linux/fs/xfs/libxfs/xfs_btree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_mount.h"
  14#include "xfs_defer.h"
  15#include "xfs_inode.h"
  16#include "xfs_trans.h"
  17#include "xfs_inode_item.h"
  18#include "xfs_buf_item.h"
  19#include "xfs_btree.h"
  20#include "xfs_errortag.h"
  21#include "xfs_error.h"
  22#include "xfs_trace.h"
  23#include "xfs_cksum.h"
  24#include "xfs_alloc.h"
  25#include "xfs_log.h"
  26
  27/*
  28 * Cursor allocation zone.
  29 */
  30kmem_zone_t     *xfs_btree_cur_zone;
  31
  32/*
  33 * Btree magic numbers.
  34 */
  35static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
  36        { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
  37          XFS_FIBT_MAGIC, 0 },
  38        { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
  39          XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
  40          XFS_REFC_CRC_MAGIC }
  41};
  42
  43uint32_t
  44xfs_btree_magic(
  45        int                     crc,
  46        xfs_btnum_t             btnum)
  47{
  48        uint32_t                magic = xfs_magics[crc][btnum];
  49
  50        /* Ensure we asked for crc for crc-only magics. */
  51        ASSERT(magic != 0);
  52        return magic;
  53}
  54
  55/*
  56 * Check a long btree block header.  Return the address of the failing check,
  57 * or NULL if everything is ok.
  58 */
  59xfs_failaddr_t
  60__xfs_btree_check_lblock(
  61        struct xfs_btree_cur    *cur,
  62        struct xfs_btree_block  *block,
  63        int                     level,
  64        struct xfs_buf          *bp)
  65{
  66        struct xfs_mount        *mp = cur->bc_mp;
  67        xfs_btnum_t             btnum = cur->bc_btnum;
  68        int                     crc = xfs_sb_version_hascrc(&mp->m_sb);
  69
  70        if (crc) {
  71                if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
  72                        return __this_address;
  73                if (block->bb_u.l.bb_blkno !=
  74                    cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
  75                        return __this_address;
  76                if (block->bb_u.l.bb_pad != cpu_to_be32(0))
  77                        return __this_address;
  78        }
  79
  80        if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
  81                return __this_address;
  82        if (be16_to_cpu(block->bb_level) != level)
  83                return __this_address;
  84        if (be16_to_cpu(block->bb_numrecs) >
  85            cur->bc_ops->get_maxrecs(cur, level))
  86                return __this_address;
  87        if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
  88            !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
  89                        level + 1))
  90                return __this_address;
  91        if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
  92            !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
  93                        level + 1))
  94                return __this_address;
  95
  96        return NULL;
  97}
  98
  99/* Check a long btree block header. */
 100static int
 101xfs_btree_check_lblock(
 102        struct xfs_btree_cur    *cur,
 103        struct xfs_btree_block  *block,
 104        int                     level,
 105        struct xfs_buf          *bp)
 106{
 107        struct xfs_mount        *mp = cur->bc_mp;
 108        xfs_failaddr_t          fa;
 109
 110        fa = __xfs_btree_check_lblock(cur, block, level, bp);
 111        if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
 112                        XFS_ERRTAG_BTREE_CHECK_LBLOCK))) {
 113                if (bp)
 114                        trace_xfs_btree_corrupt(bp, _RET_IP_);
 115                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
 116                return -EFSCORRUPTED;
 117        }
 118        return 0;
 119}
 120
 121/*
 122 * Check a short btree block header.  Return the address of the failing check,
 123 * or NULL if everything is ok.
 124 */
 125xfs_failaddr_t
 126__xfs_btree_check_sblock(
 127        struct xfs_btree_cur    *cur,
 128        struct xfs_btree_block  *block,
 129        int                     level,
 130        struct xfs_buf          *bp)
 131{
 132        struct xfs_mount        *mp = cur->bc_mp;
 133        xfs_btnum_t             btnum = cur->bc_btnum;
 134        int                     crc = xfs_sb_version_hascrc(&mp->m_sb);
 135
 136        if (crc) {
 137                if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
 138                        return __this_address;
 139                if (block->bb_u.s.bb_blkno !=
 140                    cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
 141                        return __this_address;
 142        }
 143
 144        if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
 145                return __this_address;
 146        if (be16_to_cpu(block->bb_level) != level)
 147                return __this_address;
 148        if (be16_to_cpu(block->bb_numrecs) >
 149            cur->bc_ops->get_maxrecs(cur, level))
 150                return __this_address;
 151        if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
 152            !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
 153                        level + 1))
 154                return __this_address;
 155        if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
 156            !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
 157                        level + 1))
 158                return __this_address;
 159
 160        return NULL;
 161}
 162
 163/* Check a short btree block header. */
 164STATIC int
 165xfs_btree_check_sblock(
 166        struct xfs_btree_cur    *cur,
 167        struct xfs_btree_block  *block,
 168        int                     level,
 169        struct xfs_buf          *bp)
 170{
 171        struct xfs_mount        *mp = cur->bc_mp;
 172        xfs_failaddr_t          fa;
 173
 174        fa = __xfs_btree_check_sblock(cur, block, level, bp);
 175        if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
 176                        XFS_ERRTAG_BTREE_CHECK_SBLOCK))) {
 177                if (bp)
 178                        trace_xfs_btree_corrupt(bp, _RET_IP_);
 179                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
 180                return -EFSCORRUPTED;
 181        }
 182        return 0;
 183}
 184
 185/*
 186 * Debug routine: check that block header is ok.
 187 */
 188int
 189xfs_btree_check_block(
 190        struct xfs_btree_cur    *cur,   /* btree cursor */
 191        struct xfs_btree_block  *block, /* generic btree block pointer */
 192        int                     level,  /* level of the btree block */
 193        struct xfs_buf          *bp)    /* buffer containing block, if any */
 194{
 195        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
 196                return xfs_btree_check_lblock(cur, block, level, bp);
 197        else
 198                return xfs_btree_check_sblock(cur, block, level, bp);
 199}
 200
 201/* Check that this long pointer is valid and points within the fs. */
 202bool
 203xfs_btree_check_lptr(
 204        struct xfs_btree_cur    *cur,
 205        xfs_fsblock_t           fsbno,
 206        int                     level)
 207{
 208        if (level <= 0)
 209                return false;
 210        return xfs_verify_fsbno(cur->bc_mp, fsbno);
 211}
 212
 213/* Check that this short pointer is valid and points within the AG. */
 214bool
 215xfs_btree_check_sptr(
 216        struct xfs_btree_cur    *cur,
 217        xfs_agblock_t           agbno,
 218        int                     level)
 219{
 220        if (level <= 0)
 221                return false;
 222        return xfs_verify_agbno(cur->bc_mp, cur->bc_private.a.agno, agbno);
 223}
 224
 225/*
 226 * Check that a given (indexed) btree pointer at a certain level of a
 227 * btree is valid and doesn't point past where it should.
 228 */
 229static int
 230xfs_btree_check_ptr(
 231        struct xfs_btree_cur    *cur,
 232        union xfs_btree_ptr     *ptr,
 233        int                     index,
 234        int                     level)
 235{
 236        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 237                if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
 238                                level))
 239                        return 0;
 240                xfs_err(cur->bc_mp,
 241"Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
 242                                cur->bc_private.b.ip->i_ino,
 243                                cur->bc_private.b.whichfork, cur->bc_btnum,
 244                                level, index);
 245        } else {
 246                if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
 247                                level))
 248                        return 0;
 249                xfs_err(cur->bc_mp,
 250"AG %u: Corrupt btree %d pointer at level %d index %d.",
 251                                cur->bc_private.a.agno, cur->bc_btnum,
 252                                level, index);
 253        }
 254
 255        return -EFSCORRUPTED;
 256}
 257
 258#ifdef DEBUG
 259# define xfs_btree_debug_check_ptr      xfs_btree_check_ptr
 260#else
 261# define xfs_btree_debug_check_ptr(...) (0)
 262#endif
 263
 264/*
 265 * Calculate CRC on the whole btree block and stuff it into the
 266 * long-form btree header.
 267 *
 268 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
 269 * it into the buffer so recovery knows what the last modification was that made
 270 * it to disk.
 271 */
 272void
 273xfs_btree_lblock_calc_crc(
 274        struct xfs_buf          *bp)
 275{
 276        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 277        struct xfs_buf_log_item *bip = bp->b_log_item;
 278
 279        if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
 280                return;
 281        if (bip)
 282                block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 283        xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
 284}
 285
 286bool
 287xfs_btree_lblock_verify_crc(
 288        struct xfs_buf          *bp)
 289{
 290        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 291        struct xfs_mount        *mp = bp->b_target->bt_mount;
 292
 293        if (xfs_sb_version_hascrc(&mp->m_sb)) {
 294                if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
 295                        return false;
 296                return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
 297        }
 298
 299        return true;
 300}
 301
 302/*
 303 * Calculate CRC on the whole btree block and stuff it into the
 304 * short-form btree header.
 305 *
 306 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
 307 * it into the buffer so recovery knows what the last modification was that made
 308 * it to disk.
 309 */
 310void
 311xfs_btree_sblock_calc_crc(
 312        struct xfs_buf          *bp)
 313{
 314        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 315        struct xfs_buf_log_item *bip = bp->b_log_item;
 316
 317        if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
 318                return;
 319        if (bip)
 320                block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 321        xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
 322}
 323
 324bool
 325xfs_btree_sblock_verify_crc(
 326        struct xfs_buf          *bp)
 327{
 328        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 329        struct xfs_mount        *mp = bp->b_target->bt_mount;
 330
 331        if (xfs_sb_version_hascrc(&mp->m_sb)) {
 332                if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
 333                        return __this_address;
 334                return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
 335        }
 336
 337        return true;
 338}
 339
 340static int
 341xfs_btree_free_block(
 342        struct xfs_btree_cur    *cur,
 343        struct xfs_buf          *bp)
 344{
 345        int                     error;
 346
 347        error = cur->bc_ops->free_block(cur, bp);
 348        if (!error) {
 349                xfs_trans_binval(cur->bc_tp, bp);
 350                XFS_BTREE_STATS_INC(cur, free);
 351        }
 352        return error;
 353}
 354
 355/*
 356 * Delete the btree cursor.
 357 */
 358void
 359xfs_btree_del_cursor(
 360        xfs_btree_cur_t *cur,           /* btree cursor */
 361        int             error)          /* del because of error */
 362{
 363        int             i;              /* btree level */
 364
 365        /*
 366         * Clear the buffer pointers, and release the buffers.
 367         * If we're doing this in the face of an error, we
 368         * need to make sure to inspect all of the entries
 369         * in the bc_bufs array for buffers to be unlocked.
 370         * This is because some of the btree code works from
 371         * level n down to 0, and if we get an error along
 372         * the way we won't have initialized all the entries
 373         * down to 0.
 374         */
 375        for (i = 0; i < cur->bc_nlevels; i++) {
 376                if (cur->bc_bufs[i])
 377                        xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
 378                else if (!error)
 379                        break;
 380        }
 381        /*
 382         * Can't free a bmap cursor without having dealt with the
 383         * allocated indirect blocks' accounting.
 384         */
 385        ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
 386               cur->bc_private.b.allocated == 0);
 387        /*
 388         * Free the cursor.
 389         */
 390        kmem_zone_free(xfs_btree_cur_zone, cur);
 391}
 392
 393/*
 394 * Duplicate the btree cursor.
 395 * Allocate a new one, copy the record, re-get the buffers.
 396 */
 397int                                     /* error */
 398xfs_btree_dup_cursor(
 399        xfs_btree_cur_t *cur,           /* input cursor */
 400        xfs_btree_cur_t **ncur)         /* output cursor */
 401{
 402        xfs_buf_t       *bp;            /* btree block's buffer pointer */
 403        int             error;          /* error return value */
 404        int             i;              /* level number of btree block */
 405        xfs_mount_t     *mp;            /* mount structure for filesystem */
 406        xfs_btree_cur_t *new;           /* new cursor value */
 407        xfs_trans_t     *tp;            /* transaction pointer, can be NULL */
 408
 409        tp = cur->bc_tp;
 410        mp = cur->bc_mp;
 411
 412        /*
 413         * Allocate a new cursor like the old one.
 414         */
 415        new = cur->bc_ops->dup_cursor(cur);
 416
 417        /*
 418         * Copy the record currently in the cursor.
 419         */
 420        new->bc_rec = cur->bc_rec;
 421
 422        /*
 423         * For each level current, re-get the buffer and copy the ptr value.
 424         */
 425        for (i = 0; i < new->bc_nlevels; i++) {
 426                new->bc_ptrs[i] = cur->bc_ptrs[i];
 427                new->bc_ra[i] = cur->bc_ra[i];
 428                bp = cur->bc_bufs[i];
 429                if (bp) {
 430                        error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
 431                                                   XFS_BUF_ADDR(bp), mp->m_bsize,
 432                                                   0, &bp,
 433                                                   cur->bc_ops->buf_ops);
 434                        if (error) {
 435                                xfs_btree_del_cursor(new, error);
 436                                *ncur = NULL;
 437                                return error;
 438                        }
 439                }
 440                new->bc_bufs[i] = bp;
 441        }
 442        *ncur = new;
 443        return 0;
 444}
 445
 446/*
 447 * XFS btree block layout and addressing:
 448 *
 449 * There are two types of blocks in the btree: leaf and non-leaf blocks.
 450 *
 451 * The leaf record start with a header then followed by records containing
 452 * the values.  A non-leaf block also starts with the same header, and
 453 * then first contains lookup keys followed by an equal number of pointers
 454 * to the btree blocks at the previous level.
 455 *
 456 *              +--------+-------+-------+-------+-------+-------+-------+
 457 * Leaf:        | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
 458 *              +--------+-------+-------+-------+-------+-------+-------+
 459 *
 460 *              +--------+-------+-------+-------+-------+-------+-------+
 461 * Non-Leaf:    | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
 462 *              +--------+-------+-------+-------+-------+-------+-------+
 463 *
 464 * The header is called struct xfs_btree_block for reasons better left unknown
 465 * and comes in different versions for short (32bit) and long (64bit) block
 466 * pointers.  The record and key structures are defined by the btree instances
 467 * and opaque to the btree core.  The block pointers are simple disk endian
 468 * integers, available in a short (32bit) and long (64bit) variant.
 469 *
 470 * The helpers below calculate the offset of a given record, key or pointer
 471 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
 472 * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
 473 * inside the btree block is done using indices starting at one, not zero!
 474 *
 475 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
 476 * overlapping intervals.  In such a tree, records are still sorted lowest to
 477 * highest and indexed by the smallest key value that refers to the record.
 478 * However, nodes are different: each pointer has two associated keys -- one
 479 * indexing the lowest key available in the block(s) below (the same behavior
 480 * as the key in a regular btree) and another indexing the highest key
 481 * available in the block(s) below.  Because records are /not/ sorted by the
 482 * highest key, all leaf block updates require us to compute the highest key
 483 * that matches any record in the leaf and to recursively update the high keys
 484 * in the nodes going further up in the tree, if necessary.  Nodes look like
 485 * this:
 486 *
 487 *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
 488 * Non-Leaf:    | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
 489 *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
 490 *
 491 * To perform an interval query on an overlapped tree, perform the usual
 492 * depth-first search and use the low and high keys to decide if we can skip
 493 * that particular node.  If a leaf node is reached, return the records that
 494 * intersect the interval.  Note that an interval query may return numerous
 495 * entries.  For a non-overlapped tree, simply search for the record associated
 496 * with the lowest key and iterate forward until a non-matching record is
 497 * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
 498 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
 499 * more detail.
 500 *
 501 * Why do we care about overlapping intervals?  Let's say you have a bunch of
 502 * reverse mapping records on a reflink filesystem:
 503 *
 504 * 1: +- file A startblock B offset C length D -----------+
 505 * 2:      +- file E startblock F offset G length H --------------+
 506 * 3:      +- file I startblock F offset J length K --+
 507 * 4:                                                        +- file L... --+
 508 *
 509 * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
 510 * we'd simply increment the length of record 1.  But how do we find the record
 511 * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
 512 * record 3 because the keys are ordered first by startblock.  An interval
 513 * query would return records 1 and 2 because they both overlap (B+D-1), and
 514 * from that we can pick out record 1 as the appropriate left neighbor.
 515 *
 516 * In the non-overlapped case you can do a LE lookup and decrement the cursor
 517 * because a record's interval must end before the next record.
 518 */
 519
 520/*
 521 * Return size of the btree block header for this btree instance.
 522 */
 523static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
 524{
 525        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 526                if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
 527                        return XFS_BTREE_LBLOCK_CRC_LEN;
 528                return XFS_BTREE_LBLOCK_LEN;
 529        }
 530        if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
 531                return XFS_BTREE_SBLOCK_CRC_LEN;
 532        return XFS_BTREE_SBLOCK_LEN;
 533}
 534
 535/*
 536 * Return size of btree block pointers for this btree instance.
 537 */
 538static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
 539{
 540        return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
 541                sizeof(__be64) : sizeof(__be32);
 542}
 543
 544/*
 545 * Calculate offset of the n-th record in a btree block.
 546 */
 547STATIC size_t
 548xfs_btree_rec_offset(
 549        struct xfs_btree_cur    *cur,
 550        int                     n)
 551{
 552        return xfs_btree_block_len(cur) +
 553                (n - 1) * cur->bc_ops->rec_len;
 554}
 555
 556/*
 557 * Calculate offset of the n-th key in a btree block.
 558 */
 559STATIC size_t
 560xfs_btree_key_offset(
 561        struct xfs_btree_cur    *cur,
 562        int                     n)
 563{
 564        return xfs_btree_block_len(cur) +
 565                (n - 1) * cur->bc_ops->key_len;
 566}
 567
 568/*
 569 * Calculate offset of the n-th high key in a btree block.
 570 */
 571STATIC size_t
 572xfs_btree_high_key_offset(
 573        struct xfs_btree_cur    *cur,
 574        int                     n)
 575{
 576        return xfs_btree_block_len(cur) +
 577                (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
 578}
 579
 580/*
 581 * Calculate offset of the n-th block pointer in a btree block.
 582 */
 583STATIC size_t
 584xfs_btree_ptr_offset(
 585        struct xfs_btree_cur    *cur,
 586        int                     n,
 587        int                     level)
 588{
 589        return xfs_btree_block_len(cur) +
 590                cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
 591                (n - 1) * xfs_btree_ptr_len(cur);
 592}
 593
 594/*
 595 * Return a pointer to the n-th record in the btree block.
 596 */
 597union xfs_btree_rec *
 598xfs_btree_rec_addr(
 599        struct xfs_btree_cur    *cur,
 600        int                     n,
 601        struct xfs_btree_block  *block)
 602{
 603        return (union xfs_btree_rec *)
 604                ((char *)block + xfs_btree_rec_offset(cur, n));
 605}
 606
 607/*
 608 * Return a pointer to the n-th key in the btree block.
 609 */
 610union xfs_btree_key *
 611xfs_btree_key_addr(
 612        struct xfs_btree_cur    *cur,
 613        int                     n,
 614        struct xfs_btree_block  *block)
 615{
 616        return (union xfs_btree_key *)
 617                ((char *)block + xfs_btree_key_offset(cur, n));
 618}
 619
 620/*
 621 * Return a pointer to the n-th high key in the btree block.
