linux/fs/xfs/xfs_inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include <linux/log2.h>
   7#include <linux/iversion.h>
   8
   9#include "xfs.h"
  10#include "xfs_fs.h"
  11#include "xfs_shared.h"
  12#include "xfs_format.h"
  13#include "xfs_log_format.h"
  14#include "xfs_trans_resv.h"
  15#include "xfs_sb.h"
  16#include "xfs_mount.h"
  17#include "xfs_defer.h"
  18#include "xfs_inode.h"
  19#include "xfs_da_format.h"
  20#include "xfs_da_btree.h"
  21#include "xfs_dir2.h"
  22#include "xfs_attr_sf.h"
  23#include "xfs_attr.h"
  24#include "xfs_trans_space.h"
  25#include "xfs_trans.h"
  26#include "xfs_buf_item.h"
  27#include "xfs_inode_item.h"
  28#include "xfs_ialloc.h"
  29#include "xfs_bmap.h"
  30#include "xfs_bmap_util.h"
  31#include "xfs_errortag.h"
  32#include "xfs_error.h"
  33#include "xfs_quota.h"
  34#include "xfs_filestream.h"
  35#include "xfs_cksum.h"
  36#include "xfs_trace.h"
  37#include "xfs_icache.h"
  38#include "xfs_symlink.h"
  39#include "xfs_trans_priv.h"
  40#include "xfs_log.h"
  41#include "xfs_bmap_btree.h"
  42#include "xfs_reflink.h"
  43#include "xfs_dir2_priv.h"
  44
  45kmem_zone_t *xfs_inode_zone;
  46
  47/*
  48 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  49 * freed from a file in a single transaction.
  50 */
  51#define XFS_ITRUNC_MAX_EXTENTS  2
  52
  53STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
  54STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  55STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
  56
  57/*
  58 * helper function to extract extent size hint from inode
  59 */
  60xfs_extlen_t
  61xfs_get_extsz_hint(
  62        struct xfs_inode        *ip)
  63{
  64        if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  65                return ip->i_d.di_extsize;
  66        if (XFS_IS_REALTIME_INODE(ip))
  67                return ip->i_mount->m_sb.sb_rextsize;
  68        return 0;
  69}
  70
  71/*
  72 * Helper function to extract CoW extent size hint from inode.
  73 * Between the extent size hint and the CoW extent size hint, we
  74 * return the greater of the two.  If the value is zero (automatic),
  75 * use the default size.
  76 */
  77xfs_extlen_t
  78xfs_get_cowextsz_hint(
  79        struct xfs_inode        *ip)
  80{
  81        xfs_extlen_t            a, b;
  82
  83        a = 0;
  84        if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
  85                a = ip->i_d.di_cowextsize;
  86        b = xfs_get_extsz_hint(ip);
  87
  88        a = max(a, b);
  89        if (a == 0)
  90                return XFS_DEFAULT_COWEXTSZ_HINT;
  91        return a;
  92}
  93
  94/*
  95 * These two are wrapper routines around the xfs_ilock() routine used to
  96 * centralize some grungy code.  They are used in places that wish to lock the
  97 * inode solely for reading the extents.  The reason these places can't just
  98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  99 * bringing in of the extents from disk for a file in b-tree format.  If the
 100 * inode is in b-tree format, then we need to lock the inode exclusively until
 101 * the extents are read in.  Locking it exclusively all the time would limit
 102 * our parallelism unnecessarily, though.  What we do instead is check to see
 103 * if the extents have been read in yet, and only lock the inode exclusively
 104 * if they have not.
 105 *
 106 * The functions return a value which should be given to the corresponding
 107 * xfs_iunlock() call.
 108 */
 109uint
 110xfs_ilock_data_map_shared(
 111        struct xfs_inode        *ip)
 112{
 113        uint                    lock_mode = XFS_ILOCK_SHARED;
 114
 115        if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
 116            (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
 117                lock_mode = XFS_ILOCK_EXCL;
 118        xfs_ilock(ip, lock_mode);
 119        return lock_mode;
 120}
 121
 122uint
 123xfs_ilock_attr_map_shared(
 124        struct xfs_inode        *ip)
 125{
 126        uint                    lock_mode = XFS_ILOCK_SHARED;
 127
 128        if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
 129            (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
 130                lock_mode = XFS_ILOCK_EXCL;
 131        xfs_ilock(ip, lock_mode);
 132        return lock_mode;
 133}
 134
 135/*
 136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 137 * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
 138 * various combinations of the locks to be obtained.
 139 *
 140 * The 3 locks should always be ordered so that the IO lock is obtained first,
 141 * the mmap lock second and the ilock last in order to prevent deadlock.
 142 *
 143 * Basic locking order:
 144 *
 145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
 146 *
 147 * mmap_sem locking order:
 148 *
 149 * i_rwsem -> page lock -> mmap_sem
 150 * mmap_sem -> i_mmap_lock -> page_lock
 151 *
 152 * The difference in mmap_sem locking order mean that we cannot hold the
 153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
 154 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
 155 * in get_user_pages() to map the user pages into the kernel address space for
 156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
 157 * page faults already hold the mmap_sem.
 158 *
 159 * Hence to serialise fully against both syscall and mmap based IO, we need to
 160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
 161 * taken in places where we need to invalidate the page cache in a race
 162 * free manner (e.g. truncate, hole punch and other extent manipulation
 163 * functions).
 164 */
 165void
 166xfs_ilock(
 167        xfs_inode_t             *ip,
 168        uint                    lock_flags)
 169{
 170        trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 171
 172        /*
 173         * You can't set both SHARED and EXCL for the same lock,
 174         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 175         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 176         */
 177        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 178               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 179        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 180               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 181        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 182               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 183        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 184
 185        if (lock_flags & XFS_IOLOCK_EXCL) {
 186                down_write_nested(&VFS_I(ip)->i_rwsem,
 187                                  XFS_IOLOCK_DEP(lock_flags));
 188        } else if (lock_flags & XFS_IOLOCK_SHARED) {
 189                down_read_nested(&VFS_I(ip)->i_rwsem,
 190                                 XFS_IOLOCK_DEP(lock_flags));
 191        }
 192
 193        if (lock_flags & XFS_MMAPLOCK_EXCL)
 194                mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 195        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 196                mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 197
 198        if (lock_flags & XFS_ILOCK_EXCL)
 199                mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 200        else if (lock_flags & XFS_ILOCK_SHARED)
 201                mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 202}
 203
 204/*
 205 * This is just like xfs_ilock(), except that the caller
 206 * is guaranteed not to sleep.  It returns 1 if it gets
 207 * the requested locks and 0 otherwise.  If the IO lock is
 208 * obtained but the inode lock cannot be, then the IO lock
 209 * is dropped before returning.
 210 *
 211 * ip -- the inode being locked
 212 * lock_flags -- this parameter indicates the inode's locks to be
 213 *       to be locked.  See the comment for xfs_ilock() for a list
 214 *       of valid values.
 215 */
 216int
 217xfs_ilock_nowait(
 218        xfs_inode_t             *ip,
 219        uint                    lock_flags)
 220{
 221        trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 222
 223        /*
 224         * You can't set both SHARED and EXCL for the same lock,
 225         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 226         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 227         */
 228        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 229               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 230        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 231               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 232        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 233               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 234        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 235
 236        if (lock_flags & XFS_IOLOCK_EXCL) {
 237                if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
 238                        goto out;
 239        } else if (lock_flags & XFS_IOLOCK_SHARED) {
 240                if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
 241                        goto out;
 242        }
 243
 244        if (lock_flags & XFS_MMAPLOCK_EXCL) {
 245                if (!mrtryupdate(&ip->i_mmaplock))
 246                        goto out_undo_iolock;
 247        } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 248                if (!mrtryaccess(&ip->i_mmaplock))
 249                        goto out_undo_iolock;
 250        }
 251
 252        if (lock_flags & XFS_ILOCK_EXCL) {
 253                if (!mrtryupdate(&ip->i_lock))
 254                        goto out_undo_mmaplock;
 255        } else if (lock_flags & XFS_ILOCK_SHARED) {
 256                if (!mrtryaccess(&ip->i_lock))
 257                        goto out_undo_mmaplock;
 258        }
 259        return 1;
 260
 261out_undo_mmaplock:
 262        if (lock_flags & XFS_MMAPLOCK_EXCL)
 263                mrunlock_excl(&ip->i_mmaplock);
 264        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 265                mrunlock_shared(&ip->i_mmaplock);
 266out_undo_iolock:
 267        if (lock_flags & XFS_IOLOCK_EXCL)
 268                up_write(&VFS_I(ip)->i_rwsem);
 269        else if (lock_flags & XFS_IOLOCK_SHARED)
 270                up_read(&VFS_I(ip)->i_rwsem);
 271out:
 272        return 0;
 273}
 274
 275/*
 276 * xfs_iunlock() is used to drop the inode locks acquired with
 277 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 279 * that we know which locks to drop.
 280 *
 281 * ip -- the inode being unlocked
 282 * lock_flags -- this parameter indicates the inode's locks to be
 283 *       to be unlocked.  See the comment for xfs_ilock() for a list
 284 *       of valid values for this parameter.
 285 *
 286 */
 287void
 288xfs_iunlock(
 289        xfs_inode_t             *ip,
 290        uint                    lock_flags)
 291{
 292        /*
 293         * You can't set both SHARED and EXCL for the same lock,
 294         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 295         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 296         */
 297        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 298               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 299        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 300               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 301        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 302               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 303        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 304        ASSERT(lock_flags != 0);
 305
 306        if (lock_flags & XFS_IOLOCK_EXCL)
 307                up_write(&VFS_I(ip)->i_rwsem);
 308        else if (lock_flags & XFS_IOLOCK_SHARED)
 309                up_read(&VFS_I(ip)->i_rwsem);
 310
 311        if (lock_flags & XFS_MMAPLOCK_EXCL)
 312                mrunlock_excl(&ip->i_mmaplock);
 313        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 314                mrunlock_shared(&ip->i_mmaplock);
 315
 316        if (lock_flags & XFS_ILOCK_EXCL)
 317                mrunlock_excl(&ip->i_lock);
 318        else if (lock_flags & XFS_ILOCK_SHARED)
 319                mrunlock_shared(&ip->i_lock);
 320
 321        trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 322}
 323
 324/*
 325 * give up write locks.  the i/o lock cannot be held nested
 326 * if it is being demoted.
 327 */
 328void
 329xfs_ilock_demote(
 330        xfs_inode_t             *ip,
 331        uint                    lock_flags)
 332{
 333        ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 334        ASSERT((lock_flags &
 335                ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 336
 337        if (lock_flags & XFS_ILOCK_EXCL)
 338                mrdemote(&ip->i_lock);
 339        if (lock_flags & XFS_MMAPLOCK_EXCL)
 340                mrdemote(&ip->i_mmaplock);
 341        if (lock_flags & XFS_IOLOCK_EXCL)
 342                downgrade_write(&VFS_I(ip)->i_rwsem);
 343
 344        trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 345}
 346
 347#if defined(DEBUG) || defined(XFS_WARN)
 348int
 349xfs_isilocked(
 350        xfs_inode_t             *ip,
 351        uint                    lock_flags)
 352{
 353        if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 354                if (!(lock_flags & XFS_ILOCK_SHARED))
 355                        return !!ip->i_lock.mr_writer;
 356                return rwsem_is_locked(&ip->i_lock.mr_lock);
 357        }
 358
 359        if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 360                if (!(lock_flags & XFS_MMAPLOCK_SHARED))
 361                        return !!ip->i_mmaplock.mr_writer;
 362                return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
 363        }
 364
 365        if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 366                if (!(lock_flags & XFS_IOLOCK_SHARED))
 367                        return !debug_locks ||
 368                                lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
 369                return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
 370        }
 371
 372        ASSERT(0);
 373        return 0;
 374}
 375#endif
 376
 377/*
 378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 381 * errors and warnings.
 382 */
 383#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 384static bool
 385xfs_lockdep_subclass_ok(
 386        int subclass)
 387{
 388        return subclass < MAX_LOCKDEP_SUBCLASSES;
 389}
 390#else
 391#define xfs_lockdep_subclass_ok(subclass)       (true)
 392#endif
 393
 394/*
 395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 396 * value. This can be called for any type of inode lock combination, including
 397 * parent locking. Care must be taken to ensure we don't overrun the subclass
 398 * storage fields in the class mask we build.
 399 */
 400static inline int
 401xfs_lock_inumorder(int lock_mode, int subclass)
 402{
 403        int     class = 0;
 404
 405        ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 406                              XFS_ILOCK_RTSUM)));
 407        ASSERT(xfs_lockdep_subclass_ok(subclass));
 408
 409        if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 410                ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 411                class += subclass << XFS_IOLOCK_SHIFT;
 412        }
 413
 414        if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 415                ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 416                class += subclass << XFS_MMAPLOCK_SHIFT;
 417        }
 418
 419        if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 420                ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 421                class += subclass << XFS_ILOCK_SHIFT;
 422        }
 423
 424        return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 425}
 426
 427/*
 428 * The following routine will lock n inodes in exclusive mode.  We assume the
 429 * caller calls us with the inodes in i_ino order.
 430 *
 431 * We need to detect deadlock where an inode that we lock is in the AIL and we
 432 * start waiting for another inode that is locked by a thread in a long running
 433 * transaction (such as truncate). This can result in deadlock since the long
 434 * running trans might need to wait for the inode we just locked in order to
 435 * push the tail and free space in the log.
 436 *
 437 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 439 * lock more than one at a time, lockdep will report false positives saying we
 440 * have violated locking orders.
 441 */
 442static void
 443xfs_lock_inodes(
 444        xfs_inode_t     **ips,
 445        int             inodes,
 446        uint            lock_mode)
 447{
 448        int             attempts = 0, i, j, try_lock;
 449        xfs_log_item_t  *lp;
 450
 451        /*
 452         * Currently supports between 2 and 5 inodes with exclusive locking.  We
 453         * support an arbitrary depth of locking here, but absolute limits on
 454         * inodes depend on the the type of locking and the limits placed by
 455         * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 456         * the asserts.
