linux/include/linux/rculist.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_RCULIST_H
   3#define _LINUX_RCULIST_H
   4
   5#ifdef __KERNEL__
   6
   7/*
   8 * RCU-protected list version
   9 */
  10#include <linux/list.h>
  11#include <linux/rcupdate.h>
  12
  13/*
  14 * Why is there no list_empty_rcu()?  Because list_empty() serves this
  15 * purpose.  The list_empty() function fetches the RCU-protected pointer
  16 * and compares it to the address of the list head, but neither dereferences
  17 * this pointer itself nor provides this pointer to the caller.  Therefore,
  18 * it is not necessary to use rcu_dereference(), so that list_empty() can
  19 * be used anywhere you would want to use a list_empty_rcu().
  20 */
  21
  22/*
  23 * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
  24 * @list: list to be initialized
  25 *
  26 * You should instead use INIT_LIST_HEAD() for normal initialization and
  27 * cleanup tasks, when readers have no access to the list being initialized.
  28 * However, if the list being initialized is visible to readers, you
  29 * need to keep the compiler from being too mischievous.
  30 */
  31static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
  32{
  33        WRITE_ONCE(list->next, list);
  34        WRITE_ONCE(list->prev, list);
  35}
  36
  37/*
  38 * return the ->next pointer of a list_head in an rcu safe
  39 * way, we must not access it directly
  40 */
  41#define list_next_rcu(list)     (*((struct list_head __rcu **)(&(list)->next)))
  42
  43/*
  44 * Insert a new entry between two known consecutive entries.
  45 *
  46 * This is only for internal list manipulation where we know
  47 * the prev/next entries already!
  48 */
  49static inline void __list_add_rcu(struct list_head *new,
  50                struct list_head *prev, struct list_head *next)
  51{
  52        if (!__list_add_valid(new, prev, next))
  53                return;
  54
  55        new->next = next;
  56        new->prev = prev;
  57        rcu_assign_pointer(list_next_rcu(prev), new);
  58        next->prev = new;
  59}
  60
  61/**
  62 * list_add_rcu - add a new entry to rcu-protected list
  63 * @new: new entry to be added
  64 * @head: list head to add it after
  65 *
  66 * Insert a new entry after the specified head.
  67 * This is good for implementing stacks.
  68 *
  69 * The caller must take whatever precautions are necessary
  70 * (such as holding appropriate locks) to avoid racing
  71 * with another list-mutation primitive, such as list_add_rcu()
  72 * or list_del_rcu(), running on this same list.
  73 * However, it is perfectly legal to run concurrently with
  74 * the _rcu list-traversal primitives, such as
  75 * list_for_each_entry_rcu().
  76 */
  77static inline void list_add_rcu(struct list_head *new, struct list_head *head)
  78{
  79        __list_add_rcu(new, head, head->next);
  80}
  81
  82/**
  83 * list_add_tail_rcu - add a new entry to rcu-protected list
  84 * @new: new entry to be added
  85 * @head: list head to add it before
  86 *
  87 * Insert a new entry before the specified head.
  88 * This is useful for implementing queues.
  89 *
  90 * The caller must take whatever precautions are necessary
  91 * (such as holding appropriate locks) to avoid racing
  92 * with another list-mutation primitive, such as list_add_tail_rcu()
  93 * or list_del_rcu(), running on this same list.
  94 * However, it is perfectly legal to run concurrently with
  95 * the _rcu list-traversal primitives, such as
  96 * list_for_each_entry_rcu().
  97 */
  98static inline void list_add_tail_rcu(struct list_head *new,
  99                                        struct list_head *head)
 100{
 101        __list_add_rcu(new, head->prev, head);
 102}
 103
 104/**
 105 * list_del_rcu - deletes entry from list without re-initialization
 106 * @entry: the element to delete from the list.
 107 *
 108 * Note: list_empty() on entry does not return true after this,
 109 * the entry is in an undefined state. It is useful for RCU based
 110 * lockfree traversal.