 622 */
 623union xfs_btree_key *
 624xfs_btree_high_key_addr(
 625        struct xfs_btree_cur    *cur,
 626        int                     n,
 627        struct xfs_btree_block  *block)
 628{
 629        return (union xfs_btree_key *)
 630                ((char *)block + xfs_btree_high_key_offset(cur, n));
 631}
 632
 633/*
 634 * Return a pointer to the n-th block pointer in the btree block.
 635 */
 636union xfs_btree_ptr *
 637xfs_btree_ptr_addr(
 638        struct xfs_btree_cur    *cur,
 639        int                     n,
 640        struct xfs_btree_block  *block)
 641{
 642        int                     level = xfs_btree_get_level(block);
 643
 644        ASSERT(block->bb_level != 0);
 645
 646        return (union xfs_btree_ptr *)
 647                ((char *)block + xfs_btree_ptr_offset(cur, n, level));
 648}
 649
 650/*
 651 * Get the root block which is stored in the inode.
 652 *
 653 * For now this btree implementation assumes the btree root is always
 654 * stored in the if_broot field of an inode fork.
 655 */
 656STATIC struct xfs_btree_block *
 657xfs_btree_get_iroot(
 658        struct xfs_btree_cur    *cur)
 659{
 660        struct xfs_ifork        *ifp;
 661
 662        ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
 663        return (struct xfs_btree_block *)ifp->if_broot;
 664}
 665
 666/*
 667 * Retrieve the block pointer from the cursor at the given level.
 668 * This may be an inode btree root or from a buffer.
 669 */
 670struct xfs_btree_block *                /* generic btree block pointer */
 671xfs_btree_get_block(
 672        struct xfs_btree_cur    *cur,   /* btree cursor */
 673        int                     level,  /* level in btree */
 674        struct xfs_buf          **bpp)  /* buffer containing the block */
 675{
 676        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
 677            (level == cur->bc_nlevels - 1)) {
 678                *bpp = NULL;
 679                return xfs_btree_get_iroot(cur);
 680        }
 681
 682        *bpp = cur->bc_bufs[level];
 683        return XFS_BUF_TO_BLOCK(*bpp);
 684}
 685
 686/*
 687 * Get a buffer for the block, return it with no data read.
 688 * Long-form addressing.
 689 */
 690xfs_buf_t *                             /* buffer for fsbno */
 691xfs_btree_get_bufl(
 692        xfs_mount_t     *mp,            /* file system mount point */
 693        xfs_trans_t     *tp,            /* transaction pointer */
 694        xfs_fsblock_t   fsbno,          /* file system block number */
 695        uint            lock)           /* lock flags for get_buf */
 696{
 697        xfs_daddr_t             d;              /* real disk block address */
 698
 699        ASSERT(fsbno != NULLFSBLOCK);
 700        d = XFS_FSB_TO_DADDR(mp, fsbno);
 701        return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
 702}
 703
 704/*
 705 * Get a buffer for the block, return it with no data read.
 706 * Short-form addressing.
 707 */
 708xfs_buf_t *                             /* buffer for agno/agbno */
 709xfs_btree_get_bufs(
 710        xfs_mount_t     *mp,            /* file system mount point */
 711        xfs_trans_t     *tp,            /* transaction pointer */
 712        xfs_agnumber_t  agno,           /* allocation group number */
 713        xfs_agblock_t   agbno,          /* allocation group block number */
 714        uint            lock)           /* lock flags for get_buf */
 715{
 716        xfs_daddr_t             d;              /* real disk block address */
 717
 718        ASSERT(agno != NULLAGNUMBER);
 719        ASSERT(agbno != NULLAGBLOCK);
 720        d = XFS_AGB_TO_DADDR(mp, agno, agbno);
 721        return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
 722}
 723
 724/*
 725 * Check for the cursor referring to the last block at the given level.
 726 */
 727int                                     /* 1=is last block, 0=not last block */
 728xfs_btree_islastblock(
 729        xfs_btree_cur_t         *cur,   /* btree cursor */
 730        int                     level)  /* level to check */
 731{
 732        struct xfs_btree_block  *block; /* generic btree block pointer */
 733        xfs_buf_t               *bp;    /* buffer containing block */
 734
 735        block = xfs_btree_get_block(cur, level, &bp);
 736        xfs_btree_check_block(cur, block, level, bp);
 737        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
 738                return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
 739        else
 740                return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
 741}
 742
 743/*
 744 * Change the cursor to point to the first record at the given level.
 745 * Other levels are unaffected.
 746 */
 747STATIC int                              /* success=1, failure=0 */
 748xfs_btree_firstrec(
 749        xfs_btree_cur_t         *cur,   /* btree cursor */
 750        int                     level)  /* level to change */
 751{
 752        struct xfs_btree_block  *block; /* generic btree block pointer */
 753        xfs_buf_t               *bp;    /* buffer containing block */
 754
 755        /*
 756         * Get the block pointer for this level.
 757         */
 758        block = xfs_btree_get_block(cur, level, &bp);
 759        if (xfs_btree_check_block(cur, block, level, bp))
 760                return 0;
 761        /*
 762         * It's empty, there is no such record.
 763         */
 764        if (!block->bb_numrecs)
 765                return 0;
 766        /*
 767         * Set the ptr value to 1, that's the first record/key.
 768         */
 769        cur->bc_ptrs[level] = 1;
 770        return 1;
 771}
 772
 773/*
 774 * Change the cursor to point to the last record in the current block
 775 * at the given level.  Other levels are unaffected.
 776 */
 777STATIC int                              /* success=1, failure=0 */
 778xfs_btree_lastrec(
 779        xfs_btree_cur_t         *cur,   /* btree cursor */
 780        int                     level)  /* level to change */
 781{
 782        struct xfs_btree_block  *block; /* generic btree block pointer */
 783        xfs_buf_t               *bp;    /* buffer containing block */
 784
 785        /*
 786         * Get the block pointer for this level.
 787         */
 788        block = xfs_btree_get_block(cur, level, &bp);
 789        if (xfs_btree_check_block(cur, block, level, bp))
 790                return 0;
 791        /*
 792         * It's empty, there is no such record.
 793         */
 794        if (!block->bb_numrecs)
 795                return 0;
 796        /*
 797         * Set the ptr value to numrecs, that's the last record/key.
 798         */
 799        cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
 800        return 1;
 801}
 802
 803/*
 804 * Compute first and last byte offsets for the fields given.
 805 * Interprets the offsets table, which contains struct field offsets.
 806 */
 807void
 808xfs_btree_offsets(
 809        int64_t         fields,         /* bitmask of fields */
 810        const short     *offsets,       /* table of field offsets */
 811        int             nbits,          /* number of bits to inspect */
 812        int             *first,         /* output: first byte offset */
 813        int             *last)          /* output: last byte offset */
 814{
 815        int             i;              /* current bit number */
 816        int64_t         imask;          /* mask for current bit number */
 817
 818        ASSERT(fields != 0);
 819        /*
 820         * Find the lowest bit, so the first byte offset.
 821         */
 822        for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
 823                if (imask & fields) {
 824                        *first = offsets[i];
 825                        break;
 826                }
 827        }
 828        /*
 829         * Find the highest bit, so the last byte offset.
 830         */
 831        for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
 832                if (imask & fields) {
 833                        *last = offsets[i + 1] - 1;
 834                        break;
 835                }
 836        }
 837}
 838
 839/*
 840 * Get a buffer for the block, return it read in.
 841 * Long-form addressing.
 842 */
 843int
 844xfs_btree_read_bufl(
 845        struct xfs_mount        *mp,            /* file system mount point */
 846        struct xfs_trans        *tp,            /* transaction pointer */
 847        xfs_fsblock_t           fsbno,          /* file system block number */
 848        uint                    lock,           /* lock flags for read_buf */
 849        struct xfs_buf          **bpp,          /* buffer for fsbno */
 850        int                     refval,         /* ref count value for buffer */
 851        const struct xfs_buf_ops *ops)
 852{
 853        struct xfs_buf          *bp;            /* return value */
 854        xfs_daddr_t             d;              /* real disk block address */
 855        int                     error;
 856
 857        if (!xfs_verify_fsbno(mp, fsbno))
 858                return -EFSCORRUPTED;
 859        d = XFS_FSB_TO_DADDR(mp, fsbno);
 860        error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
 861                                   mp->m_bsize, lock, &bp, ops);
 862        if (error)
 863                return error;
 864        if (bp)
 865                xfs_buf_set_ref(bp, refval);
 866        *bpp = bp;
 867        return 0;
 868}
 869
 870/*
 871 * Read-ahead the block, don't wait for it, don't return a buffer.
 872 * Long-form addressing.
 873 */
 874/* ARGSUSED */
 875void
 876xfs_btree_reada_bufl(
 877        struct xfs_mount        *mp,            /* file system mount point */
 878        xfs_fsblock_t           fsbno,          /* file system block number */
 879        xfs_extlen_t            count,          /* count of filesystem blocks */
 880        const struct xfs_buf_ops *ops)
 881{
 882        xfs_daddr_t             d;
 883
 884        ASSERT(fsbno != NULLFSBLOCK);
 885        d = XFS_FSB_TO_DADDR(mp, fsbno);
 886        xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
 887}
 888
 889/*
 890 * Read-ahead the block, don't wait for it, don't return a buffer.
 891 * Short-form addressing.
 892 */
 893/* ARGSUSED */
 894void
 895xfs_btree_reada_bufs(
 896        struct xfs_mount        *mp,            /* file system mount point */
 897        xfs_agnumber_t          agno,           /* allocation group number */
 898        xfs_agblock_t           agbno,          /* allocation group block number */
 899        xfs_extlen_t            count,          /* count of filesystem blocks */
 900        const struct xfs_buf_ops *ops)
 901{
 902        xfs_daddr_t             d;
 903
 904        ASSERT(agno != NULLAGNUMBER);
 905        ASSERT(agbno != NULLAGBLOCK);
 906        d = XFS_AGB_TO_DADDR(mp, agno, agbno);
 907        xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
 908}
 909
 910STATIC int
 911xfs_btree_readahead_lblock(
 912        struct xfs_btree_cur    *cur,
 913        int                     lr,
 914        struct xfs_btree_block  *block)
 915{
 916        int                     rval = 0;
 917        xfs_fsblock_t           left = be64_to_cpu(block->bb_u.l.bb_leftsib);
 918        xfs_fsblock_t           right = be64_to_cpu(block->bb_u.l.bb_rightsib);
 919
 920        if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
 921                xfs_btree_reada_bufl(cur->bc_mp, left, 1,
 922                                     cur->bc_ops->buf_ops);
 923                rval++;
 924        }
 925
 926        if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
 927                xfs_btree_reada_bufl(cur->bc_mp, right, 1,
 928                                     cur->bc_ops->buf_ops);
 929                rval++;
 930        }
 931
 932        return rval;
 933}
 934
 935STATIC int
 936xfs_btree_readahead_sblock(
 937        struct xfs_btree_cur    *cur,
 938        int                     lr,
 939        struct xfs_btree_block *block)
 940{
 941        int                     rval = 0;
 942        xfs_agblock_t           left = be32_to_cpu(block->bb_u.s.bb_leftsib);
 943        xfs_agblock_t           right = be32_to_cpu(block->bb_u.s.bb_rightsib);
 944
 945
 946        if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
 947                xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
 948                                     left, 1, cur->bc_ops->buf_ops);
 949                rval++;
 950        }
 951
 952        if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
 953                xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
 954                                     right, 1, cur->bc_ops->buf_ops);
 955                rval++;
 956        }
 957
 958        return rval;
 959}
 960
 961/*
 962 * Read-ahead btree blocks, at the given level.
 963 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
 964 */
 965STATIC int
 966xfs_btree_readahead(
 967        struct xfs_btree_cur    *cur,           /* btree cursor */
 968        int                     lev,            /* level in btree */
 969        int                     lr)             /* left/right bits */
 970{
 971        struct xfs_btree_block  *block;
 972
 973        /*
 974         * No readahead needed if we are at the root level and the
 975         * btree root is stored in the inode.
 976         */
 977        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
 978            (lev == cur->bc_nlevels - 1))
 979                return 0;
 980
 981        if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
 982                return 0;
 983
 984        cur->bc_ra[lev] |= lr;
 985        block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
 986
 987        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
 988                return xfs_btree_readahead_lblock(cur, lr, block);
 989        return xfs_btree_readahead_sblock(cur, lr, block);
 990}
 991
 992STATIC int
 993xfs_btree_ptr_to_daddr(
 994        struct xfs_btree_cur    *cur,
 995        union xfs_btree_ptr     *ptr,
 996        xfs_daddr_t             *daddr)
 997{
 998        xfs_fsblock_t           fsbno;
 999        xfs_agblock_t           agbno;
1000        int                     error;
1001
1002        error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1003        if (error)
1004                return error;
1005
1006        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1007                fsbno = be64_to_cpu(ptr->l);
1008                *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
1009        } else {
1010                agbno = be32_to_cpu(ptr->s);
1011                *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
1012                                agbno);
1013        }
1014
1015        return 0;
1016}
1017
1018/*
1019 * Readahead @count btree blocks at the given @ptr location.
1020 *
1021 * We don't need to care about long or short form btrees here as we have a
1022 * method of converting the ptr directly to a daddr available to us.
1023 */
1024STATIC void
1025xfs_btree_readahead_ptr(
1026        struct xfs_btree_cur    *cur,
1027        union xfs_btree_ptr     *ptr,
1028        xfs_extlen_t            count)
1029{
1030        xfs_daddr_t             daddr;
1031
1032        if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1033                return;
1034        xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
1035                          cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1036}
1037
1038/*
1039 * Set the buffer for level "lev" in the cursor to bp, releasing
1040 * any previous buffer.
1041 */
1042STATIC void
1043xfs_btree_setbuf(
1044        xfs_btree_cur_t         *cur,   /* btree cursor */
1045        int                     lev,    /* level in btree */
1046        xfs_buf_t               *bp)    /* new buffer to set */
1047{
1048        struct xfs_btree_block  *b;     /* btree block */
1049
1050        if (cur->bc_bufs[lev])
1051                xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
1052        cur->bc_bufs[lev] = bp;
1053        cur->bc_ra[lev] = 0;
1054
1055        b = XFS_BUF_TO_BLOCK(bp);
1056        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1057                if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1058                        cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1059                if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1060                        cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1061        } else {
1062                if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1063                        cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1064                if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1065                        cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1066        }
1067}
1068
1069bool
1070xfs_btree_ptr_is_null(
1071        struct xfs_btree_cur    *cur,
1072        union xfs_btree_ptr     *ptr)
1073{
1074        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1075                return ptr->l == cpu_to_be64(NULLFSBLOCK);
1076        else
1077                return ptr->s == cpu_to_be32(NULLAGBLOCK);
1078}
1079
1080STATIC void
1081xfs_btree_set_ptr_null(
1082        struct xfs_btree_cur    *cur,
1083        union xfs_btree_ptr     *ptr)
1084{
1085        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1086                ptr->l = cpu_to_be64(NULLFSBLOCK);
1087        else
1088                ptr->s = cpu_to_be32(NULLAGBLOCK);
1089}
1090
1091/*
1092 * Get/set/init sibling pointers
1093 */
1094void
1095xfs_btree_get_sibling(
1096        struct xfs_btree_cur    *cur,
1097        struct xfs_btree_block  *block,
1098        union xfs_btree_ptr     *ptr,
1099        int                     lr)
1100{
1101        ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1102
1103        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1104                if (lr == XFS_BB_RIGHTSIB)
1105                        ptr->l = block->bb_u.l.bb_rightsib;
1106                else
1107                        ptr->l = block->bb_u.l.bb_leftsib;
1108        } else {
1109                if (lr == XFS_BB_RIGHTSIB)
1110                        ptr->s = block->bb_u.s.bb_rightsib;
1111                else
1112                        ptr->s = block->bb_u.s.bb_leftsib;
1113        }
1114}
1115
1116STATIC void
1117xfs_btree_set_sibling(
1118        struct xfs_btree_cur    *cur,
1119        struct xfs_btree_block  *block,
1120        union xfs_btree_ptr     *ptr,
1121        int                     lr)
1122{
1123        ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1124
1125        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1126                if (lr == XFS_BB_RIGHTSIB)
1127                        block->bb_u.l.bb_rightsib = ptr->l;
1128                else
1129                        block->bb_u.l.bb_leftsib = ptr->l;
1130        } else {
1131                if (lr == XFS_BB_RIGHTSIB)
1132                        block->bb_u.s.bb_rightsib = ptr->s;
1133                else
1134                        block->bb_u.s.bb_leftsib = ptr->s;
1135        }
1136}
1137
1138void
1139xfs_btree_init_block_int(
1140        struct xfs_mount        *mp,
1141        struct xfs_btree_block  *buf,
1142        xfs_daddr_t             blkno,
1143        xfs_btnum_t             btnum,
1144        __u16                   level,
1145        __u16                   numrecs,
1146        __u64                   owner,
1147        unsigned int            flags)
1148{
1149        int                     crc = xfs_sb_version_hascrc(&mp->m_sb);
1150        __u32                   magic = xfs_btree_magic(crc, btnum);
1151
1152        buf->bb_magic = cpu_to_be32(magic);
1153        buf->bb_level = cpu_to_be16(level);
1154        buf->bb_numrecs = cpu_to_be16(numrecs);
1155
1156        if (flags & XFS_BTREE_LONG_PTRS) {
1157                buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1158                buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1159                if (crc) {
1160                        buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1161                        buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1162                        uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1163                        buf->bb_u.l.bb_pad = 0;
1164                        buf->bb_u.l.bb_lsn = 0;
1165                }
1166        } else {
1167                /* owner is a 32 bit value on short blocks */
1168                __u32 __owner = (__u32)owner;
1169
1170                buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1171                buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1172                if (crc) {
1173                        buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1174                        buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1175                        uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1176                        buf->bb_u.s.bb_lsn = 0;
1177                }
1178        }
1179}
1180
1181void
1182xfs_btree_init_block(
1183        struct xfs_mount *mp,
1184        struct xfs_buf  *bp,
1185        xfs_btnum_t     btnum,
1186        __u16           level,
1187        __u16           numrecs,
1188        __u64           owner,
1189        unsigned int    flags)
1190{
1191        xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1192                                 btnum, level, numrecs, owner, flags);
1193}
1194
1195STATIC void
1196xfs_btree_init_block_cur(
1197        struct xfs_btree_cur    *cur,
1198        struct xfs_buf          *bp,
1199        int                     level,
1200        int                     numrecs)
1201{
1202        __u64                   owner;
1203
1204        /*
1205         * we can pull the owner from the cursor right now as the different
1206         * owners align directly with the pointer size of the btree. This may
1207         * change in future, but is safe for current users of the generic btree
1208         * code.
1209         */
1210        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1211                owner = cur->bc_private.b.ip->i_ino;
1212        else
1213                owner = cur->bc_private.a.agno;
1214
1215        xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1216                                 cur->bc_btnum, level, numrecs,
1217                                 owner, cur->bc_flags);
1218}
1219
1220/*
1221 * Return true if ptr is the last record in the btree and
1222 * we need to track updates to this record.  The decision
1223 * will be further refined in the update_lastrec method.