 457         */
 458        ASSERT(ips && inodes >= 2 && inodes <= 5);
 459        ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 460                            XFS_ILOCK_EXCL));
 461        ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 462                              XFS_ILOCK_SHARED)));
 463        ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 464                inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 465        ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 466                inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 467
 468        if (lock_mode & XFS_IOLOCK_EXCL) {
 469                ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 470        } else if (lock_mode & XFS_MMAPLOCK_EXCL)
 471                ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 472
 473        try_lock = 0;
 474        i = 0;
 475again:
 476        for (; i < inodes; i++) {
 477                ASSERT(ips[i]);
 478
 479                if (i && (ips[i] == ips[i - 1]))        /* Already locked */
 480                        continue;
 481
 482                /*
 483                 * If try_lock is not set yet, make sure all locked inodes are
 484                 * not in the AIL.  If any are, set try_lock to be used later.
 485                 */
 486                if (!try_lock) {
 487                        for (j = (i - 1); j >= 0 && !try_lock; j--) {
 488                                lp = (xfs_log_item_t *)ips[j]->i_itemp;
 489                                if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
 490                                        try_lock++;
 491                        }
 492                }
 493
 494                /*
 495                 * If any of the previous locks we have locked is in the AIL,
 496                 * we must TRY to get the second and subsequent locks. If
 497                 * we can't get any, we must release all we have
 498                 * and try again.
 499                 */
 500                if (!try_lock) {
 501                        xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 502                        continue;
 503                }
 504
 505                /* try_lock means we have an inode locked that is in the AIL. */
 506                ASSERT(i != 0);
 507                if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 508                        continue;
 509
 510                /*
 511                 * Unlock all previous guys and try again.  xfs_iunlock will try
 512                 * to push the tail if the inode is in the AIL.
 513                 */
 514                attempts++;
 515                for (j = i - 1; j >= 0; j--) {
 516                        /*
 517                         * Check to see if we've already unlocked this one.  Not
 518                         * the first one going back, and the inode ptr is the
 519                         * same.
 520                         */
 521                        if (j != (i - 1) && ips[j] == ips[j + 1])
 522                                continue;
 523
 524                        xfs_iunlock(ips[j], lock_mode);
 525                }
 526
 527                if ((attempts % 5) == 0) {
 528                        delay(1); /* Don't just spin the CPU */
 529                }
 530                i = 0;
 531                try_lock = 0;
 532                goto again;
 533        }
 534}
 535
 536/*
 537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
 538 * the mmaplock or the ilock, but not more than one type at a time. If we lock
 539 * more than one at a time, lockdep will report false positives saying we have
 540 * violated locking orders.  The iolock must be double-locked separately since
 541 * we use i_rwsem for that.  We now support taking one lock EXCL and the other
 542 * SHARED.
 543 */
 544void
 545xfs_lock_two_inodes(
 546        struct xfs_inode        *ip0,
 547        uint                    ip0_mode,
 548        struct xfs_inode        *ip1,
 549        uint                    ip1_mode)
 550{
 551        struct xfs_inode        *temp;
 552        uint                    mode_temp;
 553        int                     attempts = 0;
 554        xfs_log_item_t          *lp;
 555
 556        ASSERT(hweight32(ip0_mode) == 1);
 557        ASSERT(hweight32(ip1_mode) == 1);
 558        ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 559        ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 560        ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 561               !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 562        ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 563               !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 564        ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 565               !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 566        ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 567               !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 568
 569        ASSERT(ip0->i_ino != ip1->i_ino);
 570
 571        if (ip0->i_ino > ip1->i_ino) {
 572                temp = ip0;
 573                ip0 = ip1;
 574                ip1 = temp;
 575                mode_temp = ip0_mode;
 576                ip0_mode = ip1_mode;
 577                ip1_mode = mode_temp;
 578        }
 579
 580 again:
 581        xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
 582
 583        /*
 584         * If the first lock we have locked is in the AIL, we must TRY to get
 585         * the second lock. If we can't get it, we must release the first one
 586         * and try again.
 587         */
 588        lp = (xfs_log_item_t *)ip0->i_itemp;
 589        if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
 590                if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
 591                        xfs_iunlock(ip0, ip0_mode);
 592                        if ((++attempts % 5) == 0)
 593                                delay(1); /* Don't just spin the CPU */
 594                        goto again;
 595                }
 596        } else {
 597                xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
 598        }
 599}
 600
 601void
 602__xfs_iflock(
 603        struct xfs_inode        *ip)
 604{
 605        wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
 606        DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
 607
 608        do {
 609                prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
 610                if (xfs_isiflocked(ip))
 611                        io_schedule();
 612        } while (!xfs_iflock_nowait(ip));
 613
 614        finish_wait(wq, &wait.wq_entry);
 615}
 616
 617STATIC uint
 618_xfs_dic2xflags(
 619        uint16_t                di_flags,
 620        uint64_t                di_flags2,
 621        bool                    has_attr)
 622{
 623        uint                    flags = 0;
 624
 625        if (di_flags & XFS_DIFLAG_ANY) {
 626                if (di_flags & XFS_DIFLAG_REALTIME)
 627                        flags |= FS_XFLAG_REALTIME;
 628                if (di_flags & XFS_DIFLAG_PREALLOC)
 629                        flags |= FS_XFLAG_PREALLOC;
 630                if (di_flags & XFS_DIFLAG_IMMUTABLE)
 631                        flags |= FS_XFLAG_IMMUTABLE;
 632                if (di_flags & XFS_DIFLAG_APPEND)
 633                        flags |= FS_XFLAG_APPEND;
 634                if (di_flags & XFS_DIFLAG_SYNC)
 635                        flags |= FS_XFLAG_SYNC;
 636                if (di_flags & XFS_DIFLAG_NOATIME)
 637                        flags |= FS_XFLAG_NOATIME;
 638                if (di_flags & XFS_DIFLAG_NODUMP)
 639                        flags |= FS_XFLAG_NODUMP;
 640                if (di_flags & XFS_DIFLAG_RTINHERIT)
 641                        flags |= FS_XFLAG_RTINHERIT;
 642                if (di_flags & XFS_DIFLAG_PROJINHERIT)
 643                        flags |= FS_XFLAG_PROJINHERIT;
 644                if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 645                        flags |= FS_XFLAG_NOSYMLINKS;
 646                if (di_flags & XFS_DIFLAG_EXTSIZE)
 647                        flags |= FS_XFLAG_EXTSIZE;
 648                if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 649                        flags |= FS_XFLAG_EXTSZINHERIT;
 650                if (di_flags & XFS_DIFLAG_NODEFRAG)
 651                        flags |= FS_XFLAG_NODEFRAG;
 652                if (di_flags & XFS_DIFLAG_FILESTREAM)
 653                        flags |= FS_XFLAG_FILESTREAM;
 654        }
 655
 656        if (di_flags2 & XFS_DIFLAG2_ANY) {
 657                if (di_flags2 & XFS_DIFLAG2_DAX)
 658                        flags |= FS_XFLAG_DAX;
 659                if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
 660                        flags |= FS_XFLAG_COWEXTSIZE;
 661        }
 662
 663        if (has_attr)
 664                flags |= FS_XFLAG_HASATTR;
 665
 666        return flags;
 667}
 668
 669uint
 670xfs_ip2xflags(
 671        struct xfs_inode        *ip)
 672{
 673        struct xfs_icdinode     *dic = &ip->i_d;
 674
 675        return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
 676}
 677
 678/*
 679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 681 * ci_name->name will point to a the actual name (caller must free) or
 682 * will be set to NULL if an exact match is found.
 683 */
 684int
 685xfs_lookup(
 686        xfs_inode_t             *dp,
 687        struct xfs_name         *name,
 688        xfs_inode_t             **ipp,
 689        struct xfs_name         *ci_name)
 690{
 691        xfs_ino_t               inum;
 692        int                     error;
 693
 694        trace_xfs_lookup(dp, name);
 695
 696        if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 697                return -EIO;
 698
 699        error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 700        if (error)
 701                goto out_unlock;
 702
 703        error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 704        if (error)
 705                goto out_free_name;
 706
 707        return 0;
 708
 709out_free_name:
 710        if (ci_name)
 711                kmem_free(ci_name->name);
 712out_unlock:
 713        *ipp = NULL;
 714        return error;
 715}
 716
 717/*
 718 * Allocate an inode on disk and return a copy of its in-core version.
 719 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 720 * appropriately within the inode.  The uid and gid for the inode are
 721 * set according to the contents of the given cred structure.
 722 *
 723 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 724 * has a free inode available, call xfs_iget() to obtain the in-core
 725 * version of the allocated inode.  Finally, fill in the inode and
 726 * log its initial contents.  In this case, ialloc_context would be
 727 * set to NULL.
 728 *
 729 * If xfs_dialloc() does not have an available inode, it will replenish
 730 * its supply by doing an allocation. Since we can only do one
 731 * allocation within a transaction without deadlocks, we must commit
 732 * the current transaction before returning the inode itself.
 733 * In this case, therefore, we will set ialloc_context and return.
 734 * The caller should then commit the current transaction, start a new
 735 * transaction, and call xfs_ialloc() again to actually get the inode.
 736 *
 737 * To ensure that some other process does not grab the inode that
 738 * was allocated during the first call to xfs_ialloc(), this routine
 739 * also returns the [locked] bp pointing to the head of the freelist
 740 * as ialloc_context.  The caller should hold this buffer across
 741 * the commit and pass it back into this routine on the second call.
 742 *
 743 * If we are allocating quota inodes, we do not have a parent inode
 744 * to attach to or associate with (i.e. pip == NULL) because they
 745 * are not linked into the directory structure - they are attached
 746 * directly to the superblock - and so have no parent.
 747 */
 748static int
 749xfs_ialloc(
 750        xfs_trans_t     *tp,
 751        xfs_inode_t     *pip,
 752        umode_t         mode,
 753        xfs_nlink_t     nlink,
 754        dev_t           rdev,
 755        prid_t          prid,
 756        xfs_buf_t       **ialloc_context,
 757        xfs_inode_t     **ipp)
 758{
 759        struct xfs_mount *mp = tp->t_mountp;
 760        xfs_ino_t       ino;
 761        xfs_inode_t     *ip;
 762        uint            flags;
 763        int             error;
 764        struct timespec64 tv;
 765        struct inode    *inode;
 766
 767        /*
 768         * Call the space management code to pick
 769         * the on-disk inode to be allocated.
 770         */
 771        error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
 772                            ialloc_context, &ino);
 773        if (error)
 774                return error;
 775        if (*ialloc_context || ino == NULLFSINO) {
 776                *ipp = NULL;
 777                return 0;
 778        }
 779        ASSERT(*ialloc_context == NULL);
 780
 781        /*
 782         * Protect against obviously corrupt allocation btree records. Later
 783         * xfs_iget checks will catch re-allocation of other active in-memory
 784         * and on-disk inodes. If we don't catch reallocating the parent inode
 785         * here we will deadlock in xfs_iget() so we have to do these checks
 786         * first.
 787         */
 788        if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
 789                xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
 790                return -EFSCORRUPTED;
 791        }
 792
 793        /*
 794         * Get the in-core inode with the lock held exclusively.
 795         * This is because we're setting fields here we need
 796         * to prevent others from looking at until we're done.
 797         */
 798        error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
 799                         XFS_ILOCK_EXCL, &ip);
 800        if (error)
 801                return error;
 802        ASSERT(ip != NULL);
 803        inode = VFS_I(ip);
 804
 805        /*
 806         * We always convert v1 inodes to v2 now - we only support filesystems
 807         * with >= v2 inode capability, so there is no reason for ever leaving
 808         * an inode in v1 format.
 809         */
 810        if (ip->i_d.di_version == 1)
 811                ip->i_d.di_version = 2;
 812
 813        inode->i_mode = mode;
 814        set_nlink(inode, nlink);
 815        ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
 816        ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
 817        inode->i_rdev = rdev;
 818        xfs_set_projid(ip, prid);
 819
 820        if (pip && XFS_INHERIT_GID(pip)) {
 821                ip->i_d.di_gid = pip->i_d.di_gid;
 822                if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
 823                        inode->i_mode |= S_ISGID;
 824        }
 825
 826        /*
 827         * If the group ID of the new file does not match the effective group
 828         * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 829         * (and only if the irix_sgid_inherit compatibility variable is set).
 830         */
 831        if ((irix_sgid_inherit) &&
 832            (inode->i_mode & S_ISGID) &&
 833            (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
 834                inode->i_mode &= ~S_ISGID;
 835
 836        ip->i_d.di_size = 0;
 837        ip->i_d.di_nextents = 0;
 838        ASSERT(ip->i_d.di_nblocks == 0);
 839
 840        tv = current_time(inode);
 841        inode->i_mtime = tv;
 842        inode->i_atime = tv;
 843        inode->i_ctime = tv;
 844
 845        ip->i_d.di_extsize = 0;
 846        ip->i_d.di_dmevmask = 0;
 847        ip->i_d.di_dmstate = 0;
 848        ip->i_d.di_flags = 0;
 849
 850        if (ip->i_d.di_version == 3) {
 851                inode_set_iversion(inode, 1);
 852                ip->i_d.di_flags2 = 0;
 853                ip->i_d.di_cowextsize = 0;
 854                ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
 855                ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
 856        }
 857
 858
 859        flags = XFS_ILOG_CORE;
 860        switch (mode & S_IFMT) {
 861        case S_IFIFO:
 862        case S_IFCHR:
 863        case S_IFBLK:
 864        case S_IFSOCK:
 865                ip->i_d.di_format = XFS_DINODE_FMT_DEV;
 866                ip->i_df.if_flags = 0;
 867                flags |= XFS_ILOG_DEV;
 868                break;
 869        case S_IFREG:
 870        case S_IFDIR:
 871                if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
 872                        uint            di_flags = 0;
 873
 874                        if (S_ISDIR(mode)) {
 875                                if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 876                                        di_flags |= XFS_DIFLAG_RTINHERIT;
 877                                if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 878                                        di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 879                                        ip->i_d.di_extsize = pip->i_d.di_extsize;
 880                                }
 881                                if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
 882                                        di_flags |= XFS_DIFLAG_PROJINHERIT;
 883                        } else if (S_ISREG(mode)) {
 884                                if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 885                                        di_flags |= XFS_DIFLAG_REALTIME;
 886                                if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 887                                        di_flags |= XFS_DIFLAG_EXTSIZE;
 888                                        ip->i_d.di_extsize = pip->i_d.di_extsize;
 889                                }
 890                        }
 891                        if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
 892                            xfs_inherit_noatime)
 893                                di_flags |= XFS_DIFLAG_NOATIME;
 894                        if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
 895                            xfs_inherit_nodump)
 896                                di_flags |= XFS_DIFLAG_NODUMP;
 897                        if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
 898                            xfs_inherit_sync)
 899                                di_flags |= XFS_DIFLAG_SYNC;
 900                        if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
 901                            xfs_inherit_nosymlinks)
 902                                di_flags |= XFS_DIFLAG_NOSYMLINKS;
 903                        if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
 904                            xfs_inherit_nodefrag)
 905                                di_flags |= XFS_DIFLAG_NODEFRAG;
 906                        if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
 907                                di_flags |= XFS_DIFLAG_FILESTREAM;
 908
 909                        ip->i_d.di_flags |= di_flags;
 910                }
 911                if (pip &&
 912                    (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
 913                    pip->i_d.di_version == 3 &&
 914                    ip->i_d.di_version == 3) {
 915                        uint64_t        di_flags2 = 0;
 916
 917                        if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
 918                                di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
 919                                ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
 920                        }
 921                        if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
 922                                di_flags2 |= XFS_DIFLAG2_DAX;
 923
 924                        ip->i_d.di_flags2 |= di_flags2;
 925                }
 926                /* FALLTHROUGH */
 927        case S_IFLNK:
 928                ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
 929                ip->i_df.if_flags = XFS_IFEXTENTS;
 930                ip->i_df.if_bytes = 0;
 931                ip->i_df.if_u1.if_root = NULL;
 932                break;
 933        default:
 934                ASSERT(0);
 935        }
 936        /*
 937         * Attribute fork settings for new inode.
