linux/fs/ubifs/lpt.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Adrian Hunter
  20 *          Artem Bityutskiy (Битюцкий Артём)
  21 */
  22
  23/*
  24 * This file implements the LEB properties tree (LPT) area. The LPT area
  25 * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
  26 * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
  27 * between the log and the orphan area.
  28 *
  29 * The LPT area is like a miniature self-contained file system. It is required
  30 * that it never runs out of space, is fast to access and update, and scales
  31 * logarithmically. The LEB properties tree is implemented as a wandering tree
  32 * much like the TNC, and the LPT area has its own garbage collection.
  33 *
  34 * The LPT has two slightly different forms called the "small model" and the
  35 * "big model". The small model is used when the entire LEB properties table
  36 * can be written into a single eraseblock. In that case, garbage collection
  37 * consists of just writing the whole table, which therefore makes all other
  38 * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
  39 * selected for garbage collection, which consists of marking the clean nodes in
  40 * that LEB as dirty, and then only the dirty nodes are written out. Also, in
  41 * the case of the big model, a table of LEB numbers is saved so that the entire
  42 * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
  43 * mounted.
  44 */
  45
  46#include "ubifs.h"
  47#include <linux/crc16.h>
  48#include <linux/math64.h>
  49#include <linux/slab.h>
  50
  51/**
  52 * do_calc_lpt_geom - calculate sizes for the LPT area.
  53 * @c: the UBIFS file-system description object
  54 *
  55 * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
  56 * properties of the flash and whether LPT is "big" (c->big_lpt).
  57 */
  58static void do_calc_lpt_geom(struct ubifs_info *c)
  59{
  60        int i, n, bits, per_leb_wastage, max_pnode_cnt;
  61        long long sz, tot_wastage;
  62
  63        n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
  64        max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
  65
  66        c->lpt_hght = 1;
  67        n = UBIFS_LPT_FANOUT;
  68        while (n < max_pnode_cnt) {
  69                c->lpt_hght += 1;
  70                n <<= UBIFS_LPT_FANOUT_SHIFT;
  71        }
  72
  73        c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
  74
  75        n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
  76        c->nnode_cnt = n;
  77        for (i = 1; i < c->lpt_hght; i++) {
  78                n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
  79                c->nnode_cnt += n;
  80        }
  81
  82        c->space_bits = fls(c->leb_size) - 3;
  83        c->lpt_lnum_bits = fls(c->lpt_lebs);
  84        c->lpt_offs_bits = fls(c->leb_size - 1);
  85        c->lpt_spc_bits = fls(c->leb_size);
  86
  87        n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
  88        c->pcnt_bits = fls(n - 1);
  89
  90        c->lnum_bits = fls(c->max_leb_cnt - 1);
  91
  92        bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
  93               (c->big_lpt ? c->pcnt_bits : 0) +
  94               (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
  95        c->pnode_sz = (bits + 7) / 8;
  96
  97        bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
  98               (c->big_lpt ? c->pcnt_bits : 0) +
  99               (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
 100        c->nnode_sz = (bits + 7) / 8;
 101
 102        bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
 103               c->lpt_lebs * c->lpt_spc_bits * 2;
 104        c->ltab_sz = (bits + 7) / 8;
 105
 106        bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
 107               c->lnum_bits * c->lsave_cnt;
 108        c->lsave_sz = (bits + 7) / 8;
 109
 110        /* Calculate the minimum LPT size */
 111        c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
 112        c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
 113        c->lpt_sz += c->ltab_sz;
 114        if (c->big_lpt)
 115                c->lpt_sz += c->lsave_sz;
 116
 117        /* Add wastage */
 118        sz = c->lpt_sz;
 119        per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
 120        sz += per_leb_wastage;
 121        tot_wastage = per_leb_wastage;
 122        while (sz > c->leb_size) {
 123                sz += per_leb_wastage;
 124                sz -= c->leb_size;
 125                tot_wastage += per_leb_wastage;
 126        }
 127        tot_wastage += ALIGN(sz, c->min_io_size) - sz;
 128        c->lpt_sz += tot_wastage;
 129}
 130
 131/**
 132 * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
 133 * @c: the UBIFS file-system description object
 134 *
 135 * This function returns %0 on success and a negative error code on failure.
 136 */
 137int ubifs_calc_lpt_geom(struct ubifs_info *c)
 138{
 139        int lebs_needed;
 140        long long sz;
 141
 142        do_calc_lpt_geom(c);
 143
 144        /* Verify that lpt_lebs is big enough */
 145        sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
 146        lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
 147        if (lebs_needed > c->lpt_lebs) {
 148                ubifs_err(c, "too few LPT LEBs");
 149                return -EINVAL;
 150        }
 151
 152        /* Verify that ltab fits in a single LEB (since ltab is a single node */
 153        if (c->ltab_sz > c->leb_size) {
 154                ubifs_err(c, "LPT ltab too big");
 155                return -EINVAL;
 156        }
 157
 158        c->check_lpt_free = c->big_lpt;
 159        return 0;
 160}
 161
 162/**
 163 * calc_dflt_lpt_geom - calculate default LPT geometry.
 164 * @c: the UBIFS file-system description object
 165 * @main_lebs: number of main area LEBs is passed and returned here
 166 * @big_lpt: whether the LPT area is "big" is returned here
 167 *
 168 * The size of the LPT area depends on parameters that themselves are dependent
 169 * on the size of the LPT area. This function, successively recalculates the LPT
 170 * area geometry until the parameters and resultant geometry are consistent.
 171 *
 172 * This function returns %0 on success and a negative error code on failure.
 173 */
 174static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
 175                              int *big_lpt)
 176{
 177        int i, lebs_needed;
 178        long long sz;
 179
 180        /* Start by assuming the minimum number of LPT LEBs */
 181        c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
 182        c->main_lebs = *main_lebs - c->lpt_lebs;
 183        if (c->main_lebs <= 0)
 184                return -EINVAL;
 185
 186        /* And assume we will use the small LPT model */
 187        c->big_lpt = 0;
 188
 189        /*
 190         * Calculate the geometry based on assumptions above and then see if it
 191         * makes sense
 192         */
 193        do_calc_lpt_geom(c);
 194
 195        /* Small LPT model must have lpt_sz < leb_size */
 196        if (c->lpt_sz > c->leb_size) {
 197                /* Nope, so try again using big LPT model */
 198                c->big_lpt = 1;
 199                do_calc_lpt_geom(c);
 200        }
 201
 202        /* Now check there are enough LPT LEBs */
 203        for (i = 0; i < 64 ; i++) {
 204                sz = c->lpt_sz * 4; /* Allow 4 times the size */
 205                lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
 206                if (lebs_needed > c->lpt_lebs) {
 207                        /* Not enough LPT LEBs so try again with more */
 208                        c->lpt_lebs = lebs_needed;
 209                        c->main_lebs = *main_lebs - c->lpt_lebs;
 210                        if (c->main_lebs <= 0)
 211                                return -EINVAL;
 212                        do_calc_lpt_geom(c);
 213                        continue;
 214                }
 215                if (c->ltab_sz > c->leb_size) {
 216                        ubifs_err(c, "LPT ltab too big");
 217                        return -EINVAL;
 218                }
 219                *main_lebs = c->main_lebs;
 220                *big_lpt = c->big_lpt;
 221                return 0;
 222        }
 223        return -EINVAL;
 224}
 225
 226/**
 227 * pack_bits - pack bit fields end-to-end.
 228 * @c: UBIFS file-system description object
 229 * @addr: address at which to pack (passed and next address returned)
 230 * @pos: bit position at which to pack (passed and next position returned)
 231 * @val: value to pack
 232 * @nrbits: number of bits of value to pack (1-32)
 233 */
 234static void pack_bits(const struct ubifs_info *c, uint8_t **addr, int *pos, uint32_t val, int nrbits)
 235{
 236        uint8_t *p = *addr;
 237        int b = *pos;
 238
 239        ubifs_assert(c, nrbits > 0);
 240        ubifs_assert(c, nrbits <= 32);
 241        ubifs_assert(c, *pos >= 0);
 242        ubifs_assert(c, *pos < 8);
 243        ubifs_assert(c, (val >> nrbits) == 0 || nrbits == 32);
 244        if (b) {
 245                *p |= ((uint8_t)val) << b;
 246                nrbits += b;
 247                if (nrbits > 8) {
 248                        *++p = (uint8_t)(val >>= (8 - b));
 249                        if (nrbits > 16) {
 250                                *++p = (uint8_t)(val >>= 8);
 251                                if (nrbits > 24) {
 252                                        *++p = (uint8_t)(val >>= 8);
 253                                        if (nrbits > 32)
 254                                                *++p = (uint8_t)(val >>= 8);
 255                                }
 256                        }
 257                }
 258        } else {
 259                *p = (uint8_t)val;
 260                if (nrbits > 8) {
 261                        *++p = (uint8_t)(val >>= 8);
 262                        if (nrbits > 16) {
 263                                *++p = (uint8_t)(val >>= 8);
 264                                if (nrbits > 24)
 265                                        *++p = (uint8_t)(val >>= 8);
 266                        }
 267                }
 268        }
 269        b = nrbits & 7;
 270        if (b == 0)
 271                p++;
 272        *addr = p;
 273        *pos = b;
 274}
 275
 276/**
 277 * ubifs_unpack_bits - unpack bit fields.
 278 * @c: UBIFS file-system description object
 279 * @addr: address at which to unpack (passed and next address returned)
 280 * @pos: bit position at which to unpack (passed and next position returned)
 281 * @nrbits: number of bits of value to unpack (1-32)
 282 *
 283 * This functions returns the value unpacked.