1224 */
1225STATIC int
1226xfs_btree_is_lastrec(
1227        struct xfs_btree_cur    *cur,
1228        struct xfs_btree_block  *block,
1229        int                     level)
1230{
1231        union xfs_btree_ptr     ptr;
1232
1233        if (level > 0)
1234                return 0;
1235        if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1236                return 0;
1237
1238        xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1239        if (!xfs_btree_ptr_is_null(cur, &ptr))
1240                return 0;
1241        return 1;
1242}
1243
1244STATIC void
1245xfs_btree_buf_to_ptr(
1246        struct xfs_btree_cur    *cur,
1247        struct xfs_buf          *bp,
1248        union xfs_btree_ptr     *ptr)
1249{
1250        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1251                ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1252                                        XFS_BUF_ADDR(bp)));
1253        else {
1254                ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1255                                        XFS_BUF_ADDR(bp)));
1256        }
1257}
1258
1259STATIC void
1260xfs_btree_set_refs(
1261        struct xfs_btree_cur    *cur,
1262        struct xfs_buf          *bp)
1263{
1264        switch (cur->bc_btnum) {
1265        case XFS_BTNUM_BNO:
1266        case XFS_BTNUM_CNT:
1267                xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1268                break;
1269        case XFS_BTNUM_INO:
1270        case XFS_BTNUM_FINO:
1271                xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1272                break;
1273        case XFS_BTNUM_BMAP:
1274                xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1275                break;
1276        case XFS_BTNUM_RMAP:
1277                xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1278                break;
1279        case XFS_BTNUM_REFC:
1280                xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1281                break;
1282        default:
1283                ASSERT(0);
1284        }
1285}
1286
1287STATIC int
1288xfs_btree_get_buf_block(
1289        struct xfs_btree_cur    *cur,
1290        union xfs_btree_ptr     *ptr,
1291        int                     flags,
1292        struct xfs_btree_block  **block,
1293        struct xfs_buf          **bpp)
1294{
1295        struct xfs_mount        *mp = cur->bc_mp;
1296        xfs_daddr_t             d;
1297        int                     error;
1298
1299        /* need to sort out how callers deal with failures first */
1300        ASSERT(!(flags & XBF_TRYLOCK));
1301
1302        error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1303        if (error)
1304                return error;
1305        *bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1306                                 mp->m_bsize, flags);
1307
1308        if (!*bpp)
1309                return -ENOMEM;
1310
1311        (*bpp)->b_ops = cur->bc_ops->buf_ops;
1312        *block = XFS_BUF_TO_BLOCK(*bpp);
1313        return 0;
1314}
1315
1316/*
1317 * Read in the buffer at the given ptr and return the buffer and
1318 * the block pointer within the buffer.
1319 */
1320STATIC int
1321xfs_btree_read_buf_block(
1322        struct xfs_btree_cur    *cur,
1323        union xfs_btree_ptr     *ptr,
1324        int                     flags,
1325        struct xfs_btree_block  **block,
1326        struct xfs_buf          **bpp)
1327{
1328        struct xfs_mount        *mp = cur->bc_mp;
1329        xfs_daddr_t             d;
1330        int                     error;
1331
1332        /* need to sort out how callers deal with failures first */
1333        ASSERT(!(flags & XBF_TRYLOCK));
1334
1335        error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1336        if (error)
1337                return error;
1338        error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1339                                   mp->m_bsize, flags, bpp,
1340                                   cur->bc_ops->buf_ops);
1341        if (error)
1342                return error;
1343
1344        xfs_btree_set_refs(cur, *bpp);
1345        *block = XFS_BUF_TO_BLOCK(*bpp);
1346        return 0;
1347}
1348
1349/*
1350 * Copy keys from one btree block to another.
1351 */
1352STATIC void
1353xfs_btree_copy_keys(
1354        struct xfs_btree_cur    *cur,
1355        union xfs_btree_key     *dst_key,
1356        union xfs_btree_key     *src_key,
1357        int                     numkeys)
1358{
1359        ASSERT(numkeys >= 0);
1360        memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1361}
1362
1363/*
1364 * Copy records from one btree block to another.
1365 */
1366STATIC void
1367xfs_btree_copy_recs(
1368        struct xfs_btree_cur    *cur,
1369        union xfs_btree_rec     *dst_rec,
1370        union xfs_btree_rec     *src_rec,
1371        int                     numrecs)
1372{
1373        ASSERT(numrecs >= 0);
1374        memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1375}
1376
1377/*
1378 * Copy block pointers from one btree block to another.
1379 */
1380STATIC void
1381xfs_btree_copy_ptrs(
1382        struct xfs_btree_cur    *cur,
1383        union xfs_btree_ptr     *dst_ptr,
1384        union xfs_btree_ptr     *src_ptr,
1385        int                     numptrs)
1386{
1387        ASSERT(numptrs >= 0);
1388        memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1389}
1390
1391/*
1392 * Shift keys one index left/right inside a single btree block.
1393 */
1394STATIC void
1395xfs_btree_shift_keys(
1396        struct xfs_btree_cur    *cur,
1397        union xfs_btree_key     *key,
1398        int                     dir,
1399        int                     numkeys)
1400{
1401        char                    *dst_key;
1402
1403        ASSERT(numkeys >= 0);
1404        ASSERT(dir == 1 || dir == -1);
1405
1406        dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1407        memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1408}
1409
1410/*
1411 * Shift records one index left/right inside a single btree block.
1412 */
1413STATIC void
1414xfs_btree_shift_recs(
1415        struct xfs_btree_cur    *cur,
1416        union xfs_btree_rec     *rec,
1417        int                     dir,
1418        int                     numrecs)
1419{
1420        char                    *dst_rec;
1421
1422        ASSERT(numrecs >= 0);
1423        ASSERT(dir == 1 || dir == -1);
1424
1425        dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1426        memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1427}
1428
1429/*
1430 * Shift block pointers one index left/right inside a single btree block.
1431 */
1432STATIC void
1433xfs_btree_shift_ptrs(
1434        struct xfs_btree_cur    *cur,
1435        union xfs_btree_ptr     *ptr,
1436        int                     dir,
1437        int                     numptrs)
1438{
1439        char                    *dst_ptr;
1440
1441        ASSERT(numptrs >= 0);
1442        ASSERT(dir == 1 || dir == -1);
1443
1444        dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1445        memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1446}
1447
1448/*
1449 * Log key values from the btree block.
1450 */
1451STATIC void
1452xfs_btree_log_keys(
1453        struct xfs_btree_cur    *cur,
1454        struct xfs_buf          *bp,
1455        int                     first,
1456        int                     last)
1457{
1458
1459        if (bp) {
1460                xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1461                xfs_trans_log_buf(cur->bc_tp, bp,
1462                                  xfs_btree_key_offset(cur, first),
1463                                  xfs_btree_key_offset(cur, last + 1) - 1);
1464        } else {
1465                xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1466                                xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1467        }
1468}
1469
1470/*
1471 * Log record values from the btree block.
1472 */
1473void
1474xfs_btree_log_recs(
1475        struct xfs_btree_cur    *cur,
1476        struct xfs_buf          *bp,
1477        int                     first,
1478        int                     last)
1479{
1480
1481        xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1482        xfs_trans_log_buf(cur->bc_tp, bp,
1483                          xfs_btree_rec_offset(cur, first),
1484                          xfs_btree_rec_offset(cur, last + 1) - 1);
1485
1486}
1487
1488/*
1489 * Log block pointer fields from a btree block (nonleaf).
1490 */
1491STATIC void
1492xfs_btree_log_ptrs(
1493        struct xfs_btree_cur    *cur,   /* btree cursor */
1494        struct xfs_buf          *bp,    /* buffer containing btree block */
1495        int                     first,  /* index of first pointer to log */
1496        int                     last)   /* index of last pointer to log */
1497{
1498
1499        if (bp) {
1500                struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
1501                int                     level = xfs_btree_get_level(block);
1502
1503                xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1504                xfs_trans_log_buf(cur->bc_tp, bp,
1505                                xfs_btree_ptr_offset(cur, first, level),
1506                                xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1507        } else {
1508                xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1509                        xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1510        }
1511
1512}
1513
1514/*
1515 * Log fields from a btree block header.
1516 */
1517void
1518xfs_btree_log_block(
1519        struct xfs_btree_cur    *cur,   /* btree cursor */
1520        struct xfs_buf          *bp,    /* buffer containing btree block */
1521        int                     fields) /* mask of fields: XFS_BB_... */
1522{
1523        int                     first;  /* first byte offset logged */
1524        int                     last;   /* last byte offset logged */
1525        static const short      soffsets[] = {  /* table of offsets (short) */
1526                offsetof(struct xfs_btree_block, bb_magic),
1527                offsetof(struct xfs_btree_block, bb_level),
1528                offsetof(struct xfs_btree_block, bb_numrecs),
1529                offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1530                offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1531                offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1532                offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1533                offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1534                offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1535                offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1536                XFS_BTREE_SBLOCK_CRC_LEN
1537        };
1538        static const short      loffsets[] = {  /* table of offsets (long) */
1539                offsetof(struct xfs_btree_block, bb_magic),
1540                offsetof(struct xfs_btree_block, bb_level),
1541                offsetof(struct xfs_btree_block, bb_numrecs),
1542                offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1543                offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1544                offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1545                offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1546                offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1547                offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1548                offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1549                offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1550                XFS_BTREE_LBLOCK_CRC_LEN
1551        };
1552
1553        if (bp) {
1554                int nbits;
1555
1556                if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1557                        /*
1558                         * We don't log the CRC when updating a btree
1559                         * block but instead recreate it during log
1560                         * recovery.  As the log buffers have checksums
1561                         * of their own this is safe and avoids logging a crc
1562                         * update in a lot of places.
1563                         */
1564                        if (fields == XFS_BB_ALL_BITS)
1565                                fields = XFS_BB_ALL_BITS_CRC;
1566                        nbits = XFS_BB_NUM_BITS_CRC;
1567                } else {
1568                        nbits = XFS_BB_NUM_BITS;
1569                }
1570                xfs_btree_offsets(fields,
1571                                  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1572                                        loffsets : soffsets,
1573                                  nbits, &first, &last);
1574                xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1575                xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1576        } else {
1577                xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1578                        xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1579        }
1580}
1581
1582/*
1583 * Increment cursor by one record at the level.
1584 * For nonzero levels the leaf-ward information is untouched.
1585 */
1586int                                             /* error */
1587xfs_btree_increment(
1588        struct xfs_btree_cur    *cur,
1589        int                     level,
1590        int                     *stat)          /* success/failure */
1591{
1592        struct xfs_btree_block  *block;
1593        union xfs_btree_ptr     ptr;
1594        struct xfs_buf          *bp;
1595        int                     error;          /* error return value */
1596        int                     lev;
1597
1598        ASSERT(level < cur->bc_nlevels);
1599
1600        /* Read-ahead to the right at this level. */
1601        xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1602
1603        /* Get a pointer to the btree block. */
1604        block = xfs_btree_get_block(cur, level, &bp);
1605
1606#ifdef DEBUG
1607        error = xfs_btree_check_block(cur, block, level, bp);
1608        if (error)
1609                goto error0;
1610#endif
1611
1612        /* We're done if we remain in the block after the increment. */
1613        if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1614                goto out1;
1615
1616        /* Fail if we just went off the right edge of the tree. */
1617        xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1618        if (xfs_btree_ptr_is_null(cur, &ptr))
1619                goto out0;
1620
1621        XFS_BTREE_STATS_INC(cur, increment);
1622
1623        /*
1624         * March up the tree incrementing pointers.
1625         * Stop when we don't go off the right edge of a block.
1626         */
1627        for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1628                block = xfs_btree_get_block(cur, lev, &bp);
1629
1630#ifdef DEBUG
1631                error = xfs_btree_check_block(cur, block, lev, bp);
1632                if (error)
1633                        goto error0;
1634#endif
1635
1636                if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1637                        break;
1638
1639                /* Read-ahead the right block for the next loop. */
1640                xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1641        }
1642
1643        /*
1644         * If we went off the root then we are either seriously
1645         * confused or have the tree root in an inode.
1646         */
1647        if (lev == cur->bc_nlevels) {
1648                if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1649                        goto out0;
1650                ASSERT(0);
1651                error = -EFSCORRUPTED;
1652                goto error0;
1653        }
1654        ASSERT(lev < cur->bc_nlevels);
1655
1656        /*
1657         * Now walk back down the tree, fixing up the cursor's buffer
1658         * pointers and key numbers.
1659         */
1660        for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1661                union xfs_btree_ptr     *ptrp;
1662
1663                ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1664                --lev;
1665                error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1666                if (error)
1667                        goto error0;
1668
1669                xfs_btree_setbuf(cur, lev, bp);
1670                cur->bc_ptrs[lev] = 1;
1671        }
1672out1:
1673        *stat = 1;
1674        return 0;
1675
1676out0:
1677        *stat = 0;
1678        return 0;
1679
1680error0:
1681        return error;
1682}
1683
1684/*
1685 * Decrement cursor by one record at the level.
1686 * For nonzero levels the leaf-ward information is untouched.
1687 */
1688int                                             /* error */
1689xfs_btree_decrement(
1690        struct xfs_btree_cur    *cur,
1691        int                     level,
1692        int                     *stat)          /* success/failure */
1693{
1694        struct xfs_btree_block  *block;
1695        xfs_buf_t               *bp;
1696        int                     error;          /* error return value */
1697        int                     lev;
1698        union xfs_btree_ptr     ptr;
1699
1700        ASSERT(level < cur->bc_nlevels);
1701
1702        /* Read-ahead to the left at this level. */
1703        xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1704
1705        /* We're done if we remain in the block after the decrement. */
1706        if (--cur->bc_ptrs[level] > 0)
1707                goto out1;
1708
1709        /* Get a pointer to the btree block. */
1710        block = xfs_btree_get_block(cur, level, &bp);
1711
1712#ifdef DEBUG
1713        error = xfs_btree_check_block(cur, block, level, bp);
1714        if (error)
1715                goto error0;
1716#endif
1717
1718        /* Fail if we just went off the left edge of the tree. */
1719        xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1720        if (xfs_btree_ptr_is_null(cur, &ptr))
1721                goto out0;
1722
1723        XFS_BTREE_STATS_INC(cur, decrement);
1724
1725        /*
1726         * March up the tree decrementing pointers.
1727         * Stop when we don't go off the left edge of a block.
1728         */
1729        for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1730                if (--cur->bc_ptrs[lev] > 0)
1731                        break;
1732                /* Read-ahead the left block for the next loop. */
1733                xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1734        }
1735
1736        /*
1737         * If we went off the root then we are seriously confused.
1738         * or the root of the tree is in an inode.
1739         */
1740        if (lev == cur->bc_nlevels) {
1741                if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1742                        goto out0;
1743                ASSERT(0);
1744                error = -EFSCORRUPTED;
1745                goto error0;
1746        }
1747        ASSERT(lev < cur->bc_nlevels);
1748
1749        /*
1750         * Now walk back down the tree, fixing up the cursor's buffer
1751         * pointers and key numbers.
1752         */
1753        for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1754                union xfs_btree_ptr     *ptrp;
1755
1756                ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1757                --lev;
1758                error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1759                if (error)
1760                        goto error0;
1761                xfs_btree_setbuf(cur, lev, bp);
1762                cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1763        }
1764out1:
1765        *stat = 1;
1766        return 0;
1767
1768out0:
1769        *stat = 0;
1770        return 0;
1771
1772error0:
1773        return error;
1774}
1775
1776int
1777xfs_btree_lookup_get_block(
1778        struct xfs_btree_cur    *cur,   /* btree cursor */
1779        int                     level,  /* level in the btree */
1780        union xfs_btree_ptr     *pp,    /* ptr to btree block */
1781        struct xfs_btree_block  **blkp) /* return btree block */
1782{
1783        struct xfs_buf          *bp;    /* buffer pointer for btree block */
1784        xfs_daddr_t             daddr;
1785        int                     error = 0;
1786
1787        /* special case the root block if in an inode */
1788        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1789            (level == cur->bc_nlevels - 1)) {
1790                *blkp = xfs_btree_get_iroot(cur);
1791                return 0;
1792        }
1793
1794        /*
1795         * If the old buffer at this level for the disk address we are
1796         * looking for re-use it.
1797         *
1798         * Otherwise throw it away and get a new one.
1799         */
1800        bp = cur->bc_bufs[level];
1801        error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1802        if (error)
1803                return error;
1804        if (bp && XFS_BUF_ADDR(bp) == daddr) {
1805                *blkp = XFS_BUF_TO_BLOCK(bp);
1806                return 0;
1807        }
1808
1809        error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1810        if (error)
1811                return error;
1812
1813        /* Check the inode owner since the verifiers don't. */
1814        if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1815            !(cur->bc_private.b.flags & XFS_BTCUR_BPRV_INVALID_OWNER) &&
1816            (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1817            be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1818                        cur->bc_private.b.ip->i_ino)
1819                goto out_bad;
1820
1821        /* Did we get the level we were looking for? */
1822        if (be16_to_cpu((*blkp)->bb_level) != level)
1823                goto out_bad;
1824
1825        /* Check that internal nodes have at least one record. */
1826        if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1827                goto out_bad;
1828
1829        xfs_btree_setbuf(cur, level, bp);
1830        return 0;
1831
1832out_bad:
1833        *blkp = NULL;
1834        xfs_trans_brelse(cur->bc_tp, bp);
1835        return -EFSCORRUPTED;
1836}
1837
1838/*
1839 * Get current search key.  For level 0 we don't actually have a key
1840 * structure so we make one up from the record.  For all other levels
1841 * we just return the right key.
1842 */
1843STATIC union xfs_btree_key *
1844xfs_lookup_get_search_key(
1845        struct xfs_btree_cur    *cur,
1846        int                     level,
1847        int                     keyno,
1848        struct xfs_btree_block  *block,
1849        union xfs_btree_key     *kp)
1850{
1851        if (level == 0) {
1852                cur->bc_ops->init_key_from_rec(kp,
1853                                xfs_btree_rec_addr(cur, keyno, block));
1854                return kp;
1855        }
1856
1857        return xfs_btree_key_addr(cur, keyno, block);
1858}
1859
1860/*
1861 * Lookup the record.  The cursor is made to point to it, based on dir.
1862 * stat is set to 0 if can't find any such record, 1 for success.
1863 */
1864int                                     /* error */
1865xfs_btree_lookup(
1866        struct xfs_btree_cur    *cur,   /* btree cursor */
1867        xfs_lookup_t            dir,    /* <=, ==, or >= */
1868        int                     *stat)  /* success/failure */
1869{
1870        struct xfs_btree_block  *block; /* current btree block */
1871        int64_t                 diff;   /* difference for the current key */
1872        int                     error;  /* error return value */
1873        int                     keyno;  /* current key number */
1874        int                     level;  /* level in the btree */
1875        union xfs_btree_ptr     *pp;    /* ptr to btree block */
1876        union xfs_btree_ptr     ptr;    /* ptr to btree block */
1877
1878        XFS_BTREE_STATS_INC(cur, lookup);
1879
1880        /* No such thing as a zero-level tree. */
1881        if (cur->bc_nlevels == 0)
1882                return -EFSCORRUPTED;
1883
1884        block = NULL;
1885        keyno = 0;
1886
1887        /* initialise start pointer from cursor */
1888        cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1889        pp = &ptr;
1890
1891        /*
1892         * Iterate over each level in the btree, starting at the root.