 938         */
 939        ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 940        ip->i_d.di_anextents = 0;
 941
 942        /*
 943         * Log the new values stuffed into the inode.
 944         */
 945        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 946        xfs_trans_log_inode(tp, ip, flags);
 947
 948        /* now that we have an i_mode we can setup the inode structure */
 949        xfs_setup_inode(ip);
 950
 951        *ipp = ip;
 952        return 0;
 953}
 954
 955/*
 956 * Allocates a new inode from disk and return a pointer to the
 957 * incore copy. This routine will internally commit the current
 958 * transaction and allocate a new one if the Space Manager needed
 959 * to do an allocation to replenish the inode free-list.
 960 *
 961 * This routine is designed to be called from xfs_create and
 962 * xfs_create_dir.
 963 *
 964 */
 965int
 966xfs_dir_ialloc(
 967        xfs_trans_t     **tpp,          /* input: current transaction;
 968                                           output: may be a new transaction. */
 969        xfs_inode_t     *dp,            /* directory within whose allocate
 970                                           the inode. */
 971        umode_t         mode,
 972        xfs_nlink_t     nlink,
 973        dev_t           rdev,
 974        prid_t          prid,           /* project id */
 975        xfs_inode_t     **ipp)          /* pointer to inode; it will be
 976                                           locked. */
 977{
 978        xfs_trans_t     *tp;
 979        xfs_inode_t     *ip;
 980        xfs_buf_t       *ialloc_context = NULL;
 981        int             code;
 982        void            *dqinfo;
 983        uint            tflags;
 984
 985        tp = *tpp;
 986        ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 987
 988        /*
 989         * xfs_ialloc will return a pointer to an incore inode if
 990         * the Space Manager has an available inode on the free
 991         * list. Otherwise, it will do an allocation and replenish
 992         * the freelist.  Since we can only do one allocation per
 993         * transaction without deadlocks, we will need to commit the
 994         * current transaction and start a new one.  We will then
 995         * need to call xfs_ialloc again to get the inode.
 996         *
 997         * If xfs_ialloc did an allocation to replenish the freelist,
 998         * it returns the bp containing the head of the freelist as
 999         * ialloc_context. We will hold a lock on it across the
1000         * transaction commit so that no other process can steal
1001         * the inode(s) that we've just allocated.
1002         */
1003        code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
1004                        &ip);
1005
1006        /*
1007         * Return an error if we were unable to allocate a new inode.
1008         * This should only happen if we run out of space on disk or
1009         * encounter a disk error.
1010         */
1011        if (code) {
1012                *ipp = NULL;
1013                return code;
1014        }
1015        if (!ialloc_context && !ip) {
1016                *ipp = NULL;
1017                return -ENOSPC;
1018        }
1019
1020        /*
1021         * If the AGI buffer is non-NULL, then we were unable to get an
1022         * inode in one operation.  We need to commit the current
1023         * transaction and call xfs_ialloc() again.  It is guaranteed
1024         * to succeed the second time.
1025         */
1026        if (ialloc_context) {
1027                /*
1028                 * Normally, xfs_trans_commit releases all the locks.
1029                 * We call bhold to hang on to the ialloc_context across
1030                 * the commit.  Holding this buffer prevents any other
1031                 * processes from doing any allocations in this
1032                 * allocation group.
1033                 */
1034                xfs_trans_bhold(tp, ialloc_context);
1035
1036                /*
1037                 * We want the quota changes to be associated with the next
1038                 * transaction, NOT this one. So, detach the dqinfo from this
1039                 * and attach it to the next transaction.
1040                 */
1041                dqinfo = NULL;
1042                tflags = 0;
1043                if (tp->t_dqinfo) {
1044                        dqinfo = (void *)tp->t_dqinfo;
1045                        tp->t_dqinfo = NULL;
1046                        tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1047                        tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1048                }
1049
1050                code = xfs_trans_roll(&tp);
1051
1052                /*
1053                 * Re-attach the quota info that we detached from prev trx.
1054                 */
1055                if (dqinfo) {
1056                        tp->t_dqinfo = dqinfo;
1057                        tp->t_flags |= tflags;
1058                }
1059
1060                if (code) {
1061                        xfs_buf_relse(ialloc_context);
1062                        *tpp = tp;
1063                        *ipp = NULL;
1064                        return code;
1065                }
1066                xfs_trans_bjoin(tp, ialloc_context);
1067
1068                /*
1069                 * Call ialloc again. Since we've locked out all
1070                 * other allocations in this allocation group,
1071                 * this call should always succeed.
1072                 */
1073                code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1074                                  &ialloc_context, &ip);
1075
1076                /*
1077                 * If we get an error at this point, return to the caller
1078                 * so that the current transaction can be aborted.
1079                 */
1080                if (code) {
1081                        *tpp = tp;
1082                        *ipp = NULL;
1083                        return code;
1084                }
1085                ASSERT(!ialloc_context && ip);
1086
1087        }
1088
1089        *ipp = ip;
1090        *tpp = tp;
1091
1092        return 0;
1093}
1094
1095/*
1096 * Decrement the link count on an inode & log the change.  If this causes the
1097 * link count to go to zero, move the inode to AGI unlinked list so that it can
1098 * be freed when the last active reference goes away via xfs_inactive().
1099 */
1100static int                      /* error */
1101xfs_droplink(
1102        xfs_trans_t *tp,
1103        xfs_inode_t *ip)
1104{
1105        xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1106
1107        drop_nlink(VFS_I(ip));
1108        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1109
1110        if (VFS_I(ip)->i_nlink)
1111                return 0;
1112
1113        return xfs_iunlink(tp, ip);
1114}
1115
1116/*
1117 * Increment the link count on an inode & log the change.
1118 */
1119static int
1120xfs_bumplink(
1121        xfs_trans_t *tp,
1122        xfs_inode_t *ip)
1123{
1124        xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1125
1126        ASSERT(ip->i_d.di_version > 1);
1127        inc_nlink(VFS_I(ip));
1128        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1129        return 0;
1130}
1131
1132int
1133xfs_create(
1134        xfs_inode_t             *dp,
1135        struct xfs_name         *name,
1136        umode_t                 mode,
1137        dev_t                   rdev,
1138        xfs_inode_t             **ipp)
1139{
1140        int                     is_dir = S_ISDIR(mode);
1141        struct xfs_mount        *mp = dp->i_mount;
1142        struct xfs_inode        *ip = NULL;
1143        struct xfs_trans        *tp = NULL;
1144        int                     error;
1145        bool                    unlock_dp_on_error = false;
1146        prid_t                  prid;
1147        struct xfs_dquot        *udqp = NULL;
1148        struct xfs_dquot        *gdqp = NULL;
1149        struct xfs_dquot        *pdqp = NULL;
1150        struct xfs_trans_res    *tres;
1151        uint                    resblks;
1152
1153        trace_xfs_create(dp, name);
1154
1155        if (XFS_FORCED_SHUTDOWN(mp))
1156                return -EIO;
1157
1158        prid = xfs_get_initial_prid(dp);
1159
1160        /*
1161         * Make sure that we have allocated dquot(s) on disk.
1162         */
1163        error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1164                                        xfs_kgid_to_gid(current_fsgid()), prid,
1165                                        XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1166                                        &udqp, &gdqp, &pdqp);
1167        if (error)
1168                return error;
1169
1170        if (is_dir) {
1171                resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1172                tres = &M_RES(mp)->tr_mkdir;
1173        } else {
1174                resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1175                tres = &M_RES(mp)->tr_create;
1176        }
1177
1178        /*
1179         * Initially assume that the file does not exist and
1180         * reserve the resources for that case.  If that is not
1181         * the case we'll drop the one we have and get a more
1182         * appropriate transaction later.
1183         */
1184        error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1185        if (error == -ENOSPC) {
1186                /* flush outstanding delalloc blocks and retry */
1187                xfs_flush_inodes(mp);
1188                error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1189        }
1190        if (error)
1191                goto out_release_inode;
1192
1193        xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1194        unlock_dp_on_error = true;
1195
1196        /*
1197         * Reserve disk quota and the inode.
1198         */
1199        error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1200                                                pdqp, resblks, 1, 0);
1201        if (error)
1202                goto out_trans_cancel;
1203
1204        /*
1205         * A newly created regular or special file just has one directory
1206         * entry pointing to them, but a directory also the "." entry
1207         * pointing to itself.
1208         */
1209        error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1210        if (error)
1211                goto out_trans_cancel;
1212
1213        /*
1214         * Now we join the directory inode to the transaction.  We do not do it
1215         * earlier because xfs_dir_ialloc might commit the previous transaction
1216         * (and release all the locks).  An error from here on will result in
1217         * the transaction cancel unlocking dp so don't do it explicitly in the
1218         * error path.
1219         */
1220        xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1221        unlock_dp_on_error = false;
1222
1223        error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1224                                   resblks ?
1225                                        resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1226        if (error) {
1227                ASSERT(error != -ENOSPC);
1228                goto out_trans_cancel;
1229        }
1230        xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1231        xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1232
1233        if (is_dir) {
1234                error = xfs_dir_init(tp, ip, dp);
1235                if (error)
1236                        goto out_trans_cancel;
1237
1238                error = xfs_bumplink(tp, dp);
1239                if (error)
1240                        goto out_trans_cancel;
1241        }
1242
1243        /*
1244         * If this is a synchronous mount, make sure that the
1245         * create transaction goes to disk before returning to
1246         * the user.
1247         */
1248        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1249                xfs_trans_set_sync(tp);
1250
1251        /*
1252         * Attach the dquot(s) to the inodes and modify them incore.
1253         * These ids of the inode couldn't have changed since the new
1254         * inode has been locked ever since it was created.
1255         */
1256        xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1257
1258        error = xfs_trans_commit(tp);
1259        if (error)
1260                goto out_release_inode;
1261
1262        xfs_qm_dqrele(udqp);
1263        xfs_qm_dqrele(gdqp);
1264        xfs_qm_dqrele(pdqp);
1265
1266        *ipp = ip;
1267        return 0;
1268
1269 out_trans_cancel:
1270        xfs_trans_cancel(tp);
1271 out_release_inode:
1272        /*
1273         * Wait until after the current transaction is aborted to finish the
1274         * setup of the inode and release the inode.  This prevents recursive
1275         * transactions and deadlocks from xfs_inactive.
1276         */
1277        if (ip) {
1278                xfs_finish_inode_setup(ip);
1279                xfs_irele(ip);
1280        }
1281
1282        xfs_qm_dqrele(udqp);
1283        xfs_qm_dqrele(gdqp);
1284        xfs_qm_dqrele(pdqp);
1285
1286        if (unlock_dp_on_error)
1287                xfs_iunlock(dp, XFS_ILOCK_EXCL);
1288        return error;
1289}
1290
1291int
1292xfs_create_tmpfile(
1293        struct xfs_inode        *dp,
1294        umode_t                 mode,
1295        struct xfs_inode        **ipp)
1296{
1297        struct xfs_mount        *mp = dp->i_mount;
1298        struct xfs_inode        *ip = NULL;
1299        struct xfs_trans        *tp = NULL;
1300        int                     error;
1301        prid_t                  prid;
1302        struct xfs_dquot        *udqp = NULL;
1303        struct xfs_dquot        *gdqp = NULL;
1304        struct xfs_dquot        *pdqp = NULL;
1305        struct xfs_trans_res    *tres;
1306        uint                    resblks;
1307
1308        if (XFS_FORCED_SHUTDOWN(mp))
1309                return -EIO;
1310
1311        prid = xfs_get_initial_prid(dp);
1312
1313        /*
1314         * Make sure that we have allocated dquot(s) on disk.
1315         */
1316        error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1317                                xfs_kgid_to_gid(current_fsgid()), prid,
1318                                XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1319                                &udqp, &gdqp, &pdqp);
1320        if (error)
1321                return error;
1322
1323        resblks = XFS_IALLOC_SPACE_RES(mp);
1324        tres = &M_RES(mp)->tr_create_tmpfile;
1325
1326        error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1327        if (error)
1328                goto out_release_inode;
1329
1330        error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1331                                                pdqp, resblks, 1, 0);
1332        if (error)
1333                goto out_trans_cancel;
1334
1335        error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip);
1336        if (error)
1337                goto out_trans_cancel;
1338
1339        if (mp->m_flags & XFS_MOUNT_WSYNC)
1340                xfs_trans_set_sync(tp);
1341
1342        /*
1343         * Attach the dquot(s) to the inodes and modify them incore.
1344         * These ids of the inode couldn't have changed since the new
1345         * inode has been locked ever since it was created.