 284 */
 285uint32_t ubifs_unpack_bits(const struct ubifs_info *c, uint8_t **addr, int *pos, int nrbits)
 286{
 287        const int k = 32 - nrbits;
 288        uint8_t *p = *addr;
 289        int b = *pos;
 290        uint32_t uninitialized_var(val);
 291        const int bytes = (nrbits + b + 7) >> 3;
 292
 293        ubifs_assert(c, nrbits > 0);
 294        ubifs_assert(c, nrbits <= 32);
 295        ubifs_assert(c, *pos >= 0);
 296        ubifs_assert(c, *pos < 8);
 297        if (b) {
 298                switch (bytes) {
 299                case 2:
 300                        val = p[1];
 301                        break;
 302                case 3:
 303                        val = p[1] | ((uint32_t)p[2] << 8);
 304                        break;
 305                case 4:
 306                        val = p[1] | ((uint32_t)p[2] << 8) |
 307                                     ((uint32_t)p[3] << 16);
 308                        break;
 309                case 5:
 310                        val = p[1] | ((uint32_t)p[2] << 8) |
 311                                     ((uint32_t)p[3] << 16) |
 312                                     ((uint32_t)p[4] << 24);
 313                }
 314                val <<= (8 - b);
 315                val |= *p >> b;
 316                nrbits += b;
 317        } else {
 318                switch (bytes) {
 319                case 1:
 320                        val = p[0];
 321                        break;
 322                case 2:
 323                        val = p[0] | ((uint32_t)p[1] << 8);
 324                        break;
 325                case 3:
 326                        val = p[0] | ((uint32_t)p[1] << 8) |
 327                                     ((uint32_t)p[2] << 16);
 328                        break;
 329                case 4:
 330                        val = p[0] | ((uint32_t)p[1] << 8) |
 331                                     ((uint32_t)p[2] << 16) |
 332                                     ((uint32_t)p[3] << 24);
 333                        break;
 334                }
 335        }
 336        val <<= k;
 337        val >>= k;
 338        b = nrbits & 7;
 339        p += nrbits >> 3;
 340        *addr = p;
 341        *pos = b;
 342        ubifs_assert(c, (val >> nrbits) == 0 || nrbits - b == 32);
 343        return val;
 344}
 345
 346/**
 347 * ubifs_pack_pnode - pack all the bit fields of a pnode.
 348 * @c: UBIFS file-system description object
 349 * @buf: buffer into which to pack
 350 * @pnode: pnode to pack
 351 */
 352void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
 353                      struct ubifs_pnode *pnode)
 354{
 355        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 356        int i, pos = 0;
 357        uint16_t crc;
 358
 359        pack_bits(c, &addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
 360        if (c->big_lpt)
 361                pack_bits(c, &addr, &pos, pnode->num, c->pcnt_bits);
 362        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 363                pack_bits(c, &addr, &pos, pnode->lprops[i].free >> 3,
 364                          c->space_bits);
 365                pack_bits(c, &addr, &pos, pnode->lprops[i].dirty >> 3,
 366                          c->space_bits);
 367                if (pnode->lprops[i].flags & LPROPS_INDEX)
 368                        pack_bits(c, &addr, &pos, 1, 1);
 369                else
 370                        pack_bits(c, &addr, &pos, 0, 1);
 371        }
 372        crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 373                    c->pnode_sz - UBIFS_LPT_CRC_BYTES);
 374        addr = buf;
 375        pos = 0;
 376        pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS);
 377}
 378
 379/**
 380 * ubifs_pack_nnode - pack all the bit fields of a nnode.
 381 * @c: UBIFS file-system description object
 382 * @buf: buffer into which to pack
 383 * @nnode: nnode to pack
 384 */
 385void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
 386                      struct ubifs_nnode *nnode)
 387{
 388        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 389        int i, pos = 0;
 390        uint16_t crc;
 391
 392        pack_bits(c, &addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
 393        if (c->big_lpt)
 394                pack_bits(c, &addr, &pos, nnode->num, c->pcnt_bits);
 395        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 396                int lnum = nnode->nbranch[i].lnum;
 397
 398                if (lnum == 0)
 399                        lnum = c->lpt_last + 1;
 400                pack_bits(c, &addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
 401                pack_bits(c, &addr, &pos, nnode->nbranch[i].offs,
 402                          c->lpt_offs_bits);
 403        }
 404        crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 405                    c->nnode_sz - UBIFS_LPT_CRC_BYTES);
 406        addr = buf;
 407        pos = 0;
 408        pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS);
 409}
 410
 411/**
 412 * ubifs_pack_ltab - pack the LPT's own lprops table.
 413 * @c: UBIFS file-system description object
 414 * @buf: buffer into which to pack
 415 * @ltab: LPT's own lprops table to pack
 416 */
 417void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
 418                     struct ubifs_lpt_lprops *ltab)
 419{
 420        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 421        int i, pos = 0;
 422        uint16_t crc;
 423
 424        pack_bits(c, &addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
 425        for (i = 0; i < c->lpt_lebs; i++) {
 426                pack_bits(c, &addr, &pos, ltab[i].free, c->lpt_spc_bits);
 427                pack_bits(c, &addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
 428        }
 429        crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 430                    c->ltab_sz - UBIFS_LPT_CRC_BYTES);
 431        addr = buf;
 432        pos = 0;
 433        pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS);
 434}
 435
 436/**
 437 * ubifs_pack_lsave - pack the LPT's save table.
 438 * @c: UBIFS file-system description object
 439 * @buf: buffer into which to pack
 440 * @lsave: LPT's save table to pack
 441 */
 442void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
 443{
 444        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 445        int i, pos = 0;
 446        uint16_t crc;
 447
 448        pack_bits(c, &addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
 449        for (i = 0; i < c->lsave_cnt; i++)
 450                pack_bits(c, &addr, &pos, lsave[i], c->lnum_bits);
 451        crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 452                    c->lsave_sz - UBIFS_LPT_CRC_BYTES);
 453        addr = buf;
 454        pos = 0;
 455        pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS);
 456}
 457
 458/**
 459 * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
 460 * @c: UBIFS file-system description object
 461 * @lnum: LEB number to which to add dirty space
 462 * @dirty: amount of dirty space to add
 463 */
 464void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
 465{
 466        if (!dirty || !lnum)
 467                return;
 468        dbg_lp("LEB %d add %d to %d",
 469               lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
 470        ubifs_assert(c, lnum >= c->lpt_first && lnum <= c->lpt_last);
 471        c->ltab[lnum - c->lpt_first].dirty += dirty;
 472}
 473
 474/**
 475 * set_ltab - set LPT LEB properties.
 476 * @c: UBIFS file-system description object
 477 * @lnum: LEB number
 478 * @free: amount of free space
 479 * @dirty: amount of dirty space
 480 */
 481static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
 482{
 483        dbg_lp("LEB %d free %d dirty %d to %d %d",
 484               lnum, c->ltab[lnum - c->lpt_first].free,
 485               c->ltab[lnum - c->lpt_first].dirty, free, dirty);
 486        ubifs_assert(c, lnum >= c->lpt_first && lnum <= c->lpt_last);
 487        c->ltab[lnum - c->lpt_first].free = free;
 488        c->ltab[lnum - c->lpt_first].dirty = dirty;
 489}
 490
 491/**
 492 * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
 493 * @c: UBIFS file-system description object
 494 * @nnode: nnode for which to add dirt
 495 */
 496void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
 497{
 498        struct ubifs_nnode *np = nnode->parent;
 499
 500        if (np)
 501                ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
 502                                   c->nnode_sz);
 503        else {
 504                ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
 505                if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
 506                        c->lpt_drty_flgs |= LTAB_DIRTY;
 507                        ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
 508                }
 509        }
 510}
 511
 512/**
 513 * add_pnode_dirt - add dirty space to LPT LEB properties.
 514 * @c: UBIFS file-system description object
 515 * @pnode: pnode for which to add dirt
 516 */
 517static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
 518{
 519        ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
 520                           c->pnode_sz);
 521}
 522
 523/**
 524 * calc_nnode_num - calculate nnode number.
 525 * @row: the row in the tree (root is zero)
 526 * @col: the column in the row (leftmost is zero)
 527 *
 528 * The nnode number is a number that uniquely identifies a nnode and can be used
 529 * easily to traverse the tree from the root to that nnode.
 530 *
 531 * This function calculates and returns the nnode number for the nnode at @row
 532 * and @col.
 533 */
 534static int calc_nnode_num(int row, int col)
 535{
 536        int num, bits;
 537
 538        num = 1;
 539        while (row--) {
 540                bits = (col & (UBIFS_LPT_FANOUT - 1));
 541                col >>= UBIFS_LPT_FANOUT_SHIFT;
 542                num <<= UBIFS_LPT_FANOUT_SHIFT;
 543                num |= bits;
 544        }
 545        return num;
 546}
 547
 548/**
 549 * calc_nnode_num_from_parent - calculate nnode number.
 550 * @c: UBIFS file-system description object
 551 * @parent: parent nnode
 552 * @iip: index in parent
 553 *
 554 * The nnode number is a number that uniquely identifies a nnode and can be used
 555 * easily to traverse the tree from the root to that nnode.
 556 *
 557 * This function calculates and returns the nnode number based on the parent's
 558 * nnode number and the index in parent.
 559 */
 560static int calc_nnode_num_from_parent(const struct ubifs_info *c,
 561                                      struct ubifs_nnode *parent, int iip)
 562{
 563        int num, shft;
 564
 565        if (!parent)
 566                return 1;
 567        shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
 568        num = parent->num ^ (1 << shft);
 569        num |= (UBIFS_LPT_FANOUT + iip) << shft;
 570        return num;
 571}
 572
 573/**
 574 * calc_pnode_num_from_parent - calculate pnode number.
 575 * @c: UBIFS file-system description object
 576 * @parent: parent nnode
 577 * @iip: index in parent
 578 *
 579 * The pnode number is a number that uniquely identifies a pnode and can be used
 580 * easily to traverse the tree from the root to that pnode.