1893         * For each level above the leaves, find the key we need, based
1894         * on the lookup record, then follow the corresponding block
1895         * pointer down to the next level.
1896         */
1897        for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1898                /* Get the block we need to do the lookup on. */
1899                error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1900                if (error)
1901                        goto error0;
1902
1903                if (diff == 0) {
1904                        /*
1905                         * If we already had a key match at a higher level, we
1906                         * know we need to use the first entry in this block.
1907                         */
1908                        keyno = 1;
1909                } else {
1910                        /* Otherwise search this block. Do a binary search. */
1911
1912                        int     high;   /* high entry number */
1913                        int     low;    /* low entry number */
1914
1915                        /* Set low and high entry numbers, 1-based. */
1916                        low = 1;
1917                        high = xfs_btree_get_numrecs(block);
1918                        if (!high) {
1919                                /* Block is empty, must be an empty leaf. */
1920                                if (level != 0 || cur->bc_nlevels != 1) {
1921                                        XFS_CORRUPTION_ERROR(__func__,
1922                                                        XFS_ERRLEVEL_LOW,
1923                                                        cur->bc_mp, block,
1924                                                        sizeof(*block));
1925                                        return -EFSCORRUPTED;
1926                                }
1927
1928                                cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1929                                *stat = 0;
1930                                return 0;
1931                        }
1932
1933                        /* Binary search the block. */
1934                        while (low <= high) {
1935                                union xfs_btree_key     key;
1936                                union xfs_btree_key     *kp;
1937
1938                                XFS_BTREE_STATS_INC(cur, compare);
1939
1940                                /* keyno is average of low and high. */
1941                                keyno = (low + high) >> 1;
1942
1943                                /* Get current search key */
1944                                kp = xfs_lookup_get_search_key(cur, level,
1945                                                keyno, block, &key);
1946
1947                                /*
1948                                 * Compute difference to get next direction:
1949                                 *  - less than, move right
1950                                 *  - greater than, move left
1951                                 *  - equal, we're done
1952                                 */
1953                                diff = cur->bc_ops->key_diff(cur, kp);
1954                                if (diff < 0)
1955                                        low = keyno + 1;
1956                                else if (diff > 0)
1957                                        high = keyno - 1;
1958                                else
1959                                        break;
1960                        }
1961                }
1962
1963                /*
1964                 * If there are more levels, set up for the next level
1965                 * by getting the block number and filling in the cursor.
1966                 */
1967                if (level > 0) {
1968                        /*
1969                         * If we moved left, need the previous key number,
1970                         * unless there isn't one.
1971                         */
1972                        if (diff > 0 && --keyno < 1)
1973                                keyno = 1;
1974                        pp = xfs_btree_ptr_addr(cur, keyno, block);
1975
1976                        error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1977                        if (error)
1978                                goto error0;
1979
1980                        cur->bc_ptrs[level] = keyno;
1981                }
1982        }
1983
1984        /* Done with the search. See if we need to adjust the results. */
1985        if (dir != XFS_LOOKUP_LE && diff < 0) {
1986                keyno++;
1987                /*
1988                 * If ge search and we went off the end of the block, but it's
1989                 * not the last block, we're in the wrong block.
1990                 */
1991                xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1992                if (dir == XFS_LOOKUP_GE &&
1993                    keyno > xfs_btree_get_numrecs(block) &&
1994                    !xfs_btree_ptr_is_null(cur, &ptr)) {
1995                        int     i;
1996
1997                        cur->bc_ptrs[0] = keyno;
1998                        error = xfs_btree_increment(cur, 0, &i);
1999                        if (error)
2000                                goto error0;
2001                        XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
2002                        *stat = 1;
2003                        return 0;
2004                }
2005        } else if (dir == XFS_LOOKUP_LE && diff > 0)
2006                keyno--;
2007        cur->bc_ptrs[0] = keyno;
2008
2009        /* Return if we succeeded or not. */
2010        if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2011                *stat = 0;
2012        else if (dir != XFS_LOOKUP_EQ || diff == 0)
2013                *stat = 1;
2014        else
2015                *stat = 0;
2016        return 0;
2017
2018error0:
2019        return error;
2020}
2021
2022/* Find the high key storage area from a regular key. */
2023union xfs_btree_key *
2024xfs_btree_high_key_from_key(
2025        struct xfs_btree_cur    *cur,
2026        union xfs_btree_key     *key)
2027{
2028        ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2029        return (union xfs_btree_key *)((char *)key +
2030                        (cur->bc_ops->key_len / 2));
2031}
2032
2033/* Determine the low (and high if overlapped) keys of a leaf block */
2034STATIC void
2035xfs_btree_get_leaf_keys(
2036        struct xfs_btree_cur    *cur,
2037        struct xfs_btree_block  *block,
2038        union xfs_btree_key     *key)
2039{
2040        union xfs_btree_key     max_hkey;
2041        union xfs_btree_key     hkey;
2042        union xfs_btree_rec     *rec;
2043        union xfs_btree_key     *high;
2044        int                     n;
2045
2046        rec = xfs_btree_rec_addr(cur, 1, block);
2047        cur->bc_ops->init_key_from_rec(key, rec);
2048
2049        if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2050
2051                cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2052                for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2053                        rec = xfs_btree_rec_addr(cur, n, block);
2054                        cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2055                        if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2056                                        > 0)
2057                                max_hkey = hkey;
2058                }
2059
2060                high = xfs_btree_high_key_from_key(cur, key);
2061                memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2062        }
2063}
2064
2065/* Determine the low (and high if overlapped) keys of a node block */
2066STATIC void
2067xfs_btree_get_node_keys(
2068        struct xfs_btree_cur    *cur,
2069        struct xfs_btree_block  *block,
2070        union xfs_btree_key     *key)
2071{
2072        union xfs_btree_key     *hkey;
2073        union xfs_btree_key     *max_hkey;
2074        union xfs_btree_key     *high;
2075        int                     n;
2076
2077        if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2078                memcpy(key, xfs_btree_key_addr(cur, 1, block),
2079                                cur->bc_ops->key_len / 2);
2080
2081                max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2082                for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2083                        hkey = xfs_btree_high_key_addr(cur, n, block);
2084                        if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2085                                max_hkey = hkey;
2086                }
2087
2088                high = xfs_btree_high_key_from_key(cur, key);
2089                memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2090        } else {
2091                memcpy(key, xfs_btree_key_addr(cur, 1, block),
2092                                cur->bc_ops->key_len);
2093        }
2094}
2095
2096/* Derive the keys for any btree block. */
2097void
2098xfs_btree_get_keys(
2099        struct xfs_btree_cur    *cur,
2100        struct xfs_btree_block  *block,
2101        union xfs_btree_key     *key)
2102{
2103        if (be16_to_cpu(block->bb_level) == 0)
2104                xfs_btree_get_leaf_keys(cur, block, key);
2105        else
2106                xfs_btree_get_node_keys(cur, block, key);
2107}
2108
2109/*
2110 * Decide if we need to update the parent keys of a btree block.  For
2111 * a standard btree this is only necessary if we're updating the first
2112 * record/key.  For an overlapping btree, we must always update the
2113 * keys because the highest key can be in any of the records or keys
2114 * in the block.
2115 */
2116static inline bool
2117xfs_btree_needs_key_update(
2118        struct xfs_btree_cur    *cur,
2119        int                     ptr)
2120{
2121        return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2122}
2123
2124/*
2125 * Update the low and high parent keys of the given level, progressing
2126 * towards the root.  If force_all is false, stop if the keys for a given
2127 * level do not need updating.
2128 */
2129STATIC int
2130__xfs_btree_updkeys(
2131        struct xfs_btree_cur    *cur,
2132        int                     level,
2133        struct xfs_btree_block  *block,
2134        struct xfs_buf          *bp0,
2135        bool                    force_all)
2136{
2137        union xfs_btree_key     key;    /* keys from current level */
2138        union xfs_btree_key     *lkey;  /* keys from the next level up */
2139        union xfs_btree_key     *hkey;
2140        union xfs_btree_key     *nlkey; /* keys from the next level up */
2141        union xfs_btree_key     *nhkey;
2142        struct xfs_buf          *bp;
2143        int                     ptr;
2144
2145        ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2146
2147        /* Exit if there aren't any parent levels to update. */
2148        if (level + 1 >= cur->bc_nlevels)
2149                return 0;
2150
2151        trace_xfs_btree_updkeys(cur, level, bp0);
2152
2153        lkey = &key;
2154        hkey = xfs_btree_high_key_from_key(cur, lkey);
2155        xfs_btree_get_keys(cur, block, lkey);
2156        for (level++; level < cur->bc_nlevels; level++) {
2157#ifdef DEBUG
2158                int             error;
2159#endif
2160                block = xfs_btree_get_block(cur, level, &bp);
2161                trace_xfs_btree_updkeys(cur, level, bp);
2162#ifdef DEBUG
2163                error = xfs_btree_check_block(cur, block, level, bp);
2164                if (error)
2165                        return error;
2166#endif
2167                ptr = cur->bc_ptrs[level];
2168                nlkey = xfs_btree_key_addr(cur, ptr, block);
2169                nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2170                if (!force_all &&
2171                    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2172                      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2173                        break;
2174                xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2175                xfs_btree_log_keys(cur, bp, ptr, ptr);
2176                if (level + 1 >= cur->bc_nlevels)
2177                        break;
2178                xfs_btree_get_node_keys(cur, block, lkey);
2179        }
2180
2181        return 0;
2182}
2183
2184/* Update all the keys from some level in cursor back to the root. */
2185STATIC int
2186xfs_btree_updkeys_force(
2187        struct xfs_btree_cur    *cur,
2188        int                     level)
2189{
2190        struct xfs_buf          *bp;
2191        struct xfs_btree_block  *block;
2192
2193        block = xfs_btree_get_block(cur, level, &bp);
2194        return __xfs_btree_updkeys(cur, level, block, bp, true);
2195}
2196
2197/*
2198 * Update the parent keys of the given level, progressing towards the root.
2199 */
2200STATIC int
2201xfs_btree_update_keys(
2202        struct xfs_btree_cur    *cur,
2203        int                     level)
2204{
2205        struct xfs_btree_block  *block;
2206        struct xfs_buf          *bp;
2207        union xfs_btree_key     *kp;
2208        union xfs_btree_key     key;
2209        int                     ptr;
2210
2211        ASSERT(level >= 0);
2212
2213        block = xfs_btree_get_block(cur, level, &bp);
2214        if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2215                return __xfs_btree_updkeys(cur, level, block, bp, false);
2216
2217        /*
2218         * Go up the tree from this level toward the root.
2219         * At each level, update the key value to the value input.
2220         * Stop when we reach a level where the cursor isn't pointing
2221         * at the first entry in the block.
2222         */
2223        xfs_btree_get_keys(cur, block, &key);
2224        for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2225#ifdef DEBUG
2226                int             error;
2227#endif
2228                block = xfs_btree_get_block(cur, level, &bp);
2229#ifdef DEBUG
2230                error = xfs_btree_check_block(cur, block, level, bp);
2231                if (error)
2232                        return error;
2233#endif
2234                ptr = cur->bc_ptrs[level];
2235                kp = xfs_btree_key_addr(cur, ptr, block);
2236                xfs_btree_copy_keys(cur, kp, &key, 1);
2237                xfs_btree_log_keys(cur, bp, ptr, ptr);
2238        }
2239
2240        return 0;
2241}
2242
2243/*
2244 * Update the record referred to by cur to the value in the
2245 * given record. This either works (return 0) or gets an
2246 * EFSCORRUPTED error.
2247 */
2248int
2249xfs_btree_update(
2250        struct xfs_btree_cur    *cur,
2251        union xfs_btree_rec     *rec)
2252{
2253        struct xfs_btree_block  *block;
2254        struct xfs_buf          *bp;
2255        int                     error;
2256        int                     ptr;
2257        union xfs_btree_rec     *rp;
2258
2259        /* Pick up the current block. */
2260        block = xfs_btree_get_block(cur, 0, &bp);
2261
2262#ifdef DEBUG
2263        error = xfs_btree_check_block(cur, block, 0, bp);
2264        if (error)
2265                goto error0;
2266#endif
2267        /* Get the address of the rec to be updated. */
2268        ptr = cur->bc_ptrs[0];
2269        rp = xfs_btree_rec_addr(cur, ptr, block);
2270
2271        /* Fill in the new contents and log them. */
2272        xfs_btree_copy_recs(cur, rp, rec, 1);
2273        xfs_btree_log_recs(cur, bp, ptr, ptr);
2274
2275        /*
2276         * If we are tracking the last record in the tree and
2277         * we are at the far right edge of the tree, update it.
2278         */
2279        if (xfs_btree_is_lastrec(cur, block, 0)) {
2280                cur->bc_ops->update_lastrec(cur, block, rec,
2281                                            ptr, LASTREC_UPDATE);
2282        }
2283
2284        /* Pass new key value up to our parent. */
2285        if (xfs_btree_needs_key_update(cur, ptr)) {
2286                error = xfs_btree_update_keys(cur, 0);
2287                if (error)
2288                        goto error0;
2289        }
2290
2291        return 0;
2292
2293error0:
2294        return error;
2295}
2296
2297/*
2298 * Move 1 record left from cur/level if possible.
2299 * Update cur to reflect the new path.
2300 */
2301STATIC int                                      /* error */
2302xfs_btree_lshift(
2303        struct xfs_btree_cur    *cur,
2304        int                     level,
2305        int                     *stat)          /* success/failure */
2306{
2307        struct xfs_buf          *lbp;           /* left buffer pointer */
2308        struct xfs_btree_block  *left;          /* left btree block */
2309        int                     lrecs;          /* left record count */
2310        struct xfs_buf          *rbp;           /* right buffer pointer */
2311        struct xfs_btree_block  *right;         /* right btree block */
2312        struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2313        int                     rrecs;          /* right record count */
2314        union xfs_btree_ptr     lptr;           /* left btree pointer */
2315        union xfs_btree_key     *rkp = NULL;    /* right btree key */
2316        union xfs_btree_ptr     *rpp = NULL;    /* right address pointer */
2317        union xfs_btree_rec     *rrp = NULL;    /* right record pointer */
2318        int                     error;          /* error return value */
2319        int                     i;
2320
2321        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2322            level == cur->bc_nlevels - 1)
2323                goto out0;
2324
2325        /* Set up variables for this block as "right". */
2326        right = xfs_btree_get_block(cur, level, &rbp);
2327
2328#ifdef DEBUG
2329        error = xfs_btree_check_block(cur, right, level, rbp);
2330        if (error)
2331                goto error0;
2332#endif
2333
2334        /* If we've got no left sibling then we can't shift an entry left. */
2335        xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2336        if (xfs_btree_ptr_is_null(cur, &lptr))
2337                goto out0;
2338
2339        /*
2340         * If the cursor entry is the one that would be moved, don't
2341         * do it... it's too complicated.
2342         */
2343        if (cur->bc_ptrs[level] <= 1)
2344                goto out0;
2345
2346        /* Set up the left neighbor as "left". */
2347        error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2348        if (error)
2349                goto error0;
2350
2351        /* If it's full, it can't take another entry. */
2352        lrecs = xfs_btree_get_numrecs(left);
2353        if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2354                goto out0;
2355
2356        rrecs = xfs_btree_get_numrecs(right);
2357
2358        /*
2359         * We add one entry to the left side and remove one for the right side.
2360         * Account for it here, the changes will be updated on disk and logged
2361         * later.
2362         */
2363        lrecs++;
2364        rrecs--;
2365
2366        XFS_BTREE_STATS_INC(cur, lshift);
2367        XFS_BTREE_STATS_ADD(cur, moves, 1);
2368
2369        /*
2370         * If non-leaf, copy a key and a ptr to the left block.
2371         * Log the changes to the left block.
2372         */
2373        if (level > 0) {
2374                /* It's a non-leaf.  Move keys and pointers. */
2375                union xfs_btree_key     *lkp;   /* left btree key */
2376                union xfs_btree_ptr     *lpp;   /* left address pointer */
2377
2378                lkp = xfs_btree_key_addr(cur, lrecs, left);
2379                rkp = xfs_btree_key_addr(cur, 1, right);
2380
2381                lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2382                rpp = xfs_btree_ptr_addr(cur, 1, right);
2383
2384                error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2385                if (error)
2386                        goto error0;
2387
2388                xfs_btree_copy_keys(cur, lkp, rkp, 1);
2389                xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2390
2391                xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2392                xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2393
2394                ASSERT(cur->bc_ops->keys_inorder(cur,
2395                        xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2396        } else {
2397                /* It's a leaf.  Move records.  */
2398                union xfs_btree_rec     *lrp;   /* left record pointer */
2399
2400                lrp = xfs_btree_rec_addr(cur, lrecs, left);
2401                rrp = xfs_btree_rec_addr(cur, 1, right);
2402
2403                xfs_btree_copy_recs(cur, lrp, rrp, 1);
2404                xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2405
2406                ASSERT(cur->bc_ops->recs_inorder(cur,
2407                        xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2408        }
2409
2410        xfs_btree_set_numrecs(left, lrecs);
2411        xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2412
2413        xfs_btree_set_numrecs(right, rrecs);
2414        xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2415
2416        /*
2417         * Slide the contents of right down one entry.
2418         */
2419        XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2420        if (level > 0) {
2421                /* It's a nonleaf. operate on keys and ptrs */
2422                int                     i;              /* loop index */
2423
2424                for (i = 0; i < rrecs; i++) {
2425                        error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2426                        if (error)
2427                                goto error0;
2428                }
2429
2430                xfs_btree_shift_keys(cur,
2431                                xfs_btree_key_addr(cur, 2, right),
2432                                -1, rrecs);
2433                xfs_btree_shift_ptrs(cur,
2434                                xfs_btree_ptr_addr(cur, 2, right),
2435                                -1, rrecs);
2436
2437                xfs_btree_log_keys(cur, rbp, 1, rrecs);
2438                xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2439        } else {
2440                /* It's a leaf. operate on records */
2441                xfs_btree_shift_recs(cur,
2442                        xfs_btree_rec_addr(cur, 2, right),
2443                        -1, rrecs);
2444                xfs_btree_log_recs(cur, rbp, 1, rrecs);
2445        }
2446
2447        /*
2448         * Using a temporary cursor, update the parent key values of the
2449         * block on the left.
2450         */
2451        if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2452                error = xfs_btree_dup_cursor(cur, &tcur);
2453                if (error)
2454                        goto error0;
2455                i = xfs_btree_firstrec(tcur, level);
2456                XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2457
2458                error = xfs_btree_decrement(tcur, level, &i);
2459                if (error)
2460                        goto error1;
2461
2462                /* Update the parent high keys of the left block, if needed. */
2463                error = xfs_btree_update_keys(tcur, level);
2464                if (error)
2465                        goto error1;
2466
2467                xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2468        }
2469
2470        /* Update the parent keys of the right block. */
2471        error = xfs_btree_update_keys(cur, level);
2472        if (error)
2473                goto error0;
2474
2475        /* Slide the cursor value left one. */
2476        cur->bc_ptrs[level]--;
2477
2478        *stat = 1;
2479        return 0;
2480
2481out0:
2482        *stat = 0;
2483        return 0;
2484
2485error0:
2486        return error;
2487
2488error1:
2489        xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2490        return error;
2491}
2492
2493/*
2494 * Move 1 record right from cur/level if possible.