1346         */
1347        xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1348
1349        error = xfs_iunlink(tp, ip);
1350        if (error)
1351                goto out_trans_cancel;
1352
1353        error = xfs_trans_commit(tp);
1354        if (error)
1355                goto out_release_inode;
1356
1357        xfs_qm_dqrele(udqp);
1358        xfs_qm_dqrele(gdqp);
1359        xfs_qm_dqrele(pdqp);
1360
1361        *ipp = ip;
1362        return 0;
1363
1364 out_trans_cancel:
1365        xfs_trans_cancel(tp);
1366 out_release_inode:
1367        /*
1368         * Wait until after the current transaction is aborted to finish the
1369         * setup of the inode and release the inode.  This prevents recursive
1370         * transactions and deadlocks from xfs_inactive.
1371         */
1372        if (ip) {
1373                xfs_finish_inode_setup(ip);
1374                xfs_irele(ip);
1375        }
1376
1377        xfs_qm_dqrele(udqp);
1378        xfs_qm_dqrele(gdqp);
1379        xfs_qm_dqrele(pdqp);
1380
1381        return error;
1382}
1383
1384int
1385xfs_link(
1386        xfs_inode_t             *tdp,
1387        xfs_inode_t             *sip,
1388        struct xfs_name         *target_name)
1389{
1390        xfs_mount_t             *mp = tdp->i_mount;
1391        xfs_trans_t             *tp;
1392        int                     error;
1393        int                     resblks;
1394
1395        trace_xfs_link(tdp, target_name);
1396
1397        ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1398
1399        if (XFS_FORCED_SHUTDOWN(mp))
1400                return -EIO;
1401
1402        error = xfs_qm_dqattach(sip);
1403        if (error)
1404                goto std_return;
1405
1406        error = xfs_qm_dqattach(tdp);
1407        if (error)
1408                goto std_return;
1409
1410        resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1411        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1412        if (error == -ENOSPC) {
1413                resblks = 0;
1414                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1415        }
1416        if (error)
1417                goto std_return;
1418
1419        xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1420
1421        xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1422        xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1423
1424        /*
1425         * If we are using project inheritance, we only allow hard link
1426         * creation in our tree when the project IDs are the same; else
1427         * the tree quota mechanism could be circumvented.
1428         */
1429        if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1430                     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1431                error = -EXDEV;
1432                goto error_return;
1433        }
1434
1435        if (!resblks) {
1436                error = xfs_dir_canenter(tp, tdp, target_name);
1437                if (error)
1438                        goto error_return;
1439        }
1440
1441        /*
1442         * Handle initial link state of O_TMPFILE inode
1443         */
1444        if (VFS_I(sip)->i_nlink == 0) {
1445                error = xfs_iunlink_remove(tp, sip);
1446                if (error)
1447                        goto error_return;
1448        }
1449
1450        error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1451                                   resblks);
1452        if (error)
1453                goto error_return;
1454        xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1455        xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1456
1457        error = xfs_bumplink(tp, sip);
1458        if (error)
1459                goto error_return;
1460
1461        /*
1462         * If this is a synchronous mount, make sure that the
1463         * link transaction goes to disk before returning to
1464         * the user.
1465         */
1466        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1467                xfs_trans_set_sync(tp);
1468
1469        return xfs_trans_commit(tp);
1470
1471 error_return:
1472        xfs_trans_cancel(tp);
1473 std_return:
1474        return error;
1475}
1476
1477/* Clear the reflink flag and the cowblocks tag if possible. */
1478static void
1479xfs_itruncate_clear_reflink_flags(
1480        struct xfs_inode        *ip)
1481{
1482        struct xfs_ifork        *dfork;
1483        struct xfs_ifork        *cfork;
1484
1485        if (!xfs_is_reflink_inode(ip))
1486                return;
1487        dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1488        cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1489        if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1490                ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1491        if (cfork->if_bytes == 0)
1492                xfs_inode_clear_cowblocks_tag(ip);
1493}
1494
1495/*
1496 * Free up the underlying blocks past new_size.  The new size must be smaller
1497 * than the current size.  This routine can be used both for the attribute and
1498 * data fork, and does not modify the inode size, which is left to the caller.
1499 *
1500 * The transaction passed to this routine must have made a permanent log
1501 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1502 * given transaction and start new ones, so make sure everything involved in
1503 * the transaction is tidy before calling here.  Some transaction will be
1504 * returned to the caller to be committed.  The incoming transaction must
1505 * already include the inode, and both inode locks must be held exclusively.
1506 * The inode must also be "held" within the transaction.  On return the inode
1507 * will be "held" within the returned transaction.  This routine does NOT
1508 * require any disk space to be reserved for it within the transaction.
1509 *
1510 * If we get an error, we must return with the inode locked and linked into the
1511 * current transaction. This keeps things simple for the higher level code,
1512 * because it always knows that the inode is locked and held in the transaction
1513 * that returns to it whether errors occur or not.  We don't mark the inode
1514 * dirty on error so that transactions can be easily aborted if possible.
1515 */
1516int
1517xfs_itruncate_extents_flags(
1518        struct xfs_trans        **tpp,
1519        struct xfs_inode        *ip,
1520        int                     whichfork,
1521        xfs_fsize_t             new_size,
1522        int                     flags)
1523{
1524        struct xfs_mount        *mp = ip->i_mount;
1525        struct xfs_trans        *tp = *tpp;
1526        xfs_fileoff_t           first_unmap_block;
1527        xfs_fileoff_t           last_block;
1528        xfs_filblks_t           unmap_len;
1529        int                     error = 0;
1530        int                     done = 0;
1531
1532        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1533        ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1534               xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1535        ASSERT(new_size <= XFS_ISIZE(ip));
1536        ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1537        ASSERT(ip->i_itemp != NULL);
1538        ASSERT(ip->i_itemp->ili_lock_flags == 0);
1539        ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1540
1541        trace_xfs_itruncate_extents_start(ip, new_size);
1542
1543        flags |= xfs_bmapi_aflag(whichfork);
1544
1545        /*
1546         * Since it is possible for space to become allocated beyond
1547         * the end of the file (in a crash where the space is allocated
1548         * but the inode size is not yet updated), simply remove any
1549         * blocks which show up between the new EOF and the maximum
1550         * possible file size.  If the first block to be removed is
1551         * beyond the maximum file size (ie it is the same as last_block),
1552         * then there is nothing to do.
1553         */
1554        first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1555        last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1556        if (first_unmap_block == last_block)
1557                return 0;
1558
1559        ASSERT(first_unmap_block < last_block);
1560        unmap_len = last_block - first_unmap_block + 1;
1561        while (!done) {
1562                ASSERT(tp->t_firstblock == NULLFSBLOCK);
1563                error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags,
1564                                    XFS_ITRUNC_MAX_EXTENTS, &done);
1565                if (error)
1566                        goto out;
1567
1568                /*
1569                 * Duplicate the transaction that has the permanent
1570                 * reservation and commit the old transaction.
1571                 */
1572                error = xfs_defer_finish(&tp);
1573                if (error)
1574                        goto out;
1575
1576                error = xfs_trans_roll_inode(&tp, ip);
1577                if (error)
1578                        goto out;
1579        }
1580
1581        if (whichfork == XFS_DATA_FORK) {
1582                /* Remove all pending CoW reservations. */
1583                error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1584                                first_unmap_block, last_block, true);
1585                if (error)
1586                        goto out;
1587
1588                xfs_itruncate_clear_reflink_flags(ip);
1589        }
1590
1591        /*
1592         * Always re-log the inode so that our permanent transaction can keep
1593         * on rolling it forward in the log.
1594         */
1595        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1596
1597        trace_xfs_itruncate_extents_end(ip, new_size);
1598
1599out:
1600        *tpp = tp;
1601        return error;
1602}
1603
1604int
1605xfs_release(
1606        xfs_inode_t     *ip)
1607{
1608        xfs_mount_t     *mp = ip->i_mount;
1609        int             error;
1610
1611        if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1612                return 0;
1613
1614        /* If this is a read-only mount, don't do this (would generate I/O) */
1615        if (mp->m_flags & XFS_MOUNT_RDONLY)
1616                return 0;
1617
1618        if (!XFS_FORCED_SHUTDOWN(mp)) {
1619                int truncated;
1620
1621                /*
1622                 * If we previously truncated this file and removed old data
1623                 * in the process, we want to initiate "early" writeout on
1624                 * the last close.  This is an attempt to combat the notorious
1625                 * NULL files problem which is particularly noticeable from a
1626                 * truncate down, buffered (re-)write (delalloc), followed by
1627                 * a crash.  What we are effectively doing here is
1628                 * significantly reducing the time window where we'd otherwise
1629                 * be exposed to that problem.
1630                 */
1631                truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1632                if (truncated) {
1633                        xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1634                        if (ip->i_delayed_blks > 0) {
1635                                error = filemap_flush(VFS_I(ip)->i_mapping);
1636                                if (error)
1637                                        return error;
1638                        }
1639                }
1640        }
1641
1642        if (VFS_I(ip)->i_nlink == 0)
1643                return 0;
1644
1645        if (xfs_can_free_eofblocks(ip, false)) {
1646
1647                /*
1648                 * Check if the inode is being opened, written and closed
1649                 * frequently and we have delayed allocation blocks outstanding
1650                 * (e.g. streaming writes from the NFS server), truncating the
1651                 * blocks past EOF will cause fragmentation to occur.
1652                 *
1653                 * In this case don't do the truncation, but we have to be
1654                 * careful how we detect this case. Blocks beyond EOF show up as
1655                 * i_delayed_blks even when the inode is clean, so we need to
1656                 * truncate them away first before checking for a dirty release.
1657                 * Hence on the first dirty close we will still remove the
1658                 * speculative allocation, but after that we will leave it in
1659                 * place.
1660                 */
1661                if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1662                        return 0;
1663                /*
1664                 * If we can't get the iolock just skip truncating the blocks
1665                 * past EOF because we could deadlock with the mmap_sem
1666                 * otherwise. We'll get another chance to drop them once the
1667                 * last reference to the inode is dropped, so we'll never leak
1668                 * blocks permanently.
1669                 */
1670                if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1671                        error = xfs_free_eofblocks(ip);
1672                        xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1673                        if (error)
1674                                return error;
1675                }
1676
1677                /* delalloc blocks after truncation means it really is dirty */
1678                if (ip->i_delayed_blks)
1679                        xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1680        }
1681        return 0;
1682}
1683
1684/*
1685 * xfs_inactive_truncate
1686 *
1687 * Called to perform a truncate when an inode becomes unlinked.
1688 */
1689STATIC int
1690xfs_inactive_truncate(
1691        struct xfs_inode *ip)
1692{
1693        struct xfs_mount        *mp = ip->i_mount;
1694        struct xfs_trans        *tp;
1695        int                     error;
1696
1697        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1698        if (error) {
1699                ASSERT(XFS_FORCED_SHUTDOWN(mp));
1700                return error;
1701        }
1702        xfs_ilock(ip, XFS_ILOCK_EXCL);
1703        xfs_trans_ijoin(tp, ip, 0);
1704
1705        /*
1706         * Log the inode size first to prevent stale data exposure in the event
1707         * of a system crash before the truncate completes. See the related
1708         * comment in xfs_vn_setattr_size() for details.
1709         */
1710        ip->i_d.di_size = 0;
1711        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1712
1713        error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1714        if (error)
1715                goto error_trans_cancel;
1716
1717        ASSERT(ip->i_d.di_nextents == 0);
1718
1719        error = xfs_trans_commit(tp);
1720        if (error)
1721                goto error_unlock;
1722
1723        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1724        return 0;
1725
1726error_trans_cancel:
1727        xfs_trans_cancel(tp);
1728error_unlock:
1729        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1730        return error;
1731}
1732
1733/*
1734 * xfs_inactive_ifree()
1735 *
1736 * Perform the inode free when an inode is unlinked.
1737 */
1738STATIC int
1739xfs_inactive_ifree(
1740        struct xfs_inode *ip)
1741{
1742        struct xfs_mount        *mp = ip->i_mount;
1743        struct xfs_trans        *tp;
1744        int                     error;
1745
1746        /*
1747         * We try to use a per-AG reservation for any block needed by the finobt
1748         * tree, but as the finobt feature predates the per-AG reservation
1749         * support a degraded file system might not have enough space for the
1750         * reservation at mount time.  In that case try to dip into the reserved
1751         * pool and pray.
1752         *
1753         * Send a warning if the reservation does happen to fail, as the inode
1754         * now remains allocated and sits on the unlinked list until the fs is
1755         * repaired.
1756         */
1757        if (unlikely(mp->m_inotbt_nores)) {
1758                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1759                                XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1760                                &tp);
1761        } else {
1762                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1763        }
1764        if (error) {
1765                if (error == -ENOSPC) {
1766                        xfs_warn_ratelimited(mp,
1767                        "Failed to remove inode(s) from unlinked list. "
1768                        "Please free space, unmount and run xfs_repair.");
1769                } else {
1770                        ASSERT(XFS_FORCED_SHUTDOWN(mp));
1771                }
1772                return error;
1773        }
1774
1775        xfs_ilock(ip, XFS_ILOCK_EXCL);
1776        xfs_trans_ijoin(tp, ip, 0);
1777
1778        error = xfs_ifree(tp, ip);
1779        if (error) {
1780                /*
1781                 * If we fail to free the inode, shut down.  The cancel
1782                 * might do that, we need to make sure.  Otherwise the
1783                 * inode might be lost for a long time or forever.
1784                 */
1785                if (!XFS_FORCED_SHUTDOWN(mp)) {
1786                        xfs_notice(mp, "%s: xfs_ifree returned error %d",
1787                                __func__, error);
1788                        xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1789                }
1790                xfs_trans_cancel(tp);
1791                xfs_iunlock(ip, XFS_ILOCK_EXCL);
1792                return error;
1793        }
1794
1795        /*
1796         * Credit the quota account(s). The inode is gone.
1797         */
1798        xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1799
1800        /*
1801         * Just ignore errors at this point.  There is nothing we can do except
1802         * to try to keep going. Make sure it's not a silent error.
1803         */
1804        error = xfs_trans_commit(tp);
1805        if (error)
1806                xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1807                        __func__, error);
1808
1809        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1810        return 0;
1811}
1812
1813/*
1814 * xfs_inactive
1815 *
1816 * This is called when the vnode reference count for the vnode
1817 * goes to zero.  If the file has been unlinked, then it must
1818 * now be truncated.  Also, we clear all of the read-ahead state
1819 * kept for the inode here since the file is now closed.