 581 *
 582 * This function calculates and returns the pnode number based on the parent's
 583 * nnode number and the index in parent.
 584 */
 585static int calc_pnode_num_from_parent(const struct ubifs_info *c,
 586                                      struct ubifs_nnode *parent, int iip)
 587{
 588        int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
 589
 590        for (i = 0; i < n; i++) {
 591                num <<= UBIFS_LPT_FANOUT_SHIFT;
 592                num |= pnum & (UBIFS_LPT_FANOUT - 1);
 593                pnum >>= UBIFS_LPT_FANOUT_SHIFT;
 594        }
 595        num <<= UBIFS_LPT_FANOUT_SHIFT;
 596        num |= iip;
 597        return num;
 598}
 599
 600/**
 601 * ubifs_create_dflt_lpt - create default LPT.
 602 * @c: UBIFS file-system description object
 603 * @main_lebs: number of main area LEBs is passed and returned here
 604 * @lpt_first: LEB number of first LPT LEB
 605 * @lpt_lebs: number of LEBs for LPT is passed and returned here
 606 * @big_lpt: use big LPT model is passed and returned here
 607 *
 608 * This function returns %0 on success and a negative error code on failure.
 609 */
 610int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
 611                          int *lpt_lebs, int *big_lpt)
 612{
 613        int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
 614        int blnum, boffs, bsz, bcnt;
 615        struct ubifs_pnode *pnode = NULL;
 616        struct ubifs_nnode *nnode = NULL;
 617        void *buf = NULL, *p;
 618        struct ubifs_lpt_lprops *ltab = NULL;
 619        int *lsave = NULL;
 620
 621        err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
 622        if (err)
 623                return err;
 624        *lpt_lebs = c->lpt_lebs;
 625
 626        /* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
 627        c->lpt_first = lpt_first;
 628        /* Needed by 'set_ltab()' */
 629        c->lpt_last = lpt_first + c->lpt_lebs - 1;
 630        /* Needed by 'ubifs_pack_lsave()' */
 631        c->main_first = c->leb_cnt - *main_lebs;
 632
 633        lsave = kmalloc_array(c->lsave_cnt, sizeof(int), GFP_KERNEL);
 634        pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
 635        nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
 636        buf = vmalloc(c->leb_size);
 637        ltab = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops),
 638                                  c->lpt_lebs));
 639        if (!pnode || !nnode || !buf || !ltab || !lsave) {
 640                err = -ENOMEM;
 641                goto out;
 642        }
 643
 644        ubifs_assert(c, !c->ltab);
 645        c->ltab = ltab; /* Needed by set_ltab */
 646
 647        /* Initialize LPT's own lprops */
 648        for (i = 0; i < c->lpt_lebs; i++) {
 649                ltab[i].free = c->leb_size;
 650                ltab[i].dirty = 0;
 651                ltab[i].tgc = 0;
 652                ltab[i].cmt = 0;
 653        }
 654
 655        lnum = lpt_first;
 656        p = buf;
 657        /* Number of leaf nodes (pnodes) */
 658        cnt = c->pnode_cnt;
 659
 660        /*
 661         * The first pnode contains the LEB properties for the LEBs that contain
 662         * the root inode node and the root index node of the index tree.
 663         */
 664        node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
 665        iopos = ALIGN(node_sz, c->min_io_size);
 666        pnode->lprops[0].free = c->leb_size - iopos;
 667        pnode->lprops[0].dirty = iopos - node_sz;
 668        pnode->lprops[0].flags = LPROPS_INDEX;
 669
 670        node_sz = UBIFS_INO_NODE_SZ;
 671        iopos = ALIGN(node_sz, c->min_io_size);
 672        pnode->lprops[1].free = c->leb_size - iopos;
 673        pnode->lprops[1].dirty = iopos - node_sz;
 674
 675        for (i = 2; i < UBIFS_LPT_FANOUT; i++)
 676                pnode->lprops[i].free = c->leb_size;
 677
 678        /* Add first pnode */
 679        ubifs_pack_pnode(c, p, pnode);
 680        p += c->pnode_sz;
 681        len = c->pnode_sz;
 682        pnode->num += 1;
 683
 684        /* Reset pnode values for remaining pnodes */
 685        pnode->lprops[0].free = c->leb_size;
 686        pnode->lprops[0].dirty = 0;
 687        pnode->lprops[0].flags = 0;
 688
 689        pnode->lprops[1].free = c->leb_size;
 690        pnode->lprops[1].dirty = 0;
 691
 692        /*
 693         * To calculate the internal node branches, we keep information about
 694         * the level below.
 695         */
 696        blnum = lnum; /* LEB number of level below */
 697        boffs = 0; /* Offset of level below */
 698        bcnt = cnt; /* Number of nodes in level below */
 699        bsz = c->pnode_sz; /* Size of nodes in level below */
 700
 701        /* Add all remaining pnodes */
 702        for (i = 1; i < cnt; i++) {
 703                if (len + c->pnode_sz > c->leb_size) {
 704                        alen = ALIGN(len, c->min_io_size);
 705                        set_ltab(c, lnum, c->leb_size - alen, alen - len);
 706                        memset(p, 0xff, alen - len);
 707                        err = ubifs_leb_change(c, lnum++, buf, alen);
 708                        if (err)
 709                                goto out;
 710                        p = buf;
 711                        len = 0;
 712                }
 713                ubifs_pack_pnode(c, p, pnode);
 714                p += c->pnode_sz;
 715                len += c->pnode_sz;
 716                /*
 717                 * pnodes are simply numbered left to right starting at zero,
 718                 * which means the pnode number can be used easily to traverse
 719                 * down the tree to the corresponding pnode.
 720                 */
 721                pnode->num += 1;
 722        }
 723
 724        row = 0;
 725        for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
 726                row += 1;
 727        /* Add all nnodes, one level at a time */
 728        while (1) {
 729                /* Number of internal nodes (nnodes) at next level */
 730                cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
 731                for (i = 0; i < cnt; i++) {
 732                        if (len + c->nnode_sz > c->leb_size) {
 733                                alen = ALIGN(len, c->min_io_size);
 734                                set_ltab(c, lnum, c->leb_size - alen,
 735                                            alen - len);
 736                                memset(p, 0xff, alen - len);
 737                                err = ubifs_leb_change(c, lnum++, buf, alen);
 738                                if (err)
 739                                        goto out;
 740                                p = buf;
 741                                len = 0;
 742                        }
 743                        /* Only 1 nnode at this level, so it is the root */
 744                        if (cnt == 1) {
 745                                c->lpt_lnum = lnum;
 746                                c->lpt_offs = len;
 747                        }
 748                        /* Set branches to the level below */
 749                        for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
 750                                if (bcnt) {
 751                                        if (boffs + bsz > c->leb_size) {
 752                                                blnum += 1;
 753                                                boffs = 0;
 754                                        }
 755                                        nnode->nbranch[j].lnum = blnum;
 756                                        nnode->nbranch[j].offs = boffs;
 757                                        boffs += bsz;
 758                                        bcnt--;
 759                                } else {
 760                                        nnode->nbranch[j].lnum = 0;
 761                                        nnode->nbranch[j].offs = 0;
 762                                }
 763                        }
 764                        nnode->num = calc_nnode_num(row, i);
 765                        ubifs_pack_nnode(c, p, nnode);
 766                        p += c->nnode_sz;
 767                        len += c->nnode_sz;
 768                }
 769                /* Only 1 nnode at this level, so it is the root */
 770                if (cnt == 1)
 771                        break;
 772                /* Update the information about the level below */
 773                bcnt = cnt;
 774                bsz = c->nnode_sz;
 775                row -= 1;
 776        }
 777
 778        if (*big_lpt) {
 779                /* Need to add LPT's save table */
 780                if (len + c->lsave_sz > c->leb_size) {
 781                        alen = ALIGN(len, c->min_io_size);
 782                        set_ltab(c, lnum, c->leb_size - alen, alen - len);
 783                        memset(p, 0xff, alen - len);
 784                        err = ubifs_leb_change(c, lnum++, buf, alen);
 785                        if (err)
 786                                goto out;
 787                        p = buf;
 788                        len = 0;
 789                }
 790
 791                c->lsave_lnum = lnum;
 792                c->lsave_offs = len;
 793
 794                for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
 795                        lsave[i] = c->main_first + i;
 796                for (; i < c->lsave_cnt; i++)
 797                        lsave[i] = c->main_first;
 798
 799                ubifs_pack_lsave(c, p, lsave);
 800                p += c->lsave_sz;
 801                len += c->lsave_sz;
 802        }
 803
 804        /* Need to add LPT's own LEB properties table */
 805        if (len + c->ltab_sz > c->leb_size) {
 806                alen = ALIGN(len, c->min_io_size);
 807                set_ltab(c, lnum, c->leb_size - alen, alen - len);
 808                memset(p, 0xff, alen - len);
 809                err = ubifs_leb_change(c, lnum++, buf, alen);
 810                if (err)
 811                        goto out;
 812                p = buf;
 813                len = 0;
 814        }
 815
 816        c->ltab_lnum = lnum;
 817        c->ltab_offs = len;
 818
 819        /* Update ltab before packing it */
 820        len += c->ltab_sz;
 821        alen = ALIGN(len, c->min_io_size);
 822        set_ltab(c, lnum, c->leb_size - alen, alen - len);
 823
 824        ubifs_pack_ltab(c, p, ltab);
 825        p += c->ltab_sz;
 826
 827        /* Write remaining buffer */
 828        memset(p, 0xff, alen - len);
 829        err = ubifs_leb_change(c, lnum, buf, alen);
 830        if (err)
 831                goto out;
 832
 833        c->nhead_lnum = lnum;
 834        c->nhead_offs = ALIGN(len, c->min_io_size);
 835
 836        dbg_lp("space_bits %d", c->space_bits);
 837        dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
 838        dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
 839        dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
 840        dbg_lp("pcnt_bits %d", c->pcnt_bits);
 841        dbg_lp("lnum_bits %d", c->lnum_bits);
 842        dbg_lp("pnode_sz %d", c->pnode_sz);
 843        dbg_lp("nnode_sz %d", c->nnode_sz);
 844        dbg_lp("ltab_sz %d", c->ltab_sz);
 845        dbg_lp("lsave_sz %d", c->lsave_sz);
 846        dbg_lp("lsave_cnt %d", c->lsave_cnt);
 847        dbg_lp("lpt_hght %d", c->lpt_hght);
 848        dbg_lp("big_lpt %d", c->big_lpt);
 849        dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
 850        dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
 851        dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
 852        if (c->big_lpt)
 853                dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
 854out:
 855        c->ltab = NULL;
 856        kfree(lsave);
 857        vfree(ltab);
 858        vfree(buf);
 859        kfree(nnode);
 860        kfree(pnode);
 861        return err;
 862}
 863
 864/**
 865 * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
 866 * @c: UBIFS file-system description object
 867 * @pnode: pnode
 868 *
 869 * When a pnode is loaded into memory, the LEB properties it contains are added,
 870 * by this function, to the LEB category lists and heaps.