2495 * Update cur to reflect the new path.
2496 */
2497STATIC int                                      /* error */
2498xfs_btree_rshift(
2499        struct xfs_btree_cur    *cur,
2500        int                     level,
2501        int                     *stat)          /* success/failure */
2502{
2503        struct xfs_buf          *lbp;           /* left buffer pointer */
2504        struct xfs_btree_block  *left;          /* left btree block */
2505        struct xfs_buf          *rbp;           /* right buffer pointer */
2506        struct xfs_btree_block  *right;         /* right btree block */
2507        struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2508        union xfs_btree_ptr     rptr;           /* right block pointer */
2509        union xfs_btree_key     *rkp;           /* right btree key */
2510        int                     rrecs;          /* right record count */
2511        int                     lrecs;          /* left record count */
2512        int                     error;          /* error return value */
2513        int                     i;              /* loop counter */
2514
2515        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2516            (level == cur->bc_nlevels - 1))
2517                goto out0;
2518
2519        /* Set up variables for this block as "left". */
2520        left = xfs_btree_get_block(cur, level, &lbp);
2521
2522#ifdef DEBUG
2523        error = xfs_btree_check_block(cur, left, level, lbp);
2524        if (error)
2525                goto error0;
2526#endif
2527
2528        /* If we've got no right sibling then we can't shift an entry right. */
2529        xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2530        if (xfs_btree_ptr_is_null(cur, &rptr))
2531                goto out0;
2532
2533        /*
2534         * If the cursor entry is the one that would be moved, don't
2535         * do it... it's too complicated.
2536         */
2537        lrecs = xfs_btree_get_numrecs(left);
2538        if (cur->bc_ptrs[level] >= lrecs)
2539                goto out0;
2540
2541        /* Set up the right neighbor as "right". */
2542        error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2543        if (error)
2544                goto error0;
2545
2546        /* If it's full, it can't take another entry. */
2547        rrecs = xfs_btree_get_numrecs(right);
2548        if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2549                goto out0;
2550
2551        XFS_BTREE_STATS_INC(cur, rshift);
2552        XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2553
2554        /*
2555         * Make a hole at the start of the right neighbor block, then
2556         * copy the last left block entry to the hole.
2557         */
2558        if (level > 0) {
2559                /* It's a nonleaf. make a hole in the keys and ptrs */
2560                union xfs_btree_key     *lkp;
2561                union xfs_btree_ptr     *lpp;
2562                union xfs_btree_ptr     *rpp;
2563
2564                lkp = xfs_btree_key_addr(cur, lrecs, left);
2565                lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2566                rkp = xfs_btree_key_addr(cur, 1, right);
2567                rpp = xfs_btree_ptr_addr(cur, 1, right);
2568
2569                for (i = rrecs - 1; i >= 0; i--) {
2570                        error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2571                        if (error)
2572                                goto error0;
2573                }
2574
2575                xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2576                xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2577
2578                error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2579                if (error)
2580                        goto error0;
2581
2582                /* Now put the new data in, and log it. */
2583                xfs_btree_copy_keys(cur, rkp, lkp, 1);
2584                xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2585
2586                xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2587                xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2588
2589                ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2590                        xfs_btree_key_addr(cur, 2, right)));
2591        } else {
2592                /* It's a leaf. make a hole in the records */
2593                union xfs_btree_rec     *lrp;
2594                union xfs_btree_rec     *rrp;
2595
2596                lrp = xfs_btree_rec_addr(cur, lrecs, left);
2597                rrp = xfs_btree_rec_addr(cur, 1, right);
2598
2599                xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2600
2601                /* Now put the new data in, and log it. */
2602                xfs_btree_copy_recs(cur, rrp, lrp, 1);
2603                xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2604        }
2605
2606        /*
2607         * Decrement and log left's numrecs, bump and log right's numrecs.
2608         */
2609        xfs_btree_set_numrecs(left, --lrecs);
2610        xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2611
2612        xfs_btree_set_numrecs(right, ++rrecs);
2613        xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2614
2615        /*
2616         * Using a temporary cursor, update the parent key values of the
2617         * block on the right.
2618         */
2619        error = xfs_btree_dup_cursor(cur, &tcur);
2620        if (error)
2621                goto error0;
2622        i = xfs_btree_lastrec(tcur, level);
2623        XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2624
2625        error = xfs_btree_increment(tcur, level, &i);
2626        if (error)
2627                goto error1;
2628
2629        /* Update the parent high keys of the left block, if needed. */
2630        if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2631                error = xfs_btree_update_keys(cur, level);
2632                if (error)
2633                        goto error1;
2634        }
2635
2636        /* Update the parent keys of the right block. */
2637        error = xfs_btree_update_keys(tcur, level);
2638        if (error)
2639                goto error1;
2640
2641        xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2642
2643        *stat = 1;
2644        return 0;
2645
2646out0:
2647        *stat = 0;
2648        return 0;
2649
2650error0:
2651        return error;
2652
2653error1:
2654        xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2655        return error;
2656}
2657
2658/*
2659 * Split cur/level block in half.
2660 * Return new block number and the key to its first
2661 * record (to be inserted into parent).
2662 */
2663STATIC int                                      /* error */
2664__xfs_btree_split(
2665        struct xfs_btree_cur    *cur,
2666        int                     level,
2667        union xfs_btree_ptr     *ptrp,
2668        union xfs_btree_key     *key,
2669        struct xfs_btree_cur    **curp,
2670        int                     *stat)          /* success/failure */
2671{
2672        union xfs_btree_ptr     lptr;           /* left sibling block ptr */
2673        struct xfs_buf          *lbp;           /* left buffer pointer */
2674        struct xfs_btree_block  *left;          /* left btree block */
2675        union xfs_btree_ptr     rptr;           /* right sibling block ptr */
2676        struct xfs_buf          *rbp;           /* right buffer pointer */
2677        struct xfs_btree_block  *right;         /* right btree block */
2678        union xfs_btree_ptr     rrptr;          /* right-right sibling ptr */
2679        struct xfs_buf          *rrbp;          /* right-right buffer pointer */
2680        struct xfs_btree_block  *rrblock;       /* right-right btree block */
2681        int                     lrecs;
2682        int                     rrecs;
2683        int                     src_index;
2684        int                     error;          /* error return value */
2685        int                     i;
2686
2687        XFS_BTREE_STATS_INC(cur, split);
2688
2689        /* Set up left block (current one). */
2690        left = xfs_btree_get_block(cur, level, &lbp);
2691
2692#ifdef DEBUG
2693        error = xfs_btree_check_block(cur, left, level, lbp);
2694        if (error)
2695                goto error0;
2696#endif
2697
2698        xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2699
2700        /* Allocate the new block. If we can't do it, we're toast. Give up. */
2701        error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2702        if (error)
2703                goto error0;
2704        if (*stat == 0)
2705                goto out0;
2706        XFS_BTREE_STATS_INC(cur, alloc);
2707
2708        /* Set up the new block as "right". */
2709        error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2710        if (error)
2711                goto error0;
2712
2713        /* Fill in the btree header for the new right block. */
2714        xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2715
2716        /*
2717         * Split the entries between the old and the new block evenly.
2718         * Make sure that if there's an odd number of entries now, that
2719         * each new block will have the same number of entries.
2720         */
2721        lrecs = xfs_btree_get_numrecs(left);
2722        rrecs = lrecs / 2;
2723        if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2724                rrecs++;
2725        src_index = (lrecs - rrecs + 1);
2726
2727        XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2728
2729        /* Adjust numrecs for the later get_*_keys() calls. */
2730        lrecs -= rrecs;
2731        xfs_btree_set_numrecs(left, lrecs);
2732        xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2733
2734        /*
2735         * Copy btree block entries from the left block over to the
2736         * new block, the right. Update the right block and log the
2737         * changes.
2738         */
2739        if (level > 0) {
2740                /* It's a non-leaf.  Move keys and pointers. */
2741                union xfs_btree_key     *lkp;   /* left btree key */
2742                union xfs_btree_ptr     *lpp;   /* left address pointer */
2743                union xfs_btree_key     *rkp;   /* right btree key */
2744                union xfs_btree_ptr     *rpp;   /* right address pointer */
2745
2746                lkp = xfs_btree_key_addr(cur, src_index, left);
2747                lpp = xfs_btree_ptr_addr(cur, src_index, left);
2748                rkp = xfs_btree_key_addr(cur, 1, right);
2749                rpp = xfs_btree_ptr_addr(cur, 1, right);
2750
2751                for (i = src_index; i < rrecs; i++) {
2752                        error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2753                        if (error)
2754                                goto error0;
2755                }
2756
2757                /* Copy the keys & pointers to the new block. */
2758                xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2759                xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2760
2761                xfs_btree_log_keys(cur, rbp, 1, rrecs);
2762                xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2763
2764                /* Stash the keys of the new block for later insertion. */
2765                xfs_btree_get_node_keys(cur, right, key);
2766        } else {
2767                /* It's a leaf.  Move records.  */
2768                union xfs_btree_rec     *lrp;   /* left record pointer */
2769                union xfs_btree_rec     *rrp;   /* right record pointer */
2770
2771                lrp = xfs_btree_rec_addr(cur, src_index, left);
2772                rrp = xfs_btree_rec_addr(cur, 1, right);
2773
2774                /* Copy records to the new block. */
2775                xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2776                xfs_btree_log_recs(cur, rbp, 1, rrecs);
2777
2778                /* Stash the keys of the new block for later insertion. */
2779                xfs_btree_get_leaf_keys(cur, right, key);
2780        }
2781
2782        /*
2783         * Find the left block number by looking in the buffer.
2784         * Adjust sibling pointers.
2785         */
2786        xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2787        xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2788        xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2789        xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2790
2791        xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2792        xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2793
2794        /*
2795         * If there's a block to the new block's right, make that block
2796         * point back to right instead of to left.
2797         */
2798        if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2799                error = xfs_btree_read_buf_block(cur, &rrptr,
2800                                                        0, &rrblock, &rrbp);
2801                if (error)
2802                        goto error0;
2803                xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2804                xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2805        }
2806
2807        /* Update the parent high keys of the left block, if needed. */
2808        if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2809                error = xfs_btree_update_keys(cur, level);
2810                if (error)
2811                        goto error0;
2812        }
2813
2814        /*
2815         * If the cursor is really in the right block, move it there.
2816         * If it's just pointing past the last entry in left, then we'll
2817         * insert there, so don't change anything in that case.
2818         */
2819        if (cur->bc_ptrs[level] > lrecs + 1) {
2820                xfs_btree_setbuf(cur, level, rbp);
2821                cur->bc_ptrs[level] -= lrecs;
2822        }
2823        /*
2824         * If there are more levels, we'll need another cursor which refers
2825         * the right block, no matter where this cursor was.
2826         */
2827        if (level + 1 < cur->bc_nlevels) {
2828                error = xfs_btree_dup_cursor(cur, curp);
2829                if (error)
2830                        goto error0;
2831                (*curp)->bc_ptrs[level + 1]++;
2832        }
2833        *ptrp = rptr;
2834        *stat = 1;
2835        return 0;
2836out0:
2837        *stat = 0;
2838        return 0;
2839
2840error0:
2841        return error;
2842}
2843
2844struct xfs_btree_split_args {
2845        struct xfs_btree_cur    *cur;
2846        int                     level;
2847        union xfs_btree_ptr     *ptrp;
2848        union xfs_btree_key     *key;
2849        struct xfs_btree_cur    **curp;
2850        int                     *stat;          /* success/failure */
2851        int                     result;
2852        bool                    kswapd; /* allocation in kswapd context */
2853        struct completion       *done;
2854        struct work_struct      work;
2855};
2856
2857/*
2858 * Stack switching interfaces for allocation
2859 */
2860static void
2861xfs_btree_split_worker(
2862        struct work_struct      *work)
2863{
2864        struct xfs_btree_split_args     *args = container_of(work,
2865                                                struct xfs_btree_split_args, work);
2866        unsigned long           pflags;
2867        unsigned long           new_pflags = PF_MEMALLOC_NOFS;
2868
2869        /*
2870         * we are in a transaction context here, but may also be doing work
2871         * in kswapd context, and hence we may need to inherit that state
2872         * temporarily to ensure that we don't block waiting for memory reclaim
2873         * in any way.
2874         */
2875        if (args->kswapd)
2876                new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2877
2878        current_set_flags_nested(&pflags, new_pflags);
2879
2880        args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2881                                         args->key, args->curp, args->stat);
2882        complete(args->done);
2883
2884        current_restore_flags_nested(&pflags, new_pflags);
2885}
2886
2887/*
2888 * BMBT split requests often come in with little stack to work on. Push
2889 * them off to a worker thread so there is lots of stack to use. For the other
2890 * btree types, just call directly to avoid the context switch overhead here.
2891 */
2892STATIC int                                      /* error */
2893xfs_btree_split(
2894        struct xfs_btree_cur    *cur,
2895        int                     level,
2896        union xfs_btree_ptr     *ptrp,
2897        union xfs_btree_key     *key,
2898        struct xfs_btree_cur    **curp,
2899        int                     *stat)          /* success/failure */
2900{
2901        struct xfs_btree_split_args     args;
2902        DECLARE_COMPLETION_ONSTACK(done);
2903
2904        if (cur->bc_btnum != XFS_BTNUM_BMAP)
2905                return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2906
2907        args.cur = cur;
2908        args.level = level;
2909        args.ptrp = ptrp;
2910        args.key = key;
2911        args.curp = curp;
2912        args.stat = stat;
2913        args.done = &done;
2914        args.kswapd = current_is_kswapd();
2915        INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2916        queue_work(xfs_alloc_wq, &args.work);
2917        wait_for_completion(&done);
2918        destroy_work_on_stack(&args.work);
2919        return args.result;
2920}
2921
2922
2923/*
2924 * Copy the old inode root contents into a real block and make the
2925 * broot point to it.
2926 */
2927int                                             /* error */
2928xfs_btree_new_iroot(
2929        struct xfs_btree_cur    *cur,           /* btree cursor */
2930        int                     *logflags,      /* logging flags for inode */
2931        int                     *stat)          /* return status - 0 fail */
2932{
2933        struct xfs_buf          *cbp;           /* buffer for cblock */
2934        struct xfs_btree_block  *block;         /* btree block */
2935        struct xfs_btree_block  *cblock;        /* child btree block */
2936        union xfs_btree_key     *ckp;           /* child key pointer */
2937        union xfs_btree_ptr     *cpp;           /* child ptr pointer */
2938        union xfs_btree_key     *kp;            /* pointer to btree key */
2939        union xfs_btree_ptr     *pp;            /* pointer to block addr */
2940        union xfs_btree_ptr     nptr;           /* new block addr */
2941        int                     level;          /* btree level */
2942        int                     error;          /* error return code */
2943        int                     i;              /* loop counter */
2944
2945        XFS_BTREE_STATS_INC(cur, newroot);
2946
2947        ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2948
2949        level = cur->bc_nlevels - 1;
2950
2951        block = xfs_btree_get_iroot(cur);
2952        pp = xfs_btree_ptr_addr(cur, 1, block);
2953
2954        /* Allocate the new block. If we can't do it, we're toast. Give up. */
2955        error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2956        if (error)
2957                goto error0;
2958        if (*stat == 0)
2959                return 0;
2960
2961        XFS_BTREE_STATS_INC(cur, alloc);
2962
2963        /* Copy the root into a real block. */
2964        error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
2965        if (error)
2966                goto error0;
2967
2968        /*
2969         * we can't just memcpy() the root in for CRC enabled btree blocks.
2970         * In that case have to also ensure the blkno remains correct
2971         */
2972        memcpy(cblock, block, xfs_btree_block_len(cur));
2973        if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2974                if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2975                        cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2976                else
2977                        cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2978        }
2979
2980        be16_add_cpu(&block->bb_level, 1);
2981        xfs_btree_set_numrecs(block, 1);
2982        cur->bc_nlevels++;
2983        cur->bc_ptrs[level + 1] = 1;
2984
2985        kp = xfs_btree_key_addr(cur, 1, block);
2986        ckp = xfs_btree_key_addr(cur, 1, cblock);
2987        xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2988
2989        cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2990        for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2991                error = xfs_btree_debug_check_ptr(cur, pp, i, level);
2992                if (error)
2993                        goto error0;
2994        }
2995
2996        xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2997
2998        error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
2999        if (error)
3000                goto error0;
3001
3002        xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3003
3004        xfs_iroot_realloc(cur->bc_private.b.ip,
3005                          1 - xfs_btree_get_numrecs(cblock),
3006                          cur->bc_private.b.whichfork);
3007
3008        xfs_btree_setbuf(cur, level, cbp);
3009
3010        /*
3011         * Do all this logging at the end so that
3012         * the root is at the right level.
3013         */
3014        xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3015        xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3016        xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3017
3018        *logflags |=
3019                XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3020        *stat = 1;
3021        return 0;
3022error0:
3023        return error;
3024}
3025
3026/*
3027 * Allocate a new root block, fill it in.
3028 */
3029STATIC int                              /* error */
3030xfs_btree_new_root(
3031        struct xfs_btree_cur    *cur,   /* btree cursor */
3032        int                     *stat)  /* success/failure */
3033{
3034        struct xfs_btree_block  *block; /* one half of the old root block */
3035        struct xfs_buf          *bp;    /* buffer containing block */
3036        int                     error;  /* error return value */
3037        struct xfs_buf          *lbp;   /* left buffer pointer */
3038        struct xfs_btree_block  *left;  /* left btree block */
3039        struct xfs_buf          *nbp;   /* new (root) buffer */
3040        struct xfs_btree_block  *new;   /* new (root) btree block */
3041        int                     nptr;   /* new value for key index, 1 or 2 */
3042        struct xfs_buf          *rbp;   /* right buffer pointer */
3043        struct xfs_btree_block  *right; /* right btree block */
3044        union xfs_btree_ptr     rptr;
3045        union xfs_btree_ptr     lptr;
3046
3047        XFS_BTREE_STATS_INC(cur, newroot);
3048
3049        /* initialise our start point from the cursor */
3050        cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3051
3052        /* Allocate the new block. If we can't do it, we're toast. Give up. */
3053        error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3054        if (error)
3055                goto error0;
3056        if (*stat == 0)
3057                goto out0;
3058        XFS_BTREE_STATS_INC(cur, alloc);
3059
3060        /* Set up the new block. */
3061        error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3062        if (error)
3063                goto error0;
3064
3065        /* Set the root in the holding structure  increasing the level by 1. */
3066        cur->bc_ops->set_root(cur, &lptr, 1);
3067
3068        /*
3069         * At the previous root level there are now two blocks: the old root,
3070         * and the new block generated when it was split.  We don't know which
3071         * one the cursor is pointing at, so we set up variables "left" and
3072         * "right" for each case.