 111 *
 112 * In particular, it means that we can not poison the forward
 113 * pointers that may still be used for walking the list.
 114 *
 115 * The caller must take whatever precautions are necessary
 116 * (such as holding appropriate locks) to avoid racing
 117 * with another list-mutation primitive, such as list_del_rcu()
 118 * or list_add_rcu(), running on this same list.
 119 * However, it is perfectly legal to run concurrently with
 120 * the _rcu list-traversal primitives, such as
 121 * list_for_each_entry_rcu().
 122 *
 123 * Note that the caller is not permitted to immediately free
 124 * the newly deleted entry.  Instead, either synchronize_rcu()
 125 * or call_rcu() must be used to defer freeing until an RCU
 126 * grace period has elapsed.
 127 */
 128static inline void list_del_rcu(struct list_head *entry)
 129{
 130        __list_del_entry(entry);
 131        entry->prev = LIST_POISON2;
 132}
 133
 134/**
 135 * hlist_del_init_rcu - deletes entry from hash list with re-initialization
 136 * @n: the element to delete from the hash list.
 137 *
 138 * Note: list_unhashed() on the node return true after this. It is
 139 * useful for RCU based read lockfree traversal if the writer side
 140 * must know if the list entry is still hashed or already unhashed.
 141 *
 142 * In particular, it means that we can not poison the forward pointers
 143 * that may still be used for walking the hash list and we can only
 144 * zero the pprev pointer so list_unhashed() will return true after
 145 * this.
 146 *
 147 * The caller must take whatever precautions are necessary (such as
 148 * holding appropriate locks) to avoid racing with another
 149 * list-mutation primitive, such as hlist_add_head_rcu() or
 150 * hlist_del_rcu(), running on this same list.  However, it is
 151 * perfectly legal to run concurrently with the _rcu list-traversal
 152 * primitives, such as hlist_for_each_entry_rcu().
 153 */
 154static inline void hlist_del_init_rcu(struct hlist_node *n)
 155{
 156        if (!hlist_unhashed(n)) {
 157                __hlist_del(n);
 158                n->pprev = NULL;
 159        }
 160}
 161
 162/**
 163 * list_replace_rcu - replace old entry by new one
 164 * @old : the element to be replaced
 165 * @new : the new element to insert
 166 *
 167 * The @old entry will be replaced with the @new entry atomically.
 168 * Note: @old should not be empty.
 169 */
 170static inline void list_replace_rcu(struct list_head *old,
 171                                struct list_head *new)
 172{
 173        new->next = old->next;
 174        new->prev = old->prev;
 175        rcu_assign_pointer(list_next_rcu(new->prev), new);
 176        new->next->prev = new;
 177        old->prev = LIST_POISON2;
 178}
 179
 180/**
 181 * __list_splice_init_rcu - join an RCU-protected list into an existing list.
 182 * @list:       the RCU-protected list to splice
 183 * @prev:       points to the last element of the existing list
 184 * @next:       points to the first element of the existing list
 185 * @sync:       function to sync: synchronize_rcu(), synchronize_sched(), ...
 186 *
 187 * The list pointed to by @prev and @next can be RCU-read traversed
 188 * concurrently with this function.
 189 *
 190 * Note that this function blocks.
 191 *
 192 * Important note: the caller must take whatever action is necessary to prevent
 193 * any other updates to the existing list.  In principle, it is possible to
 194 * modify the list as soon as sync() begins execution. If this sort of thing
 195 * becomes necessary, an alternative version based on call_rcu() could be
 196 * created.  But only if -really- needed -- there is no shortage of RCU API
 197 * members.
 198 */
 199static inline void __list_splice_init_rcu(struct list_head *list,
 200                                          struct list_head *prev,
 201                                          struct list_head *next,
 202                                          void (*sync)(void))
 203{
 204        struct list_head *first = list->next;
 205        struct list_head *last = list->prev;
 206
 207        /*
 208         * "first" and "last" tracking list, so initialize it.  RCU readers
 209         * have access to this list, so we must use INIT_LIST_HEAD_RCU()
 210         * instead of INIT_LIST_HEAD().