1820 */
1821void
1822xfs_inactive(
1823        xfs_inode_t     *ip)
1824{
1825        struct xfs_mount        *mp;
1826        int                     error;
1827        int                     truncate = 0;
1828
1829        /*
1830         * If the inode is already free, then there can be nothing
1831         * to clean up here.
1832         */
1833        if (VFS_I(ip)->i_mode == 0) {
1834                ASSERT(ip->i_df.if_broot_bytes == 0);
1835                return;
1836        }
1837
1838        mp = ip->i_mount;
1839        ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1840
1841        /* If this is a read-only mount, don't do this (would generate I/O) */
1842        if (mp->m_flags & XFS_MOUNT_RDONLY)
1843                return;
1844
1845        /* Try to clean out the cow blocks if there are any. */
1846        if (xfs_inode_has_cow_data(ip))
1847                xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1848
1849        if (VFS_I(ip)->i_nlink != 0) {
1850                /*
1851                 * force is true because we are evicting an inode from the
1852                 * cache. Post-eof blocks must be freed, lest we end up with
1853                 * broken free space accounting.
1854                 *
1855                 * Note: don't bother with iolock here since lockdep complains
1856                 * about acquiring it in reclaim context. We have the only
1857                 * reference to the inode at this point anyways.
1858                 */
1859                if (xfs_can_free_eofblocks(ip, true))
1860                        xfs_free_eofblocks(ip);
1861
1862                return;
1863        }
1864
1865        if (S_ISREG(VFS_I(ip)->i_mode) &&
1866            (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1867             ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1868                truncate = 1;
1869
1870        error = xfs_qm_dqattach(ip);
1871        if (error)
1872                return;
1873
1874        if (S_ISLNK(VFS_I(ip)->i_mode))
1875                error = xfs_inactive_symlink(ip);
1876        else if (truncate)
1877                error = xfs_inactive_truncate(ip);
1878        if (error)
1879                return;
1880
1881        /*
1882         * If there are attributes associated with the file then blow them away
1883         * now.  The code calls a routine that recursively deconstructs the
1884         * attribute fork. If also blows away the in-core attribute fork.
1885         */
1886        if (XFS_IFORK_Q(ip)) {
1887                error = xfs_attr_inactive(ip);
1888                if (error)
1889                        return;
1890        }
1891
1892        ASSERT(!ip->i_afp);
1893        ASSERT(ip->i_d.di_anextents == 0);
1894        ASSERT(ip->i_d.di_forkoff == 0);
1895
1896        /*
1897         * Free the inode.
1898         */
1899        error = xfs_inactive_ifree(ip);
1900        if (error)
1901                return;
1902
1903        /*
1904         * Release the dquots held by inode, if any.
1905         */
1906        xfs_qm_dqdetach(ip);
1907}
1908
1909/*
1910 * This is called when the inode's link count goes to 0 or we are creating a
1911 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1912 * set to true as the link count is dropped to zero by the VFS after we've
1913 * created the file successfully, so we have to add it to the unlinked list
1914 * while the link count is non-zero.
1915 *
1916 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1917 * list when the inode is freed.
1918 */
1919STATIC int
1920xfs_iunlink(
1921        struct xfs_trans *tp,
1922        struct xfs_inode *ip)
1923{
1924        xfs_mount_t     *mp = tp->t_mountp;
1925        xfs_agi_t       *agi;
1926        xfs_dinode_t    *dip;
1927        xfs_buf_t       *agibp;
1928        xfs_buf_t       *ibp;
1929        xfs_agino_t     agino;
1930        short           bucket_index;
1931        int             offset;
1932        int             error;
1933
1934        ASSERT(VFS_I(ip)->i_mode != 0);
1935
1936        /*
1937         * Get the agi buffer first.  It ensures lock ordering
1938         * on the list.
1939         */
1940        error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1941        if (error)
1942                return error;
1943        agi = XFS_BUF_TO_AGI(agibp);
1944
1945        /*
1946         * Get the index into the agi hash table for the
1947         * list this inode will go on.
1948         */
1949        agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1950        ASSERT(agino != 0);
1951        bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1952        ASSERT(agi->agi_unlinked[bucket_index]);
1953        ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1954
1955        if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1956                /*
1957                 * There is already another inode in the bucket we need
1958                 * to add ourselves to.  Add us at the front of the list.
1959                 * Here we put the head pointer into our next pointer,
1960                 * and then we fall through to point the head at us.
1961                 */
1962                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1963                                       0, 0);
1964                if (error)
1965                        return error;
1966
1967                ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1968                dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1969                offset = ip->i_imap.im_boffset +
1970                        offsetof(xfs_dinode_t, di_next_unlinked);
1971
1972                /* need to recalc the inode CRC if appropriate */
1973                xfs_dinode_calc_crc(mp, dip);
1974
1975                xfs_trans_inode_buf(tp, ibp);
1976                xfs_trans_log_buf(tp, ibp, offset,
1977                                  (offset + sizeof(xfs_agino_t) - 1));
1978                xfs_inobp_check(mp, ibp);
1979        }
1980
1981        /*
1982         * Point the bucket head pointer at the inode being inserted.
1983         */
1984        ASSERT(agino != 0);
1985        agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1986        offset = offsetof(xfs_agi_t, agi_unlinked) +
1987                (sizeof(xfs_agino_t) * bucket_index);
1988        xfs_trans_log_buf(tp, agibp, offset,
1989                          (offset + sizeof(xfs_agino_t) - 1));
1990        return 0;
1991}
1992
1993/*
1994 * Pull the on-disk inode from the AGI unlinked list.
1995 */
1996STATIC int
1997xfs_iunlink_remove(
1998        xfs_trans_t     *tp,
1999        xfs_inode_t     *ip)
2000{
2001        xfs_ino_t       next_ino;
2002        xfs_mount_t     *mp;
2003        xfs_agi_t       *agi;
2004        xfs_dinode_t    *dip;
2005        xfs_buf_t       *agibp;
2006        xfs_buf_t       *ibp;
2007        xfs_agnumber_t  agno;
2008        xfs_agino_t     agino;
2009        xfs_agino_t     next_agino;
2010        xfs_buf_t       *last_ibp;
2011        xfs_dinode_t    *last_dip = NULL;
2012        short           bucket_index;
2013        int             offset, last_offset = 0;
2014        int             error;
2015
2016        mp = tp->t_mountp;
2017        agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2018
2019        /*
2020         * Get the agi buffer first.  It ensures lock ordering
2021         * on the list.
2022         */
2023        error = xfs_read_agi(mp, tp, agno, &agibp);
2024        if (error)
2025                return error;
2026
2027        agi = XFS_BUF_TO_AGI(agibp);
2028
2029        /*
2030         * Get the index into the agi hash table for the
2031         * list this inode will go on.
2032         */
2033        agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2034        if (!xfs_verify_agino(mp, agno, agino))
2035                return -EFSCORRUPTED;
2036        bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2037        if (!xfs_verify_agino(mp, agno,
2038                        be32_to_cpu(agi->agi_unlinked[bucket_index]))) {
2039                XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2040                                agi, sizeof(*agi));
2041                return -EFSCORRUPTED;
2042        }
2043
2044        if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2045                /*
2046                 * We're at the head of the list.  Get the inode's on-disk
2047                 * buffer to see if there is anyone after us on the list.
2048                 * Only modify our next pointer if it is not already NULLAGINO.
2049                 * This saves us the overhead of dealing with the buffer when
2050                 * there is no need to change it.
2051                 */
2052                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2053                                       0, 0);
2054                if (error) {
2055                        xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2056                                __func__, error);
2057                        return error;
2058                }
2059                next_agino = be32_to_cpu(dip->di_next_unlinked);
2060                ASSERT(next_agino != 0);
2061                if (next_agino != NULLAGINO) {
2062                        dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2063                        offset = ip->i_imap.im_boffset +
2064                                offsetof(xfs_dinode_t, di_next_unlinked);
2065
2066                        /* need to recalc the inode CRC if appropriate */
2067                        xfs_dinode_calc_crc(mp, dip);
2068
2069                        xfs_trans_inode_buf(tp, ibp);
2070                        xfs_trans_log_buf(tp, ibp, offset,
2071                                          (offset + sizeof(xfs_agino_t) - 1));
2072                        xfs_inobp_check(mp, ibp);
2073                } else {
2074                        xfs_trans_brelse(tp, ibp);
2075                }
2076                /*
2077                 * Point the bucket head pointer at the next inode.
2078                 */
2079                ASSERT(next_agino != 0);
2080                ASSERT(next_agino != agino);
2081                agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2082                offset = offsetof(xfs_agi_t, agi_unlinked) +
2083                        (sizeof(xfs_agino_t) * bucket_index);
2084                xfs_trans_log_buf(tp, agibp, offset,
2085                                  (offset + sizeof(xfs_agino_t) - 1));
2086        } else {
2087                /*
2088                 * We need to search the list for the inode being freed.
2089                 */
2090                next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2091                last_ibp = NULL;
2092                while (next_agino != agino) {
2093                        struct xfs_imap imap;
2094
2095                        if (last_ibp)
2096                                xfs_trans_brelse(tp, last_ibp);
2097
2098                        imap.im_blkno = 0;
2099                        next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2100
2101                        error = xfs_imap(mp, tp, next_ino, &imap, 0);
2102                        if (error) {
2103                                xfs_warn(mp,
2104        "%s: xfs_imap returned error %d.",
2105                                         __func__, error);
2106                                return error;
2107                        }
2108
2109                        error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2110                                               &last_ibp, 0, 0);
2111                        if (error) {
2112                                xfs_warn(mp,
2113        "%s: xfs_imap_to_bp returned error %d.",
2114                                        __func__, error);
2115                                return error;
2116                        }
2117
2118                        last_offset = imap.im_boffset;
2119                        next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2120                        if (!xfs_verify_agino(mp, agno, next_agino)) {
2121                                XFS_CORRUPTION_ERROR(__func__,
2122                                                XFS_ERRLEVEL_LOW, mp,
2123                                                last_dip, sizeof(*last_dip));
2124                                return -EFSCORRUPTED;
2125                        }
2126                }
2127
2128                /*
2129                 * Now last_ibp points to the buffer previous to us on the
2130                 * unlinked list.  Pull us from the list.
2131                 */
2132                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2133                                       0, 0);
2134                if (error) {
2135                        xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2136                                __func__, error);
2137                        return error;
2138                }
2139                next_agino = be32_to_cpu(dip->di_next_unlinked);
2140                ASSERT(next_agino != 0);
2141                ASSERT(next_agino != agino);
2142                if (next_agino != NULLAGINO) {
2143                        dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2144                        offset = ip->i_imap.im_boffset +
2145                                offsetof(xfs_dinode_t, di_next_unlinked);
2146
2147                        /* need to recalc the inode CRC if appropriate */
2148                        xfs_dinode_calc_crc(mp, dip);
2149
2150                        xfs_trans_inode_buf(tp, ibp);
2151                        xfs_trans_log_buf(tp, ibp, offset,
2152                                          (offset + sizeof(xfs_agino_t) - 1));
2153                        xfs_inobp_check(mp, ibp);
2154                } else {
2155                        xfs_trans_brelse(tp, ibp);
2156                }
2157                /*
2158                 * Point the previous inode on the list to the next inode.
2159                 */
2160                last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2161                ASSERT(next_agino != 0);
2162                offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2163
2164                /* need to recalc the inode CRC if appropriate */
2165                xfs_dinode_calc_crc(mp, last_dip);
2166
2167                xfs_trans_inode_buf(tp, last_ibp);
2168                xfs_trans_log_buf(tp, last_ibp, offset,
2169                                  (offset + sizeof(xfs_agino_t) - 1));
2170                xfs_inobp_check(mp, last_ibp);
2171        }
2172        return 0;
2173}
2174
2175/*
2176 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2177 * inodes that are in memory - they all must be marked stale and attached to
2178 * the cluster buffer.
2179 */
2180STATIC int
2181xfs_ifree_cluster(
2182        xfs_inode_t             *free_ip,
2183        xfs_trans_t             *tp,
2184        struct xfs_icluster     *xic)
2185{
2186        xfs_mount_t             *mp = free_ip->i_mount;
2187        int                     blks_per_cluster;
2188        int                     inodes_per_cluster;
2189        int                     nbufs;
2190        int                     i, j;
2191        int                     ioffset;
2192        xfs_daddr_t             blkno;
2193        xfs_buf_t               *bp;
2194        xfs_inode_t             *ip;
2195        xfs_inode_log_item_t    *iip;
2196        struct xfs_log_item     *lip;
2197        struct xfs_perag        *pag;
2198        xfs_ino_t               inum;
2199
2200        inum = xic->first_ino;
2201        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2202        blks_per_cluster = xfs_icluster_size_fsb(mp);
2203        inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2204        nbufs = mp->m_ialloc_blks / blks_per_cluster;
2205
2206        for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2207                /*
2208                 * The allocation bitmap tells us which inodes of the chunk were
2209                 * physically allocated. Skip the cluster if an inode falls into
2210                 * a sparse region.
2211                 */
2212                ioffset = inum - xic->first_ino;
2213                if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2214                        ASSERT(ioffset % inodes_per_cluster == 0);
2215                        continue;
2216                }
2217
2218                blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2219                                         XFS_INO_TO_AGBNO(mp, inum));
2220
2221                /*
2222                 * We obtain and lock the backing buffer first in the process
2223                 * here, as we have to ensure that any dirty inode that we
2224                 * can't get the flush lock on is attached to the buffer.
2225                 * If we scan the in-memory inodes first, then buffer IO can
2226                 * complete before we get a lock on it, and hence we may fail
2227                 * to mark all the active inodes on the buffer stale.
2228                 */
2229                bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2230                                        mp->m_bsize * blks_per_cluster,
2231                                        XBF_UNMAPPED);
2232
2233                if (!bp)
2234                        return -ENOMEM;
2235
2236                /*
2237                 * This buffer may not have been correctly initialised as we
2238                 * didn't read it from disk. That's not important because we are
2239                 * only using to mark the buffer as stale in the log, and to
2240                 * attach stale cached inodes on it. That means it will never be
2241                 * dispatched for IO. If it is, we want to know about it, and we
2242                 * want it to fail. We can acheive this by adding a write
2243                 * verifier to the buffer.
2244                 */
2245                 bp->b_ops = &xfs_inode_buf_ops;
2246
2247                /*
2248                 * Walk the inodes already attached to the buffer and mark them
2249                 * stale. These will all have the flush locks held, so an
2250                 * in-memory inode walk can't lock them. By marking them all
2251                 * stale first, we will not attempt to lock them in the loop
2252                 * below as the XFS_ISTALE flag will be set.