3073         */
3074        block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3075
3076#ifdef DEBUG
3077        error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3078        if (error)
3079                goto error0;
3080#endif
3081
3082        xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3083        if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3084                /* Our block is left, pick up the right block. */
3085                lbp = bp;
3086                xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3087                left = block;
3088                error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3089                if (error)
3090                        goto error0;
3091                bp = rbp;
3092                nptr = 1;
3093        } else {
3094                /* Our block is right, pick up the left block. */
3095                rbp = bp;
3096                xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3097                right = block;
3098                xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3099                error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3100                if (error)
3101                        goto error0;
3102                bp = lbp;
3103                nptr = 2;
3104        }
3105
3106        /* Fill in the new block's btree header and log it. */
3107        xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3108        xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3109        ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3110                        !xfs_btree_ptr_is_null(cur, &rptr));
3111
3112        /* Fill in the key data in the new root. */
3113        if (xfs_btree_get_level(left) > 0) {
3114                /*
3115                 * Get the keys for the left block's keys and put them directly
3116                 * in the parent block.  Do the same for the right block.
3117                 */
3118                xfs_btree_get_node_keys(cur, left,
3119                                xfs_btree_key_addr(cur, 1, new));
3120                xfs_btree_get_node_keys(cur, right,
3121                                xfs_btree_key_addr(cur, 2, new));
3122        } else {
3123                /*
3124                 * Get the keys for the left block's records and put them
3125                 * directly in the parent block.  Do the same for the right
3126                 * block.
3127                 */
3128                xfs_btree_get_leaf_keys(cur, left,
3129                        xfs_btree_key_addr(cur, 1, new));
3130                xfs_btree_get_leaf_keys(cur, right,
3131                        xfs_btree_key_addr(cur, 2, new));
3132        }
3133        xfs_btree_log_keys(cur, nbp, 1, 2);
3134
3135        /* Fill in the pointer data in the new root. */
3136        xfs_btree_copy_ptrs(cur,
3137                xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3138        xfs_btree_copy_ptrs(cur,
3139                xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3140        xfs_btree_log_ptrs(cur, nbp, 1, 2);
3141
3142        /* Fix up the cursor. */
3143        xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3144        cur->bc_ptrs[cur->bc_nlevels] = nptr;
3145        cur->bc_nlevels++;
3146        *stat = 1;
3147        return 0;
3148error0:
3149        return error;
3150out0:
3151        *stat = 0;
3152        return 0;
3153}
3154
3155STATIC int
3156xfs_btree_make_block_unfull(
3157        struct xfs_btree_cur    *cur,   /* btree cursor */
3158        int                     level,  /* btree level */
3159        int                     numrecs,/* # of recs in block */
3160        int                     *oindex,/* old tree index */
3161        int                     *index, /* new tree index */
3162        union xfs_btree_ptr     *nptr,  /* new btree ptr */
3163        struct xfs_btree_cur    **ncur, /* new btree cursor */
3164        union xfs_btree_key     *key,   /* key of new block */
3165        int                     *stat)
3166{
3167        int                     error = 0;
3168
3169        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3170            level == cur->bc_nlevels - 1) {
3171                struct xfs_inode *ip = cur->bc_private.b.ip;
3172
3173                if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3174                        /* A root block that can be made bigger. */
3175                        xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3176                        *stat = 1;
3177                } else {
3178                        /* A root block that needs replacing */
3179                        int     logflags = 0;
3180
3181                        error = xfs_btree_new_iroot(cur, &logflags, stat);
3182                        if (error || *stat == 0)
3183                                return error;
3184
3185                        xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3186                }
3187
3188                return 0;
3189        }
3190
3191        /* First, try shifting an entry to the right neighbor. */
3192        error = xfs_btree_rshift(cur, level, stat);
3193        if (error || *stat)
3194                return error;
3195
3196        /* Next, try shifting an entry to the left neighbor. */
3197        error = xfs_btree_lshift(cur, level, stat);
3198        if (error)
3199                return error;
3200
3201        if (*stat) {
3202                *oindex = *index = cur->bc_ptrs[level];
3203                return 0;
3204        }
3205
3206        /*
3207         * Next, try splitting the current block in half.
3208         *
3209         * If this works we have to re-set our variables because we
3210         * could be in a different block now.
3211         */
3212        error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3213        if (error || *stat == 0)
3214                return error;
3215
3216
3217        *index = cur->bc_ptrs[level];
3218        return 0;
3219}
3220
3221/*
3222 * Insert one record/level.  Return information to the caller
3223 * allowing the next level up to proceed if necessary.
3224 */
3225STATIC int
3226xfs_btree_insrec(
3227        struct xfs_btree_cur    *cur,   /* btree cursor */
3228        int                     level,  /* level to insert record at */
3229        union xfs_btree_ptr     *ptrp,  /* i/o: block number inserted */
3230        union xfs_btree_rec     *rec,   /* record to insert */
3231        union xfs_btree_key     *key,   /* i/o: block key for ptrp */
3232        struct xfs_btree_cur    **curp, /* output: new cursor replacing cur */
3233        int                     *stat)  /* success/failure */
3234{
3235        struct xfs_btree_block  *block; /* btree block */
3236        struct xfs_buf          *bp;    /* buffer for block */
3237        union xfs_btree_ptr     nptr;   /* new block ptr */
3238        struct xfs_btree_cur    *ncur;  /* new btree cursor */
3239        union xfs_btree_key     nkey;   /* new block key */
3240        union xfs_btree_key     *lkey;
3241        int                     optr;   /* old key/record index */
3242        int                     ptr;    /* key/record index */
3243        int                     numrecs;/* number of records */
3244        int                     error;  /* error return value */
3245        int                     i;
3246        xfs_daddr_t             old_bn;
3247
3248        ncur = NULL;
3249        lkey = &nkey;
3250
3251        /*
3252         * If we have an external root pointer, and we've made it to the
3253         * root level, allocate a new root block and we're done.
3254         */
3255        if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3256            (level >= cur->bc_nlevels)) {
3257                error = xfs_btree_new_root(cur, stat);
3258                xfs_btree_set_ptr_null(cur, ptrp);
3259
3260                return error;
3261        }
3262
3263        /* If we're off the left edge, return failure. */
3264        ptr = cur->bc_ptrs[level];
3265        if (ptr == 0) {
3266                *stat = 0;
3267                return 0;
3268        }
3269
3270        optr = ptr;
3271
3272        XFS_BTREE_STATS_INC(cur, insrec);
3273
3274        /* Get pointers to the btree buffer and block. */
3275        block = xfs_btree_get_block(cur, level, &bp);
3276        old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3277        numrecs = xfs_btree_get_numrecs(block);
3278
3279#ifdef DEBUG
3280        error = xfs_btree_check_block(cur, block, level, bp);
3281        if (error)
3282                goto error0;
3283
3284        /* Check that the new entry is being inserted in the right place. */
3285        if (ptr <= numrecs) {
3286                if (level == 0) {
3287                        ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3288                                xfs_btree_rec_addr(cur, ptr, block)));
3289                } else {
3290                        ASSERT(cur->bc_ops->keys_inorder(cur, key,
3291                                xfs_btree_key_addr(cur, ptr, block)));
3292                }
3293        }
3294#endif
3295
3296        /*
3297         * If the block is full, we can't insert the new entry until we
3298         * make the block un-full.
3299         */
3300        xfs_btree_set_ptr_null(cur, &nptr);
3301        if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3302                error = xfs_btree_make_block_unfull(cur, level, numrecs,
3303                                        &optr, &ptr, &nptr, &ncur, lkey, stat);
3304                if (error || *stat == 0)
3305                        goto error0;
3306        }
3307
3308        /*
3309         * The current block may have changed if the block was
3310         * previously full and we have just made space in it.
3311         */
3312        block = xfs_btree_get_block(cur, level, &bp);
3313        numrecs = xfs_btree_get_numrecs(block);
3314
3315#ifdef DEBUG
3316        error = xfs_btree_check_block(cur, block, level, bp);
3317        if (error)
3318                return error;
3319#endif
3320
3321        /*
3322         * At this point we know there's room for our new entry in the block
3323         * we're pointing at.
3324         */
3325        XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3326
3327        if (level > 0) {
3328                /* It's a nonleaf. make a hole in the keys and ptrs */
3329                union xfs_btree_key     *kp;
3330                union xfs_btree_ptr     *pp;
3331
3332                kp = xfs_btree_key_addr(cur, ptr, block);
3333                pp = xfs_btree_ptr_addr(cur, ptr, block);
3334
3335                for (i = numrecs - ptr; i >= 0; i--) {
3336                        error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3337                        if (error)
3338                                return error;
3339                }
3340
3341                xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3342                xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3343
3344                error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3345                if (error)
3346                        goto error0;
3347
3348                /* Now put the new data in, bump numrecs and log it. */
3349                xfs_btree_copy_keys(cur, kp, key, 1);
3350                xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3351                numrecs++;
3352                xfs_btree_set_numrecs(block, numrecs);
3353                xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3354                xfs_btree_log_keys(cur, bp, ptr, numrecs);
3355#ifdef DEBUG
3356                if (ptr < numrecs) {
3357                        ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3358                                xfs_btree_key_addr(cur, ptr + 1, block)));
3359                }
3360#endif
3361        } else {
3362                /* It's a leaf. make a hole in the records */
3363                union xfs_btree_rec             *rp;
3364
3365                rp = xfs_btree_rec_addr(cur, ptr, block);
3366
3367                xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3368
3369                /* Now put the new data in, bump numrecs and log it. */
3370                xfs_btree_copy_recs(cur, rp, rec, 1);
3371                xfs_btree_set_numrecs(block, ++numrecs);
3372                xfs_btree_log_recs(cur, bp, ptr, numrecs);
3373#ifdef DEBUG
3374                if (ptr < numrecs) {
3375                        ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3376                                xfs_btree_rec_addr(cur, ptr + 1, block)));
3377                }
3378#endif
3379        }
3380
3381        /* Log the new number of records in the btree header. */
3382        xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3383
3384        /*
3385         * If we just inserted into a new tree block, we have to
3386         * recalculate nkey here because nkey is out of date.
3387         *
3388         * Otherwise we're just updating an existing block (having shoved
3389         * some records into the new tree block), so use the regular key
3390         * update mechanism.
3391         */
3392        if (bp && bp->b_bn != old_bn) {
3393                xfs_btree_get_keys(cur, block, lkey);
3394        } else if (xfs_btree_needs_key_update(cur, optr)) {
3395                error = xfs_btree_update_keys(cur, level);
3396                if (error)
3397                        goto error0;
3398        }
3399
3400        /*
3401         * If we are tracking the last record in the tree and
3402         * we are at the far right edge of the tree, update it.
3403         */
3404        if (xfs_btree_is_lastrec(cur, block, level)) {
3405                cur->bc_ops->update_lastrec(cur, block, rec,
3406                                            ptr, LASTREC_INSREC);
3407        }
3408
3409        /*
3410         * Return the new block number, if any.
3411         * If there is one, give back a record value and a cursor too.
3412         */
3413        *ptrp = nptr;
3414        if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3415                xfs_btree_copy_keys(cur, key, lkey, 1);
3416                *curp = ncur;
3417        }
3418
3419        *stat = 1;
3420        return 0;
3421
3422error0:
3423        return error;
3424}
3425
3426/*
3427 * Insert the record at the point referenced by cur.
3428 *
3429 * A multi-level split of the tree on insert will invalidate the original
3430 * cursor.  All callers of this function should assume that the cursor is
3431 * no longer valid and revalidate it.
3432 */
3433int
3434xfs_btree_insert(
3435        struct xfs_btree_cur    *cur,
3436        int                     *stat)
3437{
3438        int                     error;  /* error return value */
3439        int                     i;      /* result value, 0 for failure */
3440        int                     level;  /* current level number in btree */
3441        union xfs_btree_ptr     nptr;   /* new block number (split result) */
3442        struct xfs_btree_cur    *ncur;  /* new cursor (split result) */
3443        struct xfs_btree_cur    *pcur;  /* previous level's cursor */
3444        union xfs_btree_key     bkey;   /* key of block to insert */
3445        union xfs_btree_key     *key;
3446        union xfs_btree_rec     rec;    /* record to insert */
3447
3448        level = 0;
3449        ncur = NULL;
3450        pcur = cur;
3451        key = &bkey;
3452
3453        xfs_btree_set_ptr_null(cur, &nptr);
3454
3455        /* Make a key out of the record data to be inserted, and save it. */
3456        cur->bc_ops->init_rec_from_cur(cur, &rec);
3457        cur->bc_ops->init_key_from_rec(key, &rec);
3458
3459        /*
3460         * Loop going up the tree, starting at the leaf level.
3461         * Stop when we don't get a split block, that must mean that
3462         * the insert is finished with this level.
3463         */
3464        do {
3465                /*
3466                 * Insert nrec/nptr into this level of the tree.
3467                 * Note if we fail, nptr will be null.
3468                 */
3469                error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3470                                &ncur, &i);
3471                if (error) {
3472                        if (pcur != cur)
3473                                xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3474                        goto error0;
3475                }
3476
3477                XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3478                level++;
3479
3480                /*
3481                 * See if the cursor we just used is trash.
3482                 * Can't trash the caller's cursor, but otherwise we should
3483                 * if ncur is a new cursor or we're about to be done.
3484                 */
3485                if (pcur != cur &&
3486                    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3487                        /* Save the state from the cursor before we trash it */
3488                        if (cur->bc_ops->update_cursor)
3489                                cur->bc_ops->update_cursor(pcur, cur);
3490                        cur->bc_nlevels = pcur->bc_nlevels;
3491                        xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3492                }
3493                /* If we got a new cursor, switch to it. */
3494                if (ncur) {
3495                        pcur = ncur;
3496                        ncur = NULL;
3497                }
3498        } while (!xfs_btree_ptr_is_null(cur, &nptr));
3499
3500        *stat = i;
3501        return 0;
3502error0:
3503        return error;
3504}
3505
3506/*
3507 * Try to merge a non-leaf block back into the inode root.
3508 *
3509 * Note: the killroot names comes from the fact that we're effectively
3510 * killing the old root block.  But because we can't just delete the
3511 * inode we have to copy the single block it was pointing to into the
3512 * inode.
3513 */
3514STATIC int
3515xfs_btree_kill_iroot(
3516        struct xfs_btree_cur    *cur)
3517{
3518        int                     whichfork = cur->bc_private.b.whichfork;
3519        struct xfs_inode        *ip = cur->bc_private.b.ip;
3520        struct xfs_ifork        *ifp = XFS_IFORK_PTR(ip, whichfork);
3521        struct xfs_btree_block  *block;
3522        struct xfs_btree_block  *cblock;
3523        union xfs_btree_key     *kp;
3524        union xfs_btree_key     *ckp;
3525        union xfs_btree_ptr     *pp;
3526        union xfs_btree_ptr     *cpp;
3527        struct xfs_buf          *cbp;
3528        int                     level;
3529        int                     index;
3530        int                     numrecs;
3531        int                     error;
3532#ifdef DEBUG
3533        union xfs_btree_ptr     ptr;
3534#endif
3535        int                     i;
3536
3537        ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3538        ASSERT(cur->bc_nlevels > 1);
3539
3540        /*
3541         * Don't deal with the root block needs to be a leaf case.
3542         * We're just going to turn the thing back into extents anyway.
3543         */
3544        level = cur->bc_nlevels - 1;
3545        if (level == 1)
3546                goto out0;
3547
3548        /*
3549         * Give up if the root has multiple children.
3550         */
3551        block = xfs_btree_get_iroot(cur);
3552        if (xfs_btree_get_numrecs(block) != 1)
3553                goto out0;
3554
3555        cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3556        numrecs = xfs_btree_get_numrecs(cblock);
3557
3558        /*
3559         * Only do this if the next level will fit.
3560         * Then the data must be copied up to the inode,
3561         * instead of freeing the root you free the next level.
3562         */
3563        if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3564                goto out0;
3565
3566        XFS_BTREE_STATS_INC(cur, killroot);
3567
3568#ifdef DEBUG
3569        xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3570        ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3571        xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3572        ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3573#endif
3574
3575        index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3576        if (index) {
3577                xfs_iroot_realloc(cur->bc_private.b.ip, index,
3578                                  cur->bc_private.b.whichfork);
3579                block = ifp->if_broot;
3580        }
3581
3582        be16_add_cpu(&block->bb_numrecs, index);
3583        ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3584
3585        kp = xfs_btree_key_addr(cur, 1, block);
3586        ckp = xfs_btree_key_addr(cur, 1, cblock);
3587        xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3588
3589        pp = xfs_btree_ptr_addr(cur, 1, block);
3590        cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3591
3592        for (i = 0; i < numrecs; i++) {
3593                error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3594                if (error)
3595                        return error;
3596        }
3597
3598        xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3599
3600        error = xfs_btree_free_block(cur, cbp);
3601        if (error)
3602                return error;
3603
3604        cur->bc_bufs[level - 1] = NULL;
3605        be16_add_cpu(&block->bb_level, -1);
3606        xfs_trans_log_inode(cur->bc_tp, ip,
3607                XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3608        cur->bc_nlevels--;
3609out0:
3610        return 0;
3611}
3612
3613/*
3614 * Kill the current root node, and replace it with it's only child node.
3615 */
3616STATIC int
3617xfs_btree_kill_root(
3618        struct xfs_btree_cur    *cur,
3619        struct xfs_buf          *bp,
3620        int                     level,
3621        union xfs_btree_ptr     *newroot)
3622{
3623        int                     error;
3624
3625        XFS_BTREE_STATS_INC(cur, killroot);
3626
3627        /*
3628         * Update the root pointer, decreasing the level by 1 and then
3629         * free the old root.
3630         */
3631        cur->bc_ops->set_root(cur, newroot, -1);
3632
3633        error = xfs_btree_free_block(cur, bp);
3634        if (error)
3635                return error;
3636
3637        cur->bc_bufs[level] = NULL;
3638        cur->bc_ra[level] = 0;
3639        cur->bc_nlevels--;
3640
3641        return 0;
3642}
3643
3644STATIC int
3645xfs_btree_dec_cursor(
3646        struct xfs_btree_cur    *cur,
3647        int                     level,
3648        int                     *stat)
3649{
3650        int                     error;
3651        int                     i;
3652
3653        if (level > 0) {
3654                error = xfs_btree_decrement(cur, level, &i);
3655                if (error)
3656                        return error;
3657        }
3658
3659        *stat = 1;
3660        return 0;
3661}
3662
3663/*
3664 * Single level of the btree record deletion routine.
3665 * Delete record pointed to by cur/level.
3666 * Remove the record from its block then rebalance the tree.
3667 * Return 0 for error, 1 for done, 2 to go on to the next level.