 871 */
 872static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
 873{
 874        int i;
 875
 876        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 877                int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
 878                int lnum = pnode->lprops[i].lnum;
 879
 880                if (!lnum)
 881                        return;
 882                ubifs_add_to_cat(c, &pnode->lprops[i], cat);
 883        }
 884}
 885
 886/**
 887 * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
 888 * @c: UBIFS file-system description object
 889 * @old_pnode: pnode copied
 890 * @new_pnode: pnode copy
 891 *
 892 * During commit it is sometimes necessary to copy a pnode
 893 * (see dirty_cow_pnode).  When that happens, references in
 894 * category lists and heaps must be replaced.  This function does that.
 895 */
 896static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
 897                         struct ubifs_pnode *new_pnode)
 898{
 899        int i;
 900
 901        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 902                if (!new_pnode->lprops[i].lnum)
 903                        return;
 904                ubifs_replace_cat(c, &old_pnode->lprops[i],
 905                                  &new_pnode->lprops[i]);
 906        }
 907}
 908
 909/**
 910 * check_lpt_crc - check LPT node crc is correct.
 911 * @c: UBIFS file-system description object
 912 * @buf: buffer containing node
 913 * @len: length of node
 914 *
 915 * This function returns %0 on success and a negative error code on failure.
 916 */
 917static int check_lpt_crc(const struct ubifs_info *c, void *buf, int len)
 918{
 919        int pos = 0;
 920        uint8_t *addr = buf;
 921        uint16_t crc, calc_crc;
 922
 923        crc = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_CRC_BITS);
 924        calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 925                         len - UBIFS_LPT_CRC_BYTES);
 926        if (crc != calc_crc) {
 927                ubifs_err(c, "invalid crc in LPT node: crc %hx calc %hx",
 928                          crc, calc_crc);
 929                dump_stack();
 930                return -EINVAL;
 931        }
 932        return 0;
 933}
 934
 935/**
 936 * check_lpt_type - check LPT node type is correct.
 937 * @c: UBIFS file-system description object
 938 * @addr: address of type bit field is passed and returned updated here
 939 * @pos: position of type bit field is passed and returned updated here
 940 * @type: expected type
 941 *
 942 * This function returns %0 on success and a negative error code on failure.
 943 */
 944static int check_lpt_type(const struct ubifs_info *c, uint8_t **addr,
 945                          int *pos, int type)
 946{
 947        int node_type;
 948
 949        node_type = ubifs_unpack_bits(c, addr, pos, UBIFS_LPT_TYPE_BITS);
 950        if (node_type != type) {
 951                ubifs_err(c, "invalid type (%d) in LPT node type %d",
 952                          node_type, type);
 953                dump_stack();
 954                return -EINVAL;
 955        }
 956        return 0;
 957}
 958
 959/**
 960 * unpack_pnode - unpack a pnode.
 961 * @c: UBIFS file-system description object
 962 * @buf: buffer containing packed pnode to unpack
 963 * @pnode: pnode structure to fill
 964 *
 965 * This function returns %0 on success and a negative error code on failure.
 966 */
 967static int unpack_pnode(const struct ubifs_info *c, void *buf,
 968                        struct ubifs_pnode *pnode)
 969{
 970        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 971        int i, pos = 0, err;
 972
 973        err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_PNODE);
 974        if (err)
 975                return err;
 976        if (c->big_lpt)
 977                pnode->num = ubifs_unpack_bits(c, &addr, &pos, c->pcnt_bits);
 978        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 979                struct ubifs_lprops * const lprops = &pnode->lprops[i];
 980
 981                lprops->free = ubifs_unpack_bits(c, &addr, &pos, c->space_bits);
 982                lprops->free <<= 3;
 983                lprops->dirty = ubifs_unpack_bits(c, &addr, &pos, c->space_bits);
 984                lprops->dirty <<= 3;
 985
 986                if (ubifs_unpack_bits(c, &addr, &pos, 1))
 987                        lprops->flags = LPROPS_INDEX;
 988                else
 989                        lprops->flags = 0;
 990                lprops->flags |= ubifs_categorize_lprops(c, lprops);
 991        }
 992        err = check_lpt_crc(c, buf, c->pnode_sz);
 993        return err;
 994}
 995
 996/**
 997 * ubifs_unpack_nnode - unpack a nnode.
 998 * @c: UBIFS file-system description object
 999 * @buf: buffer containing packed nnode to unpack
1000 * @nnode: nnode structure to fill
1001 *
1002 * This function returns %0 on success and a negative error code on failure.
1003 */
1004int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
1005                       struct ubifs_nnode *nnode)
1006{
1007        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1008        int i, pos = 0, err;
1009
1010        err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_NNODE);
1011        if (err)
1012                return err;
1013        if (c->big_lpt)
1014                nnode->num = ubifs_unpack_bits(c, &addr, &pos, c->pcnt_bits);
1015        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1016                int lnum;
1017
1018                lnum = ubifs_unpack_bits(c, &addr, &pos, c->lpt_lnum_bits) +
1019                       c->lpt_first;
1020                if (lnum == c->lpt_last + 1)
1021                        lnum = 0;
1022                nnode->nbranch[i].lnum = lnum;
1023                nnode->nbranch[i].offs = ubifs_unpack_bits(c, &addr, &pos,
1024                                                     c->lpt_offs_bits);
1025        }
1026        err = check_lpt_crc(c, buf, c->nnode_sz);
1027        return err;
1028}
1029
1030/**
1031 * unpack_ltab - unpack the LPT's own lprops table.
1032 * @c: UBIFS file-system description object
1033 * @buf: buffer from which to unpack
1034 *
1035 * This function returns %0 on success and a negative error code on failure.
1036 */
1037static int unpack_ltab(const struct ubifs_info *c, void *buf)
1038{
1039        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1040        int i, pos = 0, err;
1041
1042        err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LTAB);
1043        if (err)
1044                return err;
1045        for (i = 0; i < c->lpt_lebs; i++) {
1046                int free = ubifs_unpack_bits(c, &addr, &pos, c->lpt_spc_bits);
1047                int dirty = ubifs_unpack_bits(c, &addr, &pos, c->lpt_spc_bits);
1048
1049                if (free < 0 || free > c->leb_size || dirty < 0 ||
1050                    dirty > c->leb_size || free + dirty > c->leb_size)
1051                        return -EINVAL;
1052
1053                c->ltab[i].free = free;
1054                c->ltab[i].dirty = dirty;
1055                c->ltab[i].tgc = 0;
1056                c->ltab[i].cmt = 0;
1057        }
1058        err = check_lpt_crc(c, buf, c->ltab_sz);
1059        return err;
1060}
1061
1062/**
1063 * unpack_lsave - unpack the LPT's save table.
1064 * @c: UBIFS file-system description object
1065 * @buf: buffer from which to unpack
1066 *
1067 * This function returns %0 on success and a negative error code on failure.
1068 */
1069static int unpack_lsave(const struct ubifs_info *c, void *buf)
1070{
1071        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1072        int i, pos = 0, err;
1073
1074        err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LSAVE);
1075        if (err)
1076                return err;
1077        for (i = 0; i < c->lsave_cnt; i++) {
1078                int lnum = ubifs_unpack_bits(c, &addr, &pos, c->lnum_bits);
1079
1080                if (lnum < c->main_first || lnum >= c->leb_cnt)
1081                        return -EINVAL;
1082                c->lsave[i] = lnum;
1083        }
1084        err = check_lpt_crc(c, buf, c->lsave_sz);
1085        return err;
1086}
1087
1088/**
1089 * validate_nnode - validate a nnode.
1090 * @c: UBIFS file-system description object
1091 * @nnode: nnode to validate
1092 * @parent: parent nnode (or NULL for the root nnode)
1093 * @iip: index in parent
1094 *
1095 * This function returns %0 on success and a negative error code on failure.