2253                 */
2254                list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2255                        if (lip->li_type == XFS_LI_INODE) {
2256                                iip = (xfs_inode_log_item_t *)lip;
2257                                ASSERT(iip->ili_logged == 1);
2258                                lip->li_cb = xfs_istale_done;
2259                                xfs_trans_ail_copy_lsn(mp->m_ail,
2260                                                        &iip->ili_flush_lsn,
2261                                                        &iip->ili_item.li_lsn);
2262                                xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2263                        }
2264                }
2265
2266
2267                /*
2268                 * For each inode in memory attempt to add it to the inode
2269                 * buffer and set it up for being staled on buffer IO
2270                 * completion.  This is safe as we've locked out tail pushing
2271                 * and flushing by locking the buffer.
2272                 *
2273                 * We have already marked every inode that was part of a
2274                 * transaction stale above, which means there is no point in
2275                 * even trying to lock them.
2276                 */
2277                for (i = 0; i < inodes_per_cluster; i++) {
2278retry:
2279                        rcu_read_lock();
2280                        ip = radix_tree_lookup(&pag->pag_ici_root,
2281                                        XFS_INO_TO_AGINO(mp, (inum + i)));
2282
2283                        /* Inode not in memory, nothing to do */
2284                        if (!ip) {
2285                                rcu_read_unlock();
2286                                continue;
2287                        }
2288
2289                        /*
2290                         * because this is an RCU protected lookup, we could
2291                         * find a recently freed or even reallocated inode
2292                         * during the lookup. We need to check under the
2293                         * i_flags_lock for a valid inode here. Skip it if it
2294                         * is not valid, the wrong inode or stale.
2295                         */
2296                        spin_lock(&ip->i_flags_lock);
2297                        if (ip->i_ino != inum + i ||
2298                            __xfs_iflags_test(ip, XFS_ISTALE)) {
2299                                spin_unlock(&ip->i_flags_lock);
2300                                rcu_read_unlock();
2301                                continue;
2302                        }
2303                        spin_unlock(&ip->i_flags_lock);
2304
2305                        /*
2306                         * Don't try to lock/unlock the current inode, but we
2307                         * _cannot_ skip the other inodes that we did not find
2308                         * in the list attached to the buffer and are not
2309                         * already marked stale. If we can't lock it, back off
2310                         * and retry.
2311                         */
2312                        if (ip != free_ip) {
2313                                if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2314                                        rcu_read_unlock();
2315                                        delay(1);
2316                                        goto retry;
2317                                }
2318
2319                                /*
2320                                 * Check the inode number again in case we're
2321                                 * racing with freeing in xfs_reclaim_inode().
2322                                 * See the comments in that function for more
2323                                 * information as to why the initial check is
2324                                 * not sufficient.
2325                                 */
2326                                if (ip->i_ino != inum + i) {
2327                                        xfs_iunlock(ip, XFS_ILOCK_EXCL);
2328                                        rcu_read_unlock();
2329                                        continue;
2330                                }
2331                        }
2332                        rcu_read_unlock();
2333
2334                        xfs_iflock(ip);
2335                        xfs_iflags_set(ip, XFS_ISTALE);
2336
2337                        /*
2338                         * we don't need to attach clean inodes or those only
2339                         * with unlogged changes (which we throw away, anyway).
2340                         */
2341                        iip = ip->i_itemp;
2342                        if (!iip || xfs_inode_clean(ip)) {
2343                                ASSERT(ip != free_ip);
2344                                xfs_ifunlock(ip);
2345                                xfs_iunlock(ip, XFS_ILOCK_EXCL);
2346                                continue;
2347                        }
2348
2349                        iip->ili_last_fields = iip->ili_fields;
2350                        iip->ili_fields = 0;
2351                        iip->ili_fsync_fields = 0;
2352                        iip->ili_logged = 1;
2353                        xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2354                                                &iip->ili_item.li_lsn);
2355
2356                        xfs_buf_attach_iodone(bp, xfs_istale_done,
2357                                                  &iip->ili_item);
2358
2359                        if (ip != free_ip)
2360                                xfs_iunlock(ip, XFS_ILOCK_EXCL);
2361                }
2362
2363                xfs_trans_stale_inode_buf(tp, bp);
2364                xfs_trans_binval(tp, bp);
2365        }
2366
2367        xfs_perag_put(pag);
2368        return 0;
2369}
2370
2371/*
2372 * Free any local-format buffers sitting around before we reset to
2373 * extents format.
2374 */
2375static inline void
2376xfs_ifree_local_data(
2377        struct xfs_inode        *ip,
2378        int                     whichfork)
2379{
2380        struct xfs_ifork        *ifp;
2381
2382        if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2383                return;
2384
2385        ifp = XFS_IFORK_PTR(ip, whichfork);
2386        xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2387}
2388
2389/*
2390 * This is called to return an inode to the inode free list.
2391 * The inode should already be truncated to 0 length and have
2392 * no pages associated with it.  This routine also assumes that
2393 * the inode is already a part of the transaction.
2394 *
2395 * The on-disk copy of the inode will have been added to the list
2396 * of unlinked inodes in the AGI. We need to remove the inode from
2397 * that list atomically with respect to freeing it here.
2398 */
2399int
2400xfs_ifree(
2401        struct xfs_trans        *tp,
2402        struct xfs_inode        *ip)
2403{
2404        int                     error;
2405        struct xfs_icluster     xic = { 0 };
2406
2407        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2408        ASSERT(VFS_I(ip)->i_nlink == 0);
2409        ASSERT(ip->i_d.di_nextents == 0);
2410        ASSERT(ip->i_d.di_anextents == 0);
2411        ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2412        ASSERT(ip->i_d.di_nblocks == 0);
2413
2414        /*
2415         * Pull the on-disk inode from the AGI unlinked list.
2416         */
2417        error = xfs_iunlink_remove(tp, ip);
2418        if (error)
2419                return error;
2420
2421        error = xfs_difree(tp, ip->i_ino, &xic);
2422        if (error)
2423                return error;
2424
2425        xfs_ifree_local_data(ip, XFS_DATA_FORK);
2426        xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2427
2428        VFS_I(ip)->i_mode = 0;          /* mark incore inode as free */
2429        ip->i_d.di_flags = 0;
2430        ip->i_d.di_flags2 = 0;
2431        ip->i_d.di_dmevmask = 0;
2432        ip->i_d.di_forkoff = 0;         /* mark the attr fork not in use */
2433        ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2434        ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2435
2436        /* Don't attempt to replay owner changes for a deleted inode */
2437        ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2438
2439        /*
2440         * Bump the generation count so no one will be confused
2441         * by reincarnations of this inode.
2442         */
2443        VFS_I(ip)->i_generation++;
2444        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2445
2446        if (xic.deleted)
2447                error = xfs_ifree_cluster(ip, tp, &xic);
2448
2449        return error;
2450}
2451
2452/*
2453 * This is called to unpin an inode.  The caller must have the inode locked
2454 * in at least shared mode so that the buffer cannot be subsequently pinned
2455 * once someone is waiting for it to be unpinned.
2456 */
2457static void
2458xfs_iunpin(
2459        struct xfs_inode        *ip)
2460{
2461        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2462
2463        trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2464
2465        /* Give the log a push to start the unpinning I/O */
2466        xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2467
2468}
2469
2470static void
2471__xfs_iunpin_wait(
2472        struct xfs_inode        *ip)
2473{
2474        wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2475        DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2476
2477        xfs_iunpin(ip);
2478
2479        do {
2480                prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2481                if (xfs_ipincount(ip))
2482                        io_schedule();
2483        } while (xfs_ipincount(ip));
2484        finish_wait(wq, &wait.wq_entry);
2485}
2486
2487void
2488xfs_iunpin_wait(
2489        struct xfs_inode        *ip)
2490{
2491        if (xfs_ipincount(ip))
2492                __xfs_iunpin_wait(ip);
2493}
2494
2495/*
2496 * Removing an inode from the namespace involves removing the directory entry
2497 * and dropping the link count on the inode. Removing the directory entry can
2498 * result in locking an AGF (directory blocks were freed) and removing a link
2499 * count can result in placing the inode on an unlinked list which results in
2500 * locking an AGI.
2501 *
2502 * The big problem here is that we have an ordering constraint on AGF and AGI
2503 * locking - inode allocation locks the AGI, then can allocate a new extent for
2504 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2505 * removes the inode from the unlinked list, requiring that we lock the AGI
2506 * first, and then freeing the inode can result in an inode chunk being freed
2507 * and hence freeing disk space requiring that we lock an AGF.
2508 *
2509 * Hence the ordering that is imposed by other parts of the code is AGI before
2510 * AGF. This means we cannot remove the directory entry before we drop the inode
2511 * reference count and put it on the unlinked list as this results in a lock
2512 * order of AGF then AGI, and this can deadlock against inode allocation and
2513 * freeing. Therefore we must drop the link counts before we remove the
2514 * directory entry.
2515 *
2516 * This is still safe from a transactional point of view - it is not until we
2517 * get to xfs_defer_finish() that we have the possibility of multiple
2518 * transactions in this operation. Hence as long as we remove the directory
2519 * entry and drop the link count in the first transaction of the remove
2520 * operation, there are no transactional constraints on the ordering here.
2521 */
2522int
2523xfs_remove(
2524        xfs_inode_t             *dp,
2525        struct xfs_name         *name,
2526        xfs_inode_t             *ip)
2527{
2528        xfs_mount_t             *mp = dp->i_mount;
2529        xfs_trans_t             *tp = NULL;
2530        int                     is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2531        int                     error = 0;
2532        uint                    resblks;
2533
2534        trace_xfs_remove(dp, name);
2535
2536        if (XFS_FORCED_SHUTDOWN(mp))
2537                return -EIO;
2538
2539        error = xfs_qm_dqattach(dp);
2540        if (error)
2541                goto std_return;
2542
2543        error = xfs_qm_dqattach(ip);
2544        if (error)
2545                goto std_return;
2546
2547        /*
2548         * We try to get the real space reservation first,
2549         * allowing for directory btree deletion(s) implying
2550         * possible bmap insert(s).  If we can't get the space
2551         * reservation then we use 0 instead, and avoid the bmap
2552         * btree insert(s) in the directory code by, if the bmap
2553         * insert tries to happen, instead trimming the LAST
2554         * block from the directory.
2555         */
2556        resblks = XFS_REMOVE_SPACE_RES(mp);
2557        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2558        if (error == -ENOSPC) {
2559                resblks = 0;
2560                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2561                                &tp);
2562        }
2563        if (error) {
2564                ASSERT(error != -ENOSPC);
2565                goto std_return;
2566        }
2567
2568        xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2569
2570        xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2571        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2572
2573        /*
2574         * If we're removing a directory perform some additional validation.
2575         */
2576        if (is_dir) {
2577                ASSERT(VFS_I(ip)->i_nlink >= 2);
2578                if (VFS_I(ip)->i_nlink != 2) {
2579                        error = -ENOTEMPTY;
2580                        goto out_trans_cancel;
2581                }
2582                if (!xfs_dir_isempty(ip)) {
2583                        error = -ENOTEMPTY;
2584                        goto out_trans_cancel;
2585                }
2586
2587                /* Drop the link from ip's "..".  */
2588                error = xfs_droplink(tp, dp);
2589                if (error)
2590                        goto out_trans_cancel;
2591
2592                /* Drop the "." link from ip to self.  */
2593                error = xfs_droplink(tp, ip);
2594                if (error)
2595                        goto out_trans_cancel;
2596        } else {
2597                /*
2598                 * When removing a non-directory we need to log the parent
2599                 * inode here.  For a directory this is done implicitly
2600                 * by the xfs_droplink call for the ".." entry.
2601                 */
2602                xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2603        }
2604        xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2605
2606        /* Drop the link from dp to ip. */
2607        error = xfs_droplink(tp, ip);
2608        if (error)
2609                goto out_trans_cancel;
2610
2611        error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2612        if (error) {
2613                ASSERT(error != -ENOENT);
2614                goto out_trans_cancel;
2615        }
2616
2617        /*
2618         * If this is a synchronous mount, make sure that the
2619         * remove transaction goes to disk before returning to
2620         * the user.
2621         */
2622        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2623                xfs_trans_set_sync(tp);
2624
2625        error = xfs_trans_commit(tp);
2626        if (error)
2627                goto std_return;
2628
2629        if (is_dir && xfs_inode_is_filestream(ip))
2630                xfs_filestream_deassociate(ip);
2631
2632        return 0;
2633
2634 out_trans_cancel:
2635        xfs_trans_cancel(tp);
2636 std_return:
2637        return error;
2638}
2639
2640/*
2641 * Enter all inodes for a rename transaction into a sorted array.
2642 */
2643#define __XFS_SORT_INODES       5
2644STATIC void
2645xfs_sort_for_rename(
2646        struct xfs_inode        *dp1,   /* in: old (source) directory inode */
2647        struct xfs_inode        *dp2,   /* in: new (target) directory inode */
2648        struct xfs_inode        *ip1,   /* in: inode of old entry */
2649        struct xfs_inode        *ip2,   /* in: inode of new entry */
2650        struct xfs_inode        *wip,   /* in: whiteout inode */
2651        struct xfs_inode        **i_tab,/* out: sorted array of inodes */
2652        int                     *num_inodes)  /* in/out: inodes in array */
2653{
2654        int                     i, j;
2655
2656        ASSERT(*num_inodes == __XFS_SORT_INODES);
2657        memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2658
2659        /*
2660         * i_tab contains a list of pointers to inodes.  We initialize
2661         * the table here & we'll sort it.  We will then use it to
2662         * order the acquisition of the inode locks.
2663         *
2664         * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2665         */
2666        i = 0;
2667        i_tab[i++] = dp1;
2668        i_tab[i++] = dp2;
2669        i_tab[i++] = ip1;
2670        if (ip2)
2671                i_tab[i++] = ip2;
2672        if (wip)
2673                i_tab[i++] = wip;
2674        *num_inodes = i;
2675
2676        /*
2677         * Sort the elements via bubble sort.  (Remember, there are at
2678         * most 5 elements to sort, so this is adequate.)