3668 */
3669STATIC int                                      /* error */
3670xfs_btree_delrec(
3671        struct xfs_btree_cur    *cur,           /* btree cursor */
3672        int                     level,          /* level removing record from */
3673        int                     *stat)          /* fail/done/go-on */
3674{
3675        struct xfs_btree_block  *block;         /* btree block */
3676        union xfs_btree_ptr     cptr;           /* current block ptr */
3677        struct xfs_buf          *bp;            /* buffer for block */
3678        int                     error;          /* error return value */
3679        int                     i;              /* loop counter */
3680        union xfs_btree_ptr     lptr;           /* left sibling block ptr */
3681        struct xfs_buf          *lbp;           /* left buffer pointer */
3682        struct xfs_btree_block  *left;          /* left btree block */
3683        int                     lrecs = 0;      /* left record count */
3684        int                     ptr;            /* key/record index */
3685        union xfs_btree_ptr     rptr;           /* right sibling block ptr */
3686        struct xfs_buf          *rbp;           /* right buffer pointer */
3687        struct xfs_btree_block  *right;         /* right btree block */
3688        struct xfs_btree_block  *rrblock;       /* right-right btree block */
3689        struct xfs_buf          *rrbp;          /* right-right buffer pointer */
3690        int                     rrecs = 0;      /* right record count */
3691        struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
3692        int                     numrecs;        /* temporary numrec count */
3693
3694        tcur = NULL;
3695
3696        /* Get the index of the entry being deleted, check for nothing there. */
3697        ptr = cur->bc_ptrs[level];
3698        if (ptr == 0) {
3699                *stat = 0;
3700                return 0;
3701        }
3702
3703        /* Get the buffer & block containing the record or key/ptr. */
3704        block = xfs_btree_get_block(cur, level, &bp);
3705        numrecs = xfs_btree_get_numrecs(block);
3706
3707#ifdef DEBUG
3708        error = xfs_btree_check_block(cur, block, level, bp);
3709        if (error)
3710                goto error0;
3711#endif
3712
3713        /* Fail if we're off the end of the block. */
3714        if (ptr > numrecs) {
3715                *stat = 0;
3716                return 0;
3717        }
3718
3719        XFS_BTREE_STATS_INC(cur, delrec);
3720        XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3721
3722        /* Excise the entries being deleted. */
3723        if (level > 0) {
3724                /* It's a nonleaf. operate on keys and ptrs */
3725                union xfs_btree_key     *lkp;
3726                union xfs_btree_ptr     *lpp;
3727
3728                lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3729                lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3730
3731                for (i = 0; i < numrecs - ptr; i++) {
3732                        error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3733                        if (error)
3734                                goto error0;
3735                }
3736
3737                if (ptr < numrecs) {
3738                        xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3739                        xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3740                        xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3741                        xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3742                }
3743        } else {
3744                /* It's a leaf. operate on records */
3745                if (ptr < numrecs) {
3746                        xfs_btree_shift_recs(cur,
3747                                xfs_btree_rec_addr(cur, ptr + 1, block),
3748                                -1, numrecs - ptr);
3749                        xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3750                }
3751        }
3752
3753        /*
3754         * Decrement and log the number of entries in the block.
3755         */
3756        xfs_btree_set_numrecs(block, --numrecs);
3757        xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3758
3759        /*
3760         * If we are tracking the last record in the tree and
3761         * we are at the far right edge of the tree, update it.
3762         */
3763        if (xfs_btree_is_lastrec(cur, block, level)) {
3764                cur->bc_ops->update_lastrec(cur, block, NULL,
3765                                            ptr, LASTREC_DELREC);
3766        }
3767
3768        /*
3769         * We're at the root level.  First, shrink the root block in-memory.
3770         * Try to get rid of the next level down.  If we can't then there's
3771         * nothing left to do.
3772         */
3773        if (level == cur->bc_nlevels - 1) {
3774                if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3775                        xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3776                                          cur->bc_private.b.whichfork);
3777
3778                        error = xfs_btree_kill_iroot(cur);
3779                        if (error)
3780                                goto error0;
3781
3782                        error = xfs_btree_dec_cursor(cur, level, stat);
3783                        if (error)
3784                                goto error0;
3785                        *stat = 1;
3786                        return 0;
3787                }
3788
3789                /*
3790                 * If this is the root level, and there's only one entry left,
3791                 * and it's NOT the leaf level, then we can get rid of this
3792                 * level.
3793                 */
3794                if (numrecs == 1 && level > 0) {
3795                        union xfs_btree_ptr     *pp;
3796                        /*
3797                         * pp is still set to the first pointer in the block.
3798                         * Make it the new root of the btree.
3799                         */
3800                        pp = xfs_btree_ptr_addr(cur, 1, block);
3801                        error = xfs_btree_kill_root(cur, bp, level, pp);
3802                        if (error)
3803                                goto error0;
3804                } else if (level > 0) {
3805                        error = xfs_btree_dec_cursor(cur, level, stat);
3806                        if (error)
3807                                goto error0;
3808                }
3809                *stat = 1;
3810                return 0;
3811        }
3812
3813        /*
3814         * If we deleted the leftmost entry in the block, update the
3815         * key values above us in the tree.
3816         */
3817        if (xfs_btree_needs_key_update(cur, ptr)) {
3818                error = xfs_btree_update_keys(cur, level);
3819                if (error)
3820                        goto error0;
3821        }
3822
3823        /*
3824         * If the number of records remaining in the block is at least
3825         * the minimum, we're done.
3826         */
3827        if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3828                error = xfs_btree_dec_cursor(cur, level, stat);
3829                if (error)
3830                        goto error0;
3831                return 0;
3832        }
3833
3834        /*
3835         * Otherwise, we have to move some records around to keep the
3836         * tree balanced.  Look at the left and right sibling blocks to
3837         * see if we can re-balance by moving only one record.
3838         */
3839        xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3840        xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3841
3842        if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3843                /*
3844                 * One child of root, need to get a chance to copy its contents
3845                 * into the root and delete it. Can't go up to next level,
3846                 * there's nothing to delete there.
3847                 */
3848                if (xfs_btree_ptr_is_null(cur, &rptr) &&
3849                    xfs_btree_ptr_is_null(cur, &lptr) &&
3850                    level == cur->bc_nlevels - 2) {
3851                        error = xfs_btree_kill_iroot(cur);
3852                        if (!error)
3853                                error = xfs_btree_dec_cursor(cur, level, stat);
3854                        if (error)
3855                                goto error0;
3856                        return 0;
3857                }
3858        }
3859
3860        ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3861               !xfs_btree_ptr_is_null(cur, &lptr));
3862
3863        /*
3864         * Duplicate the cursor so our btree manipulations here won't
3865         * disrupt the next level up.
3866         */
3867        error = xfs_btree_dup_cursor(cur, &tcur);
3868        if (error)
3869                goto error0;
3870
3871        /*
3872         * If there's a right sibling, see if it's ok to shift an entry
3873         * out of it.
3874         */
3875        if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3876                /*
3877                 * Move the temp cursor to the last entry in the next block.
3878                 * Actually any entry but the first would suffice.
3879                 */
3880                i = xfs_btree_lastrec(tcur, level);
3881                XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3882
3883                error = xfs_btree_increment(tcur, level, &i);
3884                if (error)
3885                        goto error0;
3886                XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3887
3888                i = xfs_btree_lastrec(tcur, level);
3889                XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3890
3891                /* Grab a pointer to the block. */
3892                right = xfs_btree_get_block(tcur, level, &rbp);
3893#ifdef DEBUG
3894                error = xfs_btree_check_block(tcur, right, level, rbp);
3895                if (error)
3896                        goto error0;
3897#endif
3898                /* Grab the current block number, for future use. */
3899                xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3900
3901                /*
3902                 * If right block is full enough so that removing one entry
3903                 * won't make it too empty, and left-shifting an entry out
3904                 * of right to us works, we're done.
3905                 */
3906                if (xfs_btree_get_numrecs(right) - 1 >=
3907                    cur->bc_ops->get_minrecs(tcur, level)) {
3908                        error = xfs_btree_lshift(tcur, level, &i);
3909                        if (error)
3910                                goto error0;
3911                        if (i) {
3912                                ASSERT(xfs_btree_get_numrecs(block) >=
3913                                       cur->bc_ops->get_minrecs(tcur, level));
3914
3915                                xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3916                                tcur = NULL;
3917
3918                                error = xfs_btree_dec_cursor(cur, level, stat);
3919                                if (error)
3920                                        goto error0;
3921                                return 0;
3922                        }
3923                }
3924
3925                /*
3926                 * Otherwise, grab the number of records in right for
3927                 * future reference, and fix up the temp cursor to point
3928                 * to our block again (last record).
3929                 */
3930                rrecs = xfs_btree_get_numrecs(right);
3931                if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3932                        i = xfs_btree_firstrec(tcur, level);
3933                        XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3934
3935                        error = xfs_btree_decrement(tcur, level, &i);
3936                        if (error)
3937                                goto error0;
3938                        XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3939                }
3940        }
3941
3942        /*
3943         * If there's a left sibling, see if it's ok to shift an entry
3944         * out of it.
3945         */
3946        if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3947                /*
3948                 * Move the temp cursor to the first entry in the
3949                 * previous block.
3950                 */
3951                i = xfs_btree_firstrec(tcur, level);
3952                XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3953
3954                error = xfs_btree_decrement(tcur, level, &i);
3955                if (error)
3956                        goto error0;
3957                i = xfs_btree_firstrec(tcur, level);
3958                XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3959
3960                /* Grab a pointer to the block. */
3961                left = xfs_btree_get_block(tcur, level, &lbp);
3962#ifdef DEBUG
3963                error = xfs_btree_check_block(cur, left, level, lbp);
3964                if (error)
3965                        goto error0;
3966#endif
3967                /* Grab the current block number, for future use. */
3968                xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3969
3970                /*
3971                 * If left block is full enough so that removing one entry
3972                 * won't make it too empty, and right-shifting an entry out
3973                 * of left to us works, we're done.
3974                 */
3975                if (xfs_btree_get_numrecs(left) - 1 >=
3976                    cur->bc_ops->get_minrecs(tcur, level)) {
3977                        error = xfs_btree_rshift(tcur, level, &i);
3978                        if (error)
3979                                goto error0;
3980                        if (i) {
3981                                ASSERT(xfs_btree_get_numrecs(block) >=
3982                                       cur->bc_ops->get_minrecs(tcur, level));
3983                                xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3984                                tcur = NULL;
3985                                if (level == 0)
3986                                        cur->bc_ptrs[0]++;
3987
3988                                *stat = 1;
3989                                return 0;
3990                        }
3991                }
3992
3993                /*
3994                 * Otherwise, grab the number of records in right for
3995                 * future reference.
3996                 */
3997                lrecs = xfs_btree_get_numrecs(left);
3998        }
3999
4000        /* Delete the temp cursor, we're done with it. */
4001        xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4002        tcur = NULL;
4003
4004        /* If here, we need to do a join to keep the tree balanced. */
4005        ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4006
4007        if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4008            lrecs + xfs_btree_get_numrecs(block) <=
4009                        cur->bc_ops->get_maxrecs(cur, level)) {
4010                /*
4011                 * Set "right" to be the starting block,
4012                 * "left" to be the left neighbor.
4013                 */
4014                rptr = cptr;
4015                right = block;
4016                rbp = bp;
4017                error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4018                if (error)
4019                        goto error0;
4020
4021        /*
4022         * If that won't work, see if we can join with the right neighbor block.
4023         */
4024        } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4025                   rrecs + xfs_btree_get_numrecs(block) <=
4026                        cur->bc_ops->get_maxrecs(cur, level)) {
4027                /*
4028                 * Set "left" to be the starting block,
4029                 * "right" to be the right neighbor.
4030                 */
4031                lptr = cptr;
4032                left = block;
4033                lbp = bp;
4034                error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4035                if (error)
4036                        goto error0;
4037
4038        /*
4039         * Otherwise, we can't fix the imbalance.
4040         * Just return.  This is probably a logic error, but it's not fatal.
4041         */
4042        } else {
4043                error = xfs_btree_dec_cursor(cur, level, stat);
4044                if (error)
4045                        goto error0;
4046                return 0;
4047        }
4048
4049        rrecs = xfs_btree_get_numrecs(right);
4050        lrecs = xfs_btree_get_numrecs(left);
4051
4052        /*
4053         * We're now going to join "left" and "right" by moving all the stuff
4054         * in "right" to "left" and deleting "right".
4055         */
4056        XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4057        if (level > 0) {
4058                /* It's a non-leaf.  Move keys and pointers. */
4059                union xfs_btree_key     *lkp;   /* left btree key */
4060                union xfs_btree_ptr     *lpp;   /* left address pointer */
4061                union xfs_btree_key     *rkp;   /* right btree key */
4062                union xfs_btree_ptr     *rpp;   /* right address pointer */
4063
4064                lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4065                lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4066                rkp = xfs_btree_key_addr(cur, 1, right);
4067                rpp = xfs_btree_ptr_addr(cur, 1, right);
4068
4069                for (i = 1; i < rrecs; i++) {
4070                        error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4071                        if (error)
4072                                goto error0;
4073                }
4074
4075                xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4076                xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4077
4078                xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4079                xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4080        } else {
4081                /* It's a leaf.  Move records.  */
4082                union xfs_btree_rec     *lrp;   /* left record pointer */
4083                union xfs_btree_rec     *rrp;   /* right record pointer */
4084
4085                lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4086                rrp = xfs_btree_rec_addr(cur, 1, right);
4087
4088                xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4089                xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4090        }
4091
4092        XFS_BTREE_STATS_INC(cur, join);
4093
4094        /*
4095         * Fix up the number of records and right block pointer in the
4096         * surviving block, and log it.
4097         */
4098        xfs_btree_set_numrecs(left, lrecs + rrecs);
4099        xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4100        xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4101        xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4102
4103        /* If there is a right sibling, point it to the remaining block. */
4104        xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4105        if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4106                error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4107                if (error)
4108                        goto error0;
4109                xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4110                xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4111        }
4112
4113        /* Free the deleted block. */
4114        error = xfs_btree_free_block(cur, rbp);
4115        if (error)
4116                goto error0;
4117
4118        /*
4119         * If we joined with the left neighbor, set the buffer in the
4120         * cursor to the left block, and fix up the index.
4121         */
4122        if (bp != lbp) {
4123                cur->bc_bufs[level] = lbp;
4124                cur->bc_ptrs[level] += lrecs;
4125                cur->bc_ra[level] = 0;
4126        }
4127        /*
4128         * If we joined with the right neighbor and there's a level above
4129         * us, increment the cursor at that level.
4130         */
4131        else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4132                   (level + 1 < cur->bc_nlevels)) {
4133                error = xfs_btree_increment(cur, level + 1, &i);
4134                if (error)
4135                        goto error0;
4136        }
4137
4138        /*
4139         * Readjust the ptr at this level if it's not a leaf, since it's
4140         * still pointing at the deletion point, which makes the cursor
4141         * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4142         * We can't use decrement because it would change the next level up.
4143         */
4144        if (level > 0)
4145                cur->bc_ptrs[level]--;
4146
4147        /*
4148         * We combined blocks, so we have to update the parent keys if the
4149         * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
4150         * points to the old block so that the caller knows which record to
4151         * delete.  Therefore, the caller must be savvy enough to call updkeys
4152         * for us if we return stat == 2.  The other exit points from this
4153         * function don't require deletions further up the tree, so they can
4154         * call updkeys directly.
4155         */
4156
4157        /* Return value means the next level up has something to do. */
4158        *stat = 2;
4159        return 0;
4160
4161error0:
4162        if (tcur)
4163                xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4164        return error;
4165}
4166
4167/*
4168 * Delete the record pointed to by cur.
4169 * The cursor refers to the place where the record was (could be inserted)
4170 * when the operation returns.
4171 */
4172int                                     /* error */
4173xfs_btree_delete(
4174        struct xfs_btree_cur    *cur,
4175        int                     *stat)  /* success/failure */
4176{
4177        int                     error;  /* error return value */
4178        int                     level;
4179        int                     i;
4180        bool                    joined = false;
4181
4182        /*
4183         * Go up the tree, starting at leaf level.
4184         *
4185         * If 2 is returned then a join was done; go to the next level.
4186         * Otherwise we are done.
4187         */
4188        for (level = 0, i = 2; i == 2; level++) {
4189                error = xfs_btree_delrec(cur, level, &i);
4190                if (error)
4191                        goto error0;
4192                if (i == 2)
4193                        joined = true;
4194        }
4195
4196        /*
4197         * If we combined blocks as part of deleting the record, delrec won't
4198         * have updated the parent high keys so we have to do that here.
4199         */
4200        if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4201                error = xfs_btree_updkeys_force(cur, 0);
4202                if (error)
4203                        goto error0;
4204        }
4205
4206        if (i == 0) {
4207                for (level = 1; level < cur->bc_nlevels; level++) {
4208                        if (cur->bc_ptrs[level] == 0) {
4209                                error = xfs_btree_decrement(cur, level, &i);
4210                                if (error)
4211                                        goto error0;
4212                                break;
4213                        }
4214                }
4215        }
4216
4217        *stat = i;
4218        return 0;
4219error0:
4220        return error;
4221}
4222
4223/*
4224 * Get the data from the pointed-to record.
4225 */
4226int                                     /* error */
4227xfs_btree_get_rec(
4228        struct xfs_btree_cur    *cur,   /* btree cursor */
4229        union xfs_btree_rec     **recp, /* output: btree record */
4230        int                     *stat)  /* output: success/failure */
4231{
4232        struct xfs_btree_block  *block; /* btree block */
4233        struct xfs_buf          *bp;    /* buffer pointer */
4234        int                     ptr;    /* record number */
4235#ifdef DEBUG
4236        int                     error;  /* error return value */
4237#endif
4238
4239        ptr = cur->bc_ptrs[0];
4240        block = xfs_btree_get_block(cur, 0, &bp);
4241
4242#ifdef DEBUG
4243        error = xfs_btree_check_block(cur, block, 0, bp);
4244        if (error)
4245                return error;
4246#endif
4247
4248        /*
4249         * Off the right end or left end, return failure.
4250         */
4251        if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4252                *stat = 0;
4253                return 0;
4254        }
4255
4256        /*
4257         * Point to the record and extract its data.
4258         */
4259        *recp = xfs_btree_rec_addr(cur, ptr, block);
4260        *stat = 1;
4261        return 0;
4262}
4263
4264/* Visit a block in a btree. */
4265STATIC int
4266xfs_btree_visit_block(
4267        struct xfs_btree_cur            *cur,
4268        int                             level,
4269        xfs_btree_visit_blocks_fn       fn,
4270        void                            *data)
4271{
4272        struct xfs_btree_block          *block;
4273        struct xfs_buf                  *bp;
4274        union xfs_btree_ptr             rptr;
4275        int                             error;
4276
4277        /* do right sibling readahead */
4278        xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4279        block = xfs_btree_get_block(cur, level, &bp);
4280
4281        /* process the block */
4282        error = fn(cur, level, data);
4283        if (error)
4284                return error;
4285
4286        /* now read rh sibling block for next iteration */
4287        xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4288        if (xfs_btree_ptr_is_null(cur, &rptr))
4289                return -ENOENT;
4290
4291        return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4292}
4293
4294
4295/* Visit every block in a btree. */
4296int
4297xfs_btree_visit_blocks(
4298        struct xfs_btree_cur            *cur,
4299        xfs_btree_visit_blocks_fn       fn,
4300        void                            *data)
4301{
4302        union xfs_btree_ptr             lptr;
4303        int                             level;
4304        struct xfs_btree_block          *block = NULL;
4305        int                             error = 0;
4306
4307        cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4308
4309        /* for each level */
4310        for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4311                /* grab the left hand block */
4312                error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4313                if (error)
4314                        return error;
4315
4316                /* readahead the left most block for the next level down */
4317                if (level > 0) {
4318                        union xfs_btree_ptr     *ptr;
4319
4320                        ptr = xfs_btree_ptr_addr(cur, 1, block);
4321                        xfs_btree_readahead_ptr(cur, ptr, 1);
4322
4323                        /* save for the next iteration of the loop */
4324                        xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4325                }
4326
4327                /* for each buffer in the level */
4328                do {
4329                        error = xfs_btree_visit_block(cur, level, fn, data);
4330                } while (!error);
4331
4332                if (error != -ENOENT)
4333                        return error;
4334        }
4335
4336        return 0;
4337}
4338
4339/*
4340 * Change the owner of a btree.