 211         */
 212
 213        INIT_LIST_HEAD_RCU(list);
 214
 215        /*
 216         * At this point, the list body still points to the source list.
 217         * Wait for any readers to finish using the list before splicing
 218         * the list body into the new list.  Any new readers will see
 219         * an empty list.
 220         */
 221
 222        sync();
 223
 224        /*
 225         * Readers are finished with the source list, so perform splice.
 226         * The order is important if the new list is global and accessible
 227         * to concurrent RCU readers.  Note that RCU readers are not
 228         * permitted to traverse the prev pointers without excluding
 229         * this function.
 230         */
 231
 232        last->next = next;
 233        rcu_assign_pointer(list_next_rcu(prev), first);
 234        first->prev = prev;
 235        next->prev = last;
 236}
 237
 238/**
 239 * list_splice_init_rcu - splice an RCU-protected list into an existing list,
 240 *                        designed for stacks.
 241 * @list:       the RCU-protected list to splice
 242 * @head:       the place in the existing list to splice the first list into
 243 * @sync:       function to sync: synchronize_rcu(), synchronize_sched(), ...
 244 */
 245static inline void list_splice_init_rcu(struct list_head *list,
 246                                        struct list_head *head,
 247                                        void (*sync)(void))
 248{
 249        if (!list_empty(list))
 250                __list_splice_init_rcu(list, head, head->next, sync);
 251}
 252
 253/**
 254 * list_splice_tail_init_rcu - splice an RCU-protected list into an existing
 255 *                             list, designed for queues.
 256 * @list:       the RCU-protected list to splice
 257 * @head:       the place in the existing list to splice the first list into
 258 * @sync:       function to sync: synchronize_rcu(), synchronize_sched(), ...
 259 */
 260static inline void list_splice_tail_init_rcu(struct list_head *list,
 261                                             struct list_head *head,
 262                                             void (*sync)(void))
 263{
 264        if (!list_empty(list))
 265                __list_splice_init_rcu(list, head->prev, head, sync);
 266}
 267
 268/**
 269 * list_entry_rcu - get the struct for this entry
 270 * @ptr:        the &struct list_head pointer.
 271 * @type:       the type of the struct this is embedded in.
 272 * @member:     the name of the list_head within the struct.
 273 *
 274 * This primitive may safely run concurrently with the _rcu list-mutation
 275 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 276 */
 277#define list_entry_rcu(ptr, type, member) \
 278        container_of(READ_ONCE(ptr), type, member)
 279
 280/*
 281 * Where are list_empty_rcu() and list_first_entry_rcu()?
 282 *
 283 * Implementing those functions following their counterparts list_empty() and
 284 * list_first_entry() is not advisable because they lead to subtle race
 285 * conditions as the following snippet shows:
 286 *
 287 * if (!list_empty_rcu(mylist)) {
 288 *      struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
 289 *      do_something(bar);
 290 * }
 291 *
 292 * The list may not be empty when list_empty_rcu checks it, but it may be when
 293 * list_first_entry_rcu rereads the ->next pointer.
 294 *
 295 * Rereading the ->next pointer is not a problem for list_empty() and
 296 * list_first_entry() because they would be protected by a lock that blocks
 297 * writers.
 298 *
 299 * See list_first_or_null_rcu for an alternative.
 300 */
 301
 302/**
 303 * list_first_or_null_rcu - get the first element from a list
 304 * @ptr:        the list head to take the element from.
 305 * @type:       the type of the struct this is embedded in.
 306 * @member:     the name of the list_head within the struct.
 307 *
 308 * Note that if the list is empty, it returns NULL.