1096 */
1097static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode,
1098                          struct ubifs_nnode *parent, int iip)
1099{
1100        int i, lvl, max_offs;
1101
1102        if (c->big_lpt) {
1103                int num = calc_nnode_num_from_parent(c, parent, iip);
1104
1105                if (nnode->num != num)
1106                        return -EINVAL;
1107        }
1108        lvl = parent ? parent->level - 1 : c->lpt_hght;
1109        if (lvl < 1)
1110                return -EINVAL;
1111        if (lvl == 1)
1112                max_offs = c->leb_size - c->pnode_sz;
1113        else
1114                max_offs = c->leb_size - c->nnode_sz;
1115        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1116                int lnum = nnode->nbranch[i].lnum;
1117                int offs = nnode->nbranch[i].offs;
1118
1119                if (lnum == 0) {
1120                        if (offs != 0)
1121                                return -EINVAL;
1122                        continue;
1123                }
1124                if (lnum < c->lpt_first || lnum > c->lpt_last)
1125                        return -EINVAL;
1126                if (offs < 0 || offs > max_offs)
1127                        return -EINVAL;
1128        }
1129        return 0;
1130}
1131
1132/**
1133 * validate_pnode - validate a pnode.
1134 * @c: UBIFS file-system description object
1135 * @pnode: pnode to validate
1136 * @parent: parent nnode
1137 * @iip: index in parent
1138 *
1139 * This function returns %0 on success and a negative error code on failure.
1140 */
1141static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode,
1142                          struct ubifs_nnode *parent, int iip)
1143{
1144        int i;
1145
1146        if (c->big_lpt) {
1147                int num = calc_pnode_num_from_parent(c, parent, iip);
1148
1149                if (pnode->num != num)
1150                        return -EINVAL;
1151        }
1152        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1153                int free = pnode->lprops[i].free;
1154                int dirty = pnode->lprops[i].dirty;
1155
1156                if (free < 0 || free > c->leb_size || free % c->min_io_size ||
1157                    (free & 7))
1158                        return -EINVAL;
1159                if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
1160                        return -EINVAL;
1161                if (dirty + free > c->leb_size)
1162                        return -EINVAL;
1163        }
1164        return 0;
1165}
1166
1167/**
1168 * set_pnode_lnum - set LEB numbers on a pnode.
1169 * @c: UBIFS file-system description object
1170 * @pnode: pnode to update
1171 *
1172 * This function calculates the LEB numbers for the LEB properties it contains
1173 * based on the pnode number.
1174 */
1175static void set_pnode_lnum(const struct ubifs_info *c,
1176                           struct ubifs_pnode *pnode)
1177{
1178        int i, lnum;
1179
1180        lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
1181        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1182                if (lnum >= c->leb_cnt)
1183                        return;
1184                pnode->lprops[i].lnum = lnum++;
1185        }
1186}
1187
1188/**
1189 * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
1190 * @c: UBIFS file-system description object
1191 * @parent: parent nnode (or NULL for the root)
1192 * @iip: index in parent
1193 *
1194 * This function returns %0 on success and a negative error code on failure.
1195 */
1196int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1197{
1198        struct ubifs_nbranch *branch = NULL;
1199        struct ubifs_nnode *nnode = NULL;
1200        void *buf = c->lpt_nod_buf;
1201        int err, lnum, offs;
1202
1203        if (parent) {
1204                branch = &parent->nbranch[iip];
1205                lnum = branch->lnum;
1206                offs = branch->offs;
1207        } else {
1208                lnum = c->lpt_lnum;
1209                offs = c->lpt_offs;
1210        }
1211        nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1212        if (!nnode) {
1213                err = -ENOMEM;
1214                goto out;
1215        }
1216        if (lnum == 0) {
1217                /*
1218                 * This nnode was not written which just means that the LEB
1219                 * properties in the subtree below it describe empty LEBs. We
1220                 * make the nnode as though we had read it, which in fact means
1221                 * doing almost nothing.
1222                 */
1223                if (c->big_lpt)
1224                        nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1225        } else {
1226                err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1);
1227                if (err)
1228                        goto out;
1229                err = ubifs_unpack_nnode(c, buf, nnode);
1230                if (err)
1231                        goto out;
1232        }
1233        err = validate_nnode(c, nnode, parent, iip);
1234        if (err)
1235                goto out;
1236        if (!c->big_lpt)
1237                nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1238        if (parent) {
1239                branch->nnode = nnode;
1240                nnode->level = parent->level - 1;
1241        } else {
1242                c->nroot = nnode;
1243                nnode->level = c->lpt_hght;
1244        }
1245        nnode->parent = parent;
1246        nnode->iip = iip;
1247        return 0;
1248
1249out:
1250        ubifs_err(c, "error %d reading nnode at %d:%d", err, lnum, offs);
1251        dump_stack();
1252        kfree(nnode);
1253        return err;
1254}
1255
1256/**
1257 * read_pnode - read a pnode from flash and link it to the tree in memory.
1258 * @c: UBIFS file-system description object
1259 * @parent: parent nnode
1260 * @iip: index in parent
1261 *
1262 * This function returns %0 on success and a negative error code on failure.
1263 */
1264static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1265{
1266        struct ubifs_nbranch *branch;
1267        struct ubifs_pnode *pnode = NULL;
1268        void *buf = c->lpt_nod_buf;
1269        int err, lnum, offs;
1270
1271        branch = &parent->nbranch[iip];
1272        lnum = branch->lnum;
1273        offs = branch->offs;
1274        pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1275        if (!pnode)
1276                return -ENOMEM;
1277
1278        if (lnum == 0) {
1279                /*
1280                 * This pnode was not written which just means that the LEB
1281                 * properties in it describe empty LEBs. We make the pnode as
1282                 * though we had read it.
1283                 */
1284                int i;
1285
1286                if (c->big_lpt)
1287                        pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1288                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1289                        struct ubifs_lprops * const lprops = &pnode->lprops[i];
1290
1291                        lprops->free = c->leb_size;
1292                        lprops->flags = ubifs_categorize_lprops(c, lprops);
1293                }
1294        } else {
1295                err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1);
1296                if (err)
1297                        goto out;
1298                err = unpack_pnode(c, buf, pnode);
1299                if (err)
1300                        goto out;
1301        }
1302        err = validate_pnode(c, pnode, parent, iip);
1303        if (err)
1304                goto out;
1305        if (!c->big_lpt)
1306                pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1307        branch->pnode = pnode;
1308        pnode->parent = parent;
1309        pnode->iip = iip;
1310        set_pnode_lnum(c, pnode);
1311        c->pnodes_have += 1;
1312        return 0;
1313
1314out:
1315        ubifs_err(c, "error %d reading pnode at %d:%d", err, lnum, offs);
1316        ubifs_dump_pnode(c, pnode, parent, iip);
1317        dump_stack();
1318        ubifs_err(c, "calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
1319        kfree(pnode);
1320        return err;
1321}
1322
1323/**
1324 * read_ltab - read LPT's own lprops table.
1325 * @c: UBIFS file-system description object
1326 *
1327 * This function returns %0 on success and a negative error code on failure.
1328 */
1329static int read_ltab(struct ubifs_info *c)
1330{
1331        int err;
1332        void *buf;
1333
1334        buf = vmalloc(c->ltab_sz);
1335        if (!buf)
1336                return -ENOMEM;
1337        err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1);
1338        if (err)
1339                goto out;
1340        err = unpack_ltab(c, buf);
1341out:
1342        vfree(buf);
1343        return err;
1344}
1345
1346/**
1347 * read_lsave - read LPT's save table.
1348 * @c: UBIFS file-system description object
1349 *
1350 * This function returns %0 on success and a negative error code on failure.
1351 */
1352static int read_lsave(struct ubifs_info *c)
1353{
1354        int err, i;
1355        void *buf;
1356
1357        buf = vmalloc(c->lsave_sz);
1358        if (!buf)
1359                return -ENOMEM;
1360        err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs,
1361                             c->lsave_sz, 1);
1362        if (err)
1363                goto out;
1364        err = unpack_lsave(c, buf);
1365        if (err)
1366                goto out;
1367        for (i = 0; i < c->lsave_cnt; i++) {
1368                int lnum = c->lsave[i];
1369                struct ubifs_lprops *lprops;
1370
1371                /*
1372                 * Due to automatic resizing, the values in the lsave table
1373                 * could be beyond the volume size - just ignore them.
1374                 */
1375                if (lnum >= c->leb_cnt)
1376                        continue;
1377                lprops = ubifs_lpt_lookup(c, lnum);
1378                if (IS_ERR(lprops)) {
1379                        err = PTR_ERR(lprops);
1380                        goto out;
1381                }
1382        }
1383out:
1384        vfree(buf);
1385        return err;
1386}
1387
1388/**
1389 * ubifs_get_nnode - get a nnode.
1390 * @c: UBIFS file-system description object
1391 * @parent: parent nnode (or NULL for the root)
1392 * @iip: index in parent
1393 *
1394 * This function returns a pointer to the nnode on success or a negative error
1395 * code on failure.
1396 */
1397struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
1398                                    struct ubifs_nnode *parent, int iip)
1399{
1400        struct ubifs_nbranch *branch;
1401        struct ubifs_nnode *nnode;
1402        int err;
1403
1404        branch = &parent->nbranch[iip];
1405        nnode = branch->nnode;
1406        if (nnode)
1407                return nnode;
1408        err = ubifs_read_nnode(c, parent, iip);
1409        if (err)
1410                return ERR_PTR(err);
1411        return branch->nnode;
1412}
1413
1414/**
1415 * ubifs_get_pnode - get a pnode.
1416 * @c: UBIFS file-system description object
1417 * @parent: parent nnode
1418 * @iip: index in parent
1419 *
1420 * This function returns a pointer to the pnode on success or a negative error
1421 * code on failure.
1422 */
1423struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
1424                                    struct ubifs_nnode *parent, int iip)
1425{
1426        struct ubifs_nbranch *branch;
1427        struct ubifs_pnode *pnode;
1428        int err;
1429
1430        branch = &parent->nbranch[iip];
1431        pnode = branch->pnode;
1432        if (pnode)
1433                return pnode;
1434        err = read_pnode(c, parent, iip);
1435        if (err)
1436                return ERR_PTR(err);
1437        update_cats(c, branch->pnode);
1438        return branch->pnode;
1439}
1440
1441/**
1442 * ubifs_lpt_lookup - lookup LEB properties in the LPT.