4341 *
4342 * The mechanism we use here is ordered buffer logging. Because we don't know
4343 * how many buffers were are going to need to modify, we don't really want to
4344 * have to make transaction reservations for the worst case of every buffer in a
4345 * full size btree as that may be more space that we can fit in the log....
4346 *
4347 * We do the btree walk in the most optimal manner possible - we have sibling
4348 * pointers so we can just walk all the blocks on each level from left to right
4349 * in a single pass, and then move to the next level and do the same. We can
4350 * also do readahead on the sibling pointers to get IO moving more quickly,
4351 * though for slow disks this is unlikely to make much difference to performance
4352 * as the amount of CPU work we have to do before moving to the next block is
4353 * relatively small.
4354 *
4355 * For each btree block that we load, modify the owner appropriately, set the
4356 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4357 * we mark the region we change dirty so that if the buffer is relogged in
4358 * a subsequent transaction the changes we make here as an ordered buffer are
4359 * correctly relogged in that transaction.  If we are in recovery context, then
4360 * just queue the modified buffer as delayed write buffer so the transaction
4361 * recovery completion writes the changes to disk.
4362 */
4363struct xfs_btree_block_change_owner_info {
4364        uint64_t                new_owner;
4365        struct list_head        *buffer_list;
4366};
4367
4368static int
4369xfs_btree_block_change_owner(
4370        struct xfs_btree_cur    *cur,
4371        int                     level,
4372        void                    *data)
4373{
4374        struct xfs_btree_block_change_owner_info        *bbcoi = data;
4375        struct xfs_btree_block  *block;
4376        struct xfs_buf          *bp;
4377
4378        /* modify the owner */
4379        block = xfs_btree_get_block(cur, level, &bp);
4380        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4381                if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4382                        return 0;
4383                block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4384        } else {
4385                if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4386                        return 0;
4387                block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4388        }
4389
4390        /*
4391         * If the block is a root block hosted in an inode, we might not have a
4392         * buffer pointer here and we shouldn't attempt to log the change as the
4393         * information is already held in the inode and discarded when the root
4394         * block is formatted into the on-disk inode fork. We still change it,
4395         * though, so everything is consistent in memory.
4396         */
4397        if (!bp) {
4398                ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4399                ASSERT(level == cur->bc_nlevels - 1);
4400                return 0;
4401        }
4402
4403        if (cur->bc_tp) {
4404                if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4405                        xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4406                        return -EAGAIN;
4407                }
4408        } else {
4409                xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4410        }
4411
4412        return 0;
4413}
4414
4415int
4416xfs_btree_change_owner(
4417        struct xfs_btree_cur    *cur,
4418        uint64_t                new_owner,
4419        struct list_head        *buffer_list)
4420{
4421        struct xfs_btree_block_change_owner_info        bbcoi;
4422
4423        bbcoi.new_owner = new_owner;
4424        bbcoi.buffer_list = buffer_list;
4425
4426        return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4427                        &bbcoi);
4428}
4429
4430/* Verify the v5 fields of a long-format btree block. */
4431xfs_failaddr_t
4432xfs_btree_lblock_v5hdr_verify(
4433        struct xfs_buf          *bp,
4434        uint64_t                owner)
4435{
4436        struct xfs_mount        *mp = bp->b_target->bt_mount;
4437        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4438
4439        if (!xfs_sb_version_hascrc(&mp->m_sb))
4440                return __this_address;
4441        if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4442                return __this_address;
4443        if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
4444                return __this_address;
4445        if (owner != XFS_RMAP_OWN_UNKNOWN &&
4446            be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4447                return __this_address;
4448        return NULL;
4449}
4450
4451/* Verify a long-format btree block. */
4452xfs_failaddr_t
4453xfs_btree_lblock_verify(
4454        struct xfs_buf          *bp,
4455        unsigned int            max_recs)
4456{
4457        struct xfs_mount        *mp = bp->b_target->bt_mount;
4458        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4459
4460        /* numrecs verification */
4461        if (be16_to_cpu(block->bb_numrecs) > max_recs)
4462                return __this_address;
4463
4464        /* sibling pointer verification */
4465        if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4466            !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4467                return __this_address;
4468        if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4469            !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4470                return __this_address;
4471
4472        return NULL;
4473}
4474
4475/**
4476 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4477 *                                    btree block
4478 *
4479 * @bp: buffer containing the btree block
4480 * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4481 * @pag_max_level: pointer to the per-ag max level field
4482 */
4483xfs_failaddr_t
4484xfs_btree_sblock_v5hdr_verify(
4485        struct xfs_buf          *bp)
4486{
4487        struct xfs_mount        *mp = bp->b_target->bt_mount;
4488        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4489        struct xfs_perag        *pag = bp->b_pag;
4490
4491        if (!xfs_sb_version_hascrc(&mp->m_sb))
4492                return __this_address;
4493        if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4494                return __this_address;
4495        if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4496                return __this_address;
4497        if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4498                return __this_address;
4499        return NULL;
4500}
4501
4502/**
4503 * xfs_btree_sblock_verify() -- verify a short-format btree block
4504 *
4505 * @bp: buffer containing the btree block
4506 * @max_recs: maximum records allowed in this btree node
4507 */
4508xfs_failaddr_t
4509xfs_btree_sblock_verify(
4510        struct xfs_buf          *bp,
4511        unsigned int            max_recs)
4512{
4513        struct xfs_mount        *mp = bp->b_target->bt_mount;
4514        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4515        xfs_agblock_t           agno;
4516
4517        /* numrecs verification */
4518        if (be16_to_cpu(block->bb_numrecs) > max_recs)
4519                return __this_address;
4520
4521        /* sibling pointer verification */
4522        agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
4523        if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4524            !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4525                return __this_address;
4526        if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4527            !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4528                return __this_address;
4529
4530        return NULL;
4531}
4532
4533/*
4534 * Calculate the number of btree levels needed to store a given number of
4535 * records in a short-format btree.
4536 */
4537uint
4538xfs_btree_compute_maxlevels(
4539        uint                    *limits,
4540        unsigned long           len)
4541{
4542        uint                    level;
4543        unsigned long           maxblocks;
4544
4545        maxblocks = (len + limits[0] - 1) / limits[0];
4546        for (level = 1; maxblocks > 1; level++)
4547                maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4548        return level;
4549}
4550
4551/*
4552 * Query a regular btree for all records overlapping a given interval.
4553 * Start with a LE lookup of the key of low_rec and return all records
4554 * until we find a record with a key greater than the key of high_rec.
4555 */
4556STATIC int
4557xfs_btree_simple_query_range(
4558        struct xfs_btree_cur            *cur,
4559        union xfs_btree_key             *low_key,
4560        union xfs_btree_key             *high_key,
4561        xfs_btree_query_range_fn        fn,
4562        void                            *priv)
4563{
4564        union xfs_btree_rec             *recp;
4565        union xfs_btree_key             rec_key;
4566        int64_t                         diff;
4567        int                             stat;
4568        bool                            firstrec = true;
4569        int                             error;
4570
4571        ASSERT(cur->bc_ops->init_high_key_from_rec);
4572        ASSERT(cur->bc_ops->diff_two_keys);
4573
4574        /*
4575         * Find the leftmost record.  The btree cursor must be set
4576         * to the low record used to generate low_key.
4577         */
4578        stat = 0;
4579        error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4580        if (error)
4581                goto out;
4582
4583        /* Nothing?  See if there's anything to the right. */
4584        if (!stat) {
4585                error = xfs_btree_increment(cur, 0, &stat);
4586                if (error)
4587                        goto out;
4588        }
4589
4590        while (stat) {
4591                /* Find the record. */
4592                error = xfs_btree_get_rec(cur, &recp, &stat);
4593                if (error || !stat)
4594                        break;
4595
4596                /* Skip if high_key(rec) < low_key. */
4597                if (firstrec) {
4598                        cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4599                        firstrec = false;
4600                        diff = cur->bc_ops->diff_two_keys(cur, low_key,
4601                                        &rec_key);
4602                        if (diff > 0)
4603                                goto advloop;
4604                }
4605
4606                /* Stop if high_key < low_key(rec). */
4607                cur->bc_ops->init_key_from_rec(&rec_key, recp);
4608                diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4609                if (diff > 0)
4610                        break;
4611
4612                /* Callback */
4613                error = fn(cur, recp, priv);
4614                if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4615                        break;
4616
4617advloop:
4618                /* Move on to the next record. */
4619                error = xfs_btree_increment(cur, 0, &stat);
4620                if (error)
4621                        break;
4622        }
4623
4624out:
4625        return error;
4626}
4627
4628/*
4629 * Query an overlapped interval btree for all records overlapping a given
4630 * interval.  This function roughly follows the algorithm given in
4631 * "Interval Trees" of _Introduction to Algorithms_, which is section
4632 * 14.3 in the 2nd and 3rd editions.
4633 *
4634 * First, generate keys for the low and high records passed in.
4635 *
4636 * For any leaf node, generate the high and low keys for the record.
4637 * If the record keys overlap with the query low/high keys, pass the
4638 * record to the function iterator.
4639 *
4640 * For any internal node, compare the low and high keys of each
4641 * pointer against the query low/high keys.  If there's an overlap,
4642 * follow the pointer.
4643 *
4644 * As an optimization, we stop scanning a block when we find a low key
4645 * that is greater than the query's high key.
4646 */
4647STATIC int
4648xfs_btree_overlapped_query_range(
4649        struct xfs_btree_cur            *cur,
4650        union xfs_btree_key             *low_key,
4651        union xfs_btree_key             *high_key,
4652        xfs_btree_query_range_fn        fn,
4653        void                            *priv)
4654{
4655        union xfs_btree_ptr             ptr;
4656        union xfs_btree_ptr             *pp;
4657        union xfs_btree_key             rec_key;
4658        union xfs_btree_key             rec_hkey;
4659        union xfs_btree_key             *lkp;
4660        union xfs_btree_key             *hkp;
4661        union xfs_btree_rec             *recp;
4662        struct xfs_btree_block          *block;
4663        int64_t                         ldiff;
4664        int64_t                         hdiff;
4665        int                             level;
4666        struct xfs_buf                  *bp;
4667        int                             i;
4668        int                             error;
4669
4670        /* Load the root of the btree. */
4671        level = cur->bc_nlevels - 1;
4672        cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4673        error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4674        if (error)
4675                return error;
4676        xfs_btree_get_block(cur, level, &bp);
4677        trace_xfs_btree_overlapped_query_range(cur, level, bp);
4678#ifdef DEBUG
4679        error = xfs_btree_check_block(cur, block, level, bp);
4680        if (error)
4681                goto out;
4682#endif
4683        cur->bc_ptrs[level] = 1;
4684
4685        while (level < cur->bc_nlevels) {
4686                block = xfs_btree_get_block(cur, level, &bp);
4687
4688                /* End of node, pop back towards the root. */
4689                if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4690pop_up:
4691                        if (level < cur->bc_nlevels - 1)
4692                                cur->bc_ptrs[level + 1]++;
4693                        level++;
4694                        continue;
4695                }
4696
4697                if (level == 0) {
4698                        /* Handle a leaf node. */
4699                        recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4700
4701                        cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4702                        ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4703                                        low_key);
4704
4705                        cur->bc_ops->init_key_from_rec(&rec_key, recp);
4706                        hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4707                                        &rec_key);
4708
4709                        /*
4710                         * If (record's high key >= query's low key) and
4711                         *    (query's high key >= record's low key), then
4712                         * this record overlaps the query range; callback.
4713                         */
4714                        if (ldiff >= 0 && hdiff >= 0) {
4715                                error = fn(cur, recp, priv);
4716                                if (error < 0 ||
4717                                    error == XFS_BTREE_QUERY_RANGE_ABORT)
4718                                        break;
4719                        } else if (hdiff < 0) {
4720                                /* Record is larger than high key; pop. */
4721                                goto pop_up;
4722                        }
4723                        cur->bc_ptrs[level]++;
4724                        continue;
4725                }
4726
4727                /* Handle an internal node. */
4728                lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4729                hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4730                pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4731
4732                ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4733                hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4734
4735                /*
4736                 * If (pointer's high key >= query's low key) and
4737                 *    (query's high key >= pointer's low key), then
4738                 * this record overlaps the query range; follow pointer.
4739                 */
4740                if (ldiff >= 0 && hdiff >= 0) {
4741                        level--;
4742                        error = xfs_btree_lookup_get_block(cur, level, pp,
4743                                        &block);
4744                        if (error)
4745                                goto out;
4746                        xfs_btree_get_block(cur, level, &bp);
4747                        trace_xfs_btree_overlapped_query_range(cur, level, bp);
4748#ifdef DEBUG
4749                        error = xfs_btree_check_block(cur, block, level, bp);
4750                        if (error)
4751                                goto out;
4752#endif
4753                        cur->bc_ptrs[level] = 1;
4754                        continue;
4755                } else if (hdiff < 0) {
4756                        /* The low key is larger than the upper range; pop. */
4757                        goto pop_up;
4758                }
4759                cur->bc_ptrs[level]++;
4760        }
4761
4762out:
4763        /*
4764         * If we don't end this function with the cursor pointing at a record
4765         * block, a subsequent non-error cursor deletion will not release
4766         * node-level buffers, causing a buffer leak.  This is quite possible
4767         * with a zero-results range query, so release the buffers if we
4768         * failed to return any results.
4769         */
4770        if (cur->bc_bufs[0] == NULL) {
4771                for (i = 0; i < cur->bc_nlevels; i++) {
4772                        if (cur->bc_bufs[i]) {
4773                                xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4774                                cur->bc_bufs[i] = NULL;
4775                                cur->bc_ptrs[i] = 0;
4776                                cur->bc_ra[i] = 0;
4777                        }
4778                }
4779        }
4780
4781        return error;
4782}
4783
4784/*
4785 * Query a btree for all records overlapping a given interval of keys.  The
4786 * supplied function will be called with each record found; return one of the
4787 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4788 * code.  This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4789 * negative error code.
4790 */
4791int
4792xfs_btree_query_range(
4793        struct xfs_btree_cur            *cur,
4794        union xfs_btree_irec            *low_rec,
4795        union xfs_btree_irec            *high_rec,
4796        xfs_btree_query_range_fn        fn,
4797        void                            *priv)
4798{
4799        union xfs_btree_rec             rec;
4800        union xfs_btree_key             low_key;
4801        union xfs_btree_key             high_key;
4802
4803        /* Find the keys of both ends of the interval. */
4804        cur->bc_rec = *high_rec;
4805        cur->bc_ops->init_rec_from_cur(cur, &rec);
4806        cur->bc_ops->init_key_from_rec(&high_key, &rec);
4807
4808        cur->bc_rec = *low_rec;
4809        cur->bc_ops->init_rec_from_cur(cur, &rec);
4810        cur->bc_ops->init_key_from_rec(&low_key, &rec);
4811
4812        /* Enforce low key < high key. */
4813        if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4814                return -EINVAL;
4815
4816        if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4817                return xfs_btree_simple_query_range(cur, &low_key,
4818                                &high_key, fn, priv);
4819        return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4820                        fn, priv);
4821}
4822
4823/* Query a btree for all records. */
4824int
4825xfs_btree_query_all(
4826        struct xfs_btree_cur            *cur,
4827        xfs_btree_query_range_fn        fn,
4828        void                            *priv)
4829{
4830        union xfs_btree_key             low_key;
4831        union xfs_btree_key             high_key;
4832
4833        memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4834        memset(&low_key, 0, sizeof(low_key));
4835        memset(&high_key, 0xFF, sizeof(high_key));
4836
4837        return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4838}
4839
4840/*
4841 * Calculate the number of blocks needed to store a given number of records
4842 * in a short-format (per-AG metadata) btree.
4843 */
4844unsigned long long
4845xfs_btree_calc_size(
4846        uint                    *limits,
4847        unsigned long long      len)
4848{
4849        int                     level;
4850        int                     maxrecs;
4851        unsigned long long      rval;
4852
4853        maxrecs = limits[0];
4854        for (level = 0, rval = 0; len > 1; level++) {
4855                len += maxrecs - 1;
4856                do_div(len, maxrecs);
4857                maxrecs = limits[1];
4858                rval += len;
4859        }
4860        return rval;
4861}
4862
4863static int
4864xfs_btree_count_blocks_helper(
4865        struct xfs_btree_cur    *cur,
4866        int                     level,
4867        void                    *data)
4868{
4869        xfs_extlen_t            *blocks = data;
4870        (*blocks)++;
4871
4872        return 0;
4873}
4874
4875/* Count the blocks in a btree and return the result in *blocks. */
4876int
4877xfs_btree_count_blocks(
4878        struct xfs_btree_cur    *cur,
4879        xfs_extlen_t            *blocks)
4880{
4881        *blocks = 0;
4882        return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4883                        blocks);
4884}
4885
4886/* Compare two btree pointers. */
4887int64_t
4888xfs_btree_diff_two_ptrs(
4889        struct xfs_btree_cur            *cur,
4890        const union xfs_btree_ptr       *a,
4891        const union xfs_btree_ptr       *b)
4892{
4893        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4894                return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4895        return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4896}
4897
4898/* If there's an extent, we're done. */
4899STATIC int
4900xfs_btree_has_record_helper(
4901        struct xfs_btree_cur            *cur,
4902        union xfs_btree_rec             *rec,
4903        void                            *priv)
4904{
4905        return XFS_BTREE_QUERY_RANGE_ABORT;
4906}
4907
4908/* Is there a record covering a given range of keys? */
4909int
4910xfs_btree_has_record(
4911        struct xfs_btree_cur    *cur,
4912        union xfs_btree_irec    *low,
4913        union xfs_btree_irec    *high,
4914        bool                    *exists)
4915{
4916        int                     error;
4917
4918        error = xfs_btree_query_range(cur, low, high,
4919                        &xfs_btree_has_record_helper, NULL);
4920        if (error == XFS_BTREE_QUERY_RANGE_ABORT) {
4921                *exists = true;
4922                return 0;
4923        }
4924        *exists = false;
4925        return error;
4926}
4927
4928/* Are there more records in this btree? */
4929bool
4930xfs_btree_has_more_records(
4931        struct xfs_btree_cur    *cur)
4932{
4933        struct xfs_btree_block  *block;
4934        struct xfs_buf          *bp;
4935
4936        block = xfs_btree_get_block(cur, 0, &bp);
4937
4938        /* There are still records in this block. */
4939        if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block))
4940                return true;
4941
4942        /* There are more record blocks. */
4943        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4944                return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
4945        else
4946                return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
4947}
4948