 309 *
 310 * This primitive may safely run concurrently with the _rcu list-mutation
 311 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 312 */
 313#define list_first_or_null_rcu(ptr, type, member) \
 314({ \
 315        struct list_head *__ptr = (ptr); \
 316        struct list_head *__next = READ_ONCE(__ptr->next); \
 317        likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
 318})
 319
 320/**
 321 * list_next_or_null_rcu - get the first element from a list
 322 * @head:       the head for the list.
 323 * @ptr:        the list head to take the next element from.
 324 * @type:       the type of the struct this is embedded in.
 325 * @member:     the name of the list_head within the struct.
 326 *
 327 * Note that if the ptr is at the end of the list, NULL is returned.
 328 *
 329 * This primitive may safely run concurrently with the _rcu list-mutation
 330 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 331 */
 332#define list_next_or_null_rcu(head, ptr, type, member) \
 333({ \
 334        struct list_head *__head = (head); \
 335        struct list_head *__ptr = (ptr); \
 336        struct list_head *__next = READ_ONCE(__ptr->next); \
 337        likely(__next != __head) ? list_entry_rcu(__next, type, \
 338                                                  member) : NULL; \
 339})
 340
 341/**
 342 * list_for_each_entry_rcu      -       iterate over rcu list of given type
 343 * @pos:        the type * to use as a loop cursor.
 344 * @head:       the head for your list.
 345 * @member:     the name of the list_head within the struct.
 346 *
 347 * This list-traversal primitive may safely run concurrently with
 348 * the _rcu list-mutation primitives such as list_add_rcu()
 349 * as long as the traversal is guarded by rcu_read_lock().
 350 */
 351#define list_for_each_entry_rcu(pos, head, member) \
 352        for (pos = list_entry_rcu((head)->next, typeof(*pos), member); \
 353                &pos->member != (head); \
 354                pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
 355
 356/**
 357 * list_entry_lockless - get the struct for this entry
 358 * @ptr:        the &struct list_head pointer.
 359 * @type:       the type of the struct this is embedded in.
 360 * @member:     the name of the list_head within the struct.
 361 *
 362 * This primitive may safely run concurrently with the _rcu list-mutation
 363 * primitives such as list_add_rcu(), but requires some implicit RCU
 364 * read-side guarding.  One example is running within a special
 365 * exception-time environment where preemption is disabled and where
 366 * lockdep cannot be invoked (in which case updaters must use RCU-sched,
 367 * as in synchronize_sched(), call_rcu_sched(), and friends).  Another
 368 * example is when items are added to the list, but never deleted.
 369 */
 370#define list_entry_lockless(ptr, type, member) \
 371        container_of((typeof(ptr))READ_ONCE(ptr), type, member)
 372
 373/**
 374 * list_for_each_entry_lockless - iterate over rcu list of given type
 375 * @pos:        the type * to use as a loop cursor.
 376 * @head:       the head for your list.
 377 * @member:     the name of the list_struct within the struct.
 378 *
 379 * This primitive may safely run concurrently with the _rcu list-mutation
 380 * primitives such as list_add_rcu(), but requires some implicit RCU
 381 * read-side guarding.  One example is running within a special
 382 * exception-time environment where preemption is disabled and where
 383 * lockdep cannot be invoked (in which case updaters must use RCU-sched,
 384 * as in synchronize_sched(), call_rcu_sched(), and friends).  Another
 385 * example is when items are added to the list, but never deleted.
 386 */
 387#define list_for_each_entry_lockless(pos, head, member) \
 388        for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \
 389             &pos->member != (head); \
 390             pos = list_entry_lockless(pos->member.next, typeof(*pos), member))
 391
 392/**
 393 * list_for_each_entry_continue_rcu - continue iteration over list of given type
 394 * @pos:        the type * to use as a loop cursor.
 395 * @head:       the head for your list.
 396 * @member:     the name of the list_head within the struct.
 397 *
 398 * Continue to iterate over list of given type, continuing after
 399 * the current position which must have been in the list when the RCU read
 400 * lock was taken.
 401 * This would typically require either that you obtained the node from a
 402 * previous walk of the list in the same RCU read-side critical section, or
 403 * that you held some sort of non-RCU reference (such as a reference count)
 404 * to keep the node alive *and* in the list.