2679         */
2680        for (i = 0; i < *num_inodes; i++) {
2681                for (j = 1; j < *num_inodes; j++) {
2682                        if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2683                                struct xfs_inode *temp = i_tab[j];
2684                                i_tab[j] = i_tab[j-1];
2685                                i_tab[j-1] = temp;
2686                        }
2687                }
2688        }
2689}
2690
2691static int
2692xfs_finish_rename(
2693        struct xfs_trans        *tp)
2694{
2695        /*
2696         * If this is a synchronous mount, make sure that the rename transaction
2697         * goes to disk before returning to the user.
2698         */
2699        if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2700                xfs_trans_set_sync(tp);
2701
2702        return xfs_trans_commit(tp);
2703}
2704
2705/*
2706 * xfs_cross_rename()
2707 *
2708 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2709 */
2710STATIC int
2711xfs_cross_rename(
2712        struct xfs_trans        *tp,
2713        struct xfs_inode        *dp1,
2714        struct xfs_name         *name1,
2715        struct xfs_inode        *ip1,
2716        struct xfs_inode        *dp2,
2717        struct xfs_name         *name2,
2718        struct xfs_inode        *ip2,
2719        int                     spaceres)
2720{
2721        int             error = 0;
2722        int             ip1_flags = 0;
2723        int             ip2_flags = 0;
2724        int             dp2_flags = 0;
2725
2726        /* Swap inode number for dirent in first parent */
2727        error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2728        if (error)
2729                goto out_trans_abort;
2730
2731        /* Swap inode number for dirent in second parent */
2732        error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2733        if (error)
2734                goto out_trans_abort;
2735
2736        /*
2737         * If we're renaming one or more directories across different parents,
2738         * update the respective ".." entries (and link counts) to match the new
2739         * parents.
2740         */
2741        if (dp1 != dp2) {
2742                dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2743
2744                if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2745                        error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2746                                                dp1->i_ino, spaceres);
2747                        if (error)
2748                                goto out_trans_abort;
2749
2750                        /* transfer ip2 ".." reference to dp1 */
2751                        if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2752                                error = xfs_droplink(tp, dp2);
2753                                if (error)
2754                                        goto out_trans_abort;
2755                                error = xfs_bumplink(tp, dp1);
2756                                if (error)
2757                                        goto out_trans_abort;
2758                        }
2759
2760                        /*
2761                         * Although ip1 isn't changed here, userspace needs
2762                         * to be warned about the change, so that applications
2763                         * relying on it (like backup ones), will properly
2764                         * notify the change
2765                         */
2766                        ip1_flags |= XFS_ICHGTIME_CHG;
2767                        ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2768                }
2769
2770                if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2771                        error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2772                                                dp2->i_ino, spaceres);
2773                        if (error)
2774                                goto out_trans_abort;
2775
2776                        /* transfer ip1 ".." reference to dp2 */
2777                        if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2778                                error = xfs_droplink(tp, dp1);
2779                                if (error)
2780                                        goto out_trans_abort;
2781                                error = xfs_bumplink(tp, dp2);
2782                                if (error)
2783                                        goto out_trans_abort;
2784                        }
2785
2786                        /*
2787                         * Although ip2 isn't changed here, userspace needs
2788                         * to be warned about the change, so that applications
2789                         * relying on it (like backup ones), will properly
2790                         * notify the change
2791                         */
2792                        ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2793                        ip2_flags |= XFS_ICHGTIME_CHG;
2794                }
2795        }
2796
2797        if (ip1_flags) {
2798                xfs_trans_ichgtime(tp, ip1, ip1_flags);
2799                xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2800        }
2801        if (ip2_flags) {
2802                xfs_trans_ichgtime(tp, ip2, ip2_flags);
2803                xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2804        }
2805        if (dp2_flags) {
2806                xfs_trans_ichgtime(tp, dp2, dp2_flags);
2807                xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2808        }
2809        xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2810        xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2811        return xfs_finish_rename(tp);
2812
2813out_trans_abort:
2814        xfs_trans_cancel(tp);
2815        return error;
2816}
2817
2818/*
2819 * xfs_rename_alloc_whiteout()
2820 *
2821 * Return a referenced, unlinked, unlocked inode that that can be used as a
2822 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2823 * crash between allocating the inode and linking it into the rename transaction
2824 * recovery will free the inode and we won't leak it.
2825 */
2826static int
2827xfs_rename_alloc_whiteout(
2828        struct xfs_inode        *dp,
2829        struct xfs_inode        **wip)
2830{
2831        struct xfs_inode        *tmpfile;
2832        int                     error;
2833
2834        error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2835        if (error)
2836                return error;
2837
2838        /*
2839         * Prepare the tmpfile inode as if it were created through the VFS.
2840         * Otherwise, the link increment paths will complain about nlink 0->1.
2841         * Drop the link count as done by d_tmpfile(), complete the inode setup
2842         * and flag it as linkable.
2843         */
2844        drop_nlink(VFS_I(tmpfile));
2845        xfs_setup_iops(tmpfile);
2846        xfs_finish_inode_setup(tmpfile);
2847        VFS_I(tmpfile)->i_state |= I_LINKABLE;
2848
2849        *wip = tmpfile;
2850        return 0;
2851}
2852
2853/*
2854 * xfs_rename
2855 */
2856int
2857xfs_rename(
2858        struct xfs_inode        *src_dp,
2859        struct xfs_name         *src_name,
2860        struct xfs_inode        *src_ip,
2861        struct xfs_inode        *target_dp,
2862        struct xfs_name         *target_name,
2863        struct xfs_inode        *target_ip,
2864        unsigned int            flags)
2865{
2866        struct xfs_mount        *mp = src_dp->i_mount;
2867        struct xfs_trans        *tp;
2868        struct xfs_inode        *wip = NULL;            /* whiteout inode */
2869        struct xfs_inode        *inodes[__XFS_SORT_INODES];
2870        int                     num_inodes = __XFS_SORT_INODES;
2871        bool                    new_parent = (src_dp != target_dp);
2872        bool                    src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2873        int                     spaceres;
2874        int                     error;
2875
2876        trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2877
2878        if ((flags & RENAME_EXCHANGE) && !target_ip)
2879                return -EINVAL;
2880
2881        /*
2882         * If we are doing a whiteout operation, allocate the whiteout inode
2883         * we will be placing at the target and ensure the type is set
2884         * appropriately.
2885         */
2886        if (flags & RENAME_WHITEOUT) {
2887                ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2888                error = xfs_rename_alloc_whiteout(target_dp, &wip);
2889                if (error)
2890                        return error;
2891
2892                /* setup target dirent info as whiteout */
2893                src_name->type = XFS_DIR3_FT_CHRDEV;
2894        }
2895
2896        xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2897                                inodes, &num_inodes);
2898
2899        spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2900        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2901        if (error == -ENOSPC) {
2902                spaceres = 0;
2903                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2904                                &tp);
2905        }
2906        if (error)
2907                goto out_release_wip;
2908
2909        /*
2910         * Attach the dquots to the inodes
2911         */
2912        error = xfs_qm_vop_rename_dqattach(inodes);
2913        if (error)
2914                goto out_trans_cancel;
2915
2916        /*
2917         * Lock all the participating inodes. Depending upon whether
2918         * the target_name exists in the target directory, and
2919         * whether the target directory is the same as the source
2920         * directory, we can lock from 2 to 4 inodes.
2921         */
2922        xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2923
2924        /*
2925         * Join all the inodes to the transaction. From this point on,
2926         * we can rely on either trans_commit or trans_cancel to unlock
2927         * them.
2928         */
2929        xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2930        if (new_parent)
2931                xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2932        xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2933        if (target_ip)
2934                xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2935        if (wip)
2936                xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2937
2938        /*
2939         * If we are using project inheritance, we only allow renames
2940         * into our tree when the project IDs are the same; else the
2941         * tree quota mechanism would be circumvented.
2942         */
2943        if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2944                     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2945                error = -EXDEV;
2946                goto out_trans_cancel;
2947        }
2948
2949        /* RENAME_EXCHANGE is unique from here on. */
2950        if (flags & RENAME_EXCHANGE)
2951                return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2952                                        target_dp, target_name, target_ip,
2953                                        spaceres);
2954
2955        /*
2956         * Set up the target.
2957         */
2958        if (target_ip == NULL) {
2959                /*
2960                 * If there's no space reservation, check the entry will
2961                 * fit before actually inserting it.
2962                 */
2963                if (!spaceres) {
2964                        error = xfs_dir_canenter(tp, target_dp, target_name);
2965                        if (error)
2966                                goto out_trans_cancel;
2967                }
2968                /*
2969                 * If target does not exist and the rename crosses
2970                 * directories, adjust the target directory link count
2971                 * to account for the ".." reference from the new entry.
2972                 */
2973                error = xfs_dir_createname(tp, target_dp, target_name,
2974                                           src_ip->i_ino, spaceres);
2975                if (error)
2976                        goto out_trans_cancel;
2977
2978                xfs_trans_ichgtime(tp, target_dp,
2979                                        XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2980
2981                if (new_parent && src_is_directory) {
2982                        error = xfs_bumplink(tp, target_dp);
2983                        if (error)
2984                                goto out_trans_cancel;
2985                }
2986        } else { /* target_ip != NULL */
2987                /*
2988                 * If target exists and it's a directory, check that both
2989                 * target and source are directories and that target can be
2990                 * destroyed, or that neither is a directory.
2991                 */
2992                if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
2993                        /*
2994                         * Make sure target dir is empty.
2995                         */
2996                        if (!(xfs_dir_isempty(target_ip)) ||
2997                            (VFS_I(target_ip)->i_nlink > 2)) {
2998                                error = -EEXIST;
2999                                goto out_trans_cancel;
3000                        }
3001                }
3002
3003                /*
3004                 * Link the source inode under the target name.
3005                 * If the source inode is a directory and we are moving
3006                 * it across directories, its ".." entry will be
3007                 * inconsistent until we replace that down below.
3008                 *
3009                 * In case there is already an entry with the same
3010                 * name at the destination directory, remove it first.
3011                 */
3012                error = xfs_dir_replace(tp, target_dp, target_name,
3013                                        src_ip->i_ino, spaceres);
3014                if (error)
3015                        goto out_trans_cancel;
3016
3017                xfs_trans_ichgtime(tp, target_dp,
3018                                        XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3019
3020                /*
3021                 * Decrement the link count on the target since the target
3022                 * dir no longer points to it.
3023                 */
3024                error = xfs_droplink(tp, target_ip);
3025                if (error)
3026                        goto out_trans_cancel;
3027
3028                if (src_is_directory) {
3029                        /*
3030                         * Drop the link from the old "." entry.
3031                         */
3032                        error = xfs_droplink(tp, target_ip);
3033                        if (error)
3034                                goto out_trans_cancel;
3035                }
3036        } /* target_ip != NULL */
3037
3038        /*
3039         * Remove the source.
3040         */
3041        if (new_parent && src_is_directory) {
3042                /*
3043                 * Rewrite the ".." entry to point to the new
3044                 * directory.
3045                 */
3046                error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3047                                        target_dp->i_ino, spaceres);
3048                ASSERT(error != -EEXIST);
3049                if (error)
3050                        goto out_trans_cancel;
3051        }
3052
3053        /*
3054         * We always want to hit the ctime on the source inode.
3055         *
3056         * This isn't strictly required by the standards since the source
3057         * inode isn't really being changed, but old unix file systems did
3058         * it and some incremental backup programs won't work without it.
3059         */
3060        xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3061        xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3062
3063        /*
3064         * Adjust the link count on src_dp.  This is necessary when
3065         * renaming a directory, either within one parent when
3066         * the target existed, or across two parent directories.
3067         */
3068        if (src_is_directory && (new_parent || target_ip != NULL)) {
3069
3070                /*
3071                 * Decrement link count on src_directory since the
3072                 * entry that's moved no longer points to it.
3073                 */
3074                error = xfs_droplink(tp, src_dp);
3075                if (error)
3076                        goto out_trans_cancel;
3077        }
3078
3079        /*
3080         * For whiteouts, we only need to update the source dirent with the
3081         * inode number of the whiteout inode rather than removing it
3082         * altogether.
3083         */
3084        if (wip) {
3085                error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3086                                        spaceres);
3087        } else
3088                error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3089                                           spaceres);
3090        if (error)
3091                goto out_trans_cancel;
3092
3093        /*
3094         * For whiteouts, we need to bump the link count on the whiteout inode.
3095         * This means that failures all the way up to this point leave the inode
3096         * on the unlinked list and so cleanup is a simple matter of dropping
3097         * the remaining reference to it. If we fail here after bumping the link
3098         * count, we're shutting down the filesystem so we'll never see the
3099         * intermediate state on disk.
3100         */
3101        if (wip) {
3102                ASSERT(VFS_I(wip)->i_nlink == 0);
3103                error = xfs_bumplink(tp, wip);
3104                if (error)
3105                        goto out_trans_cancel;
3106                error = xfs_iunlink_remove(tp, wip);
3107                if (error)
3108                        goto out_trans_cancel;
3109                xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3110
3111                /*
3112                 * Now we have a real link, clear the "I'm a tmpfile" state
3113                 * flag from the inode so it doesn't accidentally get misused in
3114                 * future.
3115                 */
3116                VFS_I(wip)->i_state &= ~I_LINKABLE;
3117        }
3118
3119        xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3120        xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3121        if (new_parent)
3122                xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3123
3124        error = xfs_finish_rename(tp);
3125        if (wip)
3126                xfs_irele(wip);
3127        return error;
3128
3129out_trans_cancel:
3130        xfs_trans_cancel(tp);
3131out_release_wip:
3132        if (wip)
3133                xfs_irele(wip);
3134        return error;
3135}
3136
3137STATIC int
3138xfs_iflush_cluster(
3139        struct xfs_inode        *ip,
3140        struct xfs_buf          *bp)
3141{
3142        struct xfs_mount        *mp = ip->i_mount;
3143        struct xfs_perag        *pag;
3144        unsigned long           first_index, mask;
3145        unsigned long           inodes_per_cluster;
3146        int                     cilist_size;
3147        struct xfs_inode        **cilist;
3148        struct xfs_inode        *cip;
3149        int                     nr_found;
3150        int                     clcount = 0;
3151        int                     i;
3152
3153        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3154
3155        inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3156        cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3157        cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3158        if (!cilist)
3159                goto out_put;
3160
3161        mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3162        first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3163        rcu_read_lock();
3164        /* really need a gang lookup range call here */
3165        nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3166                                        first_index, inodes_per_cluster);
3167        if (nr_found == 0)
3168                goto out_free;
3169
3170        for (i = 0; i < nr_found; i++) {
3171                cip = cilist[i];
3172                if (cip == ip)
3173                        continue;
3174
3175                /*
3176                 * because this is an RCU protected lookup, we could find a
3177                 * recently freed or even reallocated inode during the lookup.