1443 * @c: UBIFS file-system description object
1444 * @lnum: LEB number to lookup
1445 *
1446 * This function returns a pointer to the LEB properties on success or a
1447 * negative error code on failure.
1448 */
1449struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
1450{
1451        int err, i, h, iip, shft;
1452        struct ubifs_nnode *nnode;
1453        struct ubifs_pnode *pnode;
1454
1455        if (!c->nroot) {
1456                err = ubifs_read_nnode(c, NULL, 0);
1457                if (err)
1458                        return ERR_PTR(err);
1459        }
1460        nnode = c->nroot;
1461        i = lnum - c->main_first;
1462        shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1463        for (h = 1; h < c->lpt_hght; h++) {
1464                iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1465                shft -= UBIFS_LPT_FANOUT_SHIFT;
1466                nnode = ubifs_get_nnode(c, nnode, iip);
1467                if (IS_ERR(nnode))
1468                        return ERR_CAST(nnode);
1469        }
1470        iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1471        pnode = ubifs_get_pnode(c, nnode, iip);
1472        if (IS_ERR(pnode))
1473                return ERR_CAST(pnode);
1474        iip = (i & (UBIFS_LPT_FANOUT - 1));
1475        dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1476               pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1477               pnode->lprops[iip].flags);
1478        return &pnode->lprops[iip];
1479}
1480
1481/**
1482 * dirty_cow_nnode - ensure a nnode is not being committed.
1483 * @c: UBIFS file-system description object
1484 * @nnode: nnode to check
1485 *
1486 * Returns dirtied nnode on success or negative error code on failure.
1487 */
1488static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
1489                                           struct ubifs_nnode *nnode)
1490{
1491        struct ubifs_nnode *n;
1492        int i;
1493
1494        if (!test_bit(COW_CNODE, &nnode->flags)) {
1495                /* nnode is not being committed */
1496                if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
1497                        c->dirty_nn_cnt += 1;
1498                        ubifs_add_nnode_dirt(c, nnode);
1499                }
1500                return nnode;
1501        }
1502
1503        /* nnode is being committed, so copy it */
1504        n = kmemdup(nnode, sizeof(struct ubifs_nnode), GFP_NOFS);
1505        if (unlikely(!n))
1506                return ERR_PTR(-ENOMEM);
1507
1508        n->cnext = NULL;
1509        __set_bit(DIRTY_CNODE, &n->flags);
1510        __clear_bit(COW_CNODE, &n->flags);
1511
1512        /* The children now have new parent */
1513        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1514                struct ubifs_nbranch *branch = &n->nbranch[i];
1515
1516                if (branch->cnode)
1517                        branch->cnode->parent = n;
1518        }
1519
1520        ubifs_assert(c, !test_bit(OBSOLETE_CNODE, &nnode->flags));
1521        __set_bit(OBSOLETE_CNODE, &nnode->flags);
1522
1523        c->dirty_nn_cnt += 1;
1524        ubifs_add_nnode_dirt(c, nnode);
1525        if (nnode->parent)
1526                nnode->parent->nbranch[n->iip].nnode = n;
1527        else
1528                c->nroot = n;
1529        return n;
1530}
1531
1532/**
1533 * dirty_cow_pnode - ensure a pnode is not being committed.
1534 * @c: UBIFS file-system description object
1535 * @pnode: pnode to check
1536 *
1537 * Returns dirtied pnode on success or negative error code on failure.
1538 */
1539static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
1540                                           struct ubifs_pnode *pnode)
1541{
1542        struct ubifs_pnode *p;
1543
1544        if (!test_bit(COW_CNODE, &pnode->flags)) {
1545                /* pnode is not being committed */
1546                if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
1547                        c->dirty_pn_cnt += 1;
1548                        add_pnode_dirt(c, pnode);
1549                }
1550                return pnode;
1551        }
1552
1553        /* pnode is being committed, so copy it */
1554        p = kmemdup(pnode, sizeof(struct ubifs_pnode), GFP_NOFS);
1555        if (unlikely(!p))
1556                return ERR_PTR(-ENOMEM);
1557
1558        p->cnext = NULL;
1559        __set_bit(DIRTY_CNODE, &p->flags);
1560        __clear_bit(COW_CNODE, &p->flags);
1561        replace_cats(c, pnode, p);
1562
1563        ubifs_assert(c, !test_bit(OBSOLETE_CNODE, &pnode->flags));
1564        __set_bit(OBSOLETE_CNODE, &pnode->flags);
1565
1566        c->dirty_pn_cnt += 1;
1567        add_pnode_dirt(c, pnode);
1568        pnode->parent->nbranch[p->iip].pnode = p;
1569        return p;
1570}
1571
1572/**
1573 * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
1574 * @c: UBIFS file-system description object
1575 * @lnum: LEB number to lookup
1576 *
1577 * This function returns a pointer to the LEB properties on success or a
1578 * negative error code on failure.
1579 */
1580struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
1581{
1582        int err, i, h, iip, shft;
1583        struct ubifs_nnode *nnode;
1584        struct ubifs_pnode *pnode;
1585
1586        if (!c->nroot) {
1587                err = ubifs_read_nnode(c, NULL, 0);
1588                if (err)
1589                        return ERR_PTR(err);
1590        }
1591        nnode = c->nroot;
1592        nnode = dirty_cow_nnode(c, nnode);
1593        if (IS_ERR(nnode))
1594                return ERR_CAST(nnode);
1595        i = lnum - c->main_first;
1596        shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1597        for (h = 1; h < c->lpt_hght; h++) {
1598                iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1599                shft -= UBIFS_LPT_FANOUT_SHIFT;
1600                nnode = ubifs_get_nnode(c, nnode, iip);
1601                if (IS_ERR(nnode))
1602                        return ERR_CAST(nnode);
1603                nnode = dirty_cow_nnode(c, nnode);
1604                if (IS_ERR(nnode))
1605                        return ERR_CAST(nnode);
1606        }
1607        iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1608        pnode = ubifs_get_pnode(c, nnode, iip);
1609        if (IS_ERR(pnode))
1610                return ERR_CAST(pnode);
1611        pnode = dirty_cow_pnode(c, pnode);
1612        if (IS_ERR(pnode))
1613                return ERR_CAST(pnode);
1614        iip = (i & (UBIFS_LPT_FANOUT - 1));
1615        dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1616               pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1617               pnode->lprops[iip].flags);
1618        ubifs_assert(c, test_bit(DIRTY_CNODE, &pnode->flags));
1619        return &pnode->lprops[iip];
1620}
1621
1622/**
1623 * lpt_init_rd - initialize the LPT for reading.
1624 * @c: UBIFS file-system description object
1625 *
1626 * This function returns %0 on success and a negative error code on failure.
1627 */
1628static int lpt_init_rd(struct ubifs_info *c)
1629{
1630        int err, i;
1631
1632        c->ltab = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops),
1633                                     c->lpt_lebs));
1634        if (!c->ltab)
1635                return -ENOMEM;
1636
1637        i = max_t(int, c->nnode_sz, c->pnode_sz);
1638        c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
1639        if (!c->lpt_nod_buf)
1640                return -ENOMEM;
1641
1642        for (i = 0; i < LPROPS_HEAP_CNT; i++) {
1643                c->lpt_heap[i].arr = kmalloc_array(LPT_HEAP_SZ,
1644                                                   sizeof(void *),
1645                                                   GFP_KERNEL);
1646                if (!c->lpt_heap[i].arr)
1647                        return -ENOMEM;
1648                c->lpt_heap[i].cnt = 0;
1649                c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
1650        }
1651
1652        c->dirty_idx.arr = kmalloc_array(LPT_HEAP_SZ, sizeof(void *),
1653                                         GFP_KERNEL);
1654        if (!c->dirty_idx.arr)
1655                return -ENOMEM;
1656        c->dirty_idx.cnt = 0;
1657        c->dirty_idx.max_cnt = LPT_HEAP_SZ;
1658
1659        err = read_ltab(c);
1660        if (err)
1661                return err;
1662
1663        dbg_lp("space_bits %d", c->space_bits);
1664        dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
1665        dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
1666        dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
1667        dbg_lp("pcnt_bits %d", c->pcnt_bits);
1668        dbg_lp("lnum_bits %d", c->lnum_bits);
1669        dbg_lp("pnode_sz %d", c->pnode_sz);
1670        dbg_lp("nnode_sz %d", c->nnode_sz);
1671        dbg_lp("ltab_sz %d", c->ltab_sz);
1672        dbg_lp("lsave_sz %d", c->lsave_sz);
1673        dbg_lp("lsave_cnt %d", c->lsave_cnt);
1674        dbg_lp("lpt_hght %d", c->lpt_hght);
1675        dbg_lp("big_lpt %d", c->big_lpt);
1676        dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
1677        dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
1678        dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
1679        if (c->big_lpt)
1680                dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
1681
1682        return 0;
1683}
1684
1685/**
1686 * lpt_init_wr - initialize the LPT for writing.
1687 * @c: UBIFS file-system description object
1688 *
1689 * 'lpt_init_rd()' must have been called already.
1690 *
1691 * This function returns %0 on success and a negative error code on failure.
1692 */
1693static int lpt_init_wr(struct ubifs_info *c)
1694{
1695        int err, i;
1696
1697        c->ltab_cmt = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops),
1698                                         c->lpt_lebs));
1699        if (!c->ltab_cmt)
1700                return -ENOMEM;
1701
1702        c->lpt_buf = vmalloc(c->leb_size);
1703        if (!c->lpt_buf)
1704                return -ENOMEM;
1705
1706        if (c->big_lpt) {
1707                c->lsave = kmalloc_array(c->lsave_cnt, sizeof(int), GFP_NOFS);
1708                if (!c->lsave)
1709                        return -ENOMEM;
1710                err = read_lsave(c);
1711                if (err)
1712                        return err;
1713        }
1714
1715        for (i = 0; i < c->lpt_lebs; i++)
1716                if (c->ltab[i].free == c->leb_size) {
1717                        err = ubifs_leb_unmap(c, i + c->lpt_first);
1718                        if (err)
1719                                return err;
1720                }
1721
1722        return 0;
1723}
1724
1725/**
1726 * ubifs_lpt_init - initialize the LPT.