 405 *
 406 * This iterator is similar to list_for_each_entry_from_rcu() except
 407 * this starts after the given position and that one starts at the given
 408 * position.
 409 */
 410#define list_for_each_entry_continue_rcu(pos, head, member)             \
 411        for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
 412             &pos->member != (head);    \
 413             pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
 414
 415/**
 416 * list_for_each_entry_from_rcu - iterate over a list from current point
 417 * @pos:        the type * to use as a loop cursor.
 418 * @head:       the head for your list.
 419 * @member:     the name of the list_node within the struct.
 420 *
 421 * Iterate over the tail of a list starting from a given position,
 422 * which must have been in the list when the RCU read lock was taken.
 423 * This would typically require either that you obtained the node from a
 424 * previous walk of the list in the same RCU read-side critical section, or
 425 * that you held some sort of non-RCU reference (such as a reference count)
 426 * to keep the node alive *and* in the list.
 427 *
 428 * This iterator is similar to list_for_each_entry_continue_rcu() except
 429 * this starts from the given position and that one starts from the position
 430 * after the given position.
 431 */
 432#define list_for_each_entry_from_rcu(pos, head, member)                 \
 433        for (; &(pos)->member != (head);                                        \
 434                pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member))
 435
 436/**
 437 * hlist_del_rcu - deletes entry from hash list without re-initialization
 438 * @n: the element to delete from the hash list.
 439 *
 440 * Note: list_unhashed() on entry does not return true after this,
 441 * the entry is in an undefined state. It is useful for RCU based
 442 * lockfree traversal.
 443 *
 444 * In particular, it means that we can not poison the forward
 445 * pointers that may still be used for walking the hash list.
 446 *
 447 * The caller must take whatever precautions are necessary
 448 * (such as holding appropriate locks) to avoid racing
 449 * with another list-mutation primitive, such as hlist_add_head_rcu()
 450 * or hlist_del_rcu(), running on this same list.
 451 * However, it is perfectly legal to run concurrently with
 452 * the _rcu list-traversal primitives, such as
 453 * hlist_for_each_entry().
 454 */
 455static inline void hlist_del_rcu(struct hlist_node *n)
 456{
 457        __hlist_del(n);
 458        n->pprev = LIST_POISON2;
 459}
 460
 461/**
 462 * hlist_replace_rcu - replace old entry by new one
 463 * @old : the element to be replaced
 464 * @new : the new element to insert
 465 *
 466 * The @old entry will be replaced with the @new entry atomically.
 467 */
 468static inline void hlist_replace_rcu(struct hlist_node *old,
 469                                        struct hlist_node *new)
 470{
 471        struct hlist_node *next = old->next;
 472
 473        new->next = next;
 474        new->pprev = old->pprev;
 475        rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
 476        if (next)
 477                new->next->pprev = &new->next;
 478        old->pprev = LIST_POISON2;
 479}
 480
 481/*
 482 * return the first or the next element in an RCU protected hlist
 483 */
 484#define hlist_first_rcu(head)   (*((struct hlist_node __rcu **)(&(head)->first)))
 485#define hlist_next_rcu(node)    (*((struct hlist_node __rcu **)(&(node)->next)))
 486#define hlist_pprev_rcu(node)   (*((struct hlist_node __rcu **)((node)->pprev)))
 487
 488/**
 489 * hlist_add_head_rcu
 490 * @n: the element to add to the hash list.
 491 * @h: the list to add to.
 492 *
 493 * Description:
 494 * Adds the specified element to the specified hlist,
 495 * while permitting racing traversals.
 496 *
 497 * The caller must take whatever precautions are necessary
 498 * (such as holding appropriate locks) to avoid racing
 499 * with another list-mutation primitive, such as hlist_add_head_rcu()
 500 * or hlist_del_rcu(), running on this same list.