3178                 * We need to check under the i_flags_lock for a valid inode
3179                 * here. Skip it if it is not valid or the wrong inode.
3180                 */
3181                spin_lock(&cip->i_flags_lock);
3182                if (!cip->i_ino ||
3183                    __xfs_iflags_test(cip, XFS_ISTALE)) {
3184                        spin_unlock(&cip->i_flags_lock);
3185                        continue;
3186                }
3187
3188                /*
3189                 * Once we fall off the end of the cluster, no point checking
3190                 * any more inodes in the list because they will also all be
3191                 * outside the cluster.
3192                 */
3193                if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3194                        spin_unlock(&cip->i_flags_lock);
3195                        break;
3196                }
3197                spin_unlock(&cip->i_flags_lock);
3198
3199                /*
3200                 * Do an un-protected check to see if the inode is dirty and
3201                 * is a candidate for flushing.  These checks will be repeated
3202                 * later after the appropriate locks are acquired.
3203                 */
3204                if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3205                        continue;
3206
3207                /*
3208                 * Try to get locks.  If any are unavailable or it is pinned,
3209                 * then this inode cannot be flushed and is skipped.
3210                 */
3211
3212                if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3213                        continue;
3214                if (!xfs_iflock_nowait(cip)) {
3215                        xfs_iunlock(cip, XFS_ILOCK_SHARED);
3216                        continue;
3217                }
3218                if (xfs_ipincount(cip)) {
3219                        xfs_ifunlock(cip);
3220                        xfs_iunlock(cip, XFS_ILOCK_SHARED);
3221                        continue;
3222                }
3223
3224
3225                /*
3226                 * Check the inode number again, just to be certain we are not
3227                 * racing with freeing in xfs_reclaim_inode(). See the comments
3228                 * in that function for more information as to why the initial
3229                 * check is not sufficient.
3230                 */
3231                if (!cip->i_ino) {
3232                        xfs_ifunlock(cip);
3233                        xfs_iunlock(cip, XFS_ILOCK_SHARED);
3234                        continue;
3235                }
3236
3237                /*
3238                 * arriving here means that this inode can be flushed.  First
3239                 * re-check that it's dirty before flushing.
3240                 */
3241                if (!xfs_inode_clean(cip)) {
3242                        int     error;
3243                        error = xfs_iflush_int(cip, bp);
3244                        if (error) {
3245                                xfs_iunlock(cip, XFS_ILOCK_SHARED);
3246                                goto cluster_corrupt_out;
3247                        }
3248                        clcount++;
3249                } else {
3250                        xfs_ifunlock(cip);
3251                }
3252                xfs_iunlock(cip, XFS_ILOCK_SHARED);
3253        }
3254
3255        if (clcount) {
3256                XFS_STATS_INC(mp, xs_icluster_flushcnt);
3257                XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3258        }
3259
3260out_free:
3261        rcu_read_unlock();
3262        kmem_free(cilist);
3263out_put:
3264        xfs_perag_put(pag);
3265        return 0;
3266
3267
3268cluster_corrupt_out:
3269        /*
3270         * Corruption detected in the clustering loop.  Invalidate the
3271         * inode buffer and shut down the filesystem.
3272         */
3273        rcu_read_unlock();
3274        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3275
3276        /*
3277         * We'll always have an inode attached to the buffer for completion
3278         * process by the time we are called from xfs_iflush(). Hence we have
3279         * always need to do IO completion processing to abort the inodes
3280         * attached to the buffer.  handle them just like the shutdown case in
3281         * xfs_buf_submit().
3282         */
3283        ASSERT(bp->b_iodone);
3284        bp->b_flags &= ~XBF_DONE;
3285        xfs_buf_stale(bp);
3286        xfs_buf_ioerror(bp, -EIO);
3287        xfs_buf_ioend(bp);
3288
3289        /* abort the corrupt inode, as it was not attached to the buffer */
3290        xfs_iflush_abort(cip, false);
3291        kmem_free(cilist);
3292        xfs_perag_put(pag);
3293        return -EFSCORRUPTED;
3294}
3295
3296/*
3297 * Flush dirty inode metadata into the backing buffer.
3298 *
3299 * The caller must have the inode lock and the inode flush lock held.  The
3300 * inode lock will still be held upon return to the caller, and the inode
3301 * flush lock will be released after the inode has reached the disk.
3302 *
3303 * The caller must write out the buffer returned in *bpp and release it.
3304 */
3305int
3306xfs_iflush(
3307        struct xfs_inode        *ip,
3308        struct xfs_buf          **bpp)
3309{
3310        struct xfs_mount        *mp = ip->i_mount;
3311        struct xfs_buf          *bp = NULL;
3312        struct xfs_dinode       *dip;
3313        int                     error;
3314
3315        XFS_STATS_INC(mp, xs_iflush_count);
3316
3317        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3318        ASSERT(xfs_isiflocked(ip));
3319        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3320               ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3321
3322        *bpp = NULL;
3323
3324        xfs_iunpin_wait(ip);
3325
3326        /*
3327         * For stale inodes we cannot rely on the backing buffer remaining
3328         * stale in cache for the remaining life of the stale inode and so
3329         * xfs_imap_to_bp() below may give us a buffer that no longer contains
3330         * inodes below. We have to check this after ensuring the inode is
3331         * unpinned so that it is safe to reclaim the stale inode after the
3332         * flush call.
3333         */
3334        if (xfs_iflags_test(ip, XFS_ISTALE)) {
3335                xfs_ifunlock(ip);
3336                return 0;
3337        }
3338
3339        /*
3340         * This may have been unpinned because the filesystem is shutting
3341         * down forcibly. If that's the case we must not write this inode
3342         * to disk, because the log record didn't make it to disk.
3343         *
3344         * We also have to remove the log item from the AIL in this case,
3345         * as we wait for an empty AIL as part of the unmount process.
3346         */
3347        if (XFS_FORCED_SHUTDOWN(mp)) {
3348                error = -EIO;
3349                goto abort_out;
3350        }
3351
3352        /*
3353         * Get the buffer containing the on-disk inode. We are doing a try-lock
3354         * operation here, so we may get  an EAGAIN error. In that case, we
3355         * simply want to return with the inode still dirty.
3356         *
3357         * If we get any other error, we effectively have a corruption situation
3358         * and we cannot flush the inode, so we treat it the same as failing
3359         * xfs_iflush_int().
3360         */
3361        error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3362                               0);
3363        if (error == -EAGAIN) {
3364                xfs_ifunlock(ip);
3365                return error;
3366        }
3367        if (error)
3368                goto corrupt_out;
3369
3370        /*
3371         * First flush out the inode that xfs_iflush was called with.
3372         */
3373        error = xfs_iflush_int(ip, bp);
3374        if (error)
3375                goto corrupt_out;
3376
3377        /*
3378         * If the buffer is pinned then push on the log now so we won't
3379         * get stuck waiting in the write for too long.
3380         */
3381        if (xfs_buf_ispinned(bp))
3382                xfs_log_force(mp, 0);
3383
3384        /*
3385         * inode clustering: try to gather other inodes into this write
3386         *
3387         * Note: Any error during clustering will result in the filesystem
3388         * being shut down and completion callbacks run on the cluster buffer.
3389         * As we have already flushed and attached this inode to the buffer,
3390         * it has already been aborted and released by xfs_iflush_cluster() and
3391         * so we have no further error handling to do here.
3392         */
3393        error = xfs_iflush_cluster(ip, bp);
3394        if (error)
3395                return error;
3396
3397        *bpp = bp;
3398        return 0;
3399
3400corrupt_out:
3401        if (bp)
3402                xfs_buf_relse(bp);
3403        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3404abort_out:
3405        /* abort the corrupt inode, as it was not attached to the buffer */
3406        xfs_iflush_abort(ip, false);
3407        return error;
3408}
3409
3410/*
3411 * If there are inline format data / attr forks attached to this inode,
3412 * make sure they're not corrupt.
3413 */
3414bool
3415xfs_inode_verify_forks(
3416        struct xfs_inode        *ip)
3417{
3418        struct xfs_ifork        *ifp;
3419        xfs_failaddr_t          fa;
3420
3421        fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3422        if (fa) {
3423                ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3424                xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3425                                ifp->if_u1.if_data, ifp->if_bytes, fa);
3426                return false;
3427        }
3428
3429        fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3430        if (fa) {
3431                ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3432                xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3433                                ifp ? ifp->if_u1.if_data : NULL,
3434                                ifp ? ifp->if_bytes : 0, fa);
3435                return false;
3436        }
3437        return true;
3438}
3439
3440STATIC int
3441xfs_iflush_int(
3442        struct xfs_inode        *ip,
3443        struct xfs_buf          *bp)
3444{
3445        struct xfs_inode_log_item *iip = ip->i_itemp;
3446        struct xfs_dinode       *dip;
3447        struct xfs_mount        *mp = ip->i_mount;
3448
3449        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3450        ASSERT(xfs_isiflocked(ip));
3451        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3452               ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3453        ASSERT(iip != NULL && iip->ili_fields != 0);
3454        ASSERT(ip->i_d.di_version > 1);
3455
3456        /* set *dip = inode's place in the buffer */
3457        dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3458
3459        if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3460                               mp, XFS_ERRTAG_IFLUSH_1)) {
3461                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3462                        "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3463                        __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3464                goto corrupt_out;
3465        }
3466        if (S_ISREG(VFS_I(ip)->i_mode)) {
3467                if (XFS_TEST_ERROR(
3468                    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3469                    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3470                    mp, XFS_ERRTAG_IFLUSH_3)) {
3471                        xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3472                                "%s: Bad regular inode %Lu, ptr "PTR_FMT,
3473                                __func__, ip->i_ino, ip);
3474                        goto corrupt_out;
3475                }
3476        } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3477                if (XFS_TEST_ERROR(
3478                    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3479                    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3480                    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3481                    mp, XFS_ERRTAG_IFLUSH_4)) {
3482                        xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3483                                "%s: Bad directory inode %Lu, ptr "PTR_FMT,
3484                                __func__, ip->i_ino, ip);
3485                        goto corrupt_out;
3486                }
3487        }
3488        if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3489                                ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3490                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3491                        "%s: detected corrupt incore inode %Lu, "
3492                        "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3493                        __func__, ip->i_ino,
3494                        ip->i_d.di_nextents + ip->i_d.di_anextents,
3495                        ip->i_d.di_nblocks, ip);
3496                goto corrupt_out;
3497        }
3498        if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3499                                mp, XFS_ERRTAG_IFLUSH_6)) {
3500                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3501                        "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3502                        __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3503                goto corrupt_out;
3504        }
3505
3506        /*
3507         * Inode item log recovery for v2 inodes are dependent on the
3508         * di_flushiter count for correct sequencing. We bump the flush
3509         * iteration count so we can detect flushes which postdate a log record
3510         * during recovery. This is redundant as we now log every change and
3511         * hence this can't happen but we need to still do it to ensure
3512         * backwards compatibility with old kernels that predate logging all
3513         * inode changes.
3514         */
3515        if (ip->i_d.di_version < 3)
3516                ip->i_d.di_flushiter++;
3517
3518        /* Check the inline fork data before we write out. */
3519        if (!xfs_inode_verify_forks(ip))
3520                goto corrupt_out;
3521
3522        /*
3523         * Copy the dirty parts of the inode into the on-disk inode.  We always
3524         * copy out the core of the inode, because if the inode is dirty at all
3525         * the core must be.
3526         */
3527        xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3528
3529        /* Wrap, we never let the log put out DI_MAX_FLUSH */
3530        if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3531                ip->i_d.di_flushiter = 0;
3532
3533        xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3534        if (XFS_IFORK_Q(ip))
3535                xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3536        xfs_inobp_check(mp, bp);
3537
3538        /*
3539         * We've recorded everything logged in the inode, so we'd like to clear
3540         * the ili_fields bits so we don't log and flush things unnecessarily.
3541         * However, we can't stop logging all this information until the data
3542         * we've copied into the disk buffer is written to disk.  If we did we
3543         * might overwrite the copy of the inode in the log with all the data
3544         * after re-logging only part of it, and in the face of a crash we
3545         * wouldn't have all the data we need to recover.
3546         *
3547         * What we do is move the bits to the ili_last_fields field.  When
3548         * logging the inode, these bits are moved back to the ili_fields field.
3549         * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3550         * know that the information those bits represent is permanently on
3551         * disk.  As long as the flush completes before the inode is logged
3552         * again, then both ili_fields and ili_last_fields will be cleared.
3553         *
3554         * We can play with the ili_fields bits here, because the inode lock
3555         * must be held exclusively in order to set bits there and the flush
3556         * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3557         * done routine can tell whether or not to look in the AIL.  Also, store
3558         * the current LSN of the inode so that we can tell whether the item has
3559         * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3560         * need the AIL lock, because it is a 64 bit value that cannot be read
3561         * atomically.
3562         */
3563        iip->ili_last_fields = iip->ili_fields;
3564        iip->ili_fields = 0;
3565        iip->ili_fsync_fields = 0;
3566        iip->ili_logged = 1;
3567
3568        xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3569                                &iip->ili_item.li_lsn);
3570
3571        /*
3572         * Attach the function xfs_iflush_done to the inode's
3573         * buffer.  This will remove the inode from the AIL
3574         * and unlock the inode's flush lock when the inode is
3575         * completely written to disk.
3576         */
3577        xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3578
3579        /* generate the checksum. */
3580        xfs_dinode_calc_crc(mp, dip);
3581
3582        ASSERT(!list_empty(&bp->b_li_list));
3583        ASSERT(bp->b_iodone != NULL);
3584        return 0;
3585
3586corrupt_out:
3587        return -EFSCORRUPTED;
3588}
3589
3590/* Release an inode. */
3591void
3592xfs_irele(
3593        struct xfs_inode        *ip)
3594{
3595        trace_xfs_irele(ip, _RET_IP_);
3596        iput(VFS_I(ip));
3597}
3598