (!hashdist)
1963                return;
1964
1965        inode_hashtable =
1966                alloc_large_system_hash("Inode-cache",
1967                                        sizeof(struct hlist_head),
1968                                        ihash_entries,
1969                                        14,
1970                                        HASH_ZERO,
1971                                        &i_hash_shift,
1972                                        &i_hash_mask,
1973                                        0,
1974                                        0);
1975}
1976
1977void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1978{
1979        inode->i_mode = mode;
1980        if (S_ISCHR(mode)) {
1981                inode->i_fop = &def_chr_fops;
1982                inode->i_rdev = rdev;
1983        } else if (S_ISBLK(mode)) {
1984                inode->i_fop = &def_blk_fops;
1985                inode->i_rdev = rdev;
1986        } else if (S_ISFIFO(mode))
1987                inode->i_fop = &pipefifo_fops;
1988        else if (S_ISSOCK(mode))
1989                ;       /* leave it no_open_fops */
1990        else
1991                printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1992                                  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1993                                  inode->i_ino);
1994}
1995EXPORT_SYMBOL(init_special_inode);
1996
1997/**
1998 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1999 * @inode: New inode
2000 * @dir: Directory inode
2001 * @mode: mode of the new inode
2002 */
2003void inode_init_owner(struct inode *inode, const struct inode *dir,
2004                        umode_t mode)
2005{
2006        inode->i_uid = current_fsuid();
2007        if (dir && dir->i_mode & S_ISGID) {
2008                inode->i_gid = dir->i_gid;
2009
2010                /* Directories are special, and always inherit S_ISGID */
2011                if (S_ISDIR(mode))
2012                        mode |= S_ISGID;
2013                else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2014                         !in_group_p(inode->i_gid) &&
2015                         !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2016                        mode &= ~S_ISGID;
2017        } else
2018                inode->i_gid = current_fsgid();
2019        inode->i_mode = mode;
2020}
2021EXPORT_SYMBOL(inode_init_owner);
2022
2023/**
2024 * inode_owner_or_capable - check current task permissions to inode
2025 * @inode: inode being checked
2026 *
2027 * Return true if current either has CAP_FOWNER in a namespace with the
2028 * inode owner uid mapped, or owns the file.
2029 */
2030bool inode_owner_or_capable(const struct inode *inode)
2031{
2032        struct user_namespace *ns;
2033
2034        if (uid_eq(current_fsuid(), inode->i_uid))
2035                return true;
2036
2037        ns = current_user_ns();
2038        if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2039                return true;
2040        return false;
2041}
2042EXPORT_SYMBOL(inode_owner_or_capable);
2043
2044/*
2045 * Direct i/o helper functions
2046 */
2047static void __inode_dio_wait(struct inode *inode)
2048{
2049        wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2050        DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2051
2052        do {
2053                prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2054                if (atomic_read(&inode->i_dio_count))
2055                        schedule();
2056        } while (atomic_read(&inode->i_dio_count));
2057        finish_wait(wq, &q.wq_entry);
2058}
2059
2060/**
2061 * inode_dio_wait - wait for outstanding DIO requests to finish
2062 * @inode: inode to wait for
2063 *
2064 * Waits for all pending direct I/O requests to finish so that we can
2065 * proceed with a truncate or equivalent operation.
2066 *
2067 * Must be called under a lock that serializes taking new references
2068 * to i_dio_count, usually by inode->i_mutex.
2069 */
2070void inode_dio_wait(struct inode *inode)
2071{
2072        if (atomic_read(&inode->i_dio_count))
2073                __inode_dio_wait(inode);
2074}
2075EXPORT_SYMBOL(inode_dio_wait);
2076
2077/*
2078 * inode_set_flags - atomically set some inode flags
2079 *
2080 * Note: the caller should be holding i_mutex, or else be sure that
2081 * they have exclusive access to the inode structure (i.e., while the
2082 * inode is being instantiated).  The reason for the cmpxchg() loop
2083 * --- which wouldn't be necessary if all code paths which modify
2084 * i_flags actually followed this rule, is that there is at least one
2085 * code path which doesn't today so we use cmpxchg() out of an abundance
2086 * of caution.
2087 *
2088 * In the long run, i_mutex is overkill, and we should probably look
2089 * at using the i_lock spinlock to protect i_flags, and then make sure
2090 * it is so documented in include/linux/fs.h and that all code follows
2091 * the locking convention!!
2092 */
2093void inode_set_flags(struct inode *inode, unsigned int flags,
2094                     unsigned int mask)
2095{
2096        unsigned int old_flags, new_flags;
2097
2098        WARN_ON_ONCE(flags & ~mask);
2099        do {
2100                old_flags = READ_ONCE(inode->i_flags);
2101                new_flags = (old_flags & ~mask) | flags;
2102        } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2103                                  new_flags) != old_flags));
2104}
2105EXPORT_SYMBOL(inode_set_flags);
2106
2107void inode_nohighmem(struct inode *inode)
2108{
2109        mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2110}
2111EXPORT_SYMBOL(inode_nohighmem);
2112
2113/**
2114 * timespec64_trunc - Truncate timespec64 to a granularity
2115 * @t: Timespec64
2116 * @gran: Granularity in ns.
2117 *
2118 * Truncate a timespec64 to a granularity. Always rounds down. gran must
2119 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2120 */
2121struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran)
2122{
2123        /* Avoid division in the common cases 1 ns and 1 s. */
2124        if (gran == 1) {
2125                /* nothing */
2126        } else if (gran == NSEC_PER_SEC) {
2127                t.tv_nsec = 0;
2128        } else if (gran > 1 && gran < NSEC_PER_SEC) {
2129                t.tv_nsec -= t.tv_nsec % gran;
2130        } else {
2131                WARN(1, "illegal file time granularity: %u", gran);
2132        }
2133        return t;
2134}
2135EXPORT_SYMBOL(timespec64_trunc);
2136
2137/**
2138 * current_time - Return FS time
2139 * @inode: inode.
2140 *
2141 * Return the current time truncated to the time granularity supported by
2142 * the fs.
2143 *
2144 * Note that inode and inode->sb cannot be NULL.
2145 * Otherwise, the function warns and returns time without truncation.
2146 */
2147struct timespec64 current_time(struct inode *inode)
2148{
2149        struct timespec64 now = current_kernel_time64();
2150
2151        if (unlikely(!inode->i_sb)) {
2152                WARN(1, "current_time() called with uninitialized super_block in the inode");
2153                return now;
2154        }
2155
2156        return timespec64_trunc(now, inode->i_sb->s_time_gran);
2157}
2158EXPORT_SYMBOL(current_time);
2159