 501 * However, it is perfectly legal to run concurrently with
 502 * the _rcu list-traversal primitives, such as
 503 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 504 * problems on Alpha CPUs.  Regardless of the type of CPU, the
 505 * list-traversal primitive must be guarded by rcu_read_lock().
 506 */
 507static inline void hlist_add_head_rcu(struct hlist_node *n,
 508                                        struct hlist_head *h)
 509{
 510        struct hlist_node *first = h->first;
 511
 512        n->next = first;
 513        n->pprev = &h->first;
 514        rcu_assign_pointer(hlist_first_rcu(h), n);
 515        if (first)
 516                first->pprev = &n->next;
 517}
 518
 519/**
 520 * hlist_add_tail_rcu
 521 * @n: the element to add to the hash list.
 522 * @h: the list to add to.
 523 *
 524 * Description:
 525 * Adds the specified element to the specified hlist,
 526 * while permitting racing traversals.
 527 *
 528 * The caller must take whatever precautions are necessary
 529 * (such as holding appropriate locks) to avoid racing
 530 * with another list-mutation primitive, such as hlist_add_head_rcu()
 531 * or hlist_del_rcu(), running on this same list.
 532 * However, it is perfectly legal to run concurrently with
 533 * the _rcu list-traversal primitives, such as
 534 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 535 * problems on Alpha CPUs.  Regardless of the type of CPU, the
 536 * list-traversal primitive must be guarded by rcu_read_lock().
 537 */
 538static inline void hlist_add_tail_rcu(struct hlist_node *n,
 539                                      struct hlist_head *h)
 540{
 541        struct hlist_node *i, *last = NULL;
 542
 543        /* Note: write side code, so rcu accessors are not needed. */
 544        for (i = h->first; i; i = i->next)
 545                last = i;
 546
 547        if (last) {
 548                n->next = last->next;
 549                n->pprev = &last->next;
 550                rcu_assign_pointer(hlist_next_rcu(last), n);
 551        } else {
 552                hlist_add_head_rcu(n, h);
 553        }
 554}
 555
 556/**
 557 * hlist_add_before_rcu
 558 * @n: the new element to add to the hash list.
 559 * @next: the existing element to add the new element before.
 560 *
 561 * Description:
 562 * Adds the specified element to the specified hlist
 563 * before the specified node while permitting racing traversals.
 564 *
 565 * The caller must take whatever precautions are necessary
 566 * (such as holding appropriate locks) to avoid racing
 567 * with another list-mutation primitive, such as hlist_add_head_rcu()
 568 * or hlist_del_rcu(), running on this same list.
 569 * However, it is perfectly legal to run concurrently with
 570 * the _rcu list-traversal primitives, such as
 571 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 572 * problems on Alpha CPUs.
 573 */
 574static inline void hlist_add_before_rcu(struct hlist_node *n,
 575                                        struct hlist_node *next)
 576{
 577        n->pprev = next->pprev;
 578        n->next = next;
 579        rcu_assign_pointer(hlist_pprev_rcu(n), n);
 580        next->pprev = &n->next;
 581}
 582
 583/**
 584 * hlist_add_behind_rcu
 585 * @n: the new element to add to the hash list.
 586 * @prev: the existing element to add the new element after.
 587 *
 588 * Description:
 589 * Adds the specified element to the specified hlist
 590 * after the specified node while permitting racing traversals.
 591 *
 592 * The caller must take whatever precautions are necessary
 593 * (such as holding appropriate locks) to avoid racing
 594 * with another list-mutation primitive, such as hlist_add_head_rcu()
 595 * or hlist_del_rcu(), running on this same list.
 596 * However, it is perfectly legal to run concurrently with
 597 * the _rcu list-traversal primitives, such as
 598 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 599 * problems on Alpha CPUs.