1727 * @c: UBIFS file-system description object
1728 * @rd: whether to initialize lpt for reading
1729 * @wr: whether to initialize lpt for writing
1730 *
1731 * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
1732 * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
1733 * true.
1734 *
1735 * This function returns %0 on success and a negative error code on failure.
1736 */
1737int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
1738{
1739        int err;
1740
1741        if (rd) {
1742                err = lpt_init_rd(c);
1743                if (err)
1744                        goto out_err;
1745        }
1746
1747        if (wr) {
1748                err = lpt_init_wr(c);
1749                if (err)
1750                        goto out_err;
1751        }
1752
1753        return 0;
1754
1755out_err:
1756        if (wr)
1757                ubifs_lpt_free(c, 1);
1758        if (rd)
1759                ubifs_lpt_free(c, 0);
1760        return err;
1761}
1762
1763/**
1764 * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
1765 * @nnode: where to keep a nnode
1766 * @pnode: where to keep a pnode
1767 * @cnode: where to keep a cnode
1768 * @in_tree: is the node in the tree in memory
1769 * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
1770 * the tree
1771 * @ptr.pnode: ditto for pnode
1772 * @ptr.cnode: ditto for cnode
1773 */
1774struct lpt_scan_node {
1775        union {
1776                struct ubifs_nnode nnode;
1777                struct ubifs_pnode pnode;
1778                struct ubifs_cnode cnode;
1779        };
1780        int in_tree;
1781        union {
1782                struct ubifs_nnode *nnode;
1783                struct ubifs_pnode *pnode;
1784                struct ubifs_cnode *cnode;
1785        } ptr;
1786};
1787
1788/**
1789 * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
1790 * @c: the UBIFS file-system description object
1791 * @path: where to put the nnode
1792 * @parent: parent of the nnode
1793 * @iip: index in parent of the nnode
1794 *
1795 * This function returns a pointer to the nnode on success or a negative error
1796 * code on failure.
1797 */
1798static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
1799                                          struct lpt_scan_node *path,
1800                                          struct ubifs_nnode *parent, int iip)
1801{
1802        struct ubifs_nbranch *branch;
1803        struct ubifs_nnode *nnode;
1804        void *buf = c->lpt_nod_buf;
1805        int err;
1806
1807        branch = &parent->nbranch[iip];
1808        nnode = branch->nnode;
1809        if (nnode) {
1810                path->in_tree = 1;
1811                path->ptr.nnode = nnode;
1812                return nnode;
1813        }
1814        nnode = &path->nnode;
1815        path->in_tree = 0;
1816        path->ptr.nnode = nnode;
1817        memset(nnode, 0, sizeof(struct ubifs_nnode));
1818        if (branch->lnum == 0) {
1819                /*
1820                 * This nnode was not written which just means that the LEB
1821                 * properties in the subtree below it describe empty LEBs. We
1822                 * make the nnode as though we had read it, which in fact means
1823                 * doing almost nothing.
1824                 */
1825                if (c->big_lpt)
1826                        nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1827        } else {
1828                err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1829                                     c->nnode_sz, 1);
1830                if (err)
1831                        return ERR_PTR(err);
1832                err = ubifs_unpack_nnode(c, buf, nnode);
1833                if (err)
1834                        return ERR_PTR(err);
1835        }
1836        err = validate_nnode(c, nnode, parent, iip);
1837        if (err)
1838                return ERR_PTR(err);
1839        if (!c->big_lpt)
1840                nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1841        nnode->level = parent->level - 1;
1842        nnode->parent = parent;
1843        nnode->iip = iip;
1844        return nnode;
1845}
1846
1847/**
1848 * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
1849 * @c: the UBIFS file-system description object
1850 * @path: where to put the pnode
1851 * @parent: parent of the pnode
1852 * @iip: index in parent of the pnode
1853 *
1854 * This function returns a pointer to the pnode on success or a negative error
1855 * code on failure.
1856 */
1857static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
1858                                          struct lpt_scan_node *path,
1859                                          struct ubifs_nnode *parent, int iip)
1860{
1861        struct ubifs_nbranch *branch;
1862        struct ubifs_pnode *pnode;
1863        void *buf = c->lpt_nod_buf;
1864        int err;
1865
1866        branch = &parent->nbranch[iip];
1867        pnode = branch->pnode;
1868        if (pnode) {
1869                path->in_tree = 1;
1870                path->ptr.pnode = pnode;
1871                return pnode;
1872        }
1873        pnode = &path->pnode;
1874        path->in_tree = 0;
1875        path->ptr.pnode = pnode;
1876        memset(pnode, 0, sizeof(struct ubifs_pnode));
1877        if (branch->lnum == 0) {
1878                /*
1879                 * This pnode was not written which just means that the LEB
1880                 * properties in it describe empty LEBs. We make the pnode as
1881                 * though we had read it.
1882                 */
1883                int i;
1884
1885                if (c->big_lpt)
1886                        pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1887                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1888                        struct ubifs_lprops * const lprops = &pnode->lprops[i];
1889
1890                        lprops->free = c->leb_size;
1891                        lprops->flags = ubifs_categorize_lprops(c, lprops);
1892                }
1893        } else {
1894                ubifs_assert(c, branch->lnum >= c->lpt_first &&
1895                             branch->lnum <= c->lpt_last);
1896                ubifs_assert(c, branch->offs >= 0 && branch->offs < c->leb_size);
1897                err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1898                                     c->pnode_sz, 1);
1899                if (err)
1900                        return ERR_PTR(err);
1901                err = unpack_pnode(c, buf, pnode);
1902                if (err)
1903                        return ERR_PTR(err);
1904        }
1905        err = validate_pnode(c, pnode, parent, iip);
1906        if (err)
1907                return ERR_PTR(err);
1908        if (!c->big_lpt)
1909                pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1910        pnode->parent = parent;
1911        pnode->iip = iip;
1912        set_pnode_lnum(c, pnode);
1913        return pnode;
1914}
1915
1916/**
1917 * ubifs_lpt_scan_nolock - scan the LPT.
1918 * @c: the UBIFS file-system description object
1919 * @start_lnum: LEB number from which to start scanning
1920 * @end_lnum: LEB number at which to stop scanning
1921 * @scan_cb: callback function called for each lprops
1922 * @data: data to be passed to the callback function
1923 *
1924 * This function returns %0 on success and a negative error code on failure.