 600 */
 601static inline void hlist_add_behind_rcu(struct hlist_node *n,
 602                                        struct hlist_node *prev)
 603{
 604        n->next = prev->next;
 605        n->pprev = &prev->next;
 606        rcu_assign_pointer(hlist_next_rcu(prev), n);
 607        if (n->next)
 608                n->next->pprev = &n->next;
 609}
 610
 611#define __hlist_for_each_rcu(pos, head)                         \
 612        for (pos = rcu_dereference(hlist_first_rcu(head));      \
 613             pos;                                               \
 614             pos = rcu_dereference(hlist_next_rcu(pos)))
 615
 616/**
 617 * hlist_for_each_entry_rcu - iterate over rcu list of given type
 618 * @pos:        the type * to use as a loop cursor.
 619 * @head:       the head for your list.
 620 * @member:     the name of the hlist_node within the struct.
 621 *
 622 * This list-traversal primitive may safely run concurrently with
 623 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 624 * as long as the traversal is guarded by rcu_read_lock().
 625 */
 626#define hlist_for_each_entry_rcu(pos, head, member)                     \
 627        for (pos = hlist_entry_safe (rcu_dereference_raw(hlist_first_rcu(head)),\
 628                        typeof(*(pos)), member);                        \
 629                pos;                                                    \
 630                pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
 631                        &(pos)->member)), typeof(*(pos)), member))
 632
 633/**
 634 * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
 635 * @pos:        the type * to use as a loop cursor.
 636 * @head:       the head for your list.
 637 * @member:     the name of the hlist_node within the struct.
 638 *
 639 * This list-traversal primitive may safely run concurrently with
 640 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 641 * as long as the traversal is guarded by rcu_read_lock().
 642 *
 643 * This is the same as hlist_for_each_entry_rcu() except that it does
 644 * not do any RCU debugging or tracing.
 645 */
 646#define hlist_for_each_entry_rcu_notrace(pos, head, member)                     \
 647        for (pos = hlist_entry_safe (rcu_dereference_raw_notrace(hlist_first_rcu(head)),\
 648                        typeof(*(pos)), member);                        \
 649                pos;                                                    \
 650                pos = hlist_entry_safe(rcu_dereference_raw_notrace(hlist_next_rcu(\
 651                        &(pos)->member)), typeof(*(pos)), member))
 652
 653/**
 654 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
 655 * @pos:        the type * to use as a loop cursor.
 656 * @head:       the head for your list.
 657 * @member:     the name of the hlist_node within the struct.
 658 *
 659 * This list-traversal primitive may safely run concurrently with
 660 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 661 * as long as the traversal is guarded by rcu_read_lock().
 662 */
 663#define hlist_for_each_entry_rcu_bh(pos, head, member)                  \
 664        for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
 665                        typeof(*(pos)), member);                        \
 666                pos;                                                    \
 667                pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
 668                        &(pos)->member)), typeof(*(pos)), member))
 669
 670/**
 671 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
 672 * @pos:        the type * to use as a loop cursor.
 673 * @member:     the name of the hlist_node within the struct.
 674 */
 675#define hlist_for_each_entry_continue_rcu(pos, member)                  \
 676        for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
 677                        &(pos)->member)), typeof(*(pos)), member);      \
 678             pos;                                                       \
 679             pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
 680                        &(pos)->member)), typeof(*(pos)), member))
 681
 682/**
 683 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
 684 * @pos:        the type * to use as a loop cursor.
 685 * @member:     the name of the hlist_node within the struct.
 686 */
 687#define hlist_for_each_entry_continue_rcu_bh(pos, member)               \
 688        for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
 689                        &(pos)->member)), typeof(*(pos)), member);      \
 690             pos;                                                       \
 691             pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
 692                        &(pos)->member)), typeof(*(pos)), member))
 693
 694/**
 695 * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point
 696 * @pos:        the type * to use as a loop cursor.
 697 * @member:     the name of the hlist_node within the struct.
 698 */
 699#define hlist_for_each_entry_from_rcu(pos, member)                      \
 700        for (; pos;                                                     \
 701             pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
 702                        &(pos)->member)), typeof(*(pos)), member))
 703
 704#endif  /* __KERNEL__ */
 705#endif
 706