1925 */
1926int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
1927                          ubifs_lpt_scan_callback scan_cb, void *data)
1928{
1929        int err = 0, i, h, iip, shft;
1930        struct ubifs_nnode *nnode;
1931        struct ubifs_pnode *pnode;
1932        struct lpt_scan_node *path;
1933
1934        if (start_lnum == -1) {
1935                start_lnum = end_lnum + 1;
1936                if (start_lnum >= c->leb_cnt)
1937                        start_lnum = c->main_first;
1938        }
1939
1940        ubifs_assert(c, start_lnum >= c->main_first && start_lnum < c->leb_cnt);
1941        ubifs_assert(c, end_lnum >= c->main_first && end_lnum < c->leb_cnt);
1942
1943        if (!c->nroot) {
1944                err = ubifs_read_nnode(c, NULL, 0);
1945                if (err)
1946                        return err;
1947        }
1948
1949        path = kmalloc_array(c->lpt_hght + 1, sizeof(struct lpt_scan_node),
1950                             GFP_NOFS);
1951        if (!path)
1952                return -ENOMEM;
1953
1954        path[0].ptr.nnode = c->nroot;
1955        path[0].in_tree = 1;
1956again:
1957        /* Descend to the pnode containing start_lnum */
1958        nnode = c->nroot;
1959        i = start_lnum - c->main_first;
1960        shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1961        for (h = 1; h < c->lpt_hght; h++) {
1962                iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1963                shft -= UBIFS_LPT_FANOUT_SHIFT;
1964                nnode = scan_get_nnode(c, path + h, nnode, iip);
1965                if (IS_ERR(nnode)) {
1966                        err = PTR_ERR(nnode);
1967                        goto out;
1968                }
1969        }
1970        iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1971        pnode = scan_get_pnode(c, path + h, nnode, iip);
1972        if (IS_ERR(pnode)) {
1973                err = PTR_ERR(pnode);
1974                goto out;
1975        }
1976        iip = (i & (UBIFS_LPT_FANOUT - 1));
1977
1978        /* Loop for each lprops */
1979        while (1) {
1980                struct ubifs_lprops *lprops = &pnode->lprops[iip];
1981                int ret, lnum = lprops->lnum;
1982
1983                ret = scan_cb(c, lprops, path[h].in_tree, data);
1984                if (ret < 0) {
1985                        err = ret;
1986                        goto out;
1987                }
1988                if (ret & LPT_SCAN_ADD) {
1989                        /* Add all the nodes in path to the tree in memory */
1990                        for (h = 1; h < c->lpt_hght; h++) {
1991                                const size_t sz = sizeof(struct ubifs_nnode);
1992                                struct ubifs_nnode *parent;
1993
1994                                if (path[h].in_tree)
1995                                        continue;
1996                                nnode = kmemdup(&path[h].nnode, sz, GFP_NOFS);
1997                                if (!nnode) {
1998                                        err = -ENOMEM;
1999                                        goto out;
2000                                }
2001                                parent = nnode->parent;
2002                                parent->nbranch[nnode->iip].nnode = nnode;
2003                                path[h].ptr.nnode = nnode;
2004                                path[h].in_tree = 1;
2005                                path[h + 1].cnode.parent = nnode;
2006                        }
2007                        if (path[h].in_tree)
2008                                ubifs_ensure_cat(c, lprops);
2009                        else {
2010                                const size_t sz = sizeof(struct ubifs_pnode);
2011                                struct ubifs_nnode *parent;
2012
2013                                pnode = kmemdup(&path[h].pnode, sz, GFP_NOFS);
2014                                if (!pnode) {
2015                                        err = -ENOMEM;
2016                                        goto out;
2017                                }
2018                                parent = pnode->parent;
2019                                parent->nbranch[pnode->iip].pnode = pnode;
2020                                path[h].ptr.pnode = pnode;
2021                                path[h].in_tree = 1;
2022                                update_cats(c, pnode);
2023                                c->pnodes_have += 1;
2024                        }
2025                        err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
2026                                                  c->nroot, 0, 0);
2027                        if (err)
2028                                goto out;
2029                        err = dbg_check_cats(c);
2030                        if (err)
2031                                goto out;
2032                }
2033                if (ret & LPT_SCAN_STOP) {
2034                        err = 0;
2035                        break;
2036                }
2037                /* Get the next lprops */
2038                if (lnum == end_lnum) {
2039                        /*
2040                         * We got to the end without finding what we were
2041                         * looking for
2042                         */
2043                        err = -ENOSPC;
2044                        goto out;
2045                }
2046                if (lnum + 1 >= c->leb_cnt) {
2047                        /* Wrap-around to the beginning */
2048                        start_lnum = c->main_first;
2049                        goto again;
2050                }
2051                if (iip + 1 < UBIFS_LPT_FANOUT) {
2052                        /* Next lprops is in the same pnode */
2053                        iip += 1;
2054                        continue;
2055                }
2056                /* We need to get the next pnode. Go up until we can go right */
2057                iip = pnode->iip;
2058                while (1) {
2059                        h -= 1;
2060                        ubifs_assert(c, h >= 0);
2061                        nnode = path[h].ptr.nnode;
2062                        if (iip + 1 < UBIFS_LPT_FANOUT)
2063                                break;
2064                        iip = nnode->iip;
2065                }
2066                /* Go right */
2067                iip += 1;
2068                /* Descend to the pnode */
2069                h += 1;
2070                for (; h < c->lpt_hght; h++) {
2071                        nnode = scan_get_nnode(c, path + h, nnode, iip);
2072                        if (IS_ERR(nnode)) {
2073                                err = PTR_ERR(nnode);
2074                                goto out;
2075                        }
2076                        iip = 0;
2077                }
2078                pnode = scan_get_pnode(c, path + h, nnode, iip);
2079                if (IS_ERR(pnode)) {
2080                        err = PTR_ERR(pnode);
2081                        goto out;
2082                }
2083                iip = 0;
2084        }
2085out:
2086        kfree(path);
2087        return err;
2088}
2089
2090/**
2091 * dbg_chk_pnode - check a pnode.
2092 * @c: the UBIFS file-system description object
2093 * @pnode: pnode to check
2094 * @col: pnode column
2095 *
2096 * This function returns %0 on success and a negative error code on failure.
2097 */
2098static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
2099                         int col)
2100{
2101        int i;
2102
2103        if (pnode->num != col) {
2104                ubifs_err(c, "pnode num %d expected %d parent num %d iip %d",
2105                          pnode->num, col, pnode->parent->num, pnode->iip);
2106                return -EINVAL;
2107        }
2108        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
2109                struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
2110                int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
2111                           c->main_first;
2112                int found, cat = lprops->flags & LPROPS_CAT_MASK;
2113                struct ubifs_lpt_heap *heap;
2114                struct list_head *list = NULL;
2115
2116                if (lnum >= c->leb_cnt)
2117                        continue;
2118                if (lprops->lnum != lnum) {
2119                        ubifs_err(c, "bad LEB number %d expected %d",
2120                                  lprops->lnum, lnum);
2121                        return -EINVAL;
2122                }
2123                if (lprops->flags & LPROPS_TAKEN) {
2124                        if (cat != LPROPS_UNCAT) {
2125                                ubifs_err(c, "LEB %d taken but not uncat %d",
2126                                          lprops->lnum, cat);
2127                                return -EINVAL;
2128                        }
2129                        continue;
2130                }
2131                if (lprops->flags & LPROPS_INDEX) {
2132                        switch (cat) {
2133                        case LPROPS_UNCAT:
2134                        case LPROPS_DIRTY_IDX:
2135                        case LPROPS_FRDI_IDX:
2136                                break;
2137                        default:
2138                                ubifs_err(c, "LEB %d index but cat %d",
2139                                          lprops->lnum, cat);
2140                                return -EINVAL;
2141                        }
2142                } else {
2143                        switch (cat) {
2144                        case LPROPS_UNCAT:
2145                        case LPROPS_DIRTY:
2146                        case LPROPS_FREE:
2147                        case LPROPS_EMPTY:
2148                        case LPROPS_FREEABLE:
2149                                break;
2150                        default:
2151                                ubifs_err(c, "LEB %d not index but cat %d",
2152                                          lprops->lnum, cat);
2153                                return -EINVAL;
2154                        }
2155                }
2156                switch (cat) {
2157                case LPROPS_UNCAT:
2158                        list = &c->uncat_list;
2159                        break;
2160                case LPROPS_EMPTY:
2161                        list = &c->empty_list;
2162                        break;
2163                case LPROPS_FREEABLE:
2164                        list = &c->freeable_list;
2165                        break;
2166                case LPROPS_FRDI_IDX:
2167                        list = &c->frdi_idx_list;
2168                        break;
2169                }
2170                found = 0;
2171                switch (cat) {
2172                case LPROPS_DIRTY:
2173                case LPROPS_DIRTY_IDX:
2174                case LPROPS_FREE:
2175                        heap = &c->lpt_heap[cat - 1];
2176                        if (lprops->hpos < heap->cnt &&
2177                            heap->arr[lprops->hpos] == lprops)
2178                                found = 1;
2179                        break;
2180                case LPROPS_UNCAT:
2181                case LPROPS_EMPTY:
2182                case LPROPS_FREEABLE:
2183                case LPROPS_FRDI_IDX:
2184                        list_for_each_entry(lp, list, list)
2185                                if (lprops == lp) {
2186                                        found = 1;
2187                                        break;
2188                                }
2189                        break;
2190                }
2191                if (!found) {
2192                        ubifs_err(c, "LEB %d cat %d not found in cat heap/list",
2193                                  lprops->lnum, cat);
2194                        return -EINVAL;
2195                }
2196                switch (cat) {
2197                case LPROPS_EMPTY:
2198                        if (lprops->free != c->leb_size) {
2199                                ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2200                                          lprops->lnum, cat, lprops->free,
2201                                          lprops->dirty);
2202                                return -EINVAL;
2203                        }
2204                        break;
2205                case LPROPS_FREEABLE:
2206                case LPROPS_FRDI_IDX:
2207                        if (lprops->free + lprops->dirty != c->leb_size) {
2208                                ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2209                                          lprops->lnum, cat, lprops->free,
2210                                          lprops->dirty);
2211                                return -EINVAL;
2212                        }
2213                        break;
2214                }
2215        }
2216        return 0;
2217}
2218
2219/**
2220 * dbg_check_lpt_nodes - check nnodes and pnodes.
2221 * @c: the UBIFS file-system description object
2222 * @cnode: next cnode (nnode or pnode) to check
2223 * @row: row of cnode (root is zero)
2224 * @col: column of cnode (leftmost is zero)
2225 *
2226 * This function returns %0 on success and a negative error code on failure.
2227 */
2228int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
2229                        int row, int col)
2230{
2231        struct ubifs_nnode *nnode, *nn;
2232        struct ubifs_cnode *cn;
2233        int num, iip = 0, err;
2234
2235        if (!dbg_is_chk_lprops(c))
2236                return 0;
2237
2238        while (cnode) {
2239                ubifs_assert(c, row >= 0);
2240                nnode = cnode->parent;
2241                if (cnode->level) {
2242                        /* cnode is a nnode */
2243                        num = calc_nnode_num(row, col);
2244                        if (cnode->num != num) {
2245                                ubifs_err(c, "nnode num %d expected %d parent num %d iip %d",
2246                                          cnode->num, num,
2247                                          (nnode ? nnode->num : 0), cnode->iip);
2248                                return -EINVAL;
2249                        }
2250                        nn = (struct ubifs_nnode *)cnode;
2251                        while (iip < UBIFS_LPT_FANOUT) {
2252                                cn = nn->nbranch[iip].cnode;
2253                                if (cn) {
2254                                        /* Go down */
2255                                        row += 1;
2256                                        col <<= UBIFS_LPT_FANOUT_SHIFT;
2257                                        col += iip;
2258                                        iip = 0;
2259                                        cnode = cn;
2260                                        break;
2261                                }
2262                                /* Go right */
2263                                iip += 1;
2264                        }
2265                        if (iip < UBIFS_LPT_FANOUT)
2266                                continue;
2267                } else {
2268                        struct ubifs_pnode *pnode;
2269
2270                        /* cnode is a pnode */
2271                        pnode = (struct ubifs_pnode *)cnode;
2272                        err = dbg_chk_pnode(c, pnode, col);
2273                        if (err)
2274                                return err;
2275                }
2276                /* Go up and to the right */
2277                row -= 1;
2278                col >>= UBIFS_LPT_FANOUT_SHIFT;
2279                iip = cnode->iip + 1;
2280                cnode = (struct ubifs_cnode *)nnode;
2281        }
2282        return 0;
2283}